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Abstract. The Camenisch-Lysyanskaya (CL) signature is a very popular tool in cryptography, espe-
cially among privacy-preserving constructions. Indeed, the latter benefit from their numerous features
such as randomizability. Following the evolution of pairing-based cryptography, with the move from
symmetric pairings to asymmetric pairings, Pointcheval and Sanders (PS) proposed at CT-RSA ’16 an
alternative scheme which improves performances while keeping the same properties. Unfortunately, CL
and PS signatures raise concerns in the cryptographic community because they both rely on interactive
assumptions that essentially state their EUF-CMA security. This lack of precise security assessment is
obviously a barrier to a widespread use of these signatures and a reason for preferring other constructions,
such as the ones relying on q-type assumptions.
In this paper, we study more thoroughly the security of these signatures and prove that it actually relies,
for both constructions, on simple variants of the SDH assumption, assuming a slight modification of the
original constructions. Our work thus shows that the CL and PS signature schemes offer similar security
guarantees as those provided by several other constructions using bilinear groups, and so that one can
benefit from their interesting features without jeopardizing security.

1 Introduction

Although introduced 40 years ago [DH76], digital signature is still a very active topic in cryptography
(e.g. [Gro15,PS16,Gha16,LMPY16]). This is mostly due to the use of this primitive as a building
block for more complex constructions that require advanced features.

For example, let us consider privacy-preserving mechanisms, such as group signatures [BMW03],
direct anonymous attestations [BCC04] or e-cash systems [Cha82]. They usually require some entity
to prove that some data (e.g. a coin, a key) is certified while remaining anonymous. Obviously, this
entity cannot show the same certificate each time she needs to authenticate, otherwise one could
easily trace her.

One solution could be to commit this certificate and then prove, in a zero-knowledge way, that
the commitment opens to a valid signature on the data. In a bilinear setting, this can for example be
done by using Groth-Sahai proofs [GS08]. Alternative solutions in the random oracle model (ROM)
can be preferred if one favors efficiency. In either case, the complexity of the proof will increase with
the number of elements to hide, hence the need to limit this number.

A very attractive feature for a signature scheme in such a context is called randomizability. It
allows anyone to derive, from a valid signature σ, a new version σ′ on the same message. To our
knowledge, in a bilinear setting, the first construction achieving such a property was proposed by
Camenisch and Lysyanskaya [CL04]. We call it the CL signatures in the following. Indeed, a CL
signature σ can be randomized by selecting a random scalar t and raising each element of σ to this
power t. The point is that initial σ and its new version are unlinkable under the DDH assumption
[BCN+10], if one does not explicitly know the signed message, but just possibly as a committed
value.

This explains the popularity of CL signatures among privacy-preserving constructions (e.g.
[BCN+10,BFG+13,CPST15]): the users no longer have to commit the signature, but simply have to
randomize σ before sending it.

Unfortunately, these signatures have an important drawback, their size is linear in the number of
messages to be signed, or the length of the vector. This can be a problem for some applications, in
particular, for anonymous credentials. However, this problem was recently solved by Pointcheval and
Sanders [PS16] who proposed new signatures (called PS in the following), with the same features
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as CL ones, but with a short constant size (namely only 2 group elements, whatever the size of the
vector to be signed).

Nevertheless, the nice features of CL and PS signatures come at a price: their security is proven
under interactive assumptions, which raises concerns in the cryptographic community. In particular,
this may be seen as a reason for preferring alternative signatures such as the ones of Libert et al.
[LMPY16] (less efficient but proven under a standard assumption).

The problem of the validity of the computational assumptions underlying the security of a cryp-
tographic scheme is not new. The use of an interactive assumption usually allows to design more
efficient constructions but with an obviously questionable security analysis. Conversely, one can be
more confident in the security of a scheme proven under a standard assumption but the latter usu-
ally entails lower performances. Between them, one can find different trade-offs with constructions
proven under non-interactive, but still non-standard (e.g. q-type) assumptions.

Among the latter, a prominent example is the (non-randomizable) Boneh Boyen signature scheme
[BB04,BB08,ASM06] (called BB in the following). One of its strengths is the fact that its security
relies on an assumption (q-SDH) which seems independent of the scheme and which can be simply
stated (and so evaluated). This partly explains the popularity of these signatures, at least compared
to their randomizable counterparts.

1.1 Our Contribution

In this work, we aim at narrowing this gap by proving that both CL and PS signatures can be
analyzed with non-interactive assumptions, and a slight variant can be proven EUF-CMA secure
(Existential Unforgeability against Adaptively Chosen Message Attacks) under the latter. Such a
result implicitly increases the confidence in the original schemes.

Starting from the PS signature, we first identify a simple variant of the q-SDH assumption
[BB04,BB08] which underlies the security of this scheme. As for q-SDH, this new assumption is
based on a sequence (g, gx, . . . , gx

q
) —actually one in each group to deal with the asymmetric setting

of the PS signatures— along with very few additional elements, and requires to return an element

h
1

x+w . However, because of the randomizability of PS signatures, h can be any element chosen by the
adversary, which leads to a major problem: if one defines h = gw ·gx (or equivalently h = g(x+w)Q(x)),
then one can trivially break this assumption. We therefore add another success condition which rules
out such strategy by requiring that the discrete logarithm of h cannot be a (polynomial) multiple of
(x+ w). We provide more details on this condition and on the way it is enforced in Section 3.

Unfortunately, as for BB signatures, this assumption can only be used to prove the security
notion of EUF-wCMA (Existential Unforgeability against weak Chosen Message Attacks) where the
adversary cannot adaptively choose the messages it submits to the signing oracle, but before the
setup only.

Nevertheless, we can deal with this issue by requiring the signer to sign an additional message
(recall that PS signatures can handle any number of messages) which can be either the hash of the
original message or an additional random scalar of its choice. In practice, this simply means that
when one asks for a signature on an r-vector message m = (m1, . . . ,mr), one actually receives a PS
signature on (m1, . . . ,mr,m

′) where m′ may be equal to H(m1, . . . ,mr) for some hash function H.
As we show in this paper, such a slight change is enough to avoid interactive assumptions.

Moreover, due to the constant size of PS signatures, this does not impact efficiency, in particular in
the case where m′ is a hash value, since no additional value has to be sent.

Regarding this use of a hash function for computing m′, one may think that it might cause
further problems, especially when one needs to prove knowledge of signatures on committed messages.
However, this does not bring any trouble, because the prover only has to prove knowledge of r + 1
scalars (m1, . . . ,mr,m

′) and not that the last element m′ is the hash of the previous ones, as we
explain in this paper: the actual redundancy for this m′ is not for the security property, but for
an efficiency purpose only. This construction with a redundant m′ thus leads to an EUF-CMA
randomizable signature scheme, with provable security in the random oracle model.
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Next, we apply the same methodology to the CL signature scheme, by identifying a different
variant of the q-SDH assumption. We then show that this variant underlies the security of CL
signatures assuming a modification similar to the one described for PS signatures. Due to the linear
size of CL signatures, such a modification implies a slight increase of the complexity but this can be
considered as a reasonable trade-off to avoid interactive assumptions.

