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Abstract. We initiate a study of garbled circuits that contain both Boolean and arithmetic gates
in secure multiparty computation. In particular, we incorporate the garbling gadgets for arithmetic
circuits recently presented by Ball, Malkin, and Rosulek (ACM CCS 2016) into the multiparty garbling
paradigm initially introduced by Beaver, Micali, and Rogaway (STOC ’90). This is the first work that
studies arithmetic garbled circuits in the multiparty setting. Our garbled circuits are secure in the semi-
honest model, under the same hardness assumptions as Ball et al., and can be efficiently and securely
computed in constant rounds assuming an honest majority.
We first extend free addition and multiplication by a constant to the multiparty setting. We further
extend to the multiparty setting efficient garbled multiplication gates. The garbled multiplication gate
construction we show was previously achieved only in the two-party setting and assuming a random
oracle.
Our main technical contribution is in garbling selector gates. Selector gates compute a simple “if
statement” in the arithmetic setting: the gate selects the output value from two input values in Fp,
according to a Boolean selector bit; if the bit is 0 the output equals the value on the first wire, and
if the bit is 1 the output equals the value on the second wire. We show a new and designated garbled
selector gate that reduces by approximately 33% the evaluation time from the best previously known
constructions that use existing techniques.
On the downside, we find that testing equality and computing exponentiation by a constant are signif-
icantly more complex to garble in the multiparty setting than in the two-party setting.
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1 Introduction

Garbled circuits are a fundamental cryptographic primitive, introduced by Yao in the 1980s [33]. They are
used in one-time programs, verifiable computation, key-dependent message security, and more. The original
motivation of garbled circuits, and to date still their main use, is for secure computation. The most practical
approaches of secure two-party computations are based on garbled circuits.

Since their introduction, garbled circuits have been significantly optimized in a series of works, [29,
25, 31, 34, 26, 5, 30, 21] being a very partial list. These works reduced the size of the garbled gates and
concretely improved the efficiency of garbling protocols. For example, using the free-XOR technique intro-
duced by Kolesnikov and Schneider [25], XOR gates are “for free”, meaning they incur no communication or
cryptographic operations.

Due to efficiency reasons, garbled circuits were almost exclusively considered for Boolean circuits. How-
ever, there have been a few attempts to efficiently extend the ideas of garbled circuits to arithmetic circuits
(in the two-party setting), e.g., [1, 28, 2]. The works of Ball et al. [2] and Malkin et al. [28] showed how to
extend free-XOR to free addition and multiplication by a constant. They further showed how to efficiently
garble multiplication in Fp, for small p. Ball et al. also showed how to efficiently garble exponentiation by
a constant. By combining CRT representations in a primorial modulus, Ball et al. showed that the above
results extend to efficient garbling of arithmetic circuits over the integers.

∗The author was supported by ISF grants 544/13 and 152/17, by a grant from the BGU Cyber Security Research
Center, and by the Frankel Center for Computer Science.



Garbled circuits are important also for secure multiparty computation. The multiparty garbling paradigm
was introduced by Beaver et al. [4] in the first constant round secure multiparty protocol. The first imple-
mentation of secure multiparty computation, FairplayMP [6], followed this multiparty garbling paradigm.
Recently, experimental results in [8, 32] suggested that concretely efficient implementations following the
multiparty garbling paradigm, such as [8] in the semi-honest model and [22, 32] in the malicious model, are
more suited for secure multiparty computations over networks with high latency, such as the internet.

The adversarial model. We assume throughout that the adversary is semi-honest, i.e., follows the
protocol but might try to learn private information from the messages it receives. A more realistic adversarial
model is the malicious adversary, which can deviate from the protocol arbitrarily. Nevertheless, advances
in semi-honest secure computation, and garbled circuits in particular, have often proved to be significant
stepping stones for later advances in the malicious model. Aside from numerous examples in the two-party
setting, this was recently demonstrated also in the multiparty setting: the concretely efficient semi-honest
protocols of [8] have been efficiently extended to maliciously secure protocols in [22] and [7].

We also assume an honest majority, i.e., the adversary corrupts only a strict minority of the parties. We
do so in order to use the efficient constant round protocol for unbounded fan-in multiplication of Bar-Ilan
and Beaver [3], which is needed in several of our constructions. We remark that the multiplication gates
presented in Section 3 do not require unbounded fan-in multiplication and can thus be efficiently garbled in
constant rounds also in the dishonest majority setting, assuming oblivious transfer. This will be explained
in the full version.

The hardness assumption we rely on is the existence of a mixed-modulus circular correlation robust
(MMCCR) hash function, introduced by Ball et al. [2]; see Definition 1. The definition of MMCCR hash
functions is similar to the definition of circular 2-correlation robust hash functions, introduced by Choi et
al. [12] to prove the security of free-XOR [25]. Ball et al. [2] conjecture that one could use AES for a MMCCR
hash function. Using AES is known to be extremely fast in practice using AES-NI instructions.

Our results and techniques. We study garbled circuits containing both a Boolean part and an arith-
metic part in secure multiparty computation. We begin by extending known results for garbled arithmetic
circuits from the two-party setting to the multiparty setting. In the two-party setting, Ball et al. [2] and
Malkin et al. [28] showed that the free-XOR idea of Kolesnikov and Schneider [25] can be extended to free
addition and multiplication by a constant in Fp. We show that these results naturally extend to the multi-
party setting. This follows similar lines to the extension of free-XOR to the multiparty setting by Ben-Efraim
et al. [8].

We further efficiently extend the half-gates construction of Zahur et al. [34] in two ways, to the multiparty
setting and to multiplication in Fp. Using this, we manage to garble multiplication gates in Fp, in the
multiparty setting, with only 2p garbled rows. By representing numbers in a primorial modulos and using
the Chinese Remainder Theorem, as suggested by Ball et al. [2], we obtain efficient arithmetic computations
over the integers. We remark that in the two-party setting, Malkin et al. [28] showed how to extend half-gates
to multiplication in Fp. Their garbled multiplication gates require only 2(p − 1) rows, where the −1 comes
from row reduction. The techniques they use are different from ours, and in particular they assume a random
oracle. We assume only the existence of a mixed-modulus circular correlation robust hash function, as used
by Ball et al. [2]. We further remark that in the two-party setting Ball et al. [2] suggested a different method
for garbling multiplication gates that has O(p) rows and relies on mixed-modulus circular correlation robust
hash function. However, their construction uses projection gates, which we show are less suitable for the
multiparty setting. Furthermore, both the number of rows and the evaluation time are slightly higher using
the construction of Ball et al.

We then show how the Boolean and arithmetic parts of the circuit efficiently affect each other. In the
multiparty setting, this requires a simple primitive that we call a multifield-shared bit, in which the same bit
is secret shared in multiple fields of different characteristics. We show an efficient protocol for constructing
this primitive in the semi-honest model with an honest majority. Furthermore, we explain that this primitive
can be computed even before the circuit is known.

To show how the Boolean part can efficiently affect the arithmetic part, we look at selector gates, which
compute a simple “if statement”: A selector gate has 3 input wires, x, y, and w0. The wires x, y hold values
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in Fp and the wire w0 holds a Boolean value representing the selection bit. The output wire z should equal
either x or y, according to the value of the selection bit. I.e., denote the value on wire ω by vω, then a selector
gate computes the following simple if statement: If (vw0 == 0) then vz = vx else vz = vy.

We show two constructions for garbled selector gates: the first is an extension of known techniques to
the multiparty setting, using projection gates from Boolean to Fp. To the best of our knowledge, this is the
best construction of selector gates using existing techniques that relies only on MMCCR hash functions. Our
second construction is a designated construction, using new techniques described below. This construction
reduces the evaluation time by approx. 33%.

We give an informal overview of the main ideas in the designated selector gate construction: The gate
contains two components. Using the first component, the evaluator tries to compute the multiplication
between the Boolean value and the values in Fp. But since the Boolean value seen by the evaluator is not
the real value on the wire, this computation possibly inserts an error. To solve this, the second component
is “corrector gates”. The result from the corrector gate is (freely) added in order to correct the values from
the first component. However, the (possibly) inserted error depends on the value seen by the evaluator on
the Boolean wire. Thus, there are in fact 2 corrector gates, and the evaluator decrypts only one of them,
according to the value it sees. This raises a question of security, as a corrupt evaluator can also decrypt the
“wrong” corrector gate. This issue is solved by double partitioning of the keys and permutation elements,
ensuring the decrypted keys and external values on the “wrong” corrector gate leak no information, even
given the correctly decrypted keys and values. To the best of our knowledge, the technique of using a double
partition of the keys and permutation elements is new in this setting.

To show how the arithmetic part can affect the Boolean part, we extend to the multiparty setting the
construction of Ball et al. [2] of gates that test equality. These equality gates use free subtraction and
projection gates. Unfortunately, we find that garbling general projection gates, and garbling equality gates
in particular, is significantly more complicated in the multiparty setting. To explain this, we note that the
equations for equality gates require exponentiation. In the multiparty setting, the values needed for the
offline computation are secret shared, and so this exponentiation is computed using an MPC sub-protocol.
We optimize these computations using the constant round protocol of [3]. However, this still implies that
the offline time for computing equality gates is significantly slower. On the positive side, the size of garbled
projection gates and their evaluation time are not affected by this, and therefore the difference in the online
phase from the two-party setting is similar to the Boolean case.

A motivating example. Many real-world applications naturally use a mixture of Boolean and arithmetic
computations. To illustrate the importance of mixed Boolean-arithmetic circuits, we look at a simple natural
problem, the problem of conditional summation. Of course, it is possible to encode the problem as a Boolean
circuit or as an arithmetic circuit. However, notice that encoding the conditions in arithmetic 0/1 would
be very inefficient when the conditions are complex. On the other hand, the summation could be expensive
in Boolean, while free in an arithmetic circuit (using free addition). Therefore, a more efficient manner to
perform the computation would be to compute the conditions in a Boolean circuit, then use selector gates,
and finally compute the summation in an arithmetic circuit. Possibly, the conditions (which are Boolean)
could decide multiplication constants instead of only 0, 1, in which case multiplication gates are also required.
An important application that requires this is a collusion intrusion detection system (CIDS). Thus, a mixed
Boolean-arithmetic computation is required to compute CIDS in MPC efficiently.

Comparison with previous works and techniques. In Table 1 we compare our garbled multiplication
gates with those of [2] and [28]. We compare only with 2-party garbling protocols, because previous multiparty
garbling protocols did not handle arithmetic gates.1 For comparison, we also include the values of our garbled
multiplication gate in the 2-party setting, which is not explained in this work. The difference is that in the
2-party setting, the number of rows can be reduced using the row reduction technique [29]. Furthermore,
in the multiparty setting, each row requires n ciphertexts, and “decrypting” a row requires n2 decryptions

1One could of course use an encoding of arithmetic into Boolean, e.g. the CRT encoding in [1], and then apply
any Boolean multiparty garbling protocol. For a comparison between encoding into Boolean and arithmetic gates as
discussed here, see [2].
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(hash function calls). In Table 2 we compare garbled selector gates using known techniques (projection gates)
and the new designated construction.

Garbled Multiplication Gate
Parties Rows Size Sec. Ass. # Dec.

[28] 2 2p− 2 (2p− 2)κRandom Oracle 2
[2] 2 6p− 5 (6p− 5)κ MMCCR 6

New 2 2p− 2 (2p− 2)κ MMCCR 2
New n 2p (2p)κ · n MMCCR 2 · n2

Garbled Selector Gate
Parties Rows Size Sec. Ass. # Dec.

