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Abstract. A recent paper by Costello and Hisil at Asiacrypt’17 presents efficient formulas for
computing isogenies with odd-degree cyclic kernels on Montgomery curves. We provide a con-
structive proof of a generalization of this theorem which shows the connection between the shape
of the isogeny and the simple action of the point (0, 0). This generalization removes the restric-
tion of a cyclic kernel and allows for any separable isogeny whose kernel does not contain (0, 0).
As a particular case, we provide efficient formulas for 2-isogenies between Montgomery curves
and show that these formulas can be used in isogeny-based cryptosystems without expensive
square root computations and without knowledge of a special point of order 8. We also consider
elliptic curves in triangular form containing an explicit point of order 3.
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1 Introduction

Ever since their introduction to public-key cryptography by Miller [19] and Koblitz [16],
elliptic curves have been of interest to the cryptographic community. By using the group
of points on an appropriately chosen elliptic curve where the discrete logarithm problem is
assumed to be hard, many standard protocols can be instantiated. Most notably, the Diffie–
Hellman key exchange [11] and the Schnorr signature scheme [23] and its variants [1,4] allow
for efficient implementations with high security and small keys. The efficiency of these curve-
based algorithms is largely determined by the scalar multiplication routine, and as a result a
lot of research has gone into optimizing this operation.

However, the threat of large-scale quantum computers has initiated the search for alterna-
tive algorithms that also resist quantum adversaries (which the classical curve-based systems
do not [24]). Building on the work of Couveignes [10] and Rostovsev and Stolbunov [22], in
2011 Jao and De Feo [15] proposed supersingular isogeny Diffie–Hellman (SIDH) as a key ex-
change protocol offering post-quantum security. Being based on the theory of elliptic curves,
SIDH inherits several operations from traditional curve-based cryptography. As such, it has
immediately benefited from decades of prior research into optimizing their operations. In par-
ticular, the Montgomery form of an elliptic curve has resulted in great performance. Initially
proposed by Montgomery to speed up factoring using ECM [20,18] and having been used
for very efficient Diffie–Hellman key exchange (eg. Bernstein’s Curve25519 [2]), the current
fastest instantiations of SIDH also employ Montgomery curves [9,17]. But, although the op-
timizations for scalar multiplication immediately carry over, the work on computing explicit
isogenies on Montgomery curves is more limited.

This work has been supported by the Technology Foundation STW (project 13499 – TYPHOON & ASPA-
SIA), from the Dutch government.



For isogeny computations one commonly uses Vélu’s formulas [27]. However, if the elliptic
curve has a form which is less general than (or different from) Weierstrass form, the formulas
from Vélu are not guaranteed to preserve this. As isogenies are only unique up to isomorphism,
one can post-compose with an appropriate isomorphism to return to the required form, but
it may not be obvious with which isomorphism, or the isomorphism may be expensive to
compute. A more elegant approach is to observe some extra structure on the curve model and
require the isogenies to preserve this. For example, Moody and Shumow [21] apply this idea
to Edwards and Huff curves by fixing certain points. Moreover, since the isogeny is invariant
under addition by kernel points, there is a close connection between the isogeny and the action
(by translation) of some chosen point. We make this more explicit in Proposition 1 for curves
in Weierstrass form.

So far the approaches for obtaining formulas for isogenies on Montgomery have been rather
ad hoc. In [12], De Feo, Jao and Plût apply Vélu’s formulas and compose with the appropriate
isomorphisms to return to Montgomery form. As noted in [12, §4.3.2], this approach fails to
produce efficient results for 2-isogenies. That is, either one has to compute expensive square
roots in a finite field (see eg. [7, §3.1]), or one relies on having an appropriate point of order
8. However, this point of order 8 is not readily available for the final two 2-isogenies. As
one suggested workaround in [12] they derive formulas for 4-isogenies between two curves
in Montgomery form and propose to compute 2e-isogenies as a chain of 4-isogenies. As a
result, optimized SIDH implementations [8,17] have employed curves where e is even so that
2e-isogenies can be comprised entirely of 4-isogenies. In [6], Costello and Hisil present elegant
formulas for Montgomery isogenies of odd degree, but their theorem covers only the case of
odd cyclic kernels and subsequently also does not address the case of 2-isogenies. Moreover,
there is no justification for the derivation of these isogenies (except for showing that they
work).

We bridge this gap by providing a more thorough analysis on isogenies between Mont-
gomery curves. We show that the isogenies arising in [6] are exactly those fixing (0, 0). Since we
enforce the isogeny to fix (0, 0), this point cannot be in the kernel. We show in Proposition 2
that this is the only restriction, and as a result present a generalization of [6, Theorem 1].
As a special case, we obtain formulas for 2-isogenies for 2-torsion points other than (0, 0).
We then show that this point can be naturally avoided in well-designed isogeny-based cryp-
tosystems (see §4.3), and discuss the application of the 2-isogeny formulas to isogeny-based
cryptosystems.