Eventually, we prove that our variants of the q-SDH assumption hold in the generic bilinear group
model. The simplicity of these new variants makes these proofs quite easy to follow, contrarily to the
original generic proofs of the CL and PS signatures. An interesting outcome of these new security
assessments of CL and PS signatures is the identification of strong links between these signatures
and the ones of Boneh and Boyen [BB04,BB08]: all of them rely on the q-SDH assumption or some
simple variants. Our results thus prove that the security of CL and PS signatures is not significantly
weaker than the one of BB signatures. We argue that this result is particularly relevant in regard of
the massive use (e.g. [BCN+10,BFG+13,LLY13,DLST14,CPST15]) of CL signatures, thanks to their
randomizability property, and so, potentially, of their plug-in replacement proposed by Pointcheval
and Sanders [PS16].

1.2 Related Work

The term “CL signature” can be confusing since it actually refers to various schemes. The first one
was introduced in [CL03] and was proven under the strong RSA assumption [BP97,FO97] (a.k.a.
flexible RSA problem [CS99]). It strongly differs from the one, introduced by the same authors
two years later [CL04], that we consider in this paper. Indeed, the latter makes use of bilinear
groups and achieves randomizability, contrarily to the former. In that paper [CL04], Camenisch and
Lysyanskaya also describe an extension of the Boneh-Boyen signature scheme [BB04,BB08] handling
several messages. This extension was later referred to as an SDH variant of CL signatures by some
works (e.g. [Sch15]), which adds to the confusion.

We stress that, to our knowledge, all the variants (e.g. [Oka06,Sch15]) of CL signatures proven
under different versions of the q-SDH assumption [BB04] are actually very different from the original
bilinear scheme introduced in [CL04]. In particular, none of them achieves randomizability, which is
one of the main features of the latter.

Gerbush et al. [GLOW12] managed to keep randomizability while relying on fixed-size assump-
tions but at the cost of using groups of composite order whose complexity is significantly higher
[Fre10,Gui13] than the one of prime order groups.

Our results thus differ from previous ones since we prove the security of CL and PS signatures un-
der variants of the q-SDH assumption without modifying their properties or impacting (significantly)
their efficiency.

The technique to convert a EUF-wCMA signature scheme into an EUF-CMA-secure scheme is
reminiscent of Krawczyk and Rabin’s work [KR00] on chameleon hash functions. It can also be found
in [BB08]. A similar approach was proposed in [AGHO11] to convert an EUF-RMA secure (Exis-
tential Unforgeability against Random Message Attacks) into a EUF-CMA secure signature scheme.
Since EUF-RMA security can be generically stated into a non-interactive way (given q signatures
on q random messages, it is hard to construct another one on a new message) our result might look
natural. However, such a conversion comes at the cost of this additional generic assumption which
is often very complex to evaluate (even in the generic group model). Moreover, this new assumption
only underlies the EUF-RMA security and not the stronger EUF-wCMA, as in our case.

Conversely, in this work we start from the original q-SDH assumption and identify simple variants
that underlie the security of CL and PS signatures. These variants are in particular different from
the assumptions stating the EUF-RMA security of these schemes, and can easily be used to compare
these schemes with each other but also with alternatives such as BB signatures. Furthermore, we
get EUF-CMA security without modifying the basic construction, and so keeping the nice features.
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1.3 Organization

We recall some definitions in Section 2 and present the non-interactive assumptions underlying CL
and PS signatures in Section 3 (we postpone the proofs that they hold in the generic bilinear group
model to Appendix A). In Section 4, we recall the PS signature scheme and then explain (and prove
in Section 5) how to modify it to avoid interactive assumptions. We proceed similarly in Section 6
for the CL signatures.

2 Preliminaries

2.1 Bilinear Groups

Bilinear groups are a set of three cyclic groups G1, G2, and GT of prime order p along with a map
e : G1 ×G2 → GT that is

1. bilinear: for any g ∈ G1, g̃ ∈ G2, and a, b ∈ Zp, e(ga, g̃b) = e(g, g̃)ab;

2. non-degenerate: for any g ∈ G1\{1G1} and g̃ ∈ G2\{1G2}, e(g, g̃) 6= 1GT
;

3. efficient: for any g ∈ G1 and g̃ ∈ G2, e(g, g̃) can be efficiently computed.

Galbraith, Paterson, and Smart [GPS08] defined three types of pairings: in type 1, G1 = G2; in type
2, G1 6= G2 but there exists an efficient homomorphism φ : G2 → G1, while no efficient one exists in
the other direction; in type 3, G1 6= G2 and no efficiently computable homomorphism exists between
G1 and G2, in either direction.

CL signatures, as most of the constructions in the early-age of pairing-based cryptography,
use pairings of type 1. While an asymmetric variant of these signatures can easily be defined
(e.g. [BCN+10]), Sanders and Pointcheval [PS16] recently pointed out that the latter does not take
advantage of the entire capabilities of pairings of type 3. They therefore proposed a new signature
scheme in this setting, with the same features as CL signatures, but with a constant complexity.
Their construction can only be instantiated in type 3 bilinear groups, but this is not a significant
drawback since the latter offer the best performances.

2.2 Digital Signature Schemes

Syntax. A digital signature scheme is defined by four algorithms:

– the parameter setup algorithm (Setup), on input a security parameter k, outputs the public
parameters pp;

– the key generation algorithm (Keygen), on input the public parameters pp, outputs a pair of
signing and verification keys (sk, pk) – we assume that sk contains pk, and that pk contains pp;

– the signing algorithm (Sign), on input the signing key sk and a message m, outputs a signature
σ;

– the verification algorithm (Verify), on input the verification key pk, a message m, and its alleged
signature σ, outputs 1 if σ is a valid signature on m under pk, and 0 otherwise.

Security Notion. The standard security notion for a signature scheme is existential unforgeability
under chosen message attacks (EUF-CMA) [GMR88]: it means that it is hard, even given access to
a signing oracle, to output a valid pair (m,σ) for a message m never asked to the signing oracle. It
is defined using the following game between a challenger C and an adversary A:

– Setup: C runs the Setup and the Keygen algorithms to obtain (pp, sk, pk). The adversary is
given the public key pk;

– Queries: A adaptively requests signatures on at most q messages m1,. . . ,mq. C answers each
query by returning σi ← Sign(sk,mi);
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– Output:A eventually outputs a message-signature pair (m∗, σ∗) and wins the game if Verify(pk,
m∗, σ∗) = 1 while m∗ 6= mi ∀i ∈ [1, q].

A signature scheme is EUF-CMA secure if no probabilistic polynomial-time adversary A can win
this game with non-negligible probability, for a polynomial number q of adaptive signing queries. A
weaker security notion, named existential unforgeability under weak chosen message attacks (EUF-
wCMA) [BB08], forces the adversary to provide the list of messages m1, . . . ,mq to the challenger at
the beginning of the game (before receiving the public key pk). Finally, we note that the stronger
SUF-CMA (strong unforgeability under chosen message attacks, a.k.a. non-malleability) security
notion is unachievable by a randomizable signature scheme. Indeed, it implies that no adversary,
given a signature σ on m, can derive a new signature σ∗ 6= σ on the same message, which is exactly
the opposite of randomizability.

3 Computational Assumptions

In this section, we first recall the LRSW assumption and the PS assumption, that underly the secu-
rity of the Camenisch-Lysyanskaya signatures [CL04] and the Pointcheval-Sanders signatures [PS16],
respectively. They are both interactive computational assumptions, and the latter was denoted “As-
sumption 1” in their paper, with a pairing of type 3, while the former does not explicitly require a
pairing.

