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Abstract

The advent of Machine Learning as a Service (MLaasS)
makes it possible to outsource a visual object recognition
task to an external (e.g. cloud) provider. However, out-
sourcing such an image classification task raises privacy
concerns, both from the image provider’s perspective, who
wishes to keep their images confidential, and from the clas-
sification algorithm provider’s perspective, who wishes to
protect the intellectual property of their classifier. We pro-
pose PICS, a private image classification system, based on
polynomial kernel support vector machine (SVM) learn-
ing. We selected SVM because it allows us to apply only
low-degree functions for the classification on private data,
which is the reason why our solution remains computation-
ally efficient. Our solution is based on Secure Multiparty
Computation (MPC), it does not leak any information about
the images to be classified, nor about the classifier param-
eters, and it is provably secure. We demonstrate the practi-
cality of our approach by conducting experiments on realis-
tic datasets. We show that our approach achieves high accu-
racy, comparable to that achieved on non-privacy-protected
data while the input-dependent phase is at least 100 times
faster than the similar approach with Fully Homomorphic
Encryption.

1. Introduction

Visual object recognition is an important machine learn-
ing application, deployed in numerous real-life settings.
Machine Learning as a Service (MLaaS) is becoming in-
creasingly popular in the era of cloud computing, data min-
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ing, and knowledge extraction. Object recognition is such a
machine learning task that can be provided as a cloud ser-
vice. However, in most application scenarios, straightfor-
ward outsourcing of the object recognition task is not pos-
sible due to privacy concerns. Generally, the image holder
who wishes to perform the image classification process, re-
quires their input images to remain confidential (i.e. to not
be revealed to the service provider). On the other hand, the
classification algorithm provider wishes to commercially
exploit their algorithm; hence, requires the algorithm pa-
rameters to remain confidential.

We consider an approach, which facilitates the outsourc-
ing of the image classification task to an external classifica-
tion algorithm provider, without requiring the establishment
of trust, contractually or otherwise, between the involved
parties. We focus on the evaluation task (i.e. labeling a new
unclassified image), and not the learning task. Our pro-
posal is based on Secure Multiparty Computation (MPC),
and allows for private image classification without revealing
anything about the private images of the image holder, nor
about the parameters of the classification algorithm. Un-
like previous work [2, 3, 16], we can fully outsource the
task at hand, in such a way that the classification algorithm
provider does not need to be the same entity as the cloud
computing provider. This means that anyone with a valu-
able trained classifier can become a classification algorithm
provider, without worrying about disclosing the parameters
of their classifier.

PICS, our privacy-preserving image classification solu-
tion, combines the techniques of polynomial kernel support
vector machine (SVM) classification, with the techniques of
Secure Multiparty Computation (MPC). MPC allows a set



of mutually distrusting parties to jointly compute a func-
tion on their inputs, without revealing anything about these
inputs (other than what can be inferred from the function
output itself). MPC is based on a combination of crypto-
graphic techniques, and secure communication amongst the
computing parties, to achieve the aforementioned goal. Cur-
rently, MPC allows one to compute relatively simple func-
tions on private data. Arbitrarily complex functions can be
supported, but with large computational cost. This is why
we focus on classification via SVM, as opposed to using
more sophisticated techniques, such as Neural Networks.

Specifically, we have implemented our solution using
SPDZ [5], which was introduced by Damgard et al. [ 1,
and is based on additive secret sharing. More details on the
MPC techniques follow in Section 1.1. Unlike differential
privacy techniques, which add noise to the inputs to pre-
serve privacy, our solution enjoys provable security guar-
antees. A schematic representation of the application sce-
nario treated by PICS is given in Figure 1. Using addi-
tive secret sharing techniques both the classification algo-
rithm provider, and the image holder share their inputs to
the n > 2 MPC servers. Note that no information about the
actual secret inputs can be gained by the individual shares
alone. Thus, each MPC server learns nothing about the
inputs of the two parties. The cluster of the MPC servers
comprise the cloud computing provider, which together ex-
ecute the MPC protocol to produce the final classification
result. The MPC servers communicate via authenticated
communication channels to accomplish what the protocol
prescribes. Finally, the protocol completes its execution by
having all MPC servers sending their share of the final clas-
sification result to the party prescribed by the protocol, who
can then reconstruct the result by combining the received
shares. This party can be the image holder, or an external
analyst, assigned to examine the classification results, with-
out getting access to the underlying private images. Note
that the involved parties, namely the image holder, the clas-
sification algorithm provider, and potentially the analyst,
may play the role of the MPC servers themselves, avoiding
completely the outsourcing to the cloud provider(s).