Known n 2p+ 2 (2p+ 2)κ · nMMCCR 3 · n2

Techniques
New n 2p+ 2 (2p+ 2)κ · nMMCCR 2 · n2

Table 1: Comparison of our garbled multiplication gates with those of [2], [28] in number of parties, number
of garbled rows, total size of garbled gate, security assumption, and number of decryptions (hash function
calls needed in the online phase). For high fan-in multiplication, the construction of [2] scales differently than
ours, but still seems to have more rows.

Table 2: Comparison of garbled selector gates using known techniques (projection gates) and the new
designated construction, using a double partition of the permutation elements and keys.

Other related works. Most protocols for securely computing arithmetic circuits follow the secret-
sharing paradigm, e.g., [11, 15, 10, 17, 16, 23] to name but a few. In the secret-sharing paradigm, the parties
share their inputs. Then, for each layer of the circuit, the parties interact in order to compute shares for the
next layer. Thus, the number of rounds depends on the depth of the circuit. This could potentially lead to
very slow online times when the circuit is very deep and the latency is large (for example over the internet),
as demonstrated in [8]. Furthermore, garbled circuits are an important primitive, and therefore justify study
even outside the context of secure computation. We believe this should hold true also for multiparty garbled
circuits.

Hence, these works in the secret-sharing paradigm are incomparable with our work. In addition, the recent
works of Damg̊ard et al. [18] and Keller et al. [24] in the secret-sharing paradigm use gate-scrambling, which
shares many ideas with garbling. Advances in garbling techniques could potentially aid these protocols.

Apart from the works of Ball el al. [2] and Malkin et al. [28], there has been another notable work that
studied arithmetic garbled circuits in the two-party setting, the work of Appelbaum et al. [1]. The main
result of [1] relies on LWE and is quite complex. It is unclear if the result can be efficiently extended to the
multiparty setting. Their secondary result using CRT has been surpassed by the results of Ball et al. [2].

Organization. In Section 2 we review the basics of multiparty garbling and garbling of arithmetic
circuits. In Section 3 we explain how to efficiently garble multiplication gates in Fp. In Section 4 we explain
on selector gates and show how to efficiently garble them. In Section 5 we prove the security of our protocols.
In Appendix A we explain how to garble equality testing gates and exponentiation by a public constant.

2 Preliminaries

We assume that the reader is familiar with the BGW protocol and its improvement [9, 19]. Sections 2.3, 4,
and Appendix A also use the constant round protocol for unbounded fan-in multiplication of Bar-Ilan and
Beaver [3]. This protocol is nicely explained in [13, Section 4].

2.1 Notation, Conventions, and Security Assumption

We list some of the conventions and notations that we use throughout this paper. We consider a static semi-
honest adversary A corrupting a strict minority of the parties . The circuit of the function to be computed is
denoted by C, and g ∈ C denotes both the gate and its index. The set of all wires is denoted by W , and W
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denotes the wires that are not outputs of “free gates” (e.g., XOR, addition, and multiplication by a constant
gates). The respective sets of wires with values in Fp are denoted Wp and Wp respectively. The number of
parties in the protocol is n, and t =

⌊
n−1

2
⌋

is the bound on the number of corrupt parties. We denote the
security parameter by κ. For binary fields, the keys are therefore in GF(2κ). Notice that for characteristic p
fields, keys should be in GF(pκp), with κp ≥ dκ/ log pe; see also Remark 1. We often abuse notation, writing
pκ

def= pκp .
Throughout the paper we have computations in several fields. We often avoid mentioning the field in

which the computations are carried out when this can be inferred from the equation. For example, if λ ∈ Fp
and ∆i

p ∈ GF(pκ) then the multiplication λ∆i
p is computed in GF(pκ). Observe that Fp ⊂ GF(pκ) is a field

extension, so this is well defined. We also ensure that the computation is well defined for the shares of λ and
∆i
p; see Remark 1.

We sometimes use vector notation for the keys of the parties. For example, if each party Pi has a key
kix ∈ GF(pκ) then we write kx

def=
(
k1
x, . . . , k

n
x

)
∈ GF(pκ)n. Addition of vectors and multiplication by a

constant are the standard linear algebra operations.
The hardness assumption we rely on, which we define next, is the existence of a mixed-modulus circular

correlation robust hash function that we denote by H. This is the exact same assumption used by Ball et
al. [2] in the two-party setting. Ball et al. conjectured that it is secure to use 128-bit AES for H.

Definition 1. Let H be a hash function, and for each p in some set of primes P let ∆p ∈ GF(pκ). We
define an oracle OHP that acts as follows:

OHP (ρ, a, b, k, γ, δ) = H(k + γ∆pa , ρ) + δ∆pb (1)

where ρ ∈ N, pa, pb ∈ P , γ ∈ Fpa , δ ∈ Fpb , k ∈ GF(paκ), and the output of H is interpreted as in GF(pbκ).
Note that γ∆pa is the inner offset and δ∆pb is the outer offset. Legal queries to the oracle have inputs in
the correct domains and satisfy:

1. The oracle is never queried with γ = 0,
2. For each ρ, all the queries have the same pa, pb, and each γ ∈ Fpa \ 0 is used in at most one query.2

We say that H is mixed-modulus circular correlation robust if for all polynomial time adversaries making
only legal queries to the oracle, the oracle OHP , for random ∆ps, is indistinguishable from a random function
(with the same input/output domains).

We use the shortened notation Fk(ρ) def= H(k, ρ) (F can be thought of as a PRF). In our garbled gates,
we use ρ = g||j (formally, ρ = ng+ j), where g is the index of the gate we garble and j ∈ [n]. In most gates,
the key of each party is “encrypted”, using F , by all parties, see for example Equations (2) and (3).3 We
therefore use the shortened notation Enckx

[
kjz
] def=

(
Σn
i=1Fkix(g||j)

)
+ kjz. The outputs of the Fkix(g||j)’s

are, in this case, assumed to be in the same field as kjz. “Decryption” of the above ciphertext is by subtracting
Σn
i=1Fkix(g||j).

Remark 1. In our offline protocols, the parties share both “small” field elements λ ∈ Fp and “large”
keys/offsets kix, ∆i

p ∈ GF(pκ), with κp ≥ dκ/ log pe. These are shared using Shamir secret-sharing scheme
in fields of characteristic p (to allow linear combinations). Apart from the characteristic, there are three
other requirements of the fields in which the elements, keys, and offsets are shared. The first two are always
required by Shamir secret-sharing schemes.

1. The field must contain at least n+ 1 elements.
2This can also be strengthened to require that each ρ is queried with a single γ 6= 0.
3As we explain later, it is more efficient to garble Boolean gates regularly than using half-gates in the multiparty

setting. However, this requires assuming also the existence of a circular two-correlation robust hash function (as
defined in [12]), which we denote, using shortened notation, by F2

k1,k2 . If we garble AND gates using the half-gates
construction in Section 3, this extra assumption is not needed.
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2. The size of the field is at least the size of the domain of the secret.
3. We need to be able to multiply shares of the field element λ ∈ Fp with the shares of the offset ∆i

p ∈
GF(pκ).

In order to satisfy the first requirement, the parties share λ in a field extension GF(pmp) with pmp > n. In
order to satisfy the second requirement, kix is shared in GF(pκ), as it cannot be shared in a smaller field. In
order to satisfy the third requirement, it must hold also that mp|κp, so that GF(pmp) ⊆ GF(pκp). One way
to ensure all the requirements are met is to set mp = κp = dκ/ log pe. This is not always the most efficient
solution – any implementation should optimize the choice of mp and κp for each p, in correspondence with
the bound on the number of parties, such that they satisfy all the above requirements.

2.2 Multiparty Garbling

In the multiparty setting, the first proposal for constructing a multiparty garbled circuit was given in [4].
We extend a simplified description for the semi-honest model given in [8] to the arithmetic setting (in the
field Fp), by applying the ideas of [28, 2]. The construction of [8] allows the free-XOR ideas of [25]. In
the two-party setting, Malkin et al. [28] and Ball et al. [2] showed that free-XOR extends to free addition,
subtraction, and multiplication by a public constant in the field Fp. As we shall see, this is also the case in
the multiparty setting.

The multiparty garbling paradigm consists of two phases. In the first phase, often called the offline or
garbling phase, the parties collaboratively construct a garbled circuit. Then, in the second phase, called
the online or evaluation phase, the parties exchange masked input values and the corresponding keys. After
that, each party (or a designated evaluating party) locally computes the outputs of the function. Our secure
computation protocol that follows this paradigm is given in Section 2.4.

Boolean Circuits. For constructing the garbled circuit, each party Pi chooses, for each wire ω ∈ W, two
random keys, kiω,0 and kiω,1. To enable the free-XOR technique [25], the parties need to choose the keys such
that kiω,1 = kiω,0 ⊕∆i for some global offset ∆i.

Each wire ω in the circuit is assigned a random secret permutation bit λω. This bit masks the real values
of the wires during the online phase. For an AND gate with input wires x, y and output wire z, the garbled
gate is the encryptions g̃α,β =

(
g̃1
α,β , . . . , g̃

n
α,β

)
for (α, β) ∈ {0, 1}2, where

g̃jα,β =
(

n⊕
i=1
F2
kix,α,k

i
y,β

(g||j)
)
⊕ kjz,0 ⊕

(
[(λx ⊕ α) · (λy ⊕ β)⊕ λz]∆j

)
. (2)

Notice that all the values are “encrypted” by all the parties. XOR gates are computed using the free-XOR
technique of Kolesnikov and Schneider [25] – the permutation bit and keys on the output wire are set to
be the XOR of those on the input wires; they require no cryptographic operations or communication. For
the circuit output wires, the permutation bits are revealed. For input wires of party Pi, the corresponding
permutation bits are disclosed to party Pi.

During the evaluation phase, an evaluating party learns at each wire ω a bit eω, called the external or
public value, and the corresponding keys. The keys on the output wire of a garbled gate are recovered by
decrypting the row g̃ex,ey using the keys on the input wires. As was first pointed out in [27], if the evaluating
party participates in the garbling (which we generally assume), the external value can be extracted from the
decrypted key – an evaluating party Pi can compare the ith key with the keys it used for the garbling, and
thus learn the external value. I.e., if the key is kiz,0 then ez = 0 and if it is kiz,1 then ez = 1.

The external value eω is the XOR of the real value vω with the random permutation bit λω. Since
the permutation bit is random and secret, the external value reveals nothing about the real value to the
evaluating party. The evaluating party uses the external value and keys to continue the evaluation of the
proceeding garbled gates. For the output wires of the circuit, the permutation bit values are revealed, and
thus the output is learnt by XORing with the external values.
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Extension to Fp Arithmetic. The above generalizes naturally to arithmetics in the field Fp. We explain
this briefly; see [2] for a detailed explanation (in the two-party setting). Instead of each wire having a
permutation bit λ, now each wire has a random secret permutation field element λ ∈ Fp. The external value
on wire ω is similarly defined eω

def= vω + λω. The permutation field elements are shared, using a linear
secret-sharing scheme, in a field of characteristic p. Furthermore, each party Pi has a global random secret
offset ∆i

p ∈ GF (pκ). For each wire ω, each party Pi has a random key kiω. The p keys of each party Pi that
relate to the p possible external values, are set to be kiω,α

def= kiω + α∆i
p for each α ∈ Fp. 4

Thus, addition and subtraction are “free”: The zero keys of the output of an addition/subtraction gate are
chosen to be the sum/difference of the keys of the input gate. The permutation field element of the output
wire is set to be the sum/difference of the permutation elements of the input wires. Since the keys and
permutation elements are shared using a linear secret-sharing scheme in a field of characteristic p, the shares
of the addition/subtraction can be computed locally by the parties (by performing local additions on their
shares). Similarly, multiplication by a public constant c is also free: if c 6= 0, the zero keys and permutation
element of the output wire are set to be the multiplication by c. Again, all the necessary computations can
be performed locally by the parties, both at the garbling phase and the evaluation phase. The case of c = 0
is dealt using a global 0 wire.

