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Abstract

In the area of distributed graph algorithms a number of network’s entities with local
views solve some computational task by exchanging messages with their neighbors. Quite
unfortunately, an inherent property of most existing distributed algorithms is that throughout
the course of their execution, the nodes get to learn not only their own output but rather learn
quite a lot on the inputs or outputs of many other entities. This leakage of information might
be a major obstacle in settings where the output (or input) of network’s individual is a private
information (e.g., distributed networks of selfish agents, decentralized digital currency such
as Bitcoin).

While being quite an unfamiliar notion in the classical distributed setting, the notion of se-
cure multi-party computation (MPC) is one of the main themes in the Cryptographic commu-
nity. The existing secure MPC protocols do not quite fit the framework of classical distributed
models in which only messages of bounded size are sent on graph edges in each round. In
this paper, we introduce a new framework for secure distributed graph algorithms and provide
the first general compiler that takes any “natural” non-secure distributed algorithm that runs in
r rounds, and turns it into a secure algorithm that runs in Õ(r · D · poly(∆)) rounds where ∆
is the maximum degree in the graph and D is its diameter. A “natural” distributed algorithm
is one where the local computation at each node can be performed in polynomial time. An
interesting advantage of our approach is that it allows one to decouple between the price of
locality and the price of security of a given graph function f . The security of the compiled al-
gorithm is information-theoretic but holds only against a semi-honest adversary that controls
a single node in the network.

This compiler is made possible due to a new combinatorial structure called private neigh-
borhood trees: a collection of n trees T(u1), . . . , T(un), one for each vertex ui ∈ V(G), such
that each tree T(ui) spans the neighbors of ui without going through ui. Intuitively, each tree
T(ui) allows all neighbors of ui to exchange a secret that is hidden from ui, which is the basic
graph infrastructure of the compiler. In a (d, c)-private neighborhood trees each tree T(ui)
has depth at most d and each edge e ∈ G appears in at most c different trees. We show
a construction of private neighborhood trees with d = Õ(∆ · D) and c = Õ(D), both these
bounds are existentially optimal.
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1 Introduction

In distributed graph algorithms (or network algorithms) a number of individual entities are con-
nected via a potentially large network. Starting with the breakthrough by Awerbuch et al. [AGLP89],
and the seminal work of Linial [Lin92], Peleg [Pel00] and Naor and Stockmeyer [NS95], the area
of distributed graph algorithms is growing rapidly. Recently, it has been receiving considerably
more theoretical and practical attention motivated by the spread of multi-core computers, cloud
computing, and distributed databases. We consider the standard synchronous message passing
model (the CONGEST model) where in each round O(log n) bits can be transmitted over every
edge where n is the number of entities.

The common principle underlying all distributed graph algorithms (regardless of the model
specification) is that the input of the algorithm is given in a distributed format, and consequently
the goal of each vertex is to compute its own part of the output, e.g., whether it is a member of
a computed maximal independent set, its own color in a valid coloring of the graph, its incident
edges in the minimum spanning tree, or its chosen edge for a maximal matching solution. In
most distributed algorithms, throughout execution, vertices learn much more than merely their
own output but rather collect additional information on the input or output of (potentially)
many other vertices in the network. This seems inherent in many distributed algorithms, as
the output of one node is used in the computation of another. For instance, most randomized
coloring (or MIS) algorithms [Lub86, BE13, BEPS16, HSS16, Gha16, CPS17] are based on the
vertices exchanging their current color with their neighbors in order to decide whether they are
legally colored.

In cases where the data is sensitive or private, these algorithms may raise security concerns.
To exemplify this point, consider the task of computing the average salary in a distributed net-
work. This is a rather simple distributed task: construct a BFS tree and let the nodes send their
salary from the leaves to the root where each intermediate node sends to its parent in the tree, the
sum of all salaries received from its children. While the output goal has been achieved, privacy
has been compromised as intermediate nodes learn more information regarding the salaries of
their subtrees. Additional motivation for secure distributed computation include private medical
data, networks of selfish agents with private utility functions, and decentralized digital currencies
such as the Bitcoin.

The community of distributed graph algorithms is commonly concerned with two main chal-
lenges, namely, locality (i.e., communication is only performed between neighboring nodes) and
congestion (i.e., communication links have bounded bandwidth). Security is usually not speci-
fied as a desired requirement of the distributed algorithm and the main efficiency criterion is the
round complexity (while respecting bandwidth limitation).

Albeit being a rather virgin objective in the area of distributed graph algorithms, the notion
of security in multi-party computation (MPC) is one of the main themes in the Cryptographic
community. Broadly speaking, secure MPC protocols allow parties to jointly compute a function
f of their inputs without revealing anything about their inputs except the output of the function.
There has been tremendous work on MPC protocols, starting from general feasibility results
[Yao82, GMW87, BGW88, CCD88] that apply to any functionality to protocols that are designed
to be extremely efficient for specific functionalities [BNP08, BLO16]. There is also a wide range
of security notions: information-theoretic security or security that is based on computational
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assumptions, the adversary is either semi-honest or malicious1 and in might collude with several
parties.

Most MPC protocols are designed for the clique networks where each two parties have a
secure channel between them. The works that do consider general graph topologies usually
take the following framework. For a given function f of interest, design first a protocol for
securely computing f in the simpler setting of a clique network, then “translate” this protocol
to any given graph G. Although this framework yields protocols that are secure in the strong
sense (e.g., handling collusions and a malicious adversary), they do not quite fit the framework
of distributed graph algorithms, and simulating these protocols in the CONGEST model results
in a large overhead in the round complexity. It is important to note that the blow-up in the
number of rounds might occur regardless of the security requirement; for instance, when the
desired function f is non-local, its distributed computation in general graphs might be costly
with respect to rounds even in the insecure setting. In the lack of distributed graph algorithms
for general graphs that are both secure and efficient compared to their non-secure counterparts,
we ask:

How to design distributed algorithms that are both efficient (in terms of round complexity)
and secure (where nothing is learned but the desired output)?

We address this challenge by introducing a new framework for secure distributed graph algo-
rithms in the CONGEST model. Our approach is different from previous secure algorithms men-
tioned above and allows one to decouple between the price of locality and the price of security
of a given function f . In particular, instead of adopting a clique-based secure protocol for f , we
take the best distributed algorithm A for computing f , and then compile A to a secure algorithm
A′. This compiled algorithm respects the same bandwidth limitations, relies on no setup phase
nor on any computational assumption and works for (almost) any graph. The price of security
comes as an overhead in the number of rounds. Before presenting the precise parameters of the
secure compiler, we first discuss the security notion used in this paper.

Our Security Notion. Consider a (potentially insecure) distributed algorithm A. Intuitively, we
say that a distributed algorithm A′ securely simulates A if (1) both algorithms have the exact same
output for every node (or the exact same output distribution if the algorithm is randomized) and
(2) each node learns “nothing more” than its final output. This strong notion of security is
known as “perfect privacy” - which provides pure information theoretic guarantees and relies
and no computational assumptions. The perfect privacy notion is formalized by the existence of
an (unbounded) simulator [BGW88, Gol09, Can00, AL17], with the following intuition: a node
learns nothing except its own output y, from the messages it receives throughout the execution
of the algorithm, if a simulator can produce the same output distribution while receiving only y
and the graph G.

Assume that one of the nodes in the network is an “adversary” that is trying to learn as much
as possible from the execution of the algorithm. Then the security notion has some restrictions
on the operations the adversary is allowed to perform: (1) The adversary is passive and only
listens to the messages but does not deviate from the prescribed protocol; this is known in the
literature as semi-honest security. (2) The adversary is not allowed to collude with other nodes in
the network. As will be explained next, if the vertex connectivity of the graph is two, then this is

1A semi-honest adversary does not deviate from the described protocol, but may run any computation on the
received transcript to gain additional information. A malicious adversary might arbitrarily deviate from the protocol.
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the strongest adversary that one can consider. (3) The adversary gets to see the entire graph. That
is, in this framework, the topology of the graph G is not considered private and is not protected
by the security notion. The private bits of information that are protected by our compiler are: the
inputs of the nodes (e.g., color) and the randomness chosen during the execution of the algorithm;
as a result, the outputs of the nodes are private (see Definition 1 for precise details).

A Stronger Adversary: From Cliques to General Topology. The goal of this paper is to lay
down the groundwork, especially the graph theoretic infrastructures for secure distributed graph
algorithms. As a first step towards this goal, we consider the largest family of graphs for which
secure computation can be achieved in the perfect secure setting. This is precisely the family of
two-vertex connected graphs.