)

Our proposal is a first step towards implementing prac-
tical privacy-preserving image classification. We consider
support vector machines trained with polynomial kernels,
as they have been shown to outperform the accuracy of lin-
ear SVM [2]. Although Convolutional Neural Networks
(CNNis) are at present the most prevalent machine learning
method for image classification [19], SVM are favored over
neural networks (NNs). This is because transforming a NN
to a privacy-preserving one would result in an inefficient
solution (e.g. 570 seconds for one image classification by
CryptoNets [16]), given the non-linear nature of NNs. Mo-
hassel, and Zhang [30], implement NN training, and evalu-
ation, but only in the restricted setting of two-party compu-
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Figure 1. A schematic representation of the private image classifi-
cation scenario.

tation, and for the weak security notion of passive security.

We stress that our protocol works for an arbitrary number of

MPC parties, and in the more stringent active security set-

ting. As shown in Table 1, we are the only work providing

active security. Additionally, our experiments demonstrated

that PICS is computationally faster than any previous work.
Contributions:

e We enable full outsourcing of privacy-preserving im-
age classification to a third independent party.

e Our solution does not leak any information about the
private images, nor the classifier, while being the first
to provide active security.

e We demonstrate the practicality of our approach, both
in terms of efficiency, and in terms of accuracy, by con-
ducting experiments on realistic datasets.

1.1. Preliminaries on Secure Multiparty Computa-
tion

Secure Multiparty Computation (MPC) is a crypto-
graphic method allowing a set of parties to jointly compute
a function on their inputs, without revealing the inputs to
the rest of the parties. The two main security models used
to realize MPC are the passive, and active security model.
In the passive security model, we assume that the proto-
col participants follow the protocol specification honestly,
but they try to learn as much information as possible about
the private inputs, during the protocol execution. Under
this model, the protocol participants are called honest-but-
curious. In the active security model, we assume that the
protocol participants may actively, and arbitrarily deviate
from the protocol specification. Under this model, the pro-
tocol participants are called malicious. Clearly, the active



security model offers stronger security guarantees. In both
models we can construct protocols that require an honest
majority of the protocol participants to guarantee security,
or protocols that guarantee security assuming a dishonest
majority of the protocol participants. Our solution offers
strong security guarantees, providing active static security,
with a dishonest majority. This means that an adversary
may corrupt, prior to the protocol execution, up to n — 1 out
of the n protocol participants, without leaking any private
information, and without allowing any false protocol output
to be accepted as correct.

Our solution is implemented using the SPDZ [12, 11]
MPC framework, and that is why it enjoys the aforemen-
tioned security properties. The computational and commu-
nication costs of the constructed protocols increase linearly
in the number of protocol participants. For our experiments
we assume the minimum number of MPC servers necessary
to perform the outsourced computation, namely two MPC
servers, while scaling to more than two servers is straight-
forward. We consider this to be a reasonable assumption,
given that these servers can be provided by independent
cloud providers, such as Google, and Amazon (and Azure
if we wish to expand to three parties), who have no incen-
tive to collude against their clients. The probability that all
cloud providers get corrupted by an adversary simultane-
ously is small.

SPDZ is based on additive secret sharing, allowing the
participants to share their private inputs, in such a way that
no information about the private inputs is revealed to the
individual participants. Additive secret sharing enjoys an
additively homomorphic property, meaning that any lin-
ear function can be directly computed on the shares that
each protocol participant holds, without requiring interac-
tion amongst the parties. Upon reconstruction of the shared
output (which requires all parties to send their shares of the
secret), the result will be the correct result of the linear func-
tion, as if it had been applied on the secret input. Thus, we
can perform additions, and multiplications with non-secret
constant values on the secret shared inputs. To perform
multiplications between secret shared inputs, or any other
non-linear operation, we need to execute a secure interac-
tive protocol between the MPC servers.