A straightforward method for garbling multiplication gates is to extend Equation 2 from Boolean to
characteristic p. I.e., for a multiplication gate with input wires x, y and output wire z, the garbled gate is
the encryptions

g̃jα,β =
(
Σn
i=1F2

kix,α,k
i
y,β

(g||j)
)

+ kjz,0 +
(

[(α− λx) · (β − λy) + λz]∆j
p

)
(3)

for every α, β ∈ Fp and j ∈ [n]. The summations and multiplications in the above equation are carried out
in GF(pκ). Observe that for this equation to make sense, the output of F2 must also be in GF (pκ). At the
online phase, the evaluator recovers the output keys by decrypting row (ex, ey).

The above straightforward method requires p2 garbled rows. In Section 3 we describe a more efficient
way to garble multiplication gates in the multiparty setting that requires only 2p garbled rows, by extending
the half-gates idea of Zahur et al. [34]. Extension of half-gates to Fp was shown in the two-party setting
by Malkin et al. [28], but their techniques are quite different from ours. Also, in the two-party setting, Ball
et al. [2] suggested a different solution to garble multiplication gates in O(p) garbled rows. However, their
solution relies heavily on projection gates. Unfortunately, projection gates are relatively expensive to garble
in the multiparty setting, as we explain in Section 2.2.2.

2.2.1 CRT Representation and Application to Arithmetic Garbled Circuits. We briefly explain
the idea presented by Ball et al. [2] for constructing efficient arithmetic garbled circuits over the integers;
see [2] for a more detailed explanation. The idea is to use the Chinese Remainder Theorem (CRT), along
with efficient garbling in the field Fp, for small p.

The computations are done in the primorial modulus Qk = 2 · 3 · · · pk, the product of the first k primes.
The number of primes k is chosen such that Qk > Z, where Z is the bound on the possible intemediate
values of the computation. Each number is represented by a bundle of wires, one for each of the k primes. We
call such a representation a CRT bundle representation. Adding two numbers is free, because the sum can be
carried out in each prime separately (and addition in Fp is free), and similarly multiplication by a constant.
Multiplication and exponentiation by a constant are also computed separately for each prime. Thus, the
total number of computations and garbled rows is the sum of the computations/garbled rows in the different
primes. Correctness of computing this way follows from the Chinese Remainder Theorem. Testing equality
between two numbers can be computed as the AND of the equality testing gates in each prime.5

4Note that Fp ⊂ GF (pκ) is a field extension so α ·∆i
p is well defined.

5A more efficient manner for testing equality in CRT representation was shown by Ball et al. [2] in the two-party
setting, but it relies on projection gates. Thus, following the explanation in Section 2.2.2, it is less compatible for
multiparty garbling.

7



2.2.2 General Projection Gates. One of the main garbling gadgets used by Ball et al. [2] is projection
gates. A projection gate is a gate which has one input wire and one output wire. For example, an exponen-
tiation gate that computes x 7→ xc, where c is a public constant. In addition to gates g : ZN → ZN , there
are also useful projection gates in which the domain of the input wire differs from the domain of the output
wire. Ball et al. [2] showed in the two party setting that any projection gate g : ZN1 → ZN2 can be garbled
using at most N1−1 garbled rows, where the −1 comes from the row reduction technique [29]. Furthermore,
they showed that, in the two-party setting, it is not difficult to compute these garbled projection gates,
because the garbler knows all the information for constructing the gate. In particular, the garbler knows all
the permutation bits/elements.

In contrast, in the multiparty setting, the parties only hold shares of the permutation bits/elements.
Therefore, the garbled gates are computed via an MPC subprotocol with these shares. In general, garbling
a projection gate might require computing a very complex equation in MPC. Projection gates in which the
output domain differs from the input domain are potentially even more complex.

In Section 4.1 and Appendix A we discuss three types of projection gates: a projection identity gate from
Boolean to Fp, an equality testing gate from Fp to Boolean, and an exponentiation by a (public) constant
gate from Fp to Fp. The first gate can be computed very efficiently. On the other hand, the equality and
exponentiation gates, while significantly more efficient than general projection gates, do still seem to be quite
expensive. This is because there are exponentiations in the gate equations, and computing exponentiation
in MPC is expensive, even using the protocols suggested in [3] or [13].

On the positive side, the number of garbled rows in our projection gates is only one row more than
the respective garbled gates in the two-party construction of [2]. Thus, the size of the garbled projection
gates is only slightly more than n times of the respective gate in the two-party setting. Furthermore, at the
evaluation phase only a single row is decrypted. Therefore, the online computation is only about n2 times
than the two-party setting. This matches the Boolean case.

2.3 Multifield-Shared Bits

In this section we introduce a new primitive that we use in our constructions in Section 4 and Appendix
A.1. Note that garbling multiplication gates does not require this primitive. The primitive is a random bit
b ∈ {0, 1} that is shared multiple times in different fields, of different characteristics. That is, each party
holds multiple shares of the same secret random bit, where each share is in a different field with a different
characteristic.

In the semi-honest model with an honest majority, it is quite simple to construct this primitive. First,
each party Pi chooses a random bit bi. The secret random bit will be b =

⊕n
i=1 bi. Note that if there is an

additional requirement that bz = bx ⊕ by (as needed in some of our constructions to allow free XOR), then
party Pi sets (bz)i := (bx)i ⊕ (by)i instead of randomly choosing it – permutation bits/elements are chosen
only for the input wires of the circuit and for output wires of garbled gates/components. Next, the parties
run protocols to share b in each field; these protocols are run in parallel.

We next explain the bit-sharing protocols. The sharing we describe is of Shamir shares, which is the
type of shares used in our constructions. The sharing protocol depends on the characteristic of the field. See
Remark 1 regarding the fields in which the shares should be generated.

1. In characteristic 2 fields, each party Pi shares its bit bi amongst all the parties in a (t + 1)-out-of-n
Shamir sharing. The parties sum (XOR) their received shares to obtain shares of the bit b.

2. In characteristic p 6= 2 fields, each party Pi shares the value b′i =
{
−1, bi = 1

1, bi = 0 amongst all the parties in a

t+1-out-of-n Shamir sharing. Then, the parties use an MPC protocol to compute shares of b = 1−(Πni=1b
′
i)

2 .
This is computed in constant rounds by combining the protocol of Bar-Ilan and Beaver [3] for unbounded
fan-in multiplication (to compute shares of Πn

i=1b
′
i) and then linear operations on the shares (note that

2 is invertible in Fp and the inverse is easily computable).
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Observe that b computed in both protocols is the same: b = 0 if and only if an even number of bis is 1.
This happens if and only if an even number of b′is is −1, which is if and only if Πn

i=1b
′
i = 1, so if and only if

1−Πni=1b
′
i

2 = 0. The case of b = 1 is similar.

Remark 2. It seems that a more natural method to construct this primitive would be to replace protocol
2 above with a share conversion protocol from a characteristic 2 field to a characteristic p field. However,
to the best of our knowledge, the current existing efficient protocols for share-conversion between fields of
different characteristics, e.g., those suggested in [14], are unsuitable here.

Computing multifield-shared bits in function independent preprocessing. The garbling phase is often computed
“offline”, meaning before the parties choose their inputs. However, it does require knowledge of the circuit.
Whenever possible, it is desirable to preprocess as much as possible even before the function the parties
wish to compute is known. This is especially important when the computations are relatively heavy, as in
Protocol 2 above. That is, the offline phase is split into two: the function independent preprocessing, in which
primitives are computed without knowledge of the circuit, and function dependent preprocessing, in which
computations depend on the circuit, but do not require the inputs.6

In our description of the protocol, we assume the parties know the circuit when computing the multifield-
shared bits. However, we remark that it is possible to compute all the multifield-shared bits even before the
function is known. This comes at a small cost. We next explain the cost, but the details are left to the full
version. Note that this primitive is not needed in the two-party setting, and thus this extra cost is not added
there (e.g., for comparison of gate constructions).

We use the multifield-shared bits in 3 gates: the projection gates F2 → Fp and the designated selector
gates in Section 4, and in equality gates in Section A.1. For equality gates, the multifield-shared bits are
needed for the output wire, and can therefore be computed in the function independent preprocessing at
no additional cost. For the projection and selector gates, the multifield-shared bits are needed for the input
wires. In order to compute the multifield-shared bits in the function indpendent preprocessing in this case,
we would need to use buffer gates. This would incur 2 additional garbled rows, i.e., the projection gate would
require 4 garbled rows instead of 2, and the designated selector gates would require 2p + 4 garbled rows
instead of 2p+ 2. Furthermore, at the evaluation phase, a buffer gate implies an additional row decryption
by the evaluator. The details will be given in the full version.

2.4 Protocol for Secure Computation

In this section we give the details of our secure multiparty computation protocol. The protocol is an extension
of the semi-honest BMR protocol, e.g. [8], to the arithmetic case. The details of the garbled gates are explained
in Sections 3, 4, and Appendix A. The proofs of correctness and security appear at Section 5.

The garbling phase of protocols following the multiparty garbling paradigm is often abstracted as a
functionality that outputs the garbled circuit and the necessary permutation bits to the respective parties.
This functionality, which we term FGC , is described in Figure 1. We next sketch out a straightforward
protocol for securely computing FGC in constant rounds, using a combination of the BGW protocol [9, 19]
and the constant round protocol for unbounded fan-in multiplication of Bar-Ilan and Beaver [3].

Step 1, Setup: For each prime p in the primorial modulus, each party Pi does the following:
– Randomly chooses a random global offset ∆i

p ∈ GF(pκ) for each prime p ∈ Qk.
– For each wire ω ∈ Wp (i.e., input wires of the circuit and output wires of garbled gates/components),

randomly chooses a random element (λω)i ∈ Fp and (zero) key kiω ∈ GF(pκ).7 The random permu-
tation element on the wire is λω

def= Σn
i=1 [(λω)i].

6The function ind. preproc. is often also split to two, and computations independent of the number of gates are called the setup phase.
The required number of multifield-shared bits depends on the number of projection, equality, and selector gates. Thus, precomputing
multifield-shared bits is not part of the setup phase.

7In the designated selector gates, this choice is slightly more involved – Pi randomly chooses (λ̂ω)i, ( ̂̂λω)i, ((̃λω)i, ( ˜̃λω)i such that

(λ̂ω)i + (λ̃ω)i = ( ̂̂λω)i + ( ˜̃λω)i. The keys are similarly partitioned; see Section 4.
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– In topological order on the circuit, computes (λω)i and kiω for each wire ω /∈ Wp, by sum-
ming/multiplying by a constant (according to gate type), by using λi and ki on the input wires
– see Section 2.2 on “free” gates.

– For each garbled component g ∈ C, compute Fkix,α(g, j) for each j ∈ [n] and α ∈ Fp, where p is
according to the gate/component type.8

Step 2, Sharing: Each party Pi shares all the keys, elements, and outputs of F in Step 1 using (t+ 1)-out-
of-n Shamir secret-sharing scheme. Multifield-shared bits are also shared using Protocol 2 in Section 2.3
for each p. The parties obtain shares of λω for each wire by locally summing their shares of {(λω)i}ni=1.