Handling this wide family of graphs naturally imposes restrictions on the power of the ad-
versary that one can consider. In particular, we cannot hope to handle that standard adversary
assumed in the MPC literature, which colludes with Ω(n) other parties. A natural limit on the
adversarial collusion is the vertex connectivity of the graph. Indeed, if the graph is only t-vertex
connected, then an adversary that colludes with t nodes can receive all messages from one part of
the graph to the other. That is, a security for such a graph will imply a secure two-party computa-
tion, where each party simulates one connected component of the graph. Such two-party secure
protocols where shown to be impossible for merely any interesting function [Kus89]. Thus, for 2-
vertex connected graphs, one cannot achieve a secure simulation with an adversary that colludes
with more than a node. Moreover, the works of [Dol82] combined with [DDWY93] show that if
the adversary is malicious and colludes with t nodes then graph must be (2t + 1) connected for
security to hold.

We believe that the framework provided in this paper, and the private neighborhood trees
in particular, serve the basis for stronger security guarantees in the future, for highly connected
graphs.

1.1 Our Results

Our end result is the first general compiler that can take any “natural” (possibly insecure) dis-
tributed algorithm to one that has perfect security. A “natural” distributed algorithm is one
where the local computation at each node can be performed in polynomial time. Through the
paper, the Õ(·) notation hides poly-logarithmic terms in the number of vertices n. Recall, that G
is 2-vertex connected (or bridgeless) if for all u ∈ V the graph G′ = (V \ {u}, E) is connected.

Theorem 1 (Secure Simulation, Informal). Let G be a 2-vertex connected n-vertex graph with diameter
D and maximal degree ∆. Let A be a natural distributed algorithm that runs on G in r rounds. Then,
A can be transformed to an equivalent algorithm A′ with perfect privacy which runs in Õ(rD · poly(∆))
rounds.

We note that our compiler works for any distributed algorithm rather than only on natural
ones. The number of rounds will be proportional to the space complexity of the internal com-
putation functions of the distributed algorithm (an explicit statement for any algorithm can be
found in Remark 1).

This quite general framework is made possible due to fascinating connections between “se-
cure cryptographic definitions” and natural combinatorial graph properties. Most notably is
combinatorial structure that we call private neighborhood trees. Roughly speaking, a private neigh-
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Low-Congestion
Cycle Covers [PY18]

Private Neighborhood
Trees (Theorem 2)

Secure Distributed
Algorithm (Theorem 1)

Figure 1: An illustrated summary of our results.

borhood tree of a 2-vertex connected graph G = (V, E) is a collection of n trees, one per node
ui, where each tree T(ui) ⊆ G \ {ui} contains all the neighbors of ui but does not contain ui.
Intuitively, the private neighborhood trees allow all neighbors Γ(ui) of all nodes ui to exchange
a secret without ui. Note that these covers exist if and only if the graph is 2-vertex connected.
We define a (d, c)-private neighborhood trees in which each tree T(ui) has depth at most d and
each edge belongs to at most c many trees. This allows the distributed compiler to use all trees
simultaneously in Õ(d+ c) rounds, by employing the random delay approach [LMR94, Gha15].

Theorem 2 (Private Neighborhood Trees). Every 2-vertex connected graph with diameter D and max-
imum degree ∆ has a (d, c)-private neighborhood trees with d = Õ(D · ∆) and c = Õ(D).

Our secure compiler assumes that the nodes in the graph know the private neighborhood
trees. That is, each node knows its parent in the trees it participates in. Thus, in order for the
whole transformation to work, the network needs to run a distributed algorithm to learn the
cycle cover. This can be achieved by performing a prepossessing phase to compute the private
trees and then run the distributed algorithm.

Since the barrier of [Kus89] can be extended to a cycle graph, the linear dependency in D in
the round complexity of our compiler is unavoidable.

The flow of our constructions are summarized in Figure 1.

1.2 Applications for Known Distributed Algorithms

Theorem 1 enables us to compile almost all of the known distributed algorithms to a secure
version of them. It is worth noting that deterministic algorithms for problems in which the nodes
do not have any input cannot be made secure by our approach since these algorithms only depend
on the graph topology which we do not try to hide. Our compiler is meaningful for algorithms
where the nodes have input or for randomized algorithms which define a distribution over the
output of the nodes. For instance, the randomized coloring algorithms (see e.g., [BE13]) which
sample a random legal coloring of the graph can be made secure. Specifically, we get a distributed
algorithm that (legally) colors a graph (or computes a legal configuration, in general), while the
information that each node learns at the end is as if a centralized entity ran the algorithm for the
entire network, and revealed each node’s output privately (i.e., revealing v the final color of v).
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Our approach captures global (e.g., MST) as well as many local problems [NS95]. The MIS
algorithm of Luby [Lub86] along with our compiler yields Õ(D · poly(∆)) secure algorithm ac-
cording to the notion described above. Slight variations of this algorithm also gives the O(log n)-
round (∆ + 1)-coloring algorithm (e.g., Algorithm 19 of [BE13]). Combining it with our compiler
we get a secure (∆ + 1)-coloring algorithm with round complexity of Õ(D · poly(∆)). Using the
Matching algorithm of Israeli and Itai [II86] we get an Õ(D · poly(∆)) secure maximal match-
ing algorithm. Finally, another example comes from distributed algorithms for the Lovász local
lemma (LLL) which have received a lot of attention recently [BFH+16, FG17, CP17] for the class
of bounded degree graphs. Using [CPS17], most of these (non-secure) algorithms for defective
coloring, frugal coloring, and list vertex-coloring can be made secure within Õ(D) rounds.

1.3 Related Work

There is a long line of research on secure multiparty computation. The most general results
are [Yao82, GMW87, BGW88, CCD88] which provide a protocol for computing any function
f (x1, . . . , xn) over n inputs. The significance of these results is that they work for any function and
provide strong security (either assuming computational assumptions, or information-theoretic as
is considered in this work). More specifically, these results can tolerate the adversary colluding
with t nodes as long as t < n/2 and achieve security in the semi-honest model. If the adversary
is malicious (i.e., she can deviate from the prescribed protocol) then the protocols can handle
t < n/3. These general results assume that every two parties have a secure direct channel
between them, that is, they assume that the interaction pattern is a clique.

General Graph Topologies. As opposed to general MPC, there are not many protocols that work
for general graph interaction patterns. The works of [HIJ+16, HIJ+17] provide secure protocols
for any function f and for any graph pattern, however, they have a few drawbacks. First, they
both assume some form of a setup phase (recall that our solution assumes no such setup). The
work of [HIJ+16] assumes a setup of correlated randomness and provides several protocols with
information-theoretic security. Even the most efficient protocol (one for symmetric functions)
must send more than n2 bits on each edge. In the CONGEST model, this would take n2/ log n
rounds which is a non interesting regime for this model (for other functions the communication
complexity is much worse). The work of [HIJ+17] assumes a public-key infrastructure (PKI)
setup together with a common random string, and moreover provides only solutions based on
(heavy) computational assumptions. More importantly, the number of rounds is not a parameter
they optimize, and will be at least O(n2) even for simple functions. Such protocols where also
implicitly considered in [GGG+14, BGI+14] but suffer from similar drawbacks.

MPC with Locality Constraints. Other MPC works study protocols with small locality, that
is, that parties communicate only with a small number of other parties. The work of [BGT13]
(followed by [CCG+15]) provides a secure MPC protocol for general functions where for n parties
each party is only required to communicate with at most polylog(n) other parties using polylog(n)
rounds, where in each round messages are of size poly(n). Their protocols assumes computation
assumptions and a setup phase. Moreover, we stress that they still require a fully connected
network, and then parties communicate with a small number of dynamically chosen parties, but
with very large messages (compared to the log n bound in our model). On the positive side, they
achieve a strong security notation where the adversary can collude with up to about n/3 nodes.
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MPC for Bounded Degree Graphs. The works of [GO08, CGO10] consider MPC protocols for
bounded degree graphs. Except for the graph restriction, they consider arbitrary interaction
pattern, information-theoretic security and no setup phase (similar to our setting). They provide
a protocol for computing any function f while “giving up” on security for some nodes (i.e., the
adversary might learn the private inputs of these nodes). While they have some restrictions on the
adversary, their security notion is stronger then ours (as we do not allow collusions). However,
their protocol is not round nor bandwidth efficient with respect to our parameters. They simulate
the general MPC protocol of [BGW88], by replacing each message sent from player i to player
j, one-by-one, with a distributed broadcast protocol that takes more than n rounds by itself.
Thus, the overall protocols will require at least n2 rounds and enters the uninteresting regime of
parameters for the CONGEST model.

The Key Differences to Our Approach. Our approach is quite different from the algorithms
mentioned above. In particular, instead of taking some function f and trying to build the best
secure protocol for it, our compiler takes the best distributed algorithm for computing f , and then
compiles it to a secure one. This makes us competitive, in terms of the number of rounds, with
the non-secure distributed algorithm. In the MPC approach, it is harder to decouple between the
price of locality and the price of security as adopting a clique-protocol for computing a function
f to a general graph might blow up the number of rounds, regardless of the security constraint.
One exception is the work of [KTW07] who showed how to compile a distributed algorithm
for a specific task of Belief Propagation to a secure one. The compiler is designed specifically
for this task and does not work for others. Moreover, the security that is achieved is based on
computational assumption and specifically public-key encryption with additional properties.