3.1 Interactive Assumptions

Definition 1 (LRSW Assumption). Let G be a cyclic group of prime order p, with a generator g.

For (g,X = gx, Y = gy), with x, y
$← Z∗p, we define the oracle O(m) on input m ∈ Zp that chooses

a random h ∈ G∗ and outputs the triple T = (h, hy, hx+mxy). Given (g,X, Y ) and unlimited access
to this oracle O, no adversary can efficiently generate such a triple for a new scalar m∗, not asked
to O.

The validity of a new tuple T = (h, U, V ) can be proven interactively in any group, or non-
interactively checked with a pairing of type 1, e : G × G → GT , with e(Y, h) = e(g, U) and
e(X,h · Um) = e(g, V ).

Definition 2 (PS Assumption). Let (p,G1,G2,GT , e) a bilinear group of type 3, with g (resp.

g̃) a generator of G1 (resp. G2). For (g̃, X̃ = g̃x, Ỹ = g̃y), with x, y
$← Z∗p, we define the oracle

O(m) on input m ∈ Zp that chooses a random h ∈ G1 and outputs the pair P = (h, hx+my). Given

(g, Y, g̃, X̃, Ỹ ) and unlimited access to this oracle O, no adversary can efficiently generate such a
pair, with h 6= 1G1, for a new scalar m∗, not asked to O.

The validity of P = (h, V ) can be checked: e(V, g̃) = e(h, X̃ · Ỹ m).

3.2 Non-Interactive Assumptions

Since both above assumptions are interactive, this raises some concerns about the security of the
randomizable signatures from [CL04] and [PS16], even if these assumptions are proven to hold in
generic groups or generic bilinear groups. In particular, this may be considered as a good reason
for preferring Boneh-Boyen signatures [BB08], whose security relies on the non-interactive q-SDH
assumption [BB04]:

Definition 3 (q-SDH Assumption). Let (p,G1,GT , e) a bilinear group of type 1, with g a gen-

erator of G1. Given (g, gx, . . . , gx
q
), for x

$← Z∗p, no adversary can output a pair (w, g
1

x+w ), with
w ∈ Z∗p.
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In this work, we show that both the CL and PS signatures can be slightly modified to be proven
EUF-CMA secure under the variants q-MSDH-1 and q-MSDH-2 (the “M” stands for “modified”)
of this assumption. They are both q-type assumptions, but non-interactive. The former will be
required for the security of the PS signatures, while the latter will be required for the security of the
CL signatures.

Definition 4 (q-MSDH-1 Assumption). Let (p,G1,G2,GT , e) a bilinear group of type 3, with g

(resp. g̃) a generator of G1 (resp. G2). Given {(gxi , g̃xi)}qi=0 along with (ga, g̃a, g̃a·x), for a, x
$← Z∗p,

no adversary can output a tuple (w,P, h
1

x+w , h
a

P (x) ) for some h ∈ G∗1, where P is a polynomial of
degree at most q and w is a scalar such that (X + w) and P (X) are relatively prime.

One can note that the validity of the output (w,P, U, V ) can easily be verified since one can generate
g̃P (x) using the elements (g̃, g̃x, . . . , g̃x

q
) and then checks whether e(U, g̃a·x · g̃a·w) = e(V, g̃P (x)).

The first goal of this paper is to show that this assumption underlies the EUF-wCMA security
of the PS signature scheme (see Section 4). It is therefore natural that, as the signature scheme
itself, it only holds with pairings of type 3. The asymmetric nature of the latter implies that we
need to provide both the sequences (g, gx, . . . , gx

q
) and (g̃, g̃x, . . . , g̃x

q
) since we cannot use some

isomorphism to compute the latter from the former. But we stress that this does not give more
power to an adversary than the one it has with (g, gx, . . . , gx

q
) in a type 1 setting.

Therefore, this assumption mostly differs from the q-SDH one in two ways. First, the challenge

also contains a tuple (ga, g̃a, g̃a·x). Second, we allow the adversary to return an element h
1

x+w for

any h ∈ G1. Nevertheless, to avoid trivial solutions, the adversary must additionally return h
a

P (x)

for some polynomial P that is not divisible by X + w. Intuitively, this implies that the adversary

cannot build h as gQ(x) with Q a multiple of X + w which prevents it from returning h
1

x+w . This is
formally stated by the following theorem, proven in Appendix A.1 for completeness:

Theorem 5. The q-MSDH-1 assumption holds in the generic bilinear group model for pairings of
type 3: after Q group and pairing oracle queries, no adversary can solve the q-MSDH-1 problem with
probability greater than q(2q + 5 +Q)2/p.

Definition 6 (q-MSDH-2 Assumption). Let (p,G1,GT , e) a bilinear group of type 1, with g a

generator of G1. Given {(gxi , gb·xi)}q+1
i=0 and (ga, ga·b·x), for a, b, x

$← Z∗p, no adversary can output a

tuple (w,P, h
1

x+w , h
a

x·P (x) ) for some h ∈ G1, with P a polynomial of degree at most q and w 6= 0 a
scalar such that X + w and P (X) are relatively prime.

One can note the similarities between the q-MSDH-1 and the q-MSDH-2 assumptions which translate
the similarities between the PS and the CL signatures. The main difference is the additional sequence
(gb, gb·x, . . . , gb·x

q+1
) which plays the same role as (g̃, g̃x, . . . , g̃x

q
) in a q-MSDH-1 instance: it provides

a way to check the validity of the output (see the remark below) through a pairing computation,
while being useless to the adversary because of the “b” factor in the exponent.

We show, in Section 6, that this assumption underlies the EUF-wCMA security of the CL sig-
nature scheme. This is the second contribution of this paper. A proof that this assumption holds in
the generic bilinear group model is provided in Appendix A.2 for completeness:

Theorem 7. The q-MSDH-2 assumption holds in the generic bilinear group model for pairings of
type 1: after Q group and pairing oracle queries, no adversary can solve the q-MSDH-2 problem with
probability greater than (q + 1)(2q + 6 +Q)2/p.

Remark 8. Proving the validity of a new q-MSDH-2 tuple requires an interaction since the elements
provided in an instance are not enough to perform the verification non-interactively. Nevertheless,

we can easily avoid this problem by forcing the adversary to also return h
1

x(x+w) . Indeed, in this case,

the validity of new tuple (w,P, U, V,W ) = (w,P, h
1

x+w , h
1

x(x+w) , h
a

x·P (x) ) could be verified by checking
whether:
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1. e(U, g) = e(V, gx)

2. e(U · V w, ga·b·x) = e(W, gb·x·P (x))

While this assumption is weaker than q-MSDH-2, it can still be used to prove security of CL signatures
as explained in Section 6.3. However, we choose to keep the q-MSDH-2 assumption as it is to highlight
the similarities with the q-MSDH-1 assumption.

Eventually, another assumption will appear in the security analysis, the SDL assumption [BCN+10]
which extends the standard discrete logarithm (DL) assumption to the bilinear setting:

Definition 9 (SDL Assumption). Let (p,G1,G2,GT , e) a bilinear group, with g (resp. g̃) a gen-

erator of G1 (resp. G2). Given (g, gx) and (g̃, g̃x), for some x
$← Zp, no adversary can output the

scalar x.