Step 3, Computing the garbled gates: Shares of the garbled rows of each garbled gate/component are
computed using their respective equation (e.g., Equations 6,8,9,11,14,18,19), where in each equation
– Addition and multiplication by a constant are computed locally,
– Multiplication is computed using a BGW degree-reduction round,
– Exponentiation (Appendix A) is computed using the protocol of [3].

More details can be found in the respective section.
Step 4, Reconstructing the outputs: The parties exchange the shares (of the outputs of FGC) and re-

construct the outputs of FGC , namely the garbled gates/components and the output permutation bits.
Furthermore, each party receives the shares and reconstructs the permutation bits on its input wires.

Remark 3. The above protocol is constant round since all gates are computed in parallel and each step
is constant round (Step 1 is local). However, the protocol can be considerably optimized using techniques
described in [7], such as share-conversion and masking by additive shares of zeros. We give the optimized
protocol in Appendix B, without proof of security.

Functionality FGC

Computation Course:

1. For every prime p in the mixed modulos, the functionality assigns a random global offset ∆i
p ∈

GF(pκ) to each party Pi.
2. For each wire ω ∈ Wp, the functionality assigns

– A random permutation element λω ∈ Fp.
– For each party Pi, a random zero key kiω ∈ GF(pκ). The keys associated with the p external

values are set to be kiω,α = kiω + αkiω for α ∈ Fp.
3. For each addition gate or multiplication by a constant c 6= 0 gate, with output wire z ∈ Wp and

input wires x, y (or just x), the functionality computes
– The permutation element of the output wire λz = λx + λy or λz = cλx respectively.
– The zero keys of the output wire, kiz = kix + kiy or kiz = ckix respectively for each party Pi.

The computations are in the fields Fp and GF(pκ) respectively.
4. The functionality computes the garbled circuit GC, i.e., computes the garbled rows for each

garbled gate/component. For non-Boolean gates, this is computed according to the gate equations
in Sections 3, 4, and Appendix A.

Outputs:

1. The functionality outputs the garbled gates to the evaluating parties.
2. For output wires of the circuit, the functionality outputs the permutation bits to the evaluating

parties.
3. The functionality outputs to each party its global offsets, its zero key for each wire w ∈ W, and

the permutation bit of each of its input wires.

Fig. 1: Functionality FGC for Constructing a Multiparty Garbled Circuit

8Again, if Boolean gates are garbled as usual, then for Boolean gates compute F2
kix,α,k

i
y,β

(g, j).
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Next, in Figure 2 we give the details of our MPC protocol, in the FGC-hybrid model (i.e., FGC can be
excuted securely as a black-box). The protocol is similar to other protocols following the multiparty garbling
paradigm, e.g., [8]. The only major difference is the external values are not exclusively Boolean, and the size
of the garbled gates/components varies according to the gate type. The evaluation of the various gates (Step
3b in Figure 2) is explained in the respective section. Correctness and security of the protocol are shown in
Section 5.

Protocol Πonline

1. Offline phase: The parties execute functionality FGC to receive the garbled circuit, the output wires’
permutation elements, and the input permutation elements on their respective input wires.

2. Exchange garbled keys associated with inputs: For every circuit-input wire w:
(a) Let Pi be the party whose input is associated with wire w and let xiw be Pi’s input bit associated

with the wire. Then, Pi sends ew = xiw + λw to all parties.
(b) Each party Pj sends its part kjw,ew of the garbled label on w to the evaluating parties.
(c) At this point, the evaluating parties hold k1

w,ew , . . . , k
n
w,ew for every circuit-input wire.

3. Local circuit computation: Each evaluating party locally evaluates the garbled circuit by traversing
the circuit in a topological order, computing gate by gate. Let g be the current gate with output wire
z and input wires x, y (or just x). Let ex and ey be the extrenal values on wires x and y, respectively.
(a) If g is an addition or multiplication by c 6= 0 gate, then P0 sets ez = ex+ey or ez = cex respectively.

In addition, for every j = 1, . . . , n, it computes kjz,ez = kjin1,ein1
+ kjin2,ein2

or kjz,ez = c · kjin1,ein1
.

(b) If g is a non-free gate, then the evaluating party recovers the output keys and external value by
decrypting the gate. For non-Boolean gates, this is explained in Sections 3, 4, and Appendix A.

4. Output determination: For every output wire w, the evaluating party computes the real output
value of wire w to be ew − λw, where ew is the external value on wire w and λw is as received from
the output of FGC .

Fig. 2: The online phase – circuit evaluation

3 Multiparty Half Gates and Multiplication Gates

In this section we first show how to extend the notion of half-gates, introduced by Zahur et al. [34], to the
multiparty case. Then, we extend this construction to multiplication gates in the finite field Fp. The total
cost of a multiplication gate in Fp will be 2p garbled rows, in comparison with p2 garbled rows of the näıve
construction. In particular, the Boolean AND gate will cost 4 = 2 ∗ 2 = 22 garbled rows using both the
half-gates and the regular construction. Despite this, we elaborate on half gates in the Boolean case first, for
instructive purposes.

Remark 4. In the two party case, row reduction allows to reduce 2 garbled rows using half-gates, while other
methods either allow only a single row reduction or are not compatible with the free-XOR technique. This
is the main reason to use half-gates also in the two-party Boolean case. However, no efficient row reduction
technique is yet known for the general multiparty case. Therefore, half-gates does not seem to be suitable
for the multiparty Boolean case.9

Remark 5. In [2], multiplication gates in Fp are constructed differently, mainly using projection gates. As
explained, projection gates seem to be considerably more expensive in the multiparty case than in the two-
party case. Therefore, multiplication using an extension of the half-gates idea, as explained here, should be
preferred in the multiparty setting. In fact, the garbled multiplication gate of [2] require slightly more rows

9Using half gates requires double the amount of decryptions during evaluation and is therefore inferior in this case
despite having the same number of garbled rows.
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and more decryptions, so possibly using the half-gates extension should be considered also for the two-party
setting.

We follow the convention of [34], describing the two half gates as the “Garbler Half Gate” and “Evaluator
Half Gate”, though in our scenario all parties perform the garbling collaboratively and each party can perform
the evaluation.

Before going into the details of each half-gate, we give an informal overview of the idea. Assume we have
an AND gate with input wires x, y and output wire z. During evaluation, the evaluating party learns on the
input wires the external values bits ex = vx⊕λx and ey = vy ⊕λy, where v and λ are the real value and the
permutation bit on the wires respectively. The evaluating party also learns the keys corresponding to these
external values. Using this, the evaluating party should be able to recover the output external value

ez = vz ⊕ λz = vxvy ⊕ λz (4)

and corresponding keys.10 If the gate is a regular garbled AND gate, this is done by decrypting the row
(ex, ey).

In the half-gates construction, the computation is split into two distinct half-gates, each performing
a different computation. Informally, the the first gate computes λyvx and the second half-gate computes
vx(vy ⊕ λy). Then, XORing the two outputs, which is free, results in vz = vxvy.

To securely compute an AND gate using these two half gates in the multiparty case, two adjustments
have to be made. The necessity of these adjustments will become apparent when we discuss security. The
first adjustment is that the permutation bit on the output wire, λz, must be partitioned λz = λ̃z⊕ λ̂z, where
λ̃z, λ̂z are random bits under the constraint that they XOR to λz (which is the random permutation bit
of the output wire). This is because the outputs of both half gates must be hidden, otherwise information
might be leaked on some of the values.11

The second adjustment is that the zero keys kiz on the output wire also need to be partitioned kiz =
k̃z
i

+ k̂z
i
, where k̃z

i
∈ GF(2κ), k̂z

i
are random under the constraint that they sum (XOR) to kiz. The main

idea of this partition is that the output keys of an honest party Pi on both half gates do not leak information
on the global offset ∆i. The permutation bits and keys λ̃z, k̃z

i
are used in the Garbler half gate, and λ̂z, k̂z

i

are used in the Evaluator half gate.
To conclude, informally the half gates construction computes the output using the following equation:

ez = vxvy ⊕ λz =

“Garbler Half Gate”︷ ︸︸ ︷(
λyvx ⊕ λ̃z

)
⊕

“Evaluator Half-Gate”︷ ︸︸ ︷(
vx(vy ⊕ λy)⊕ λ̂z

)
. (5)

The true construction and resulting equations are more involved, and we next explain them in detail.

3.1 Garbler Half Gate

In the original description of this half gate in [34], the idea is described that the garbler can take advan-
tage that it knows the permutation bit (or color bit in the terminology of [34]). In the multiparty case,
no unauthorized subset (i.e., a subset that could be controlled by the adversary) is allowed to know the
permutation bits on any wire that it should not learn. However, we can use the fact that the permutation
bits are secret-shared to do the necessary computations. The computed gate is slightly more complicated
than in the two-party case because the garbling parties also participate in the evaluation, and thus have
additional information.

As already stated, the garbler half gate should compute the value λyvx ⊕ λ̃z. Note that vx is the real
value on the wire x (in an ungarbled computation) and is therefore never known – neither during garbling
nor during the evaluation phase.

10As explained in Section 2.2, it is enough to learn the keys; the evaluating party learns the external value by
comparing with its local key used for the garbling.

11This is different than the two-party case, where the evaluator half gate can be handled differently, cf. [34].
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To overcome this, the value is computed using the equation λyvx ⊕ λ̃z = λy(vx ⊕ λx)⊕ λyλx ⊕ λ̃z. The
value vx⊕ λx is the external value on wire x and thus revealed during evaluation. For garbling, the rows are
computed for both values using the BGW protocol with the shares of permutation bits, and with vx ⊕ λx
treated as a constant (as 0 for the first garbled row and as 1 for the second). The full equations of the garbled
gate is

g̃iα = Encky,α

[
k̃z
i
⊕
(
λyα⊕ λyλx ⊕ λ̃z

)
∆i
]

(6)

for α ∈ {0, 1} and i ∈ [n]. By treating α as a constant and using the shares of the permutation bits, keys,
offsets, and PRFs, the shares of g̃iα are computed using 2 BGW degree-reduction rounds.

Indeed, if the external value on wire x is ex = 0, then the decrypted key is k̃z ⊕
(
λyλx ⊕ λ̃z

)
∆ =

k̃
z,λyλx⊕λ̃z

. Since the external value is 0 = ex = vx ⊕ λx we have that vx = λx so k̃
z,λyλx⊕λ̃z

= k̃
z,λyvx⊕λ̃z

.

Thus, the decrypted key corresponds to the required value of λyvx ⊕ λ̃z.
Similarly, if the external value is ex = 1 then the decrypted key is k̃z ⊕

(
λy ⊕ λyλx ⊕ λ̃z

)
∆ =

k̃
z,λy⊕λyλx⊕λ̃z

= k̃
z,λy(1⊕λx)⊕λ̃z

. Since the external value is 1 = ex = vx ⊕ λx, it implies that vx = 1 ⊕ λx.

Therefore, k̃
z,λy(1⊕λx)⊕λ̃z

= k̃
z,λyvx⊕λ̃z

and this key again corresponds to the correct value λyvx ⊕ λ̃z.

3.2 Evaluator Half Gate

As in the two-party case, the main idea of this half gate is that the evaluating party learns at the evaluation
phase the external values of the wires, and can use this information for the computation. As we shall see
more clearly when we extend the half gates to Fp, the operation done by the evaluating party is to multiply
by this external value.