Finally, we note that a compiler that works for even a weaker adversary was proposed in
[PY18]. In their setting, the adversary can listen to the messages of a single edge where in our
setting the adversary listens to all messages received by a single node. Thus, the adversary gets
messages from ∆ different edges in additional to getting the private randomness chosen by the
node itself.

2 Our Approach and Techniques

We next describe the high level ideas of our secure compiler. In section 2.1, we describe how the
secure computation in the distributed setting boils down into a novel graph theoretic structure,
namely, private neighborhood trees. The construction of private trees is shown in Section 4.

2.1 From Security Requirements to Graph Structures

In this section, we give an overview of the construction of a secure compiler and begin by showing
how to compile a single round distributed algorithm into a secure one. This single-round setting
already captures most of the challenges of the compiler. At the end of section, we describe the
additional ideas required for generalizing this to arbitrary r-round algorithms.

Secure Simulation of a Single Round. Let G be an n-vertex graph with maximum degree ∆, and
for any node u let σu be its initial state (including its ID, and private input). Any single round
algorithm can be described by a function f that maps the initial state σu of u and the messages
m1, . . . , m∆ received from its neighbors, to the output of the algorithm for the node u.
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As a concrete running example, let A be a single round algorithm that verifies vertex coloring
in a graph. In this algorithm, the initial state of a node includes a color cu, and nodes exchange
their color with their neighbors and output 1 if and only if all of their neighbors are colored
with a color that is different than cu. It is easy to see that in this simple algorithm, the nodes
learn more than the final output of the algorithm, namely, they learn the color of their neighbors.
Our goal is to compile this algorithm to a secure one, where nothing is learned expect the final
output. In particular, where nodes do not learn the color of any other node in the network. This
fits the model of Private Simultaneous Messages (PSM) that we describe next. We stress that
other MPC protocols might be suitable here as well (e.g., [Yao82, GMW87, BGW88]), however,
the star topology of PSM model makes the best fit in terms of simplicity and parameters.

The PSM model was introduced by Feige, Kilian and Naor [FKN94] (and later generalized
by [IK97]) as a “minimal” model of MPC for securely computing a function f . In this model,
there are k clients that hold inputs x1, . . . , xk which are all connected to a single server (i.e., a star
topology). The clients share private randomness R that is hidden from the server. The goal is for
the server to compute f (x1, . . . , xk) while learning “nothing more” but this output. The protocol
consists of a single round where each client i sends a message to the server that depends on its
own input xi and the randomness R. The server, using these messages, computes the final output
f (x1, . . . , xk). In [FKN94], it was shown that any function f admits such a PSM protocol with
information-theoretic privacy. The complexity measure of the protocol is the size of the messages
(and shared randomness) which are exponential in the space complexity of the function f (see
Definition 2 and Theorem 5 for precise details).

Turning back to our single round distributed algorithm A, the secure simulation of A can be
based on the PSM protocol for securely computing the function f , the function that characterizes
algorithm A. In this view, each node u in the graph acts as a server in the PSM protocol, while
its (at most ∆) neighbors in the graph act as the clients.

In order to simulate the PSM protocol of [FKN94] in the CONGEST model, one has to take
care of several issues. The first issue concerns the bandwidth restriction; in the CONGEST model,
every neighbor vi can send only O(log n) bits to u in a single round. Note that the PSM messages
are exponential in the space complexity of the function f , and that in our setting the total input
of f has O(∆ log n) bits. Thus, in a naı̈ve implementation only functions f that are computable
in logarithmic space can be computed with the desired overhead of poly(∆) rounds. Our goal is
to capture a wider family of functions, in particular the class of natural algorithms in which f
is computable in polynomial time. Therefore, in our final compiler, we do not compute f in a
single round, but rather compute it gate-by-gate. Since in natural algorithms f is computed by a
circuit of polynomial size, and since a single gate is computable in logarithmic space, we incur
a total round overhead that is polynomial in ∆. In what follows, assume that f is computable in
logarithmic space.

Another issue to be resolved is that in the PSM model, the server did not hold an input
whereas in our setting the function f depends not only on the input of the neighbors, but on the
input of the node u as well. This subtlety is handled by having u secret share2 its input to the
neighbors.

How to Exchange Secrets in a Graph? There is one final critical missing piece that requires hard
work: the neighbors of u must share private randomness R that is not known to u. Thus, the
secure simulation of a single round distributed algorithm can be translated into the following

2A secret share of x to k parties is a random tuple r1, . . . , rk such that r1 ⊕ · · · ⊕ rk = x.
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problem:

How to share a secret Ru between the neighbors of each node u in the graph while hiding it
from u itself?

Note that this task should be done for all nodes u in the graph G simultaneously. That is, for
every node u, we need the neighbors of u to share a private random string that is hidden from
u. Our solution to this problem is information theoretic and builds upon specific graph struc-
tures. However, we begin by discussing a much simpler solution, yet, based on computational
assumptions.

A Solution Based on Computational Assumptions. In order to get a computationally based
solution, we assume the existence of a public-key encryption scheme. For simplicity, we assume
that our public-key encryption scheme has two properties: (1) the encryption does not increase
the size of the plaintext, and (2) the length of the public-key is λ – the security parameter of the
public-key scheme. We next describe an Õ(∆ + λ) protocol that computes the secret R which is
shared by all neighbors of u while hiding it from u, under the public-key assumption.

Consider a node u and let v1, . . . , v∆ be its neighbors. For simplicity, assume that ∆ is power
of 2. First, v1 computes the random string R, this string will be shared with all vi’s nodes in log ∆
phases. In each phase i ≥ 0, we assume that all the vertices v1, . . . , vki for ki = 2i know R. We
will show that at the end of the phase, all vertices v1, . . . , vki , vki+1, . . . , v2ki know R. This is done
as follows. Each vertex vki+j sends its public-key to vj via the common neighbor u, vj encrypts
R with the key of vki+j and sends this encrypted information to vki+j via u. As the length of
the public-key is λ and the length of the encrypted secret R needed by the PSM protocol has
O(∆ log n) bits, this can be done in Õ(∆ + λ) rounds. It is easy to see that u cannot learn the
secret R under the public-key assumption.

Using this protocol with the PSM machinery yields a protocol that compiles any r-round
algorithm A (even non-natural one) into a secure algorithm A with r′ = Õ(r(∆ + λ)) rounds. We
note that it is not clear what is λ as a function of the number of nodes n. Clearly, if λ = Ω(n),
this overhead is quite large. The benefit of our perfect security scheme is that it relies on no
computational assumptions, does not introduce an additional security parameter and as a result
the round complexity of the compiled algorithms depends only on the properties of the graph,
e.g., number of nodes, maximum degree and diameter. Finally, the dependencies on these graph
parameters is existentially required.

Our Information-Theoretic Solution. Suppose two nodes, v1, v2, wish to share information that
is hidden from a node u in the information-theoretic sense. Then, they must use a v1-v2 path
in G that is free from u. Hence, in order for the neighbors of a node u to exchange private
randomness, they must use a connected subgraph H of G that spans all the neighbors of u but
does not include u. (This in particular explains our requirement for G to be 2-vertex connected.)
Using this subgraph H, the neighbors can communicate privately (without u) and exchange
shared randomness.

In order to reduce the overhead of the compiler, we need the diameter of H to be as small as
possible. Moreover, in the compiled algorithm, we will have the neighbors of all nodes u in the
graph exchange randomness simultaneously. Since there is a bandwidth limit, we need to have
a minimal overlap of the different subgraphs H. It is easy to see that for every vertex u, there
exists a tree T(u) ⊆ G \ {u} of diameter O(∆ · D) that spans all the neighbors of u. However,
an arbitrarily collection of trees T(u1), . . . , T(un) where each T(ui) ⊆ G \ {ui} might result in an
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edge that is common to Ω(n) trees. This is undesirable as it might lead to a blow-up of Ω(n) in
the round complexity of our compiler.

Towards this end, we define the notion of private neighborhood trees which provides us
the communication backbone for implementing this distributed PSM protocol in general graph
topologies for all nodes simultaneously. Roughly speaking, a private neighborhood tree of a
2-vertex connected graph G = (V, E) is a collection of n trees, one per node ui, where each
tree T(ui) ⊆ G \ {ui} contains all the neighbors of ui but does not contain ui. A (d, c)-private
neighborhood trees in which each tree T(ui) has depth at most d and each edge belongs to at
most c many trees. This allows us to use all trees simultaneously and exchange all the private
randomness in Õ(d+ c) rounds.