One can note that for pairings of type 1, the SDL assumption is actually the classical Discrete
Logarithm (DL) assumption. This is also clear that if one can break the SDL assumption, then given
(g, gx) and (g̃, g̃x) from a q-MSDH-1 instance, one can extract x and so solve the q-MSDH-1 problem
with non-negligible probability. Hence, the q-MSDH-1 assumption implies the SDL assumption (with
pairings of type 3). And this is clear that the q-MSDH-2 assumption implies the DL assumption,
and thus the SDL assumption (with pairings of type 1). Hence, all our results will just require the
q-MSDH-1 or q-MSDH-2 assumptions, since they imply the SDL assumption.

4 The Pointcheval-Sanders Signatures

We first recall the basic PS signature scheme on r-vector messages (m1, . . . ,mr) ∈ Zrp, whose security
proof relies on the interactive PS assumption (see Definition 2). The main feature is the constant
size of the signature, independently of the value r. However, the keys depend on this value.

4.1 The Basic Pointcheval-Sanders Signature Scheme

– Setup(1k): Given a security parameter k, this algorithm outputs pp ← (p,G1,G2,GT , e). These
bilinear groups must be of type 3. In the following, we denote G∗i the subset of generators
Gi\{1Gi}, for i = 1, 2;

– Keygen(pp): This algorithm selects g̃
$← G∗2 and (x, y1, . . . , yr)

$← (Z∗p)r+1, computes (X̃, Ỹ1, . . . ,

Ỹr)← (g̃x, g̃y1 , . . . , g̃yr), and sets sk← (x, y1, . . . , yr) and pk← (g̃, X̃, Ỹ1, . . . , Ỹr).

– Sign(sk,m1, . . . ,mr): This algorithm selects a random h
$← G∗1 and outputs σ ← (h, h(x+

∑
yj ·mj)).

– Verify(pk, (m1, . . . ,mr), σ): This algorithm parses σ as (σ1, σ2) and checks whether σ1 6= 1G1

and e(σ1, X̃ ·
∏
Ỹ
mj

j ) = e(σ2, g̃) are both satisfied, or not. In the positive case, it outputs 1, and
0 otherwise.

One can note that a signature σ = (σ1, σ2) is randomizable, by raising both σ1 and σ2 to a same
non-zero power. The invariant is the discrete logarithm of σ2 in basis σ1, hence, the unlinkability
relies on the DDH assumption. The unforgeability (EUF-CMA) has been proven to hold [PS16],
under the PS assumption that is interactive. However, the weaker security notion EUF-wCMA can
be proven under the q-MSDH-1 assumption (see Section 5.1 for the proof):

Theorem 10. The basic PS signature scheme achieves EUF-wCMA security under the q-MSDH-1
assumption, where q is a bound on the number of messages asked by the adversary to get signed.

While weak chosen-message attacks might be enough in several contexts, where the honest messages
to be signed are known in advance, this is always better to achieve the highest security level, that
means EUF-CMA.
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4.2 The Modified Pointcheval-Sanders Signature Scheme

In order to achieve the EUF-CMA security level, we extend the vector with one more component,
that gives a degree a freedom, and allows to use the same approach as with chameleon hash func-
tions [KR00] (see also [BB08]). The signature scheme is defined as follows:

– Setup(1k): Given a security parameter k, this algorithm outputs pp ← (p,G1,G2,GT , e). These
bilinear groups must be of type 3. In the following, we denote G∗i the subset of generators
Gi\{1Gi}, for i = 1, 2;

– Keygen(pp): This algorithm selects g̃
$← G∗2 and (x, y1, . . . , yr+1)

$← (Z∗p)r+2, computes (X̃, Ỹ1, . . . ,

Ỹr+1) ← (g̃x, g̃y1 , . . . , g̃yr+1), and sets the keys sk ← (x, y1, . . . , yr+1) and pk ← (g̃, X̃, Ỹ1, . . . ,
Ỹr+1);

– Sign(sk,m = (m1, . . . ,mr)): This algorithm selects random h
$← G∗1 and m′

$← Zp and outputs

σ ← (m′, h, h(x+
∑r

j=1 yj ·mj+yr+1·m′)).
– Verify(pk,m = (m1, . . . ,mr), σ): This algorithm parses σ as (m′, σ1, σ2) and checks whether
σ1 6= 1G1 and e(σ1, X̃ ·

∏r
j=1 Ỹ

mj

j · Ỹ m′
r+1) = e(σ2, g̃) are both satisfied or not. In the positive case,

it outputs 1, and 0 otherwise.

Actually, this is exactly the previous signature scheme in dimension r + 1 instead of r, and the last
component of the vector is randomly chosen, and appended to the signature. The security of this
construction is formally stated by the following theorem, proven in Section 5.2:

Theorem 11. The modified PS signature scheme achieves EUF-CMA security under the q-MSDH-1
assumption, where q is a bound on the number of adaptive signing queries.

Whereas the previous construction was just wEUF-CMA, it was fully-randomizable, since the only
random element in the signature was the generator h. This new construction is EUF-CMA, but just
weakly randomizable, for the generator h only and not m′. By generating m′ in a deterministic way,
one gets both a shorter and a randomizable signature.

4.3 Avoiding the Additional Element

Whereas the computational assumption becomes a non-interactive one, the new construction slightly
increases the size of the signature, since it must contain the additional element m′. Moreover, it also
cancels the full randomizability of the signature since m′ cannot itself be randomized. But the
purpose of m′, in the security proof, is to provide a degree of freedom. This is possible to define it
in a deterministic way from the r-vector message m, as m′ ← H(m), where H is a hash function
onto Zp. Then, the security proof still holds, in the random oracle model [BR93] for H. However,
the simulator guesses one of the hashing queries m∗ to be the vector message in the output forgery.
For this one, H(m∗) is programmed at random. If the guess is correct this leads to an attack to
either the q-MSDH-1 problem or the SDL problem. Since this guess succeeds with probability 1/qH
(where qH is the number of hashing queries), this reduction has a success probability divided by qH ,
compared to the above reduction. In addition, in the q-MSDH-1 assumption, q is now the number
qH of hashing queries, and not just the number of signing queries:

Corollary 12. The modified PS signature scheme, with m′ ← H(m), achieves EUF-CMA security
under the q-MSDH-1 assumption in the random oracle model, where q is a bound on the number of
hashing queries.

Of course, the proof then makes use of the random oracle model (ROM), but we should recall
that PS signatures (as CL ones) are mostly used in combination with NIZK proofs (e.g. [BCN+10],
[CPST15], etc) that already make use of the ROM. As a consequence, proving the security of the
signature itself in the ROM does not impact much the security of the global construction.

In addition, it is worthy to note that efficient proofs of knowledge of a signature remain possible,
despite the use of the hash function for m′ ← H(m). Indeed, to prove knowledge of a signature on
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a r-vector message m, one simply has to run the protocol from [PS16, Section 6.2] for a signature
on (m, H(m)) ∈ Zr+1

p . In particular, it is not necessary to prove that the tuple is well-formed, and
namely that last component m′ is indeed H(m), since it could have been any random scalar for the
security of the scheme.