The evaluator half gate should compute the value vx(vy ⊕ λy) ⊕ λ̂z. The value vy ⊕ λy is the external
value ey on input wire y, and therefore known at evaluation time. On the other hand, the value vx is the true
value on wire x, and thus generally should never be learnt by any subset of parties. Therefore, to compute
the gate we use the equation:

vx(vy ⊕ λy)⊕ λ̂z = (vx ⊕ λx)(vy ⊕ λy)⊕ λx(vy ⊕ λy)⊕ λ̂z. (7)

The computation of the value λx(vy ⊕ λy) ⊕ λ̂z is similar to the computations in the Garbler Half Gate.
Thus, the main addition in this half gate is the computation of the value (vx ⊕ λx)(vy ⊕ λy). Näıvely, it
would seem that this requires 4 rows in order to garble for each combination of (vx ⊕ λx, vy ⊕ λy) ∈ {0, 1}2.
However, [34] observed that this computation can be obtained practically for free.

Note first that (vx⊕λx)(vy⊕λy) can be computed at evaluation time as both external values are known.
This is still insufficient, because the evaluating party needs to recover some key that represents this value.
The “trick” performed by [34] is to XOR with the key on the wire x if vy ⊕ λy = 1 and to ignore it if
vy ⊕ λy = 0. We describe this slightly differently in Section 3.3 for the Fp case, but the descriptions in fact
coincide for p = 2.

The final garbled gate is the following two sets of encryptions

Enck(y,0)

[
k̂z
i
⊕ λ̂z∆i

]
, (8)

Enck(y,1)

[
k̂z
i
⊕ kix ⊕

(
λx ⊕ λ̂z

)
∆i
]
, (9)

for every i ∈ [n]. As remarked, the trick here is that at the evaluation phase, the evaluating party behaves
differently depending on the external value on wire y. If the external value is 0, then the output key is simply
the decrypted key, while if the external value is 1 the output key is computed by summing (XORing) the
decrypted key with the key on the wire x.
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We now show that the recovered output key indeed corresponds to the desired value. First, assume
ey = λy ⊕ vy = 0. In this case, the recovered output key is k̂z ⊕ λ̂z∆ = k̂

z,λ̂z
= k̂

z,vx(vy⊕λy)⊕λ̂z
, the last

equality following vx(vy⊕λy) = 0. Thus, the output key indeed matches the expected value of vx(vy⊕λy)⊕λ̂z.
Next, assume that ey = vy ⊕ λy = 1. Here, the evaluating party adds the decrypted key k̂z ⊕ kx ⊕(

λx ⊕ λ̂z
)
∆ to the value on the x wire, which is kx ⊕ ex∆ = kx ⊕ (vx ⊕ λx)∆. Thus, the recovered output

key is [
k̂z ⊕ kx ⊕

(
λx ⊕ λ̂z

)
∆
]
⊕ [ kx ⊕ (vx ⊕ λx)∆ ] =

k̂z ⊕
(
vx ⊕ λ̂z

)
∆ = k̂

z,vx⊕λ̂z
= k̂

z,vx(vy⊕λy)⊕λ̂z
,

where again the last equation follows from vy ⊕ λy = 1. As in the previous case, the output key corresponds
to the expected value of vx(vy ⊕ λy)⊕ λ̂z.

3.3 Extension to Multiplication Gates

We now explain how to extend the half gates construction to multiplication gates in Fp. The extension of
the half-gates to the case of Fp is quite natural. Recall that the external value on wire x is vx+λx, where λx
is a random permutation element in Fp and vx is the true value on the wire (in an ungarbled computation).
Similarly to Equation 5, the multiplication gate will be computed using the equation:

ez = vxvy + λz =

“Garbler Half Gate”︷ ︸︸ ︷(
−λyvx + λ̃z

)
+

“Evaluator Half-Gate”︷ ︸︸ ︷(
vx(vy + λy) + λ̂z

)
, (10)

where again λ̃z, λ̂z are random field elements and λz = λ̃z + λ̂z.

Garbler Half Gate. As in the Boolean case, since vx is never known, we use the equation −λyvx + λ̃z =
−λy(vx + λx) + λyλx + λ̃z. During garbling, vx + λx is treated as a constant, i.e., the parties compute a
garbled row for each α ∈ Fp, where α replaces vx + λx in the equation above. Shares of −λyα + λyλx + λ̃z
can be computed using one round of interaction via the BGW protocol.

The final garbled gate is the set of encryptions

Enck(y,α)

[
k̃z
i
+
(
−αλy + λyλx + λ̃z

)
∆i
p

]
(11)

for every α ∈ Fp and i ∈ [n]. Recall that the global offsets ∆i
p belong, and are secret-shared, in GF(pκ).

Computing this half gate (Equation 11) requires two BGW degree-reduction rounds.
To verify that the correct output key is recovered, we observe that on input external value ex, row ex is

decrypted. Thus, the recovered output key is

k̃z +
(
−exλy + λyλx + λ̃z

)
∆p (12)

= k̃z +
(
−(vx + λx)λy + λyλx + λ̃z

)
∆p (13)

= k̃z +
(
−λyvx + λ̃z

)
∆p = k̃

z,−λyvx+λ̃z

matching the expected value of the key corresponding to −λyvx + λ̃z.

14



Evaluator Half Gate. Similarly to the Boolean case, we use the equation vx(vy + λy) + λ̂z = (vx + λx)(vy +
λy)−λx(vy +λy) + λ̂z. We again need to avoid creating a row for every value (vx +λx, vy +λy) ∈ F2

p, which
would give us a total of p2 garbled rows.

Therefore, we extend the trick of [34]: during evaluation, each evaluating party multiplies the key on wire
x by the external value vy + λy and adds it to the decrypted key. Notice that this completely coincides with
the Boolean case when p = 2. The only subtlety is that now the corresponding multiplication of the zero key
must be subtracted from the encrypted key during the garbling.

The garbled gate is the set of encryptions

g̃jβ = Encky,β

[
k̂z
i
− βkix +

(
−βλx + λ̂z

)
∆i
p

]
(14)

for every β ∈ Fp and i ∈ [n]. Again, this coincides with the Boolean case when p = 2. Computing this half
gate (Equation 14) requires one BGW degree-reduction round.

Now during evaluation, the evaluating party multiplies the key on the x wire by the external value
ey = vy + λy. This is then added to the key decrypted at row ey. Verification that the recovered output key
indeed corresponds to the correct value is similar to the Boolean case: the recovered output key is the sum
of ey(kx + ex∆p) and k̂z − eykx +

(
−eyλx + λ̂z

)
∆p. Simplifying,

ey(kx + ex∆p) + k̂z − eykx +
(
−eyλx + λ̂z

)
∆p

= eykx + ey(vx + λx)∆p + k̂z − eykx +
(
−eyλx + λ̂z

)
∆p

= k̂z +
(
eyvx + λ̂z

)
∆p = k̂

z,eyvx+λ̂z

matching the expected key value of vx (vy + λy) + λ̂z.

4 Selector Gates

One of the more challenging tasks of performing an arbitrary computation using arithmetic circuits is to
perform “if” statements. In this section, we discuss a gate computing a simple if statement. Namely, we build
a “selector” gate, which chooses between two input wires in Fp, according to a Boolean “selection bit”. I.e.,
the gate has three input wires x, y, and w0, and an output wire z. The values on the input wires x, y are
from Fp and the value on w0 is the selection bit. The selector gate computes the following if statement: If
(vw0 == 0) then vz = vx else vz = vy. Note that by applying this to each wire in the CRT representation,
we get a selector gate for integers.

We show two constructions for a selector gate. The first construction is using known techniques. The
gate is constructed by first projecting the value of w0 into Fp using a projection gate, and then using a
multiplication gate. That is, the gate is computed using the equation:

vz = ϕ(vw0) · vy + ϕ(vw0 ⊕ 1) · vx = ϕ(vw0) · vy + (1− ϕ(vw0)) · vx
= ϕ(vw0) · (vy − vx) + vx (15)

where ϕ denotes the projection of the bit into Fp. There is one projection and one Fp multiplication in
Equation 15, costing 2 and 2p garbled rows respectively. Thus, a selector gate using the above construction
has 2p+ 2 garbled rows. However, note that the evaluator has to decrypt 3 rows using this method: 1 for the
projection gate, and 2 for the multiplication gate (1 in each half gate). To the best of our knowledge, this is
the best selector gate construction using existing techniques and relying only on the existence of MMCCR
hash functions.

Our second construction will be a new and designated construction of a garbled selector gate. The cost
of the designated garbled selector gate will be also 2p + 2 garbled rows. However, the number of rows the
evaluator will have to decrypt will be only 2. Thus, we expect evaluation of this designated selector gate to
be approx. 33% faster.
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Remark 6. If w0 is in Fp then a selector gate can be garbled with 2p rows and only 2 decryptions at evaluation
(since projection is not needed). However, we argue that it is important to consider the case of Boolean w0
for two reasons: the first is that when computing over the integers using CRT, we would like the same bit to
select in all the characteristics. The second is that w0 could be determined by a complex set of conditions,
so it would make sense that w0 is the output or intermediate value of a Boolean sub-circuit.

4.1 Charateristic 2 to Characteristic p Projection Gates

In this section we explain how to construct a projection gate that maps a bit value on a Boolean wire to the
same value on a wire in Fp. The projection gate has a single input wire w0 containing a Boolean value, and
an output wire z, containing the same value in Fp. I.e., if vw0 = 0 then vz = 0 and if vw0 = 1 then vz = 1
(note that vw0 ∈ F2 and vz ∈ Fp). This projection gate is needed if one wishes to multiply the bit value by
a value in Fp, as in the first selector gate construction described above.

The projection gate takes advantage of the following observation: suppose that vw0 , λw0 ∈ {0, 1}. Then,

vw0 ⊕ λw0 =
{
vw0 − λw0 , vw0 ⊕ λw0 = 0
vw0 + λw0 , vw0 ⊕ λw0 = 1, (16)

where the computations on the left and right are in F2, the computation in middle is in Fp, and equality
signifies that the value is the same value in {0, 1} (whether in F2 or Fp). I.e., if vw0 = λw0 then vw0 − λw0 =
0 = vw0 ⊕ λw0 and if vw0 6= λw0 then vw0 + λw0 = 1 = vw0 ⊕ λw0 .

To use Equation 16, we will assume that λw0 is a multifield-shared bit, shared in both a field of char-
acteristic 2 and a field of characteristic p. Note that although the output value is known to be a bit, it is
masked using a random permutation element in Fp to avoid leaking information. Thus, the equation of the
gate will be

ez = vz + λz = vw0 + λz =
{

(vw0 ⊕ λw0) + λw0 + λz, vw0 ⊕ λw0 = 0
(vw0 ⊕ λw0)− λw0 + λz, vw0 ⊕ λw0 = 1. (17)

Hence, the garbled projection gate is the following encryptions for every i ∈ [n]:

Enckw0,0

[
k̂z
i
+ (λw0 + λz)∆i

p

]
, (18)

Enckw0,1

[
k̂z
i
+ (1− λw0 + λz)∆i

p

]
. (19)

As explained in Section 2, although kw0,0, kw0,1 ∈ GF(2κ), the output of the hash function in this case is
in GF(pκ). Assuming we have λw0 as a multifield-shared bit, i.e., the parties already posses Shamir shares
of the the bit λw0 in the correct field of characteristic p, Equations (18),(19) can be computed using one
additional BGW degree-reduction round. Using Equation (17), it is not difficult to verify that for both values
of ew0 the decrypted key corresponds to ez.

4.2 Designated Selector Gate Construction

In this section we explain a designated construction for a selector gate. The gate cosntain three components.
The first component, which we call the chooser partial gate, has 2 garbled rows. The other two components,
which we call the corrector partial gates, contain p garbled rows each. Thus, this construction of a selector
gate will require 2p+ 2 garbled rows, same as the previous construction.