The SPDZ approach works in two phases: a preprocess-
ing phase, and an online phase. The preprocessing phase
can take place offline, anytime prior to the execution of the
online phase. This phase only requires the MPC servers
to be online, and not the inputting parties. During this
phase the MPC servers create shared randomness, which
the client, and the classification algorithm provider can later
use to securely share their private inputs. Moreover, the
MPC servers create shared random values to be consumed
during the online phase, and make it efficient. For the on-
line phase, the two inputting parties first need to provide the
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MPC servers with their private inputs. This is performed in
a secure manner, based on the Output Delivery protocol, and
Input Supply protocol, proposed by Damgard et al. [10].
Then, the MPC servers proceed with the secure computa-
tion of the actual function, as prescribed by the protocol
transcript. For more details on the MPC techniques used,
we refer the reader to the work of Damgérd et al. [12, 11].

2. Related Work

The related work on privacy-preserving machine learn-
ing focuses on providing a secure training phase, a secure
classification phase, or both a secure training and classi-
fication. The majority of the research aims at designing
a privacy-preserving training phase. Recently, due to the
advent of cloud computing, and Machine Learning as a
Service, more and more works focus on the design of a
privacy-preserving classification phase. Fewer works have
attempted to address both the training, and the classifica-
tion phases in a privacy-preserving manner. Given the sheer
number of works on private machine-learning, we only con-
sider the works most related to ours in this section.

To facilitate an easy comparison of the related work, we
summarize the main features of each proposal in Table 1.
The first column of Table | is the reference to the cor-
responding research paper. The second column indicates
whether the work considers a secure training phase (T), a
secure training and classification phase (T+C), or only a
secure classification phase (C). The third column indicates
the security model, under which the proposed protocols are
secure, where P stands for passive security, A stands for
active security, and N/A (not applicable) refers to differen-
tial privacy techniques, which do not provide provable se-
curity guarantees. The fourth column denotes the method
used to preserve privacy, where DP stands for differen-
tial privacy techniques; SP stands for selective privacy, and
refers to the unique characteristic of the work of Shokri and
Shmatikov [36] allowing the users to decide how much pri-
vate information about their learned models they wish to re-
veal; MPC stands for Multiparty Computation; SHE stands
for Somewhat Homomorphic Encryption; and 2-PC stands
for Two-Party Computation. The fifth column lists the train-
ing method(s) used, where N-L. SVM stands for non-linear
Support Vector Machine; NN for Neural Networks; LM for
Linear Means classification; FLD for Fisher’s Linear Dis-
criminant classification; HD for hyperplane decision; LIR
for linear regression, LOR for logistic regression, and DT
stands for decision trees. The sixth column lists the infor-
mation that is revealed by the protocol execution. C stands
for information about the classifier; TD stands for informa-
tion about the training data; and CL stands for classifica-
tion label. We note with boldface letters the information
that is intentionally revealed by the protocol execution, and
we mark with an asterisk the information that can poten-



tially, and unintentionally be leaked by the protocol execu-
tion. The last column indicates whether an implementation
and experimental results of the suggested method have been
provided.

Func. Model Privacy Train Info  Impl.
Mthd Mthd Leak
[25] T N/A DP N-L C; v
SVM TD*
[26] T N/A DP N-L C* v
SVM TD*
[36] T P Sp NN C v
[38] T P MPC N-L C v
SVM
[37] T P MPC N-L C v
DP SVM
[71 T P MPC NN no* v
DP
[18] T+C P SHE LM; no* v
FLD
[1] T+C P SHE Bayes; no v
random
forests
[23] T+C P 2-PC N-L C X
SVM CL*
[8] T+C P 2-PC NN D" X
[30] T+C P 2-PC NN no v
LIR
LOR
[16] C P SHE NN no v
[21 C P SHE N-L (o v
SVM
[41 C P SHE HD; no v
2-PC Bayes;
DT
[33] C P 2-PC N-L no v
SVM
[31 C P 2-PC NN C X
[31] C P 2-PC NN no* v
PICS C A MPC N-L no v
SVM