Let G be a 2-vertex connected graph and let D be the diameter of G. By the discussion above,
achieving (d, c)-private neighborhood trees with d = O(∆ · D) and c = n is easy, but yields an
inefficient compiler. We show how to construct (d, c)-private neighborhood trees for d = Õ(D ·∆)
and c = Õ(D), these parameters are nearly optimal existentially. The construction builds on a
simpler and more natural structure called cycle cover. Using these private neighborhood trees,
the neighbors of each node u can exchange the O(∆ log n) bits of Ru in Õ(∆ · D) rounds. This is
done for all nodes u simultaneously using the random delay approach.

Note that unlike the computational setting, here the round complexity is existentially optimal
(up to poly-logarithmic terms) and only depends on the parameters of the graph.

Secure Simulation of Many Rounds. We have described how to securely simulate single round
distributed algorithms. Consider an r-round distributed algorithm A. In a broad view, A can be
viewed as a collection of r functions f1, . . . , fr. At round i, a node u holds a state σi and needs
to update its state according to a function fi that depends on σi and the messages it has received
in this round. Moreover, the same function fi computes the messages that u will send to its
neighbors in the next round. That is,

fi(σi, mv1→u, . . . , mv∆→u) = (σi+1, mu→v1 , . . . , mu→v∆) .

Assume that the final state σr is the final output of the algorithm for node u. A first attempt is
to simply apply the solution for a single round for r many times, round by round. As a result,
the node u learns all internal states σ1, . . . , σr and nothing more. This is of course undesirable as
these internal states, σi for i ≤ r− 1, might already reveal much more information than the final
output. Instead, we simulate the computation of the internal states σ1, σ2, . . . , σr, in an oblivious
manner without knowing any σi except for σr which is the final output of the algorithm.

Towards this end, in our scheme, the node u holds an “encrypted” state, σ̂i, instead of the
actual state σi. The encryption we use is a simple one-time-pad where the key is a random string
Rσi such that σ̂i ⊕ Rσi = σi. The key Rσi will be chosen by an arbitrary neighbor v of u. In
addition to the state, the node u should not be able to learn the messages mu→v1 , . . . , mu→v∆ sent
to the neighbors in the original algorithm. Thus, each neighbor vj holds the key Ru→vj that is
used to encrypt its incoming message to u. Overall, at any given round i, any node u holds an
encrypted state σ̂i, and encrypted outgoing messages m̂u→v1 , . . . , m̂u→v∆ ; the neighbors of u hold
the corresponding decryption keys. To compute the new state and the messages that u sends
to its neighbors in the next round, we use the PSM protocol as described in a single round but
with respect to a function f ′i which is related to the function fi and is defined as follows. The
input of the function f ′i is an encrypted state (of u), encrypted messages from its neighbors, keys
for decrypting the input, and new keys for encrypting the final output. First, the function f ′i
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decrypts the encrypted input to get the original state and the messages sent from its neighbors
(i.e., the input for function fi). Then, the function f ′i applies fi to get the next state σi+1 and
new outgoing messages from u to its neighbors. Finally, it uses new encryption keys to encrypt
the new output and finally outputs the new encrypted data (states and messages to be sent). A
summary of the algorithm for a single node u is given in Figure 2. The full proof is given in
Section 5.

Algorithm Au:

1. For each round i = 1 . . . r do:

(a) u holds the encrypted state σ̂i.

(b) The neighbor v of u samples new encryption keys.

(c) Run a PSM protocol with u as the server to compute the function f ′i :

i. u sends its state σ̂i to a neighbor v′ 6= v.
ii. Neighbors share private randomness via the private neighborhood trees.

iii. u learns its new encrypted state σ̂i+1.

2. v sends the final encryption key to u.

3. Using this key, u computes its final output σr.

Figure 2: The description of the simulation of algorithm A with respect to a node u.

2.2 Constructing Private Neighborhood Trees

Our construction of private neighborhood trees is based on the construction of low-congestion
cycle-covers from [PY18]. For a bridgeless graph G = (V, E), a low congestion cycle cover is a
decomposition of graph edges into cycles which are both short and almost edge-disjoint. Formally,
a (d, c)-cycle cover of a graph G is a collection of cycles in G in which each cycle is of length at
most d, and each edge participates in at least one cycle and at most c cycles. In [PY18] the
following theorem was proven:

Theorem 3 (Low Congestion Cycle Cover, [PY18]). Every bridgeless graph3 with diameter D has a
(d, c)-cycle cover where d = Õ(D) and c = Õ(1). That is, the edges of G can be covered by cycles such
that each cycle is of length at most Õ(D) and each edge participates in at most Õ(1) cycles.

To prove Theorem 2 we show how to use the construction of a (d, c)-cycle cover C to obtain a
(d · ∆, c · D · log ∆) private neighborhood trees N . Using the construction of (Õ(D), Õ(1)) cycle
covers of Theorem 3 yields the theorem.

Consider a node u with only two neighbors v1, v2. Then, a cycle cover of the graph must cover
the edge (u, v1) by using a cycle containing the node v2. Thus, the cycle induces a path between
v1 and v2 that does not contain u. We get a private neighbor tree for u, a short path from v1

3A graph G = (V, E) is bridgeless if G \ {e} is connected for every e.
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to v2 that does not go through u and has low congestion. We use this idea, and show how to
generalize it to nodes with arbitrary degree.

The construction of the private neighborhood trees N consists of O(log ∆) phases. In each
phase, we compute a low-congestion cycle cover in some auxiliary graph using Theorem 3. We
begin by each node u holding an empty forest F0(u) consisting only of u’s neighbors. We then
compute a cycle cover in the graph G. Let v1, . . . , v∆ be the neighbors of u. Then, the cycles of
the cycle cover provide short paths between pairs (vi, vj) that avoid u. We add these paths to the
forest of u. By doing this, we reduced the number of connected components in the forest of u
by half. Importantly, since we added paths of a cycle cover, we know that we can add all these
paths for all nodes u in the graph, while keeping the edge congestion per edge bounded.

The high level idea is to repeat this process for log ∆ iteration, until u’s forest contains only
one connected component: the output private tree T(u) for the node u. In order to run the next
iteration, we must force the cycle cover to find different cycles than the ones it has computed in
the previous iteration.

Towards that goal, the algorithm uses an auxiliary graph G′ defined as follows. First, we add
all the nodes in G to G′ (but not the edges). Consider the collection of connected components
of a node u. We add a virtual node uj to G′ for each of the connected components of u, and
connect uj to u. Finally, every edge (u, v) in G is replaced by an edge (uj, vi) in G′ where v is in
the jth connected component of u and u is in the ith connected component of v. See Figure 3 for
an illustration.

𝑢
𝑢

𝑢𝑗

𝑣𝑖

𝑣

𝑣

Figure 3: Left: Illustration of a node u with two connected components in the original graph G.
Right: The auxiliary graph G′ and a new cycle found by the cycle cover in G′ (dashed line). One
can observe how this new cycle now connects the two connected components.

Now, we run the cycle cover algorithm on G′. The only way to cover an edge (u, uj) is to use
another virtual node ui for i 6= j. That is, we found a path between the jth connected component
and the ith connected component of u that avoids u. Thus, adding these paths will again reduce
the number of connected components by a half. Since these paths are computing in a virtual
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graph G′, the next step translates these G′-paths into G-paths. This is done as follows. An edge
(u, uj) is simply replaced by u. An edge (uj, vi) is replaced by the edge (u, v) in G. We then use
the fact that the cycles computed in G′ have low congestion in G′, to show that also the translated
paths have low congestion in G. To bound the depth of the private tree, observe that the depth
of the connected components increases by an additive term of Õ(D) in each iteration, and thus
we get a final depth of Õ(D∆). The detailed description and analysis of this construction are
provided in Section 4.

3 Preliminaries

Unless stated otherwise, the logarithms in this paper are base 2. For an integer n ∈N we denote
by [n] the set {1, . . . , n}. We denote by Un the uniform distribution over n-bit strings. For two
distributions (or random variables) X, Y we write X ≡ Y if they are identical distributions. That
is, for any x it holds that Pr[X = x] = Pr[Y = x].

Graph Notations. For a tree T ⊆ G, let T(z) be the subtree of T rooted at z. Let Γ(u, G) be the
neighbors of u in G, and deg(u, G) = |Γ(u, G)|. When G is clear from the context, we simply
write Γ(u) and deg(u).

3.1 Distributed Algorithms

The Communication Model. We use a standard message passing model, the CONGEST model
[Pel00], where the execution proceeds in synchronous rounds and in each round, each node can
send a message of size O(log n) to each of its neighbors. In this model, local computation at each
node is for free and the primary complexity measure is the number of communication rounds.
Each node holds a processor with a unique and arbitrary ID of O(log n) bits. Throughout, we
make an extensive use of the following useful tool, which is based on the random delay approach
of [LMR94].