A subtlety arises in the verification process, when one uses the hash function H. Indeed, the
Verify algorithm can take either (m, σ1, σ2) or (m,m′ = H(m), σ1, σ2) as input. In any case, the
EUF-CMA security proof does not expect any property from last component m′, which is very
interesting if one needs to prove knowledge of a signature.

Finally, we note that the case of blind signature is trickier when a hash function is involved.
Indeed, blind extraction remains possible (one must simply run the protocol from [PS16, Section
6.1] on (m,m′) = (m, H(m)) without proving well-formedness of this pair) but then the Verify

algorithm must check that m′ is indeed H(m). Therefore, if one needs to combine blind signatures
and zero-knowledge proofs of knowledge of the latter, then one should avoid this technique and use
instead the scheme of section 4.2.

5 New Security Proofs for PS Signatures

5.1 Proof of Theorem 10

We just provide the proof of Theorem 10 in the single-message case. The r-vector message case is
let to the reader, since it is similar to the next proof of Theorem 11. We thus show that the single-
message PS signature scheme is EUF-wCMA secure under the q-MSDH-1 assumption. Let A be an
adversary, succeeding with probability ε within time t. A first sends a list of messages (w1, . . . , wq)

to the challenger which generates a public key pk = (g̃, X̃, Ỹ1). At the end of the game, A is expected
to return a forgery (σ∗1, σ

∗
2) on w 6= wi ∀i ∈ [1, q].

Let (g, gx, . . . , gx
q
) ∈ Gq+1

1 , (g̃, g̃x, . . . , g̃x
q
) ∈ Gq+1

2 and (ga, g̃a, g̃a·x) ∈ G1 × G2
2 be a random q-

MSDH-1 instance, for which an adversary should return a tuple (w,P, h
1

x+w , h
a

P (x) ) for some h ∈ G1.

The challenger C generates g ← g
∏q

i=1(x+wi) and g̃ ← g̃
∏q

i=1(x+wi), using the elements from the
sequences (g, gx, . . . , gx

q
) ∈ Gq+1

1 and (g̃, g̃x, . . . , g̃x
q
) ∈ Gq+1

2 , since this is a polynomial of degree q.

It then also sets X̃ ← g̃a·x and Ỹ1 ← g̃a to define the public key (g, g̃, X̃, Ỹ1). This implicitly sets
sk← (x′ = a·x∏q

i=1(x+wi)
, y′1 = a∏q

i=1(x+wi)
).

To generate signatures for the q queried messages wj , C chooses tj
$← Z∗p and outputs (wj ,

(g
∏q

i 6=j(x+wi))tj , (ga)tj ). The second element can be computed from the sequence (g, gx, . . . , gx
q
) ∈

Gq+1
1 , since this is a polynomial of degree q − 1.

One can note that for each pair (σ1 = (g
∏q

i 6=j(x+wi))tj , σ2 = (ga)tj ), if one sets h ← σ1, then
σ2 = hx

′+wjy
′
1 , with h a random group element, since tj is random and non-zero. Hence, (σ1, σ2) is

a valid signature of the message wj .

Eventually, A outputs a forgery σ∗ = (σ∗1, σ
∗
2) on a message w 6= wj , for j = 1, . . . , q. Since σ∗

must be valid, we have e(σ∗1, X̃ · Ỹ w
1 ) = e(σ∗2, g̃), and so e(σ∗1, g

a(x+w)) = e(σ∗2, g̃
∏q

i=1(x+wi)): (σ∗1, σ
∗
2)

is of the form (h
1

x+w , h
a∏q

i=1
(x+wi) ), for some h ∈ G∗1. Let P (X) =

∏q
i=1(X + wi). Since w 6= wi the

polynomial X + w and P (X) are relatively prime. Therefore, (w,P, σ∗1, σ
∗
2) is a valid answer to the

q-MSDH-1 challenge. Since C never aborts, its probability of success is essentially the same as the
one of A. ut

5.2 Proof of Theorem 11

Actually, the proof is very similar to the previous one: we can show that the EUF-wCMA security
of the single-message PS signature scheme implies the EUF-CMA security of the r-vector message
modified PS signature scheme, under the SDL assumption, which is already implied by the q-MSDH-1
assumption.
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More specifically, two cases can appear between the signed messages m(j) = (m
(j)
1 , . . . ,m

(j)
r )

and m′(j) for j = 1, . . . , q and the output message m∗ = (m∗1, . . . ,m
∗
r) and m′∗: either

∑r
i=1 yim

∗
i +

yr+1m
′∗ 6=

∑r
i=1 yim

(j)
i + yr+1m

′(j) mod p for all j = 1, . . . , q, or not.

In the former case (i.e., with non-negligible probability,
∑r

i=1 yim
∗
i + yr+1m

′∗ 6=
∑r

i=1 yim
(j)
i +

yr+1m
′(j) mod p for all j), the challenger C generates, from a q-MSDH-1 instance, as in the previous

proof, a public key pk = (g, g̃, X̃, Ỹ1) along with valid signatures (σ(j) = (σ
(j)
1 , σ

(j)
2 )) for the single-

message PS signature scheme on randomly chosen messages (w1, . . . , wq). Next, it extends the public

key to pk′ = (g̃, X̃, Ỹ1, Ỹ2, . . . , Ỹr+1) with Ỹi ← Ỹ ui
1 , for ui

$← Z∗p, for i = 2, . . . , r + 1. This implicitly
defines sk′ ← (x, y1, y2 = u2y1, . . . , yr+1 = ur+1y1).

For the j-th signing query m(j) = (m
(j)
1 , . . . ,m

(j)
r ), the challenger C sets m′(j) ← u−1r+1(wj −∑r

i=1 uim
(j)
i ) mod p (with u1 = 1). Since y1wj =

∑r
i=1 y1uim

(j)
i + y1ur+1m

′(j) =
∑r

i=1 yim
(j)
i +

yr+1m
′(j) mod p, the tuple (m′(j), σ

(j)
1 , σ

(j)
2 ) is a valid signature of m(j) = (m

(j)
1 , . . . ,m

(j)
r ).

From a forgery σ∗ = (m′∗, σ∗1, σ
∗
2) on an r-vector message m∗ = (m∗1, . . . ,m

∗
r) that is different

from any m(j), we additionally know that, if one sets w∗ ←
∑r

i=1 uim
∗
i + ur+1m

′∗ mod p, y1w
∗ 6=

y1wj mod p, for j = 1, . . . , q. Hence, (σ∗1, σ
∗
2) is a valid forgery for the new message m∗ under the

single-message PS signature scheme, which leads to an attack against the q-MSDH-1 assumption:
for P (X) =

∏q
i=1(X + wi), (w∗, P, σ∗1, σ

∗
2) is a valid answer to the q-MSDH-1 challenge.