Table 1. Comparison of the Related Work

Training a SVM in a privacy-friendly way, has been con-
sidered based on techniques of differential privacy [ 1.
Despite the little overhead that these techniques incur,
which makes them competitive from an efficiency per-
spective, they do not provide provable security guarantees.
Shokri and Shmatikov [36] achieve privacy-preserving col-
laborative deep learning with multiple participants, while
refraining from using cryptographic techniques. Although
their work focuses on learning the artificial neural network,
they do consider protecting the privacy of each individual’s
neural network, and allow the participants to decide how
much information they wish to share about their models.

k)
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A lot of research has been devoted to provable privacy-
preserving techniques for training a classifier. This line of
research, much like ours, originates from Yao’s millionaire
problem [40], describing two-party computation, and its ex-
tension to multiparty computation [17] to securely compute
any generic function. Specifically, the challenge of privacy-
preserving data mining has been an active research area
since the seminal work of Lindell and Pinkas [27]. More
recently, Vaidya et al. [38] showed how to train a SVM
classifier, in a privacy-preserving manner, based on verti-
cally, horizontally, and arbitrarily partitioned training data.
In follow-up work, Teo et al. [37] improved upon the ef-
ficiency of the solution of Vaidya et al. [38], and showed
that their approach scales well to address the challenges of
data mining on big data. Chase et al. [7] combine MPC
techniques with differential privacy techniques to achieve
private neural network learning. Their work provides prov-
able security guarantees for the learning phase (though in
the passive security model), and adds noise to the final re-
sulting network to protect its privacy.

A parallel research line aiming to address the same chal-
lenge, namely privacy-preserving data mining, is based on
homomorphic encryption (instead of MPC). The notion of
homomorphic encryption dates back to the work of Rivest
et al. [34], but only recently fully homomorphic encryption
was devised [15]. This type of homomorphic encryption
allows the computation of any polynomial function on the
encrypted data, and unlike MPC, it does not require commu-
nication, as the task can be outsourced to one single party.
Since the seminal work of Gentry [15], a lot of somewhat
homomorphic encryption schemes have been proposed, al-
lowing computations of polynomial functions of a limited
degree. Graepel et al. [18] consider both machine learning
training, and classification based on encrypted data, with
their solutions being secure in the passive model. Due to
the selected homomorphic encryption scheme, Graepel et
al. [18] cannot treat comparisons efficiently, which excludes
SVM-based solutions. Addressing both learning, and clas-
sification based on extremely random forests, and naive
Bayes networks, Aslett et al. [1], also work on homomor-
phically encrypted data.

One of the first private SVM classifiers was proposed by
Laur et al. [23], which addresses both the training and the
classification in a privacy-preserving manner. Their work
combines the techniques of homomorphic encryption, se-
cret sharing, and circuit evaluation, into a passively secure
2-PC solution. Concurrently, and independently Dahl [§]
is working on using the very same MPC framework as in
our work, to realize both the training, and the classification
phase of CNN based privacy-preserving algorithms. While
Dahl [8] is deploying CNNs instead of SVM, he needs to
apply them in a non-black-box fashion. The protocol of
Dahl [8] allows some leakage of information during the



training phase, which is not the case with our approach.
Mohassel, and Zhang [30] also consider both training and
classification in the 2-PC setting, and the passive security
model. These approaches [23, 8, 30] can only treat the
two-party setting, and cannot be trivially extended to allow
the classifier provider to be a different entity than the cloud
provider.