The main idea we use in our construction can be seen as an extension of the half-gate trick – the
evaluating party uses the key of one of the input wires, according to the external value on the selection
wire. Furthermore, the evaluating party decodes only one of the two corrector partial gates according to the
external value on the selection wire. Therefore, only two rows are decrypted when evaluating the gate (one
in the chooser gate and one in the corrector gate), 1 less than the previous construction.

Note that since the external values are known only at the evaluation phase, we cannot prevent a corrupt
evaluating party from decrypting also the other corrector partial gate. Thus, we must ensure that the
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decrypted key from this does not leak any extra information. This is achieved using the Chooser gate and a
double partitioning of the output zero keys and permutation bit. I.e.,

λz = λ̂z + λ̃z = ̂̂
λz + ˜̃λz, (20)

kiz = k̂z
i
+ k̃z

i
= ̂̂
kz
i

+ ˜̃
kz
i

, (21)

where λ̂z, λ̃z,
̂̂
λz,
˜̃
λz ∈ Fp are random such that they satisfy Equation 20 and likewise k̂z

i
, k̃z

i
,
̂̂
kz
i

,
˜̃
kz
i

∈

GF(pκ) are random such that they satisfy Equation 21. Note for example that ˜̃λz is random even given
λ̂z, λ̃z. Such observations are crucial for security, as we later explain. Otherwise, a corrupt evaluator could
learn secret information by decrypting the “wrong” corrector gate. This idea of double partition of the keys
and permutation elements appears to have not been used before in garbled circuits.

4.2.1 Half-Selector Gate. We now show the construction of a half selector gate that receives only two
input wires, x and w0, and outputs either x or 0 according to w0. This easily extends to a full selector gate,
using the informal equation

vz = vw0 · vy + (vw0 ⊕ 1) · vx = vw0 · (vy − vx) + vx. (22)

I.e., computing the value of x − y using free subtraction, then using a half-selector, and then freely adding
the value of y. It is also possible to construct a full selector gate directly. This is explained in Appendix C.
The construction of the half-selector gate is significantly simpler, but contains most of the main ideas.

Informally, the half-selector gate is computed using the following equation:

vxvw0 + λz =


“Chooser Gate”︷ ︸︸ ︷

vx(vw0 ⊕ λw0) + λ̂z

“Corrector Gate”︷ ︸︸ ︷
+λw0vx + λ̃z vw0 ⊕ λw0 = 0

vx(vw0 ⊕ λw0) + ̂̂λz −λw0vx + ˜̃λz vw0 ⊕ λw0 = 1.

(23)

This equation works because vx(vw0 ⊕λw0) =
{
vxvw0 − λw0vx vw0 ⊕ λw0 = 0
vxvw0 + λw0vx vw0 ⊕ λw0 = 1, as one can readily verify for

the 4 combinations of vw0 , λw0 ∈ {0, 1}. Note also that the equations of the chooser gate in the first and
second row simplify to λ̂z and vx + ̂̂λz respectively, since the value of vw0 ⊕ λw0 is already fixed. The reason
why we need to use different partitions of λz in the two rows will become clear when we discuss the corrector
partial gates in detail. In short, the reason is to ensure that decrypting the “wrong” corrector gate does not
leak any information.

Chooser Partial Gate for Half Selector. The chooser partial gate is somewhat similar to the evaluator half
gate. The first garbled row, which is decrypted when vw0 ⊕ λw0 = 0, should output a key corresponding to
vx(vw0⊕λw0)+λ̂z = λ̂z if decrypted. The λ̂z is secret-shared, so this computation is done in a straightforward
manner.

The second garbled row is decrypted when vw0 ⊕ λw0 = 1, and the output keys should correspond to
the value vx(vw0 ⊕ λw0) + ̂̂λz = vx + ̂̂λz. Here we use a similar trick as in the evaluator half-gate, i.e., the
equation vx + ̂̂λz = (vx + λx) − λx + ̂̂λz, where for the value vx + λx the evaluator will add the key on the
input wire x, as in the evaluator half gate. To conclude, the chooser partial gate for a half selector gate has
the following encryptions for every i ∈ [n]:

Enckw0,0

[
k̂z
i
+ λ̂z∆

i
p

]
, (24)

Enckw0,1

[ ̂̂
kz
i

− kix +
(
−λx + ̂̂λz)∆i

p

]
. (25)

17



At the garbling phase, these equations are computed using one BGW degree-reduction round. At the evalu-
ation phase, if the external value ew0 is 1, the evaluating party also adds the key on wire x after decryption.

We verify that the decrypted keys indeed correspond to the values vx(vw0⊕λw0)+λ̂z and vx(vw0⊕λw0)+̂̂λz:
1. If ew0 = 0 the decrypted keys are k̂iz + λ̂z∆

i
p = k̂i

z,λ̂z
= k̂i

z,vx(vw0⊕λw0 )+λ̂z
,

2. If ew0 = 0 the output is the sum of kix + ex∆
i
p and ̂̂

kz
i

− kix +
(
−λx + ̂̂λz)∆i

p. Simplifying:

[
kix + ex∆

i
p

]
+
[ ̂̂
kz
i

− kix +
(
−λx + ̂̂λz)∆i

p

]
= ̂̂
kz
i

+
(
vx + ̂̂λz)∆i

p

= ̂̂kiz,vx+ ̂̂λz = ̂̂kiz,vx(vw0⊕λw0 )+ ̂̂λz .
Corrector Partial Gate for Half Selector. The computation of each corrector partial gate is similar to the
garbler half gate. The interesting point is that there are two corrector gates for every selector gate, and only
one value is used at evaluation. However, since which of the two is used is known only at the evaluation
phase, both corrector gates need to be computed at the garbling phase.

The garbled rows of the first corrector gate, which correspond to the value λw0vx + λ̃z = λw0(vx + λx)−
λw0λx + λ̃z, are the following encryptions for each α ∈ Fp and i ∈ [n]:

Enckx,α

[
k̃z
i
+
(
αλw0 − λw0λx + λ̃z

)
∆i
p

]
. (26)

The garbled rows of the second corrector gate, which correspond to the value −λw0vx + ˜̃λz = −λw0(vx +
λx) + λw0λx + ˜̃λz, are the following encryptions for each α ∈ Fp and i ∈ [n]:

Enckx,α

[ ˜̃
kz
i

+
(
−αλw0 + λw0λx + ˜̃λz)∆i

p

]
. (27)

Assuming λw0 is a multifield-shared bit, computing these gates requires two BGW degree-reduction
rounds. Verification is slightly tedious and hence omitted.

Combining the above components results in the half-selector gate: At the evaluation phase, an honest
evaluating party decrypts the chooser partial gate and only one of the corrector gates, according to the exter-
nal value on the selector wire w0. By summing the values, the evaluating party recovers the key corresponding
to vxvw0 + λz.

Observe that the same key is used to decrypt both corrector gates. Thus, a corrupt evaluating party can
recover the decrypted keys on both corrector gates, regardless of the external value on wire w0. Therefore,
we must ensure that the unused decrypted value does not leak any information. We explain the intuition for
the case ew0 = 0; the case of ew0 = 1 is similar. Notice that the keys decrypted from the inactive corrector

gate are ˜̃kzi +
(
−exλw0 + λw0λx + ˜̃λz)∆i

p for i ∈ [n]. There are 2 key observations:

– Clearly, a corrupt evaluating party Pi can learn the value −exλw0 + λw0λx + ˜̃λz by subtracting ˜̃kzi and
dividing by ∆i

p. Furthermore, ex, ew0 , λ̂z, and λw0vx+λ̃z are known to the evaluator from the protocol.12

Nevertheless, ˜̃λz ∈ Fp is random even given these values. Thus, the value −exλw0 + λw0λx + ˜̃λz leaks no
information on λw0 and λx.

12Usually, the permutation bits must remain secret as they hide the value on the wire. However, in this specific
case, the value on the wire corresponding to vxew0 = 0 is publicly known. Thus, there is no need to hide λ̂z.
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– A corrupt evaluating party learns ˜̃
kz
j

+
(
−exλw0 + λw0λx + ˜̃λz)∆j

p also for every honest party Pj .

However, ˜̃kzj ∈ GF(pκ) is random even given the keys party Pi recovers from following the protocol.
Thus, this does not leak any information on ∆j

p.

The proof of security in Section 5 formalizes the above intuition.

5 Correctness and Security

In this section we state the correctness and security of our protocol. We only give an informal sketch of the
proofs, and defer the complete proofs to the full version.

Correctness. We briefly sketch out the correctness of the protocol. To show that the outputs received by
the parties in Πonline (Figure 2) corresponds to the correct output, we show the following statement: for
each wire, the evaluating parties recover at evaluation the correct external value ez = vz + λz, and the
corresponding keys. For input wires, this statement follows from Step 2. The statement is then proved by
induction on the topological order of the gate. For output wires of Boolean gates, this was shown in previous
works, e.g., [8, 22]. For output wires of non-Boolean gates, this is shown in the respective section. Using the
induction argument, the statement holds also for the output wires of the circuit. Thus, in Step 4, the value
recovered by the parties at wire z is ez − λz = vz.

Security. We now state the security of our protocol. We assume a semi-honest adversary corrupting a strict
minority of the parties. We begin with the following lemma:

Lemma 1. Protocol ΠGC securely computes FGC in the presence of a static semi-honest adversary control-
ling a strict minority of the parties.

Proof Sketch. Protocol ΠGC computes FGC using only Shamir secret sharing, the BGW protocol, and the
constant round protocol for unbounded fan-in multiplication of [3].

These are secure and composable with each other (the protocol of [3] can be based on BGW) in the
semi-honest model with an honest majority. The intermediate messages the adversary sees throughout the
protocol (Steps 2 and 3) are only Shamir shares, which appear random in the information theoretic sense.
Thus, they are easily simulated. The messages of the last round (Step 4) are computed by the simulator
using the output (given from the trusted party) and the randomness already given to the adversary. �

Before stating our main security theorem, we state the following claim that follows from Definition 1:

Claim 1 Let B ⊂ [n]. If H is mixed-modulus circular correlation robust, then for all polynomial time
adversaries making only legal queries to the oracle, the oracle

OH,BP (ρ, a, b,
(
ki
)
i∈B , γ, (δi)i∈B) def= Σi∈B

[
OH,iP (ρ, a, b, ki, γ, δi)

]
, (28)

where each OH,iP is equal to OHP with random and independent ∆ps for each p ∈ P and i ∈ B, is indistin-
guishable from a random function.

Claim 1 is proved from Definition 1 by a reduction. The proof is found in Appendix D. The importance of
Claim 1, informally, is to use the claim with B as the set of honest parties, so OH,BP mimics “encryption” by
all the honest parties. Further, the oracle adds offsets, corresponding to δi∆i

ps, to the encrypted keys of the
honest parties.

To give some intuition, this will allow the distinguisher to change the values to which the encrypted keys
correspond to, without knowing the ∆i

ps. For example, let ex and ez be the external values on the input and
output wires of the gate. If the distinguisher will want to encrypt row ex + 1 with the key corresponding
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to ez + 2, then for the jth part it will use γ = 1 and δi =
{
ez + 2 i = j

0 i 6= j
for each i ∈ B. That way, the

distinguisher only uses the keys kix,ex , k
i
z,ez of the honest parties. The above example only holds in some of

the gates, as we explain later. Next, we state our main security theorem:
Theorem 2. If H is a mixed-modulus correlation robust hash function then Protocol Πonline in Figure 2
securely computes fC in the FGC-hybrid model, in the presence of a static semi-honest adversary.
The proof follows the general ideas used in [12], with the extended assumption. The main difficulty of the
proof, on which we focus, is to show how the simulator simulates the output of FGC , and in particular a fake
garbled circuit, such that no polynomial time distinguisher can distinguish this fake garbled circuit from a
real garbled circuit. To show this, we describe a distinguisher that uses H and legal queries to an oracle
O ∈

{
OH,BP , Rand

}
in order to construct a circuit that distributes either as a real garbled circuit or as a

fake garbled circuit, according to the oracle. Thus, distinguishing between the two types of circuits breaks
the mixed-modulus correlation robustness of H.