In the latter case (i.e., with non-negligible probability
∑r

i=1 yim
∗
i + yr+1m

′∗ =
∑r

i=1 yim
(j)
i +

yr+1m
′(j) mod p for some j): the challenger C generates, from an SDL instance (g, Y = gy, g̃, Ỹ = g̃y),

a public key: it chooses a random scalar x, and random scalars ai, bi, for i = 1, . . . , r+1, to set X̃ = g̃x

and Ỹi = g̃ai Ỹ bi , which implicitly sets yi = ai+ybi. For the j-th signing query m(j) = (m
(j)
1 , . . . ,m

(j)
r ),

the challenger C chooses m′(j)
$← Zp, and sets σ

(j)
1 ← gtj and σ

(j)
2 ← (gx+

∑r
i=1 aim

(j)
i +ar+1m′(j) ×

Y
∑r

i=1 bim
(j)
i +br+1m′(j))tj , which is equal to (σ

(j)
1 )x+

∑r
i=1 yim

(j)
i +yr+1m′(j) . This is thus a valid signature

of m(j).
In case of forgery,

∑r
i=1 yim

∗
i+yr+1m

′∗ =
∑r

i=1 yim
(j)
i +yr+1m

′(j) mod pmeans g̃
∑r

i=1 aim
(j)
i +ar+1m′(j)×

Ỹ
∑r

i=1 bim
(j)
i +br+1m′(j) = g̃

∑r
i=1 aim

∗
i+ar+1m′∗ × Ỹ

∑r
i=1 bim

∗
i+br+1m′∗ and thus

g̃
∑r

i=1 ai(m
∗
i−m

(j)
i )+ar+1(m′∗−m′(j)) = Ỹ

∑r
i=1 bi(m

(j)
i −m

∗
i )+br+1(m′(j)−m′∗).

Since the bi’s are random (hidden by the ai’s in the yi’s),
∑r

i=1 bi(m
(j)
i −m∗i ) + br+1(m

′(j) −m′∗) =
0 mod p with probability 1/p. Excepted in this unlikely case, one breaks the SDL problem.

As a consequence, none of the two cases can happen with non-negligible probability. ut

Remark 13. Pointcheval and Sanders also introduced in [PS16] a variant of their signature scheme
which allows to sign committed messages. Such a variant requires to add a tuple (g, {Yi = gyi}i), for

a generator g
$← G∗1 in the public key. In the previous security proofs, the element g was generated

as g
∏q

i=1(x+wi), while the secret value y′1 was implicitly set as a∏q
i=1(x+wi)

. Therefore the element ga

provided in a q-MSDH-1 instance is exactly the element Y1. The pair (g, Y1) can then be extended
to Yi’s the same way the Ỹi’s are generated from (g̃, Ỹ1). As a consequence, our modified scheme still
supports this essential feature, and the security still relies on the q-MSDH-1 assumption only (the
second case in the above proof leads to an attack against the SDL problem).

6 The Camenisch-Lysyanskaya Signatures

6.1 The Basic Camenisch-Lysyanskaya Signature Scheme

The Camenisch-Lysyanskaya (CL) signature scheme was introduced in [CL04]. We here recall the
version (denoted C in their paper) allowing to sign r-vector messages:

– Setup(1k): Given a security parameter k, this algorithm outputs pp ← (p,G1,GT , e), for a
bilinear group of type 1. In the following, we denote G∗1 = G1\{1G1};
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– Keygen(pp): This algorithm selects g
$← G∗1 and (x, y1, . . . , yr)

$← (Z∗p)r+1, computes (X,Y1, . . . ,
Yr)← (gx, gy1 , . . . , gyr), and sets sk← (x, y1, . . . , yr) and pk← (g,X, Y1, . . . , Yr);

– Sign(sk,m = (m1, . . . ,mr)): This algorithm selects a random σ1 = h
$← G∗1 and computes the

following elements:

σi ← σyi1 , for i = 2, . . . , r; τi ← σy1i , for i = 1, . . . , r; µ← σx1

r∏
i=1

σx·y1·mi
i .

It then returns the signature σ = ({(σi, τi)}ri=1, µ);
– Verify(pk,m = (m1, . . . ,mr), σ): This algorithm parses σ as ({(σi, τi)}ri=1, µ) and checks if all

the following equations hold:

e(σ1, Yi) = e(σi, g), for i = 2, . . . , r and e(σi, Y1) = e(τi, g), for i = 1, . . . , r

e(σ1

r∏
i=1

τmi
i , X) = e(µ, g).

If this is the case, then it outputs 1. Else, it returns 0.

The main feature is the randomizability of the signature. The unforgeability (EUF-CMA) has been
proven to hold [CL04], under the LRSW assumption that is interactive. However, the weaker security
notion EUF-wCMA can be proven under the q-MSDH-2 assumption (the proof can be found in
Section 6.3):

Theorem 14. The basic CL signature scheme achieves EUF-wCMA security under the q-MSDH-2
assumption, where q is a bound on the number of messages asked by the adversary to get signed.

For the EUF-CMA security level, one has to do a similar modification as for the PS signature scheme.

6.2 The Modified Camenisch-Lysyanskaya Signature Scheme

Here again, the idea is to sign the vector m = (m1, . . . ,mr) with an additional component m′.
Contrarily to the case of PS signatures, this adds two elements of G1 to σ. This is due to the fact
that the latter is linear in the number of messages to be signed. Signing m′ thus increases further
the size of the signature but this may be considered as a reasonable trade-off to avoid the interactive
LRSW assumption, for achieving EUF-CMA.

– Setup(1k): Given a security parameter k, this algorithm outputs pp ← (p,G1,GT , e), for a
bilinear group of type 1. In the following, we denote G∗1 = G1\{1G1};

– Keygen(pp): This algorithm selects g
$← G1 and (x, y1, . . . , yr+1)

$← (Z∗p)r+2, computes (X,Y1, . . . ,
Yr+1)← (gx, gy1 , . . . , gyr+1), and sets the keys sk← (x, y1, . . . , yr+1) and pk← (g,X, Y1, . . . , Yr+1);

– Sign(sk,m = (m1, . . . ,mr)): This algorithm selects random σ1 = h
$← G∗1 and m′

$← Zp, and
computes the following elements:

σi ← σyi1 , for i = 2, . . . , r + 1 and τi ← σy1i , for i = 1, . . . , r + 1

µ← σx1 · σ
x·y1·m′
r+1 ·

r∏
i=1

σx·y1·mi
i .

It then returns the signature σ = (m′, {(σi, τi)}r+1
i=1 , µ);

– Verify(pk,m = (m1, . . . ,mr), σ): This algorithm first parses the signature σ as (m′, {(σi, τi)}r+1
i=1 , µ)

and checks if all the following equations hold:

e(σ1, Yi) = e(σi, g), for i = 2, . . . , r + 1

e(σi, Y1) = e(τi, g), for i = 1, . . . , r + 1

e(σ1 · τm
′

r+1 ·
r∏
i=1

τmi
i , X) = e(µ, g).

If this is the case, then it outputs 1. Else, it returns 0.
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But as above for the PS signatures (see Section 4.3), one looses the full-randomizability, since m′

cannot be re-randomized. One can again get both randomizability and shorter signatures at once
by using a hash function H onto Zp: m′ ← H(m). In any case, the randomness provided by the
additional message (either m′ or the hash value) allows to prove the unforgeability of this modified
CL signature scheme under a non-interactive assumption. This is formally stated by the following
theorem (the proof can be found in Section 6.3):

Theorem 15. The modified CL signature scheme achieves EUF-CMA security under the q-MSDH-2
assumption, where q is a bound on the number of adaptive signing queries.