Fewer works focus particularly on the private image clas-
sification problem, instead of the training of the model.
Gilad-Bachrach et al. [16] propose a solution applicable to
the image classification problem, based on homomorphi-
cally encrypted data. The resulting CryptoNets [16] pro-
vide an accuracy of 99%, and can make on average 51739
predictions per hour. However, this is only the case when
the predictions are to be made simultaneously; for a single
prediction the task takes 570 seconds to complete. Recent
work [2] demonstrated the potential of polynomial-kernel
SVM to be used for classification in a privacy-preserving
manner. Specifically, Barnett ez al. [2], apply the same ma-
chine learning techniques as in our work, but on encrypted
data. Although, Barnett et al. [2] mention the potential of an
MPC approach to be more efficient in such a setting, they
do not consider it, because direct translation of the proto-
cols to MPC would require interaction between the client
and the classification algorithm provider during the compu-
tations. We overcome this limitation by extending the appli-
cation scenario in such a way that allows the classification
task to be fully outsourced to a cluster of independent third
parties. In addition, our solution, unlike the one of Bar-
nett et al. [2], protects the classifier parameters during the
feature extraction phase, and performs a secure comparison
(instead of revealing a masked value to the client). This way
our solution is guaranteed to not leak any information to the
client about the classifier parameters, while it is also orders
of magnitude faster.

In the 2-PC setting, Bost et al. [4], and Rahulamathavan
et al. [33] focus on the problem of private classification,
where both the classifier parameters, and the client’s input
to be classified need to remain private. Both approaches
offer passive security, and do not consider nor experiment
with polynomial kernel SVM. Barni et al. [3] propose pri-
vate Neural-Network (NN) based data classification, also
in the 2-PC setting and passive security model. They sug-
gest three protocols, which offer different privacy guaran-
tees for the classifier owner, while always protecting fully
the client’s input. Follow up work by Orlandi et al. [31],
also considers NN-based data classification extending the
work of Barni et al. [3] in terms of privacy.To the best of our
knowledge, we are the first to provide a privacy-preserving
image classification tool based on polynomial-kernel SVM,
offering active security. PICS is more efficient than pre-
vious work and achieves high accuracy comparable to the
accuracy achieved on the cleartext data. More interestingly,
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PICS is not limited to the 2-PC setting, allowing a broad
range of application scenarios to be treated by our solution.

3. PICS

The proposed private image classification solution,
PICS, employs Histogram of Oriented Gradients (HOG) for
the feature extraction and combines it with Principal Com-
ponent Analysis (PCA) dimensionality reduction. Note
that already the dimensionality reduction takes place in a
privacy-preserving manner, protecting the inputs of both the
client, and the classification algorithm provider. This pre-
pares the inputs for the next stage, which is the deployment
of the Polynomial Kernel Support Vector Machine (SVM).
Our method assumes that the training of the classifier is per-
formed on cleartext data, prior to our protocol execution.

Specifically, the classification process, depicted in Fig-
ure 1, starts with the image holder, who has an image to be
classified. The first step consists of the HOG feature ex-
traction and is performed by the image holder locally on the
cleartext version of the image. The resulting HOG features
are then shared (via the secure gateway) to the MPC servers
by the image holder and thus are kept secret from the classi-
fication algorithm provider. We indicate secret shared (and
thus protected) data in square brackets (Figure 1). The clas-
sification algorithm provider has already trained their poly-
nomial kernel SVM classifier. The necessary parameters for
the PCA dimensionality reduction and the SVM classifica-
tion, which are the two subsequent steps, are shared to the
MPC servers by the classification algorithm provider and
are never revealed to the image holder (nor the analyst). In
the following we detail the aforementioned steps while em-
phasizing which operations are performed securely.

3.1. HOG Feature Extraction

The first step that needs to be taken by an image holder
is HOG feature extraction. HOG is a popular feature ex-
traction method, proposed by Dalal and Triggs [9] and used
by numerous SVM applications ever since (see for exam-
ple [28, 14, 32]). For this feature extraction, the image is di-
vided in non-overlapping regions, called cells, and for every
pixel within each cell a histogram of gradients is created.
The gradient of each pixel expresses a magnitude and a di-
rection (of the intensity), and then the histogram is grouped
into bins. The number of bins times the number of cells per
image defines the number of HOG features. HOG feature
extraction has to be performed locally by the image holder
on the cleartext data. Since this step does not require any
classifier parameters, there are no privacy concerns raised
by its execution.