There are two main differences from similar proofs: the first appears in multiplication gates, and specifi-
cally in the evaluator half gate. The second appears in the designated selector gates. Therefore, we split the
proof sketch into three parts. In the first, we give an extended overview of the general proof structure and
ideas. In the second part, we explain the difficulties and necessary changes for evaluator half gates. In the
third part, we give a more detailed explanation on the subtleties of selector gates.
Proof Sketch. Simulator: The simulator chooses a random path on the circuit, i.e., for each wire ω ∈ W
selects a random external value. For each wire ω ∈ W and for each honest party, the simulator chooses
random keys corresponding to these external values. Then, the simulator computes the external values and
corresponding keys of free gates. Using these values, the simulator computes a single encrypted row for each
non-free gate/component – this row corresponds to the external value on the input wire. The other three rows
are sent as completely random strings (or more precisely as a random vector in GF(pκ)n for the appropriate
p). There are slight differences in the designated selector gates, and these are explained later in the proof.

Distinguisher: The distinguisher starts by following the simulator construction for computing the first
encrypted row. The other three rows are computed differently, by using the oracle. The key observation is
that the distinguisher can compute the γ’s it needs to supply the oracle in order to, in the case O = OH,BP ,
encrypt the rows correctly and can compute the δi’s in order to, if necessary, change the keys of the honest
parties that are encrypted in that case.13

Computing γ is simply by the difference in the rows – this part is unchanged in the different gate types.
Note that this ensures that γ 6= 0 and each γ ∈ Fpa is used only once for each gate. Thus, the distinguisher
makes only legal queries to the oracle.

To compute the δi’s, the distinguisher uses the inputs to compute the real values on the wires. Using
this, the distinguisher extracts the permutation bits, which are used to compute δi for each row and each
i ∈ B. In the computation of the δi’s there are differences and subtleties in both the evaluator half-gate and
the designated selector gate, and we address these next.

Evaluator Half Gates: The simulator computes the evaluator half gates exactly the same. I.e., for the
row that will be decrypted row (corresponding to the external value on the input wire that the simulator
chose), the simulator chooses a random key and external value. However, note that the “external value”
of output wire of the evaluator half gate is vx(vy + λy) + λ̂z, but the decrypted keys are k̂z

i
− eyk

i
x +(

−eyλx + λ̂z

)
∆i
p. This is because the evaluator should add βkix after decrypting row β. This poses an

extra challenge to the distinguisher when trying to compute the other rows, because they require deducting
different multiplications of kix, but the distinguisher does not know kix.14 However, the distinguisher does

13All the keys of the corrupt parties are known to the distinguisher. For the honest parties, the distinguisher knows
the keys corresponding to the external values (chose them randomly), but does not know the ∆i

p’s. Therefore, in
order to change which value the honest parties’ encrypted keys correspond to, it must use the oracle OH,BP .

14The random ∆i
ps of i ∈ B are an internal part of OH,BP . The ∆i

ps of the adversary (i /∈ B) are known to both
the simulator and the distinguisher.
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know kix,ex = kix+ex∆
i
p. Therefore, to deduct βkix, the distinguisher computes β(kix+ex∆

i
p) = βkix+βex∆

i
p.

Then, this is deducted, and the βex is aggregated to the computation of the δi of that row. Thus, the
simulator calls the oracle with these aggregated δi’s.

Designated Selector Gates: First note that in the designate selector gates the simulator chooses three
random external values and corresponding keys, although one of the corrector gates should not be decrypted.
Furthermore, the simulator knows which corrector gate should not be decrypted. Nevertheless, the simulator
constructs this gate as usual (one row correctly encrypted, and the other rows are random).

As for the distinguisher, the construction of the two corrector gates is similar to regular gates. Of course,
the distinguisher builds both corrector gates, despite knowing which one should be decrypted. For the unused
row in the chooser gate, the distinguisher uses the technique described for the evaluator half gate. �

At first sight, it might not be obvious where in the proof we required the double partition of the keys and
permutation bits. However, a closer inspection shows that by the simulator and distinguisher choosing the
external values and keys of the two corrector gates randomly and independently, this fact is implicitly used.
Otherwise (without the double partition), in a real garbled circuit the two external values are dependent and
similarly the two keys, and would not match the distinguisher’s construction. Furthermore, if the λ’s are not
double partitioned, by subtraction of the two external values, a corrupt evaluator learns 2λw0vx (here λw0 is
treated as an Fp element), violating security. If the keys are not double partitioned, then a corrupt evaluator
can subtract the decrypted keys of an honest party Pi and recover a multiplication of ∆i

p. Thus, this double
partition is crucial.
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A Multiparty Garbling of Equality Testing and Exponentiation by a Constant

In this section we explain how to garble in the multiparty setting two important types of projection gates.
The first is equality testing gate, which checks if a value is equal to 0, or more generally if two values are
equal. The inputs of this gate are in Fp and the output is Boolean. The second type of gate we discuss is
exponentiation by a (public) constant. The two constructions are similar, with garbling exponentiation by a
constant being slightly simpler than garbling equality testing. The offline computations required for garbling
these gates are significantly more complex than those shown in Sections 3 and 4.

A.1 Equality Gates

In this section we explain how to garble an important type of projection gate, the equality gates. An equality
gate checks if the value on the input wire v ∈ Fp is 0. The gate outputs 0 if v = 0 and 1 otherwise. This gate
can also be used to check equality mod p of 2 values on wires x, y, by comparing vx − vy to 0 (recall that
subtraction is free in our construction).

Before proceeding to explain how to compute the gates, we remark that although these gates are com-
puted in a constant number of rounds, the computations are significantly more expensive than for the gates
described in previous sections. Furthermore, in the two-party case, Ball et al. [2] showed how to reduce by a
factor of 2 the cost of equality gates for integers, i.e., for a bundle of wires in CRT representation, by clever
use of projection gates. Unfortunately, as projection gates are relatively expensive in the multiparty case,
this optimization seems incompatible in the multiparty case. Thus, checking equality between two values in
CRT representation is best done using AND gates, where the number of AND gates necessary is linear in
the number of primes in the CRT representation.

The main idea of our mod p equality gate is to use Fermat’s little theorem, which states that for every
non-zero v ∈ Fp, vp−1 = 1. Clearly, if v = 0 then vp−1 = 0. This can be efficiently computed in constant
rounds using the unbounded fan-in protocol of [3] or the protocol of Cramer and Damg̊ard [13, Section 7.1].
Then, the result must also be masked using the output permutation bit. The output permutation bit is used
also in computations in GF(pκ), and therefore we require it to be a multifield-shared bit.

The resulting computation is the following:

ez = “vz ⊕ λz” =
(
((vx + λx)− λx)p−1 − λz)

)2
. (29)

Since (vx + λx) is known only at the evaluation phase, the parties compute
(
(α− λx)p−1 − λz)

)2 for every
α ∈ Fp during the garbling phase. Thus, the projection gate contains the following set of encryptions

Enckx,α

[
kiz +

(
(α− λx)p−1 − λz)

)2 ·∆i
p

]
(30)

for every α ∈ Fp and i ∈ [n]. Shares of (α − λx)p−1 are computed using the protocol of [3] or the protocol
of [13], and squaring and multiplication by ∆i

p each require a BGW degree reduction round. Note that
the decrypted key, while corresponding to the correct external value, is in GF(pκ). Therefore, the above
projection gate is currently incompatible with our previous gadgets, e.g., free-XOR. We explain how to solve
this next.

Converting to characteristic 2. Notice that the key recovered from the above garbled gate is in characteristic
p, while the value is Boolean. If the wire is used only as input to AND gates or selector gates this does
not pose a problem, and the key can be used in the normal way.15 However, because the key is not in
characteristic 2, the wire cannot be used in a free-XOR gate. Luckily, if the output permutation bit is a
multifield-shared bit then there is a simple and cheap way to fix this.

Each party Pi computes and broadcasts the following two encryptions:

Fkizold,α(g, i)⊕
(
kiznew ⊕ α∆

i
)

(31)

15But also in this case we need the output permutation bit to be a multifield-shared bit.
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for α ∈ {0, 1}, where kizold ∈ GF(pκ) is the former zero output key and kiznew ∈ GF(2κ) is the new zero
output key. We make several important observations. These observations follow because the external value
that is supposed to be encrypted for each row is known already at the garbling phase (0 maps to 0 and 1 to
1). Thus, it is secure to let each party encrypt only its own key.

1. The computation of this conversion gate is done locally by each party (assuming the multifield-shared
bit was precomputed).

2. The number of decryptions necessary in order to recover the output key is only linear in the number of par-
ties. In contrast, the number of decryptions necessary in a regular gate (AND/multiplication/projection)
is quadratic in the number of parties, as observed for example by [8].

3. Following the above two observations, in this specific gate we can use the standard row reduction tech-
nique, thus reducing the number of garbled rows to 1.

4. The output keys of the gate represent the same external values. Hence, if the multifield-shared bit was
correctly generated they also represent the same real value. Furthermore, the new output keys are in a
characteristic 2 field. Thus, they can be used as input keys for a free-XOR gate.

A.2 Exponentiation Gates

In this section we briefly explain how to garble exponentiation gates in the multiparty setting. An exponen-
tiation gate is a projection gate, i.e., has a single input wire x and output wire z, that computes z = xc for a
public constant c. The garbling of an exponentiation gate is very similar to equality gates, and even slightly
simpler. In particular, there is no need for a multifield-shared bit, and λz can be shared only in Fp.

The computation is done via the equation ez = vz + λz = vcx + λz = ((vx + λx)− λx)c + λz, where again
vx + λx is replaced by a constant during garbling, and is known during evaluation.

Thus, the garbled rows are the set of encryptions

Enckx,α
[
kiz + (((vx + λx)− λx)c + λz)∆i

p

]
(32)

for every α ∈ Fp and i ∈ [n]. Computing these encryptions is via the protocol of [3] or the protocol of [13].
Verification is similar to previously explained gates.

B Optimized Offline Protocol for Honest Majority

In this section we describe an optimized offline protocol that incorporates the ideas presented by Ben-Efraim
and Omri [7]. The main idea is that the outputs of the hash function (as well as the zero keys) are not shared.
Instead, they are locally added by the parties after performing a share conversion from Shamir shares to
additive shares. The share conversion is by local multiplication by the reconstruction constant by each party.
However, it is important to note that the converted shares are not fully random. Therefore, an additional
zero-sharing must be added to rerandomize these shares. In the Boolean case, [7] showed that using these
optimizations reduces the offline assymptotic complexity from O(|C|κn3) to O(|C|κn2). Ben-Efraim and
Omri suggest also other optimizations, which seem to be applicable here as well, but we did not verify.