Theorem 4 ([Gha15, Theorem 1.3]). Let G be a graph and let A1, . . . , Am be m distributed algorithms in
the CONGESTmodel, where each algorithm takes at most d rounds, and where for each edge of G, at most
c messages need to go through it, in total over all these algorithms. Then, there is a randomized distributed
algorithm (using only private randomness) that, with high probability, produces a schedule that runs all
the algorithms in O(c+ d · log n) rounds, after O(d log2 n) rounds of pre-computation.

A Distributed Algorithm. Consider an n-vertex graph G with maximal degree ∆. We model a
distributed algorithm A that works in r rounds as describing r functions f1, . . . , fr as follows. Let
u be a node in the graph with input xu and neighbors v1, . . . , v∆. At any round i, the memory of
a node u consists of a state, denoted by σi and ∆ messages mv1→u . . . , mv∆→u that were received
in the previous round.

Initially, we set σ0 to contained only the input xu of u and its ID and initialize all messages
to ⊥. At round i the node u updates its state to σi+1 according to its previous state σi and the
message from the previous round, and prepares ∆ messages to send mu→v1 , . . . , mu→v∆ . To ease
notation (and without loss of generality) we assume that each state contains the ID of the node
u, thus, we can focus on a single update function fi for every round that works for all nodes. The
function fi gets the state σi and messages mv1→u . . . , mv∆→u, and randomness si and outputs the
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next state and outgoing message:

(σi, mu→v1 , . . . , mu→v∆)← fi(σi−1, mv1→u, . . . , mv∆→u, si).

At the end of the r rounds, each node u has a state σr and a final output of the algorithm. Without
loss of generality, we assume that σr is the final output of the algorithm (we can always modify
fr accordingly).

Natural Distributed Algorithms. We define a family of distributed algorithms which we call
natural, which captures almost all known distributed algorithms. A natural distributed algorithm
has two restrictions for any round i: (1) the size the state is bounded by |σi| ≤ ∆ · polylog(n), and
(2) the function fi is computable in polynomial time. The input for fi is the state σi and at most
∆ message each of length log n. Thus, the input length m for fi is bounded by m ≤ ∆ · polylog(n),
and the running time should be polynomial in this input length.

We introduce this family of algorithms mainly for simplifying the presentation of our main
result. For these algorithms, our main statement can be described with minimal overhead. How-
ever, our results are general and work for any algorithm, with appropriate dependency on the
size of the state and the running time the function fi (i.e., the internal computation time at each
node u in round i).

Notations. We introduce some notations: For an algorithm A, graph G, input X = {xv}v∈G we
denote by Au(G, X) the random variable of the output of node u while performing algorithm
A on the graph G with inputs X (recall that A might be randomized and thus the output is a
random variable and not a value). Denote by A(G, X) = {Au(G, X)}u∈G the collection of outputs
(in some canonical ordering). Let ViewAu (G, X) be a random variable of the viewpoint of u in the
running of the algorithm A. This includes messages sent to u, its memory and random coins
during all rounds of the algorithm.

Secure Distributed Computation. Let A be a distributed algorithm. Informally, we say that A′
simulates A in a secure manner if when running the algorithm A′ every node u only learns its
final output in A and “nothing more”. This notion is captured by the existence of a simulator
and is defined below.

Definition 1 (Perfect Privacy). Let A be a distributed (possibly randomized) algorithm, that works in r
rounds. We say that an algorithm A′ simulates A with perfect privacy if for every graph G, every u ∈ G
and it holds that:

1. Correctness: For every input X = {xv}v∈V : A(G, X) ≡ A′(G, X).

2. Perfect Privacy: There exists a randomized algorithm (simulator) Sim such that for every input
X = {xv}v∈V it holds that

ViewA
′

u (G, X) ≡ Sim(G, xu,Au(G, X)).

This security definition is known as the “semi-honest” model, where the adversary, acting a
one of the nodes in the graph, is not allowed to deviate from the prescribed protocol, but can
run arbitrary computation given all the messages it received. Moreover, we assume that the
adversary does no collude with other nodes in the graph.
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3.2 Cryptography with Perfect Privacy

One of the main cryptographic tools we use is a specific protocol for secure multiparty compu-
tation that has perfect privacy. Feige Kilian and Naor [FKN94] suggested a model where two
players having inputs x and y wish to compute a function f (x, y) in a secure manner. They
achieve this by each sending a single message to a third party that is able to compute the output
of the function f from these messages, but learn nothing else about the inputs x and y. For the
protocol to work, the two parties need to share private randomness that is not known to the third
party. This model was later generalized to multi-players and is called the Private Simultaneous
Messages Model [IK97], which we formally describe next.

Definition 2 (The PSM model). Let f : ({0, 1}m)k → {0, 1}m be a k variant function. A PSM protocol
for f consists of a pair of algorithms (PSM.Enc,PSM.Dec) where PSM.Enc : {0, 1}m×{0, 1}r → {0, 1}t

and PSM.Dec : ({0, 1}t)k → {0, 1}m such that

• For any X = (x1, . . . , xk) it holds that: PrR∈{0,1}r [PSM.Dec(PSM.Enc(x1, R), . . . ,PSM.Enc(xk, R))
= f (x1, . . . , xk)] = 1.

• There exists a randomized algorithm (simulator) Sim such that for X = x1, . . . , xk and for R sampled
from {0, 1}r, it holds that

{PSM.Enc(xi, R)}i∈[k] ≡ Sim( f (x1, . . . , xk)).

The communication complexity of the PSM protocol is the encoding length t and the randomness complex-
ity of the protocol is defined to be |R| = r.

Theorem 5 (Follows from [IK97]). For every function f : ({0, 1}m)k → {0, 1}` that is computable
by an s = s(m, k)-space TM there is an efficient perfectly secure PSM protocol whose communication
complexity and randomness complexity are O(km` · 22s).

We describe two additional tools that we will use, secret sharing and one-time-pad encryp-
tion.

Definition 3 (Secret Sharing). Let x ∈ {0, 1}n be a message. We say x is secret shared to k shares by
choosing k random strings x1, . . . , xk ∈ {0, 1}n conditioned on x =

⊕k
j=1 xj. Each xj is called a share,

and notice that the joint distribution of any k− 1 shares is uniform over ({0, 1}n)k−1.

Definition 4 (One-Time-Pad Encryption). Let x ∈ {0, 1}n be a message. A one-time pad is an ex-
tremely simple encryption scheme that has information theoretic security. For a random key K ∈ {0, 1}n

the “encryption” of x according to K is x̂ = x⊕ K. It is easy to see that the encrypted message x̂ (without
the key) is distributed as a uniform random string. To decrypt x̂ using the key K we simply compute
x = x̂⊕ K. The key K might be references as the encryption key or decryption key.

4 Private Neighborhood Trees

The graph theoretic basis for our compiler is given by Private Neighborhood Trees, a decomposition
of the graph G into (possibly overlapping) trees T(u1), . . . , T(un) such that each tree T(ui) con-
tains the neighbors of ui in G but does not contain ui. Each tree T(ui) provides the neighbors of
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ui a way to communicate privately without their root ui. The goal is to compute a collection of
trees (or clusters) with small overlap and small diameter. Thus, we are interested in the existence
of a low-congestion private neighborhood trees.

Definition 5 (Private Neighborhood Trees). Let G = (V = {u1, . . . , un}, E) be a 2-vertex connected
graph. The private neighborhood trees N of G is a collection of n subtrees T(u1), . . . , T(un) in G such
that for every i ∈ {1, . . . , n} it holds that Γ(ui) \ {ui} ⊆ T(ui), but ui /∈ T(ui). An (d, c) private
neighborhood trees N satisfies:

1. Diam(T(ui)) ≤ d for every i ∈ {1, . . . , n},

2. Every edge e ∈ E appears in at most c trees.

Note that since the graph is 2-vertex connected, all the neighbors of u are indeed connected
in G \ {u} for every node u. The main challenge is in showing that all n trees can be both of
small diameter and with small overlap.

Theorem 2 (Private Trees). For every 2-vertex connected graph G with maximum degree ∆ and diameter
D, there exists a (d, c) private trees with d = O(D · ∆ · log n) and c = O(D · log ∆ · log3 n).

Proof. The construction of the private neighborhood trees N consists of ` = log ∆ phases. In
each phase, we compute an (O(D log n), O(log3 n)) cycle cover in some auxiliary graph using
[PY18]. We begin by having each node u holding an empty forest F0(u) = (Γ(u, G), ∅) consisting
only of u’s neighbors. Then, in each phase we add edges to these forests such that the number
of connected components (containing the neighbors Γ(u, G)) is reduced by factor 2. After log ∆
phases, we have a single connected component, that is, we have that every u ∈ V has a tree T(u)
in G \ {u} that spans all neighbors Γ(u, G). Let C0 be a cycle cover of G. For every i ∈ {0, . . . , `},
let CCi(u) be the number of connected components in the forest Fi(u). Note that CC0(u) = deg(u)
for all nodes u.