3.2. PCA Dimensionality Reduction

The main criticism against HOG descriptors is the rel-
atively high computational load that they incur. To allevi-



ate this computational load, HOG feature extraction is often
combined with dimensionality reduction techniques such as
the Principal Component Analysis (PCA) [35, 20, 29] that
we also deploy. Dimensionality reduction aims at reduc-
ing the computational cost of working with high dimen-
sional data. It does so by projecting the data to a lower
dimensional space, while retaining as much as possible lin-
early uncorrelated features, namely the principal compo-
nents. The PCA dimensionality reduction is calculated as
follows:

z=AT.(h—my), (1)

where A is the covariance matrix of the training data, my, is
the vector of means of the training data, and h is the vector
of HOG features.

To perform PCA we need both the classifier parame-
ters A, my, and the features extracted from the image
holder’s images. This step has to be performed in a privacy-
preserving manner, to protect both the classifier’s intellect
and the privacy of the client’s images. First, the classifi-
cation algorithm provider secret shares A, and my, to the
MPC servers and then the image holder secret shares h to
the MPC servers. Having received all the aforementioned
shares, the MPC servers engage in an interactive protocol
(the SPDZ online phase) and securely calculate z.

3.3. Polynomial Kernel SVM Classification

SVM classification is one of the most popular classifi-
cation methods in computer vision. Despite the increas-
ing popularity and high effectiveness of CNN classifica-
tion techniques, their deployment requires large training
datasets [13] that are potentially difficult to obtain when the
underlying data is privacy sensitive. In addition, black-box
transformation of these methods to their privacy-preserving
equivalents will result in classifiers that are computationally
prohibitive to use. Thus, we opted for the design of a private
SVM classifier. Specifically, we deploy classification based
on a model trained with a polynomial kernel SVM, as these
have been shown to outperform linear SVM [2].

To classify a new unlabeled input with our classifier
trained with polynomial kernel SVM, we need to securely
evaluate the sign of the following equation:

class(z) = sign[b + Zai - (T+x-2)7, ()
i=1

where:

e z is the vector calculated securely in the PCA dimen-
sionality reduction step and is available at the MPC
servers in shared form;

b is the model intercept (also known as bias), cal-
culated by the classification algorithm provider dur-
ing the learning phase and secret shared to the MPC
Sservers;
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e q; are the solutions (Lagrange multipliers) of the opti-
mization problem addressed by the SVM;

e y, are the class labels of the support vectors;
e Xx; are the n support vectors; and

e d is the order of the polynomial kernel used.

The only non-secret information in the above list is the
order of the polynomial kernel d. We could keep the d value
secret as well, but at a large increase in the computational
cost. The additional security gain from not revealing the
degree of the non-linear SVM is not considered to be worth
the large computational cost. The a; and y; are amongst
the most valuable classifier parameters that the classifica-
tion algorithm provider wishes to protect. To avoid the ad-
ditional multiplications and thus increase performance, we
expect the classification algorithm provider to first calculate
(a; - y;), and then secret share these resulting values to the
MPC servers. Having all the necessary values available, the
MPC servers securely calculate the classification label for a
new input, following Equation 2. Note that unlike previous
work [2, 16], we do not treat the classifier parameters in the
clear, but in a secret shared form.

4. Experiments

We evaluate PICS both in terms of accuracy and in
terms of performance (i.e. execution time), on two typical
benchmark datasets. Note that the classification accuracy
achieved by PICS is identical to the accuracy of the same
SVM classifier applied on cleartext data, up to three deci-
mal places. Given that we only report the accuracy with a
precision of up to two decimal places, we do not need to
discern between the accuracy of PICS and the accuracy on
cleartext data.

4.1. Experimental Setup

The first parameter to be determined is the number of
MPC servers that we have at our disposal. Our experiments
are conducted on two MPC servers, which yields the most
efficient solution, but the proposed system can be trivially
modified to be executed on more than two MPC servers. We
assume a protocol-independent, input-independent prepro-
cessing phase that takes place prior to the actual protocol
execution between the MPC servers. The inputting parties
do not need to be aware, nor contribute to this phase. This
offline preprocessing phase creates the necessary random-
ness to boost the efficiency of the online phase of the pro-
tocol, and allows the inputting parties (image holder and
classification algorithm provider) to securely share their in-
puts.