The optimized protocol is as follows:

Step 1, Setup: For each prime p in the primorial modulus, each party Pi does the following:
– For each wire ω ∈ Wp randomly chooses a random element (λω)i ∈ Fp and key kiω ∈ GF(pκ). The

random permutation element on the wire is λω
def= Σn

i=1 [(λω)i].
– In topological order on the circuit, computes kiω for each wire ω /∈ Wp, by summing/multiplying by

a constant (according to gate type).
– Randomly chooses a random global offset ∆i

p ∈ GF(pκ).
– For each garbled component g ∈ C with input wire x, compute Fkix,α(g||j) for each j ∈ [n] and
α ∈ Fp, where p is according to the gate/component type.

25



Step 2, Sharing: Each party Pi shares the permutation elements and offsets in Step 1 using (t+1)-out-of-n
Shamir secret-sharing scheme. Multifield-shared bits are also shared using Protocol 2 in Section 2.3 for
each p. The parties obtain shares of λω for each wire by locally summing their shares of {(λω)i}ni=1.
For free gates, in topological order, the parties locally compute the shares for the output wires by
locally summing/multiplying by a constant (according to gate type). Additionally, for each wire garbled
component with output wire in Wp, each party generates and sends additive shares of the zero vector
(0, . . . , 0) ∈ GF(pκ).

Step 3, Computing the garbled gates: Shares of the garbled rows of each garbled gate/component are
computed using their respective Equation as in the original offline protocol, with the following important
differences:
– The parties first compute shares for the part of the equation with the multiplication by the ∆’s as

usual (BGW/ [3]), except the last degree-reduction round is omitted.
– The parties perform a share-conversion of the above shares to additive shares by locally multiplying

with their respective reconstruction constant.
– The parties locally add their zero keys of the output wire16 and the outputs of the hash function.
– The parties mask the above additive shares by adding the zero-shares received from all the parties

for that gate.
Step 4, Reconstructing the outputs: The parties reconstruct the outputs of FGC , namely the garbled

gates/components and the output permutation bits. Note that the garbled gates/components are now
additively shared (and not Shamir shares as in the original protocol). Furthermore, each party receives
the shares and reconstructs the permutation bits on its input wires.

C Direct Construction of Full Selector Gate

In this section we show how to exploit an asymmetry in the half selector gate construction, in order to
construct a full selector gate without additional cost. Recall that a full selector gate is a gate that receives
as input two wires in Fp and a Boolean selection wire, and the output corresponds to one of the input wires
according to the selection bit. Notice that a full selector can be seen as the addition of 2 half selectors, with
the selection bit of the second being the negation of the selection bit of the first. Also note that the chooser
gate is treated differently by the evaluator according to the external value – if the selection bit is 0 then
the key is only the decrypted key while if the selection bit is 1 then the key of the input wire is added to
the decrypted key. Furthermore, the behaviour on the other half selector gate is exactly the opposite, as the
selector bit of the second half selector gate is the negation of the selector bit.

To give an informal overview of the full selector gate, it is computed via the equation

vxvw0 + vyvw0 + λz =


“Chooser Gate”︷ ︸︸ ︷

vy + λ̂z

“Corrector Gate”︷ ︸︸ ︷
+λw0(vx − vy) + λ̃z, vw0 ⊕ λw0 = 0

vx + ̂̂λz −λw0(vx − vy) + ˜̃λz, vw0 ⊕ λw0 = 1,

(33)

with vw0 being the negation of vw0 . This equation is reached by summing two instances of Equation 23, once
with x,w0 and once with y, w0, and simplifying. We next explain the details of the chooser and corrector
gates for the full selector gate.

Chooser Partial Gate for Full Selector. The chooser partial gate is constructed very similarly to the half
selector case. The main difference is that if the external value of the selection wire is 0, the evaluator adds
the key on the input wire y to the decrypted value (instead of just taking the decrypted value as in the
half-selector gate).

16Some gates, e.g., Evaluator half gate, require also adding/subtracting some other key locally
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Similarly to the chooser in the half selector, we use the equations vx + λ̂z = (vx + λx) − λx + λ̂z and
vy + ̂̂

λz = (vy + λy) − λy + ̂̂
λz. Concretely, the chooser partial gate is the following encryptions for every

i ∈ [n]:

Enckw0,0

[
k̂z
i
− kiy +

(
−λy + λ̂z

)
∆i
p

]
, (34)

Enckw0,1

[ ̂̂
kz
i

− kix +
(
−λx + ̂̂λz)∆i

p

]
. (35)

Verification: if ew0 = 0 then the key on the y wire is added to the decrypted value, and the recovered key
is [ky + ey∆p] +

[
k̂z − ky +

(
−λy + λ̂z

)
∆p

]
= k̂z +

(
vy + λ̂z

)
∆p = k̂

z,vy+λ̂z
. Verification for ew0 = 1 is

symmetric.

Corrector Partial Gate for Full Selector. The main difference of the corrector from the half selector case, is
that instead of decrypting according to the external value and key on the x wire, we decrypt according to
the external value and key of x− y. We recall that subtraction in Fp is free.

To be more concrete, we compute the value of the first corrector gate using the equation λw0(vx−vy)+λ̃z =
λw0 ((vx + λx)− (vy + λy)) + λw0(λy − λx) + λ̃z. The value (vx + λx)− (vy + λy) is known to the evaluator
at the evaluation phase. At the garbling phase, this value is treated as a constant. Therefore, the garbled
rows are

Enckx,α

[
k̃z
i
+
(
αλw0 + λw0(λy − λx) + λ̃z

)
∆i
p

]
. (36)

for α ∈ Fp and i ∈ [n], where kix−y,α
def= kix − kiy +α∆i

p. At evaluation phase, if ew0 = 0, the evaluating party
first computes ex−y = (vx + λx) − (vy + λy) and the corresponding key using free subtraction, and then
decrypts the row ex−y.

The construction of the second corrector gate is similar and omitted. The main security ideas (protecting
against decryption of the “wrong” corrector) are as in the half-selector gate.

D A proof of Claim 1

In this section we prove Claim 1. The proof follows by a reduction from Definition 1. For the convenience of
the readers, we repeat the definition and the claim here.

Definition 2 (Definition 1). Let H be a hash function, and for each p in some set of primes P let
∆p ∈ GF(pκ). We define an oracle OHP that acts as follows:

OHP (ρ, a, b, k, γ, δ) = H(k + γ∆pa , ρ) + δ∆pb (37)

where ρ ∈ N, pa, pb ∈ P , γ ∈ Fpa , δ ∈ Fpb , k ∈ GF(paκ), and the output of H is interpreted as in GF(pbκ).
Note that γ∆pa is the inner offset and δ∆pb is the outer offset. Legal queries to the oracle have inputs in
the correct domains and satisfy:

1. The oracle is never queried with γ = 0,
2. For each ρ, all the queries have the same pa, pb, and each γ ∈ Fpa \ 0 is used in at most one query.17

We say that H is mixed-modulus circular correlation robust if for all polynomial time adversaries making
only legal queries to the oracle, the oracle OHP , for random ∆ps, is indistinguishable from a random function
(with the same input/output domains).

17This can also be strengthened to require that each ρ is queried with a single γ 6= 0.
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Claim 3 (Claim 1) Let B ⊂ [n]. If H is mixed-modulus circular correlation robust, then for all polynomial
time adversaries making only legal queries to the oracle, the oracle

OH,BP (ρ, a, b,
(
ki
)
i∈B , γ, (δi)i∈B) def= Σi∈B

[
OH,iP (ρ, a, b, ki, γ, δi)

]
, (38)

where each OH,iP is equal to OHP with random and independent ∆ps for each p ∈ P and i ∈ B, is indistin-
guishable from a random function.

Proof Sketch. Assume by contradiction that there exists a distinguisher D that uses legal queries to an oracle
O and can distinguish if it is OH,BP or a random function. We construct a distinguisher D that breaks the
MMCCR assumption. The oracle D, which can make legal queries to an oracle O′ ∈

{
OHP , Rand

}
, proceeds

as follows:
The distinguisher D first chooses an index j ∈ B.18 Then, D randomly chooses ∆̃i

p ∈ GF(pκ) for each
p ∈ P and i ∈ B \{j}. The distinguisher D then runs the distinguisher D, while answering the (legal) queries
of D (to its oracle) using the equation:

O(ρ, a, b,
(
ki
)
i∈B , γ, (δi)i∈B) def= Σi∈B\{j}

(
H(ki + γ∆̃i

pa , ρ) + δi∆̃
i
pb

)
+O′(ρ, a, b, kj , γ, δj). (39)

The proof now concludes with the following 3 observations:
1. The distinguisher D is polynomial and makes only legal calls to the oracle O′. This follows because D

is polynomial and makes only legal calls to O. The added computation made by D is only a polynomial
number of computations of H.

2. If O′ = Rand then O distributes as a random function.
3. If O′ = OHP then

O(ρ, a, b,
(
ki
)
i∈B , γ, (δi)i∈B) = Σj∈B\{i}

(
H(ki + γ∆̃i

pa , ρ) + δi∆̃
i
pb

)
+O′(ρ, a, b, kj , γ, δj)

= Σj∈B\{i}
(
H(ki + γ∆̃i

pa , ρ) + δi∆̃
i
pb

)
+H(ki + γ∆pa , ρ) + δi∆pb .

Since the ∆̃i
p’s were chosen randomly, they distribute the same as the ∆p’s of the OH,iP ’s. Thus, O

distributes as OH,BP .

Following the above, we conclude that since D can distinguish between cases 2 and 3 with non-negligible
probability, so does D, breaking the MMCCR assumption of H. �

E Definitions for Secure Computation

We follow the standard definition of secure multiparty computation for semi-honest adversaries, as it appears
in [20]. In brief, an n-party protocol π is defined by n interactive probabilistic polynomial-time Turing
machines P1, . . . ,Pn, called parties. The parties hold the security parameter 1κ as their joint input and each
party Pi holds a private input xi. The computation proceeds in rounds. In each round j of the protocol,
each party sends a message to each of the other parties (and receives messages from all other parties). The
number of rounds in the protocol is expressed as some function r(κ) in the security parameter.

The view of a party in an execution of the protocol contains its private input, its random string, and
the messages it received throughout this execution. The random variable viewπ

Pi(x, 1
κ) describes the view of

Pi when executing π on inputs x = (x1, . . . , xn) (with security parameter κ). Here, xi denotes the input of
party Pi. The output an execution of π on x (with security parameter κ) is described by the random variable
Outputπ (x, 1κ) =

(
OutputπP1

(x, 1κ) , . . . ,OutputπPn (x, 1κ)
)
, where OutputπP (x, 1κ) is the output of party P

in this execution, and is implicit in the view of P .
Similarly, for a set of parties with indices I ⊆ [n], we denote by xI the set of their inputs, by viewπI (x, 1κ)

their joint view, and by OutputπI (x, 1κ) their joint output. In the setting of this work, it suffices to consider
deterministic functionalities. We therefore provide the definition of security only for deterministic function-
alities; see [20] for a motivating discussion regarding the definition.

18We assume that B is hardcoded in D.
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Definition 3 (security for deterministic functionalities). A protocol π t-securely computes a deter-
ministic functionality f : ({0, 1}∗)n 7→ ({0, 1}∗)n in the presence of semi-honest adversaries if the following
hold:

Correctness: For every κ ∈ N and every n-tuple of inputs x = x1, . . . , xn, it holds that

Pr [Outputπ(x, 1κ) = f(x)] = 1, (40)

where the probability is taken over the random coins of the parties.
Privacy: There exists a probabilistic polynomial-time (in the security parameter) algorithm S (called “sim-

ulator”), such that for every subset I ⊆ [n] of size at most t:

{SA (xI , fI(x), 1κ)}x∈({0,1}∗)n;κ∈N
C≡ {viewπI (x, 1κ)}x∈({0,1}∗)n;κ∈N . (41)
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