In each phase i ≥ 1, we have a collection of forestsNi−1 = {Fi−1(u1), . . . , Fi−1(un)} that satisfy
the following for every uj:

1. Fi−1(uj) ⊆ G \ {uj} (the forest avoids uj).

2. Γ(uj) ⊆ V(Fi−1(uj)) (the forest contains all neighbors of uj).

3. Fi−1(uj) has CCi−1(uj) ≤ deg(uj)/2i−1 connected components.

It is easy to see that these conditions are met for i = 0 when we have the empty forest that
simply contains all the neighbors of uj. The goal of phase i is to add edges to each Fi−1(uj) in
order to reduce the number of connected components by factor 2. The algorithm uses the current
collection of forests Ni−1 to define an auxiliary graph G̃i which contains the nodes of G and some
additional “virtual” nodes and a different set of edges.

For every u ∈ V, we add to G̃i a set of k = CCi−1(u) virtual nodes ũ1, . . . , ũk. We connect
u to each of its virtual copies ũj. Let (u, v) ∈ E be an edge such that v is in the jth connected
component of u, and u is in the ith connected component of v. Then we add the edge (uj, vi) to
the graph G′. The graph G̃i has O(m) nodes, O(m) edges and diameter at most 3D. To see this,
any edge (u, v) in the original graph G can be replaced with the path u→ uj → vi → v.
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Next, we compute an (O(D log n), O(log3 n))-cycle cover C̃i for the edges of G̃i. To map these
virtual cycles to real cycles Ci in G, we simply replace a virtual node ũj with the real node u. An
edge (u, uj) we be contracted to just u, and edge (ũi, ṽi) will be replaced by (u, v).

Let Gi(u) be the forest Fi−1(u) obtained by adding to it all the edges of the cycles in Ci that
intersect u, but avoiding the node u. That is, we define

Gi(u) = Fi−1(u) ∪ {C | C ∈ Ci, u ∈ C} \ {u}.

Moreover, let Fi(u) ⊆ Gi(u) be a forest that spans all the neighbors of u. This forest can be
computed, for instance, by running a BFS from a neighbor u in each connected component of
Gi(u). This completes the description of phase i. The final private tree collection is given by
N = {F`(u1), . . . , F`(un)}. We now turn to analyze this construction and prove Theorem 2.

Small Diameter Trees. We begin by showing that the diameter of each tree T(ui) is bounded
by O(∆D · log n). Note that this bound is existentially tight (up to logarithmic factors) as there
are graphs G with diameter D and a node u with degree ∆ such that the diameter of G \ {u} is
O(∆D).

Claim 1. For every i ∈ {0, . . . , log ∆} and for every u ∈ V the number of connected components satisfies
CCi(u) ≤ ∆/2i.

Proof. The lemma is shown by induction on i. The case of i = 0 holds vacuously. Assume that
the claim holds up to i− 1 and consider phase i. By construction, for each u, the auxiliary graph
G̃i contains CCi−1(u) virtual nodes ũj that are connected to u.

The cycle cover C̃i for G̃i covers all these virtual edges (u, ũj) by virtual cycles, each such cycle
connects two virtual nodes. Since every two virtual nodes of u in G̃i are connected to neighbors of
u that belong to different components in Gi−1(u), every cycle that connects two virtual neighbors
is mapped into a cycle that connects two of u’s neighbors that belong to a different connected
component in phase Gi−1(u). Hence, the number of connected components in the forest Fi(u)
has been decreased by factor at least 2 compared to that of Fi−1(u).

Claim 2. The diameter of each tree T(ui) ∈ N is O(∆ · D · log n).

Proof. We first claim that the diameter of each component in the forest Fi(u) is bounded by
O(∆ · D · log n) for every u ∈ V and every i ∈ {1, . . . , `}. To see this, note that the forest Fi(u)
is formed by a collection of O(D log n)-length cycles that connect u’s neighbors. Hence, when
removing u, we get paths of length O(D log n). Consider the process where in each phase i, every
two u’s-neighbors that are connected by a cycle in Ci are connected by a single “edge”. By the
Proof of Claim 1, after log ∆ phases, we get a connected tree with deg(u) nodes, and hence of
“diameter” deg(u). Since each edge corresponds to a path of length O(D log n) in G, we get that
the final diameter of F`(u) is O(deg(u) · D · log n).

Congestion. We analyze the congestion of the construction.

Claim 3. Each edge e appears on O(D log3 n) different subgraphs T(ui) ∈ N .

Proof. We first show that the cycles Ci computed in G have congestion O(log3 n) for every i ∈
{1, . . . , `}. Clearly, the cycles C̃i computed in G̃i have congestion of O(log3 n). Consider the
mapping of cycles C̃i in G̃i to a cycles Ci in G. Edges of the type (u, ũj) are replaced by (u, u)
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and hence there is no real edge in the cycle. Edges of the type (ũj, ṽi) are replaced by (u, v).
Since there is only one virtual node of u that connects to v, and since (ũj, ṽi) appears in O(log3 n)
many cycles, also (u, v) appears in O(log3 n) many cycles (i.e., this conversion does not increase
the congestion).

Note that the cycle C of each edge (u, v) joins the Gi subgraphs of at most D nodes since
in our construction a cycle C might cover up to D edges. In addition, each edge e′ appears on
different cycles in Ci.

We now claim that each edge e appears on O(i log3 n · D) graphs Gi(u). For i = 1, this holds
as the cycle C of an edge (u, v) joins the subgraphs G1(x) and G1(y) for every edge (x, y) that is
covered by C. Assume it holds up to i− 1 and consider phase i. In phase i, we add to the Gi(u)
graphs the edges of Ci. Again, each cycle C′ of an edge (u, v) joins D graphs Gi(x), Gi(y) for
every (x, y) that is covered by C′. Hence each edge e appears on O(D · log3 n) of the subgraphs
Gi(uj) \ Gi−1(uj). By induction assumption, each e appears on (i− 1) log3 n · D graphs Gi−1(uj)

and hence overall each edge e appears on O(i log3 n) graphs Gi(uj). Therefore we get that each
edge appears on O(log ∆ · log3 n · D) trees in N .

The above proof actually shows a slightly stronger statement: a construction of (d, c)-cycle
covers yields a (d′, c′) private neighborhood trees for d′ = O(d · ∆) and c′ = O(c · d · log ∆).

The distributed construction of private neighborhood trees is in Appendix A.

5 Secure Simulation via Private Neighborhood Trees

In this section we describe how to transform any distributed algorithm A to a new algorithm A′
which has the same functionality as A (i.e., the output for every node u in A is the same as in
A′) but has perfect privacy (as is defined in Definition 1). Towards this end, we assume that the
combinatorial structures required are already computed (in a preprocessing stage described in
Appendix A), namely, a private neighborhood tree in the graph. The output of the preprocessing
stage is given in a distributed manner. The (distributed) output of the private neighborhood trees
for each node u, is such that each vertex v knows its parent in the private neighborhood tree of u
(if such exists).

Theorem 1. Let G be an n-vertex graph with diameter D and maximal degree ∆. Let A be a natural
distributed algorithm that works on G in r rounds. Then, A can be transformed to a new algorithm A′
with the same output distribution and which has perfect privacy and runs in Õ(rD · poly(∆)) rounds
(after a preprocessing stage).

As a preparation for our secure simulation, we provide the following convenient view of
distributed algorithm.

5.1 Our Framework

We treat the distributed r-round algorithm A from the view point of some fixed node u, as a
collection of r functions f1, . . . , fr as follows. Let Γ(u) = {v1, . . . , vk}. At any round i, the memory
of u consists of a state, denoted by σi and ∆ messages mv1→u . . . , mv∆→u that were received in the
previous round (in the degree of the node is less than ∆ the rest of the messages are empty).
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Initially, we set σ0 to be a fixed string and initialize all messages to NULL. At round i the node
u updates its state to σi+1 according to its previous state σi and the messages that it got in the
previous round. It then prepares k messages to send mu→v1 , . . . , mu→v∆ . To ease notation (and
without loss of generality) we assume that each state contains the ID of the node u. Thus, we
can focus on a single update function fi for every round that works for all nodes. The function
fi gets the state σi, the messages mv1→u . . . , mv∆→u, and the randomness s. The output of fi is the
next state σi+1, and at most k outgoing messages:

(σi, mu→v1 , . . . , mu→v∆)← fi(σi−1, mv1→u, . . . , mv∆→u, s).

Our compiler works round-by-round where each round i is replaced by a collection of rounds
that “securely” compute fi, in a manner that will be explained next. The complexity of our
algorithm depends exponentially on the space complexity of the functions fi. Thus, we proceed
by transforming the original algorithm A to one in which each fi can be computed in logarithmic
space, while slightly increasing the number of rounds.