The online phase begins with the image holder and the
classification algorithm provider sharing their inputs (HOG
features, and PCA + SVM parameters, respectively) to the



MPC servers. This is performed by executing an interac-
tive protocol between each inputting party and the two MPC
servers, as Damgéard et al. [10] proposed. Then, the actual
private image classification task is executed between the
two MPC servers only. It starts with the PCA dimension-
ality reduction, as described in Section 3.2, and continues
with the classification of a new image input, as described
in Section 3.3. In the end, each MPC server sends their re-
sulting share to the image holder, or the analyst, who can
then combine the shares and reconstruct the cleartext result,
which is the desired class label.

We executed our experiments, simulating the two MPC
servers on two identical desktop computers equipped with
Intel i7-4790 processor, at 3.60 GHz over a 1Gbps LAN
with an average round-trip ping of 0.3ms. Note that pre-
vious works [2, 16] did not take the communication cost
(incurred by sending the client’s inputs to the classification
algorithm provider) into account in their performance anal-
yses whereas for us it is accounted automatically by timing
the pre-processing and the online phase.

4.2. MPC Cost Affecting Parameters

Given that the underlying MPC platform that we use to
implement PICS is based on additive secret sharing, we can
compute linear functions on the shared data almost for free.
What significantly increases the computational cost of the
privacy-preserving, MPC version of the image classification
is the number of multiplications that need to be performed.
Recall also that multiplications require online communica-
tion to be executed.

To calculate the PCA dimensionality reduction, as
in Equation 1, given that the matrix A and the vec-
tors h and my, are in a shared form, we need to per-
form (#PCA features x #HQOG_features) secure multipli-
cations. To securely compute the final classification label
in Equation 2, we need to perform [n x (#PCA_features +
#mults_for_degree+1)] multiplications in the secret shared
domain (plus an additional constant number of multiplica-
tions for the computation of the sign function). Recall that
we possess the value d in cleartext form and note that the re-
quired number of multiplications to compute the power d, is
not simply d — 1. This is because we can employ addition-
chain exponentiation to minimize the required number of
secure multiplications. Note also that a; X y; has been pre-
computed before being secret shared by the classification
algorithm provider, saving in total n multiplications.

4.3. Datasets

We selected two of the most popular datasets of natural
images, namely CIFAR-10 [22] and MNIST [24], to per-
form our experiments on, so that our accuracy and timing
results are representative. CIFAR-10 [22] is a dataset of
60000 32 x 32 color images, out of which 50000 are training
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images and 10000 are test images. CIFAR-10 features 10
classes of objects, with 6000 images per class. MNIST [24]
also is a dataset of 60000 handwritten digit images, consist-
ing of 50000 training images and 10000 test images. The
images are grey-scale, they have been normalized to fit a
20 x 20 pixel box, and are centered in a 28 x 28 image.

4.4. Training

We performed the training on the cleartext datasets de-
scribed in Section 4.3. We trained a binary SVM classi-
fier, distinguishing between airplanes and automobiles on
the CIFAR-10 dataset, and a binary classifier distinguishing
between zeros and ones on the MNIST dataset. For both
binary SVM classifiers we have used 5000 training samples
per class and 1000 test samples per class afterwards for the
classification accuracy assessment.

In addition, we trained multiclass SVM classifiers for all
ten classes in the CIFAR-10 and MNIST datasets, based on
the one-versus-all strategy (OvA) [39]. We experimented
separately with classifying instances into any number of
classes between three and ten, following the OvA tech-
nique. For training the multiclass SVM, we need to actu-
ally train as many individual SVM classifiers, as the num-
ber of classes C' that we wish to take into account. To avoid
overfitting, for each individual SVM we considered the to-
tal number of samples in the training dataset for the class in
question (i.e. 5000 samples), and as many random samples
from the remaining C' — 1 classes, equally divided amongst
the classes (i.e. [5000/(C —1)] samples per class). For each
dataset and number of classes C' denote this procedure as
CIFAR-C and MNIST-C.