6.3 New Security Proofs for CL Signatures

For both security proofs of either EUF-wCMA of the basic CL signature scheme1 or EUF-CMA
of the modified CL signature scheme, the output forgery σ∗ = (m′∗, {(σ∗i , τ∗i )}r+1

i=1 , µ
∗) on m∗ =

(m∗1, . . . ,m
∗
r) can be of two types:

– Type 1 forgeries: for some signature (m′, {(σi, τi)}r+1
i=1 , µ) returned by the signing oracle, for an

adversarially chosen message m = (m1, . . . ,mr), we have

gm1 · Y m′
r+1 ·

r∏
i=2

Y mi
i = gm

∗
1 · Y m′∗

r+1 ·
r∏
i=2

Y
m∗i
i ;

– Type 2 forgeries: for any signature (m′, {(σi, τi)}r+1
i=1 , µ) returned by the signing oracle, for an

adversarially chosen message m = (m1, . . . ,mr), we have

gm1 · Y m′
r+1 ·

r∏
i=2

Y mi
i 6= gm

∗
1 · Y m′∗

r+1 ·
r∏
i=2

Y
m∗i
i .

We will show that, in both proofs, the two types of forgery lead to an attack against either the DL
problem or the q-MSDH-2 problem.

Type 1 Forgeries. From a DL instance (g, gx), the challenger C selects random pairs of non-zero
scalars in Z∗p, (u, y1) and (αi, βi) for i = 2, . . . , r and defines the public key pk = (g,X ← gu, Y1 ←
gy1 , Y2 ← (gx)α2 · gβ2 , . . . , Yr ← (gx)αr · gβr), which implicitly defines the secret key sk = (x′ =
u, y1, y2 = α2 · x+ β2, . . . , yr = αr · x+ βr).

Using u, y1, and pk, the challenger C is able to generate signatures on any message submitted by
A. Indeed, for a message m = (m1, . . . ,mr)

$← Zrp, it selects a random scalar t
$← Z∗p and computes:

σ1 ← gt, σi ← Y t
i , for i = 2, . . . , r,

τi ← σy1i , for i = 1, . . . , r, µ← σu1

r∏
i=1

σu·y1·mi
i .

The resulting signature ({(σi, τi)}ri=1, µ) is definitely valid and correctly distributed since t is random
and non-zero.

Let σ∗ = ({(σ∗i , τ∗i )}ri=1, µ
∗) be the type 1 forgery on m∗ = (m∗1, . . . ,m

∗
r) returned by A. Since

this is a type 1 forgery, there is one of the above simulated message-signature pairs ({(σi, τi)}ri=1, µ)
for m = (m1, . . . ,mr) such that

gm1

r∏
i=2

Y mi
i = gm

∗
1

r∏
i=2

Y
m∗i
i ,

1 for a uniform notation with the modified CL signature scheme, we can just assume m′ = yr+1 = 0 and σr+1 =
τr+1 = Yr+1 = 1G1 .
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which means

m1 +

r∑
i=2

(αi · x+ βi)mi = m∗1 +

r∑
i=2

(αi · x+ βi)m
∗
i mod p,

x×
r∑
i=2

αi(mi −m∗i ) = (m∗1 −m1) +

r∑
i=2

βi(m
∗
i −mi),

Since m∗ 6= m and the αi’s are perfectly hidden to the adversary in the Yi’s, with probability 1/p,
A =

∑r
i=2 αi(mi − m∗i ) = 0 mod p. Unless this bad case happens, C can recover x and solve the

DL problem. Such a problem is included in a q-MSDH-2 instance, and from x, one can break this
instance.

Type 2 Forgeries. Let ((g, gb), (gx, gb·x), . . . , (gx
q+1
, gb·x

q+1
)) and (ga, ga·b·x) be a q-MSDH-2 instance.

Let (mj)
q
j=1 = (m

(j)
1 , . . . ,m

(j)
r )qj=1 be the set of message queries from A. For j = 1, . . . , q, we

define wj = m
(j)
1 +

∑r
i=2 yj ·m

(j)
i , where y2, . . . , yr are random scalars generated by the challenger C.

The latter then sets the public key pk = (g ← gb·x
∏q

j=1(x+wj), X ← ga·b·x, Y1 ← gb
∏q

j=1(x+wj), Y2 ←
gy2 , . . . , Yr ← gyr) which implicitly defines sk = (x′ = a∏q

j=1(x+wj)
, y1 = 1

x , y2, . . . , yr).

To generate the j-th signature on mj , C generates a random scalar t
$← Z∗p and returns (σ1, τ1)←

(gt·x
∏q

i 6=j(x+wi), gt
∏q

i 6=j(x+wi)) and (σi, τi) ← (σyi1 , τ
yi
1 ), for i = 2, . . . , r along with µ = (ga)t. This is

a valid signature on m = (m1, . . . ,mr)
2 under pk since:

e(σ1, Yi) = e(σ1, g
yi) = e(σyi1 , g) = e(σi, g), for i = 2, . . . , r;

e(σ1, Y1) = e(gt·x
∏q

i 6=j(x+wj), Y1) = e(gt
∏q

i 6=j(x+wj), Y x
1 ) = e(τ1, g);

e(σi, Y1) = e(σyi1 , Y1) = e(σ1, Y1)
yi = e(τ1, g)yi = e(τyi1 , g) = e(τi, g),

for i = 2, . . . , r;

e(σ1

r∏
i=1

τmi
i , X) = e(σ1 · τm1

1 · τ
∑r

i=2 yimi

1 , X) = e(τx1 · τ
wj

1 , ga·b·x)

= e(gt
∏q

i (x+wi), ga·b·x) = e(gt·a, gb·x·
∏q

i (x+wi))

= e(gt·a, g) = e(µ, g).

Moreover, the signature is correctly distributed since t is random and non-zero.
Let σ∗ = ({(σ∗i , τ∗i )}ri=1, µ

∗) be the type 2 forgery on m∗ = (m∗1, . . . ,m
∗
r) returned by A. The

validity implies that

e(σ∗1, Yi) = e(σ∗i , g), for i = 2, . . . , r

e(σ∗i , Y1) = e(τ∗i , g), for i = 1, . . . , r

e(σ∗1

r∏
i=1

(τ∗i )mi , X) = e(µ∗, g).

Therefore, we have: σ∗i = (σ∗1)yi , for i = 2, . . . , r and σ∗i = (τ∗i )x, for i = 1, . . . , r. So the last verifi-
cation equation can be rewritten as:

e((σ∗1)1+
m∗1+

∑r
i=2 yim

∗
i

x , ga·b·x) = e(µ∗, gb·x
∏q

j=1(x+wj)).

This means that (µ∗)
x
∏q

j=1
(x+wj)

a = (σ∗1)(x+m
∗
1+

∑r
i=2 yi·m∗i ). Let us set w = m∗1 +

∑r
i=2 yi · m∗i , for

h = (σ∗1)x+w, we then have σ∗1 = h
1

x+w and µ∗ = h
a

x
∏q

j=1
(x+wj) . Since this is a type 2 forgeries,

2 We remove the superscript (j) in the following to simplify the notations.
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w 6= m1 +
∑r

i=2 yi · mi = wj mod p, for j = 1, . . . , q. Therefore, the polynomials X + w and
X

∏
j=1(X + wj) are relatively prime, which means that (w,P, σ∗1, µ

∗) is a valid solution to the
q-MSDH-2 instance.