Claim 4. Any natural distributed algorithmA the runs in r rounds can be transformed to a new algorithm
Â with the same output distribution such that Â is computable in logarithmic space using r′ = r ·
poly(∆ + log n) rounds.

Proof. Let t be the running time of the function fi. Then, fi can be computed with a circuit of at
most t gates. Note that since A is natural, it holds that t ≤ poly(∆, log n).

Instead of letting u computing fi in round i, we replace the ith round by t rounds where
each round computes only a single gate of the function fi. These new rounds will have no
communication at all, but are used merely for computing fi with a small amount of memory.

Let g1, . . . , gt be the gates of the function fi in a computable order where gt is the output of
the function. We define a new state σ′i of the form σ′ = (σi, g1, . . . , gt), where σi is the original
state, and gj is the value of the jth gate. Initially, g1, . . . , gt are set to ⊥. Then, for all j ∈ [t] we
define the function

f j
i (σi, g1, . . . , gj−1,⊥, . . . ,⊥) = (σi, g1, . . . , gj−1, gj,⊥, . . . ,⊥).

In the jth round we compute f j
i , until the final gt is computed. Note that f j

i can be computed
with logarithmic space, and since t ≤ poly(∆, log n) we can compute f j

i with space O(log ∆ +

log log n). As a result, the r-round algorithm A is replaced by an rt-round algorithm Â, where
t ≤ poly(∆, log n). That is, we have that r′ ≤ poly(∆, log n).

As we will see, our compiler will have an overhead of poly(∆, log n) in the round complexity
and hence the overhead of Claim 4 is insignificant. Thus, we will assume that the distributed
algorithm A satisfies that all its functions fi are computable in logarithmic space (i.e., we assume
that the algorithm is already after the above transformation).

5.2 Secure Simulation of a Single Round

In the algorithm A each node u computes the function fi in each round i. In our secure algorithm
A′ we want to simulate this computation, however, on encrypted data, such that u does not get to
learn the true output of fi in any of the rounds except for the last one. When we say “encrypted”
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data, we mean a “one-time-pad” (see Definition 4). That is, we merely refer to a process where
we the data is masked by XORing it with a random string R. Then, R is called the encryption
(and also decryption) key. Using this notion, we define a related function f ′i that, intuitively,
simulates fi on encrypted data, by getting encrypted state and messages as input, decrypting
them, then computing fi and finally encrypting the output with a new key. We simulate every
round of the original algorithm A by a PSM protocol for the function f ′i .

The Secure Function f ′i . The function f ′i gets the following inputs (encrypted elements will be
denoted by the ·̂ notation):

1. An encrypted state σ̂i−1 and encrypted messages {m̂vj→u}∆
j=1.

2. The decryption key Rσi−1 of the state σ̂i−1 and the decryption keys {Rvj→u}∆
j for the mes-

sages {m̂vj→u}∆
j=1.

3. Shares for randomness {Rj
s}∆

j=1 for the function fi.

4. Encryption keys for encrypting the new state Rσi and messages {Ru→vj}∆
j=1.

The function f ′i decrypts the state and messages and runs the function fi (using randomness
s =

⊕
Rj

s) to get the new state σi and the outgoing messages mu→v1 , . . . , mu→v∆ . Then, it encrypts
the new state and messages using the encryption keys. In total, the function f ′i has O(∆) input
bits. The precise description of f ′i is given in Figure 4.

The description of the function f ′i .

Input: An encrypted state σ̂i−1, encrypted messages
{

m̂vj→u

}∆

j=1
, keys for decrypting the input

Rσi−1 ,
{

Rvj→u

}∆

j
, randomness

{
Rj

s

}∆

j=1
and keys for encrypting the output Rσi ,

{
Ru→vj

}∆

j=1
.

Run:

1. Compute σi−1 ← σ̂i−1 ⊕ Rσi−1 and s←
(⊕∆

j=1 Rj
s

)
.

2. For j = 1 . . . ∆: compute mvj→u ← m̂vj→u ⊕ Rvj→u.

3. Run σi, mu→v1 , . . . , mu→v∆ ← f (σi−1, mv1→u, . . . , mv∆→u, s).

4. Compute σ̂i ← σi ⊕ Rσi .

5. For j = 1 . . . ∆: compute m̂u→vj ← mu→vj ⊕ Ru→vj .

6. Output σ̂i, m̂u→v1 , . . . , m̂u→v∆ .

Figure 4: The function f ′i .

Recall that in the PSM model, we have k parties p1, . . . , pk and a server s, where it was assumed
that all parties have private shared randomness (not known to s). Our goal is to compute f ′i
securely by implementing a PSM protocol for all nodes in the graph simultaneously.
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The compiler securely computes f ′i by simulating the PSM protocol for f ′i , treating u as the
server and its immediate neighborhood as the parties. In order to exchange the private random-
ness, we use the notion of private neighborhood trees.

A private neighborhood tree collection consists of n trees, a tree Tu for every u, that spans
all the neighbors of u (i.e., the parties) without going through u, i.e., Tu ⊆ G \ {u}. Using this
tree, all the parties can compute shared private random bits R which are not known to u. For
a single node u, this can be done in O(Diam(Tu) + |R|) rounds, where Diam(Tu) is the diameter
of the tree and R is the number of random bits. Clearly, our objective is to have trees Tu with
small diameter. Furthermore, as we wish to implement this kind of communication in all n
trees, Tu1 , . . . , Tun simultaneously, a second objective is to have small overlap between the trees.
That is, we would like each edge e to appear only on a small number of trees Tu (as on each of
these trees, the edge is required to pass through different random bits). These two objectives are
encapsulated in our notion of private-neighborhood-trees. The final algorithm A′i(u) for securely
computing f ′i is described in Figure 5.

The algorithm A′i(u) for securely computing f ′i .
Input: Each node v ∈ Γ(u) has input xv ∈ {0, 1}m.

1. Let Tu be the tree spanning Γ(u) in G \ {u} and let w be the root.

2. w chooses a random string R and sends it to Γ(u) using the tree Tu.

3. Each node v ∈ Γ(u) computes Mv = PSM.Enc( f ′i , xv, R) and sends it to u.

4. u computes y = PSM.Dec
(

f ′i , {Mv}v∈Γ(u)

)
.

Figure 5: The description of the distributed PSM algorithm of node u for securely computing the
function f ′i .

In what follows analyze the security and round complexity of Algorithm A′i.
Round Complexity. Let f : {0, 1}m·|Γ(u)| → {0, 1}` be a function with |Γ(u)| ≤ ∆ inputs, where
each input is of length m bits. The communication complexity of the PSM protocol depends
on the input and output length of the function and also on the memory required to compute
f . Suppose that f is computable by an s-space Turing Machine (TM). Then, by Theorem 5 the
communication complexity (and randomness complexity) of the protocol is at most O(∆m` · 22s).

In the first phase of the protocol, the root w sends a collection of random bits R to Γ(u) using
the private neighborhood trees, where |R| = O(∆ ·m · ` · 22s). By Theorem 2, the diameter of the
tree is at most Õ(D∆) and each edge belongs to Õ(D) different trees. Therefore, there are total
of Õ(D · |R|) many bits that need to go through a single edge when sending the information on
all trees simultaneously. Using the random delay approach of Theorem 4, this can be done in
Õ(D∆ + D · |R|) = Õ(∆ · D ·m · ` · 22s) rounds. This is summarized by the following Lemma:

Lemma 1. Let f : ({0, 1}m)∆ → {0, 1}` be a function over ∆ inputs where each is of length at most
m and that is computable by a s-space Turing Machine. Then, there is a distributed algorithm A′i(u) (in
the CONGEST model) with perfect privacy where each node u outputs f evaluated on Γ(u). The round
complexity of A′i(u) is Õ(∆ · D ·m · ` · 22s).
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5.3 The Final Secure Algorithm

Using the function f ′i , we define the algorithm A′u for computing the next state and messages of
the node u. We describe the algorithm for any u in the graph and at the end we show that all the
algorithms {A′u}u∈G can be run simultaneously with low congestion.

The algorithm A′u involves running the distributed algorithm A′i(u) for each round i ∈
{1, . . . , r}. The secure simulation of round i starts by letting the root of each tree Tu (i.e., the
tree connecting the neighbors of u in G \ {u}) sample a key Rσi for encrypting the new state of
u. Moreover, each neighbor vj of u samples a share of the randomness Rj

s used to evaluate the
function fi, and a key Ru→vj for encrypting the message sent from u to vj.

Then they run A′i(u) algorithm with u as the server and Γ(u) as the parties for computing
the function f ′i (see Figure 5). The node u has the encrypted state and message, the neighbors
of u have the (encryption and decryption) keys for the current state, the next state and the
sent messages, and moreover the randomness for evaluating f ′i . At the end of the protocol, u
computes the output of f ′i which is the encrypted output of the function fi.