4.5. Classification Accuracy and Efficiency Results

We evaluated the computational performance, and clas-
sification accuracy of PICS on several combinations of the
algorithm parameters, namely the number of classes to dis-
tinguish, the number of support vectors, the number of PCA
features, and the order of the classifier. Note that Table 2
reports the parameters which maximize the accuracy upto
102 for each SVM multiclass experiment: MNIST-2 to
MNIST-10. The ties are resolved by choosing the one with
lower cost to evaluate in MPC. In our experiments the poly-
nomial degree d of the SVM ranges from 1 to 7 and the
number of PCA features from 5 to 50.

In the same manner we obtain online timings for the
CIFAR-2 to CIFAR-10 which range from 0.3s (90% accu-
racy) to 6.7s (58%) accuracy with a similar precision-recall
score to the accuracy. This is due to the fact that CIFAR is
a tougher dataset to learn for an SVM.

The combination of highest accuracy and highest com-
putational performance was achieved by the binary PICS
classifier on the MNIST-2 dataset, achieving 99.9% accu-
racy, and 30ms online execution time. An optimization



which played an important role was to multi-thread wher-
ever it was possible, in this way improving the run-times
have improved by at least 6 times from the single threaded
version. In Figure 3 we selectively report the accuracy for
the easiest case of a binary classifier, the average case of
a 5-classes classifier and the hardest case of a 10-classes
classifier. For completeness in Figure 2 we estimate the in-
put independent phase using triples and bits generated with
MASCOT [21] in F}, where p is a 128 bit prime.

It can be easily seen from Figure 3 that increasing only
in one dimension (PCA features or support vectors) can ac-
tually decrease the accuracy of the SVM. To improve ac-
curacy one has to increase both dimensions until the PCA
features become redundant. Another interesting fact that
comes from the graphs is that PICS performance is well
correlated with the SVM accuracy. It seems that one can
only have good accuracy at the expense of increasing PICS
run-times.
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Figure 2. Offline cost for binary, 5-class, and 10-class classifica-
tion.
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Figure 3. Accuracy of binary, 5-class, and 10-class classification.

5. Conclusion and Future Work

We have introduced PICS, a private image classifica-
tion system, based on polynomial-kernel support vector ma-
chines. We showed how to achieve privacy-preserving im-
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SVM #PCA #SVs Accur. Time Time
classes feat. (%) online(s) preproc(s)

2 20 128 99.9 0.03 145
3 40 665 99.6 0.16 1107
4 35 1224 99.6 0.22 1631
5 45 1661 99.6 0.33 2700
6 40 2225 99.3 0.42 3089
7 40 2736 99.1 0.50 3751
8 45 3323 98.9 0.59 5099
9 45 4465 98.5 0.84 6617
10 45 5598 98 1.00 8016

Table 2. SVM parameters for best accuracy on MNIST while min-
imizing the MPC cost. Times given for one SVM evaluation on
secret shared HOG features.

age classification in such a way that the task can be fully
outsourced to a third, independent party. For our solution
we deployed generic MPC tools and showed how to avoid
the restricted two-party setting. Unlike all previous work,
our approach provides active security, does not leak any in-
formation about the private images, nor about the classifier
parameters, and is orders of magnitude more efficient than
the privacy-preserving classification solutions proposed in
the literature.

Due to their highly accurate predictions, especially for
multiclass classification tasks, NNs have superseded SVM
as the state-of-the-art for image classification. Neverthe-
less, our work shows that SVM solutions can be applied
efficiently in the privacy-preserving domain. The bottle-
neck here seems to be the offline phase which can poten-
tially be improved by carefully investigating the parameters
for the underlined fixed point precision implementation to
minimize the number of triples/bits [6]. Our experiments
confirmed that there is a tradeoff between the complexity,
and therefore also accuracy of the classification algorithms
used, versus the efficiency of the privacy-preserving vari-
ants of the proposed solutions. In the active security model
that we consider in this work, deploying NNs in the same
manner as they are used on cleartext data, is computation-
ally prohibitive with current privacy-preserving methods.
An interesting line of research is to investigate whether we
can devise privacy-preserving classification algorithms that
are as efficient as the SVM, while providing more accurate
classification results.
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