Remark 16. One can note that the forgery returned by A contains τ1 such that τ1 = σ
1
x
1 . This means

that the challenger is also able to return h
1

x(x+w) , which can be useful if one wants to rely on the
assumption described in remark 8.

Proof of Theorem 15. This proof is quite similar to the previous one, except that the last
component m′ allows to replace fixed signing queries by adaptively-chosen messages in the type 2
forgery case. Indeed, C now generates random wj to construct the public key and answers the j-th
signing query m = (m1, . . . ,mr) by setting m′ ← wj−m1−

∑r
i=2 yi·mi, which is also random-looking,

if wj is randomly chosen.

7 Conclusion

In this paper, we have provided a new security assessment of CL and PS signatures. Our results
prove that the interactive assumptions of the original evaluations [CL04,PS16] can easily be avoided,
assuming a slight modification of the constructions. They can indeed be replaced by some simple
variants of the q-SDH assumption [BB04] that we analyze in the generic bilinear group model.

Our work thus shows that CL and PS schemes offer the same level of confidence than those already
relying on q-type assumptions. In particular, this proves that the use of these signatures should no
longer be considered as a trade-off between efficiency and security and so that it is possible even in
a sensitive context (e.g. electronic payment).
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A Hardness in the Generic Bilinear Group Model

A.1 Proof of Theorem 5

Let (g, gx, . . . , gx
q
) ∈ Gq+1

1 , (g̃, g̃x, . . . , g̃x
q
) ∈ Gq+1

2 and (ga, g̃a, g̃a·x) ∈ G1 × G2
2 be a q-MSDH-1

instance. We recall that the goal of the adversary is to return a tuple (w,P, h
1

x+w , h
a

P (x) ) for some
h ∈ G∗1 where P and w are such that P (X) and X + w are relatively prime.

In the generic bilinear group model, the adversary A can obtain new elements only through
queries to group operations (addition of the scalar exponents) or pairing (multiplication of the scalar

exponents) oracles. Since we consider pairings of type 3, the elements h
1

x+w and h
a

P (x) returned by
A can only be combinations of ga and gx

i
for i = 0, . . . , q. So, the q-MSDH-1 assumption holds if it

is not possible to find scalars (u, u′) and {(vi, v′i}
q
i=0, such that:

h
1

x+w = (ga)u
q∏
i=0

(gx
i
)vi h

a
P (x) = (ga)u

′
q∏
i=0

(gx
i
)v
′
i .

Let r be defined by h = gr. Then the previous equations are equivalent to:

gr = [(ga)u
q∏
i=0

(gx
i
)vi ]x+w ga·r = [(ga)u

′
q∏
i=0

(gx
i
)v
′
i ]P (x).

In the following, we associate each group element of G1 with polynomials whose formal variables
are the unknown scalars involved in the q-MSDH1 challenge, namely x and a. We first prove that no
adversary is able to symbolically produce a valid tuple and then show that an accidental validity is
very unlikely.

From the previous relations we get:

a(x+ w)[a · u+

q∑
i=0

vi · xi] = P (x)[a · u′ +
q∑
i=0

v′i · xi].

By considering each member of this equation as a polynomial in the variable a:

(i) u = 0 (ii) (x+ w)(

q∑
i=0

vi · xi) = u′ · P (x) (iii)

q∑
i=0

v′i · xi = 0.

The second equation implies that (x + w) divides P (x), which is impossible since these two
polynomials are assumed to be relatively prime. Therefore, u′ = (

∑q
i=0 vi ·xi) = 0, which means that

r = (x + w)[a · u +
∑q

i=0 vi · xi] = 0 and so that h = 1G1 . It is therefore impossible to symbolically

construct a tuple (w,P, h
1

x+w , h
a

P (x) )
Now, let us evaluate the probability that two different polynomials involved in the answers of

the different oracles evaluate to the same value. The (2q + 5) elements provided in the q-MSDH-1
challenge are associated with polynomials of degree at most q. Therefore, the polynomials resulting
from oracle queries are of degree at most 2q due to the pairing computation. After Q oracle queries
there are then at most (2q + 5 + Q)2/2 pairs of such polynomials that could evaluate to the same
value. By the Schwartz-Zippel, such an event occurs with probability q(2q + 5 + Q)2/p, which is
negligible.

A.2 Proof of Theorem 7

Let ((g, gb), (gx, gb·x), . . . , (gx
q+1
, gb·x

q+1
)) and (ga, ga·b·x) be a q-MSDH-2 instance. We recall that the

goal of the adversary is to return a tuple (w,P, h
1

x+w , h
a

x·P (x) ) for some h ∈ G∗1 where P and w are
such that P (X) and X + w are relatively prime.

This proof is very similar to the previous one since the q-MSDH-1 and q-MSDH-2 assumptions
provides almost the same elements in G1. Again, we define r as the element such that h = gr, which
gives us the following polynomial relations in the variables x, a and b:
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1. r = (x+ w)(u1,1 · a+ u1,2 · a · b · x+
∑q

i=0 v1,i · xi +
∑q

i=0 v
′
1,i · b · xi)

2. r · a = x · P (x)(u2,1 · a+ u2,2 · a · b · x+
∑q

i=0 v2,i · xi +
∑q

i=0 v
′
2,i · b · xi)

for some scalars {uj,1, uj,2, vj,i, v′j,i}
j=2,i=q+1
j=1,i=0 . These equations give us:

a(x+ w)(u1,1 · a+ u1,2 · a · b · x+
∑q

i=0 v1,i · xi +
∑q

i=0 v
′
1,i · b · xi) =

x · P (x)(u2,1 · a+ u2,2 · a · b · x+
∑q

i=0 v2,i · xi +
∑q

i=0 v
′
2,i · b · xi)

If we consider each member as a polynomial in a, we can conclude that:

– (x+ w)(u1,1 + u1,2 · b · x) = 0
– (x+ w)(

∑q
i=0 v1,i · xi +

∑q
i=0 v

′
1,i · b · xi) = x · P (x)(u2,1 + u2,2 · b · x)

–
∑q

i=0 v2,i · xi +
∑q

i=0 v
′
2,i · b · xi = 0 (∗)

Now, if we focus on the second equation we can note that each member is a polynomial of degree
1 in b, which implies that:

– (x+ w)
∑q

i=0 v1,i · xi = u2,1 · x · P (x)
– (x+ w)

∑q
i=0 v1,i · b · xi = u2,2 · x2 · P (x)

Since w 6= 0, each of these equations implies that (x+w) divides P (x), which is impossible since
these polynomials are relatively prime. Therefore, we have u2,1 = u2,2 = 0 which, together with
relation (∗), implies that r = 0. It is therefore impossible to symbolically produce a valid answer to
the q-MSDH-2 problem.

It now remains to evaluate the probability of an accidental equality when evaluating the different
pairs of polynomials. The q-MSDH-2 assumption provides 2q + 6 elements which can be associated
with polynomials of degree at most q + 1. Each of the Q oracle queries leads then to a polynomial
of degree at most 2(q + 1). By the Schwartz-Zippel lemma, one can conclude that the probability
that two pairs, among the (2q + 6 +Q)2/2 possible ones, evaluate to the same value is smaller than
(q + 1)(2q + 6 +Q)2/p, which is negligible.


	Reassessing Security of Randomizable Signatures