After the final round, u holds an encryption of the final state σ̂r which contains only the
output of the original algorithm A. At this point, the neighbors of u send it the decryption key
for this last state, u decrypts its state and outputs the decrypted state. Initially, the state σ0 is a
fixed string which is not encrypted, and the encryption keys for this round are assumed to be 0.
The description is summarized in Figure 6. See Figure 7 for an illustration.

The description of the algorithm A′u.

1. Let v1, v2, . . . , v∆ be some arbitrary ordering on Γ(u).

2. For each round i = 1 . . . r do:

(a) u sends σ̂i−1 to neighbor v2.

(b) Each neighbor vj of u samples Rj
s at random (and stores it).

(c) v1 chooses Rσi at random (and stores it).

(d) Run the Ai(u) algorithm for f ′i with server u and parties Γ(u) where:

i. v1 has an inputs Rσi−1 and Rσi and v2 has input σ̂i−1.

ii. In addition, each neighbor vj of u has input Ru→vj , Rj
s.

iii. u learns the final output of the algorithm (σ̂i, m̂u→v1 , . . . , m̂u→v∆).

3. v1 sends Rσr to u.

4. u computes σr = σ̂r ⊕ Rσr and outputs σr.

Figure 6: The description of the Algorithm A′u. We assume that in “round 0” all keys are initial-
ized to 0. That is, we let Rσ0 = 0, and initially set Rvj→u = 0 for all j ∈ [∆].

Finally, we show that the protocol is correct and secure.

Correctness. The correctness follows directly from the construction. Consider a node u in the
graph. Originally, u computes the sequence of states σ0, . . . , σr where σr contained the final output
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Figure 7: The information held by u and its neighbors in phase i of the algorithm.

of the algorithm. In the compiled algorithm A′, for each round i of A and every node u the sub-
algorithm A′i(u) computes σ̂i, where σ̂i = σi ⊕ Rσi where v1 holds Rσi . Thus, after the last round,
u has σ̂r and v1 has Rσr . Finally, u computes σ̂r ⊕ Rσr = σr and outputs σr as required.

Round Complexity. We compute the number of rounds of the algorithm for any natural algo-
rithm A. The algorithm consists of r′ = r · poly(∆ + log n) iterations. In each iteration, every ver-
tex u implements algorithm A′i for the function f ′i (there are other operations in the iteration but
they are negligible). We know that fi can be computed in s-space where s = O(log ∆ + log log n),
and thus we can bound the size of each input to f ′i by poly(∆) · polylog(n). Indeed, the state has
this bound by the definition of a natural algorithm, and thus also the encrypted state (which has
the exact same size), the messages and encryption keys for the messages have length at most
log n, and the randomness shares are of size at most the running time of fi which is at most 2s

where s is the space of fi and thus the bound holds. The output length shares the same bound
as well.

Since fi can be computed in s-space where s = O(log ∆ + log log n), we observe that f ′i can be
computed in s-space as well. This includes running fi in a “lazy” manner. That is, whenever the
TM for computing fi asks to read a the ith bit of the input, we generate this bit by performing the
appropriate XOR operations for the ith bit of the input elements. The memory required for this
is only storing indexes of the input which is log(∆ · poly(log n)) bits and thus s bits suffice.

Then, by Lemma 1 we get that algorithm A′i(u) for f ′i runs in Õ(D · poly(∆)) rounds, and
the total number of rounds of our algorithm is Õ(rD · poly(∆)). In particular, if the degree ∆ is
bounded by polylog(n) then we get Õ(rD) number of rounds.

Remark 1 (Round complexity for non-natural algorithms). If A is not a “natural” algorithm then
we can bound the number of rounds with dependency on the time complexity of the algorithm. If each
function fi (the local computation of the nodes) can be computed by a circuit of size t then the number of
rounds of the compiled algorithm is bounded by Õ(rDt · poly(∆)).

Security. We begin by describing the security of a single sub-protocol A′u for any node u in
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the graph. The algorithm A′u has many nodes involved, and we begin by showing how to
simulate the messages of u. Fix an iteration i, and consider the all the messages sent to u by the
PSM protocol in A′i(u) denoted by {Mv}v∈G, and let σ̂i, m̂u→v1 , . . . , m̂u→v∆ be the output of the
protocol. By the security of the PSM protocol, there is a simulator Sim such that the following
two distributions are equal:

{Mv}v∈G ≡ Sim(σ̂i, m̂u→v1 , . . . , m̂u→v∆).

Since σ̂i and m̂u→v1 , . . . , m̂u→v∆ are encrypted by keys that are never sent to u we have that from
the viewpoint of u the distribution of σ̂i and of m̂u→v1 , . . . , m̂u→v∆ are uniformly random. Thus,
we can run the simulator with a random string R of the same length and have

Sim(σ̂i, m̂u→v1 , . . . , m̂u→v∆) ≡ Sim(R).

While this concludes the simulator for u, we need to show a simulator for other nodes that
participate in the protocol. Consider the neighbors of u. The neighbor v1 has the encryption key
for the state, and v2 has the encrypted state. Since they never exchange this information, each
of them gets a uniformly random string. In addition to their own input, the neighbors have the
shared randomness for the PSM protocol. All these elements are uniform random strings which
can be simulated by a simulator Sim by sampling a random string of the same length.

To conclude, the privacy of A′i(u) follows from the perfect privacy of PSM protocol we use.
The PSM security guarantees a perfect simulator for the server’s viewpoint, and it is easy to
construct a simulator for all other parties in the protocol as they only receive random messages.
While the PSM was proven secure in a stand alone setting, in our protocol we have a composition
of many instances of the protocol. Fortunately, it was shown in [KLR10] that any protocol that
is perfectly secure and has a black-box non-rewinding simulator, is also secure under universal
composability, that is, security is guaranteed to hold when many arbitrary protocols are per-
formed concurrently with the secure protocol. We observe that the PSM has a simple simulator
that is black-box and non-rewinding, and thus we can apply the result of [KLR10]. This is since
the simulator of the PSM protocol is an algorithm that runs the protocol on an arbitrary message
that agrees with the output of the function.

A Distributed Construction of Private Neighborhood Trees

The distribute output format of private neighborhood trees N is that each node u knows its
parent in the spanning tree T(v) ∈ N for every v ∈ V. For the purpose of our compiler, the
private neighobrhood trees should be computed once, in a preprocessing step. We now use the
construction of cycle covers from [PY18], and show:

Lemma 2. Given an r-round algorithm for constructing (d, c) cycle cover C, there exists an r′-round
algorithm for construction a (d′, c′) private neighborhood trees with d′ = d · ∆, c′ = c · d and r′ =
r · Õ(d, c).

Proof. Let A be an r-round algorithm for computing a (d, c) cycle cover C. Using the random
delay approach Theorem 4, we can make each edge (u, v) know the edges of all the cycles it
belongs to in C with Õ(d+ c) rounds. We then mimic the centralized reduction to cycle cover.
In this reduction, we have O(log ∆) applications of Algorithm A on some virtual graph. Since

23



a node v knows the cycles of its edges, it knows which virtual edges it should add in phase i.
Simulating the virtual graph can be done with no extra congestion in G. In each phase i, we
compute a cycle cover in the virtual graph and then translate it into a cycle cover Ci in the graph
G. By the same argument as in Claim 3, translating these cycles to cycles in G does not increase
the congestion. Using Õ(d+ c) rounds, each edge e can learn all the edges on the cycles that pass
through it appears in Ci. At the last phase ` = O(log ∆), the graph G`(uj) consists of O(log ∆ · ∆)
cycles. In particular,

G`(uj) =
⋃̀
i=1

{C ∈ Ci | (uj, v) ∈ C, v ∈ Γ(uj)}.

By the same argument of Claim 3, each edge e appears on O(log ∆ · c · d) different subgraphs
G`(uj) for uj ∈ V. The diameter of each subgraph G`(uj) can be clearly bounded by the number
of nodes it contained which is O(log ∆ ·∆ · d). Since each edge e knows all cycles it appears on4, it
also knows all the graphs G`(uj) to which it belongs. Computing a spanning tree in G`(ui) \ {ui}
can be done in Õ(∆ · d) rounds. Using random delay again, and using the fact that each edge
appears on Õ(d) trees, all the spanning trees in G`(uj) \ {uj} can be constructed simultaneously
in Õ(∆ · d) rounds.

Using the Õ(n)-round construction of (d, c) cycle covers with d = Õ(D) and c = Õ(1) from
[PY18], yields the following:

Corollary 1. For every n-vertex graph G = (V, E) with diameter D and maximum degree ∆, one can
construct in Õ(n + ∆ · d) rounds a (d, c) private trees with d = Õ(D · ∆) and c = Õ(D).
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