Finally, although so far it does not give rise to faster isogeny formulas, we consider it
worthwhile to point out that same techniques immediately apply to other models. In partic-
ular, models derived from the Tate Normal Form [14, §4.4], where one could expect to get
simple `-isogenies for ` ≥ 3. We work out the case ` = 3, also known as the triangular form [3],
and derive isogenies by again fixing the action of the special point (0, 0).

Organization. We begin by recalling some background on elliptic curves, isogenies and SIDH
in §2. We state a proposition in §3 that allows to describe an isogeny in terms of the abscissas
of its kernel points and their translations by a chosen point Q. We apply this to Montgomery
curves in §4 and to curves in triangular form in §5, in both cases using Q = (0, 0).
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2 Preliminaries

An elliptic curve E defined over a field K is by definition [25,13] the curve

E / K : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ + a6Z
3 ,

where a1, a2, a3, a4, a6 ∈ K such that E is non-singular. It is embedded into P2 with a single
point OE = (0 : 1 : 0) on the line Z = 0. This form is commonly referred to as Weierstrass
form and the specified base point (implicitly) is OE . On the open patch defined by Z 6= 0 we
can set x = X / Z and y = Y / Z and work on the corresponding affine curve inside A2 given
by

E / K : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 .

We can move back to the projective curve by mapping (x, y) 7→ (x : y : 1). Therefore, although
many equations are given in affine coordinates, they can easily be transformed into projective
ones. For any extension L /K, the set of L-rational points E(L) forms a group with identity
OE [25, Prop. 2.2(f)]. A subgroup G ⊂ E(K̄) is said to be defined over K if σ(P ) ∈ G for all
σ in the Galois group Gal(K̄ / K).

Isogenies. Let E and Ẽ be elliptic curves. An isogeny φ from E to Ẽ is a morphism such
that φ(OE) = O

Ẽ
[25, §III.4]. The (finite) degree d of an isogeny is its degree as a morphism,

and we say an isogeny is separable if # ker(φ) = d. In this paper every isogeny that appears
is assumed to be separable. Given a finite subgroup G ⊂ E(K̄) defined over K, there exist
a curve Ẽ and an isogeny φ : E → Ẽ such that ker(φ) = G [13, Theorem 9.6.19]. The curve
Ẽ is unique up to isomorphism (over K̄) and the isogeny φ is unique up to post-composition
with an isomorphism. The isogeny φ can be made explicit by using Vélu’s formulas [27] (for
some fixed choice for the isogeny).

Montgomery form. Setting a1 = a3 = a6 = 0 and a4 = 1 gives a curve in the form
E : y2 = x3 + ax2 + x. We also consider curves in the form by2 = x3 + ax2 + x, better known
as Montgomery form. Over K̄ these two curve forms are isomorphic via (x, y) 7→ (x, y

√
b),

but this isomorphism is only defined over K if
√
b ∈ K. In particular, if K = Fq and

√
b /∈ K

then we call this curve a (non-trivial) quadratic twist. An easy check shows that Q = (0, 0) is
a K-rational point of order 2, while for any Q4 ∈ E(K̄) we have that [2]Q4 = Q if and only if

Q4 ∈ {(1,±
√

(a+ 2)/b) , (−1,±
√

(a− 2)/b)}

If P is any point of order 2 other than Q, then x2P + axP + 1 = 0.

Tate Normal Form. Suppose we are given a curve E/K containing a point P of prime order
` ≥ 3. We can move P to (0, 0) and its tangent line to the line y = 0. This transformation is
completely K-rational and puts the curve in Tate Normal Form [14, §4.4]

y2 + axy + by = x3 + cx2 , a, b, c ∈ K .

In §5 we focus on the case where ` = 3, in which case c = 0 and b 6= 0. Moreover, if b = β3,
then the transformation (x, y) 7→ (x / β2, y / β3) lets us assume that b = 1 and thus gives the
form

E / K : y2 + axy + y = x3 .
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Note that β is not necessarily defined over K. However, Proposition 5 shows that once we start
on such a curve, the 3-isogenies will preserve this form. It has discriminant ∆(E) = a3 − 27
and has a subgroup {OE , (0, 0), (0,−1)} of order 3. The point (0, 0) acts on points outside
this subgroup by

(x, y) + (0, 0) =

(
−y
x2
,
−y
x3

)
.

This curve is known as a triangular curve [3] and is isomorphic to the twisted Hessian curve [3,
Theorem 5.3]

(a3 − 27)x3 + y3 + 1 = 3axy .

SIDH. Let eA, eB, f ∈ Z≥0 such that p = f · `AeA · `BeB − 1 is prime. For K = Fp2 we can
then find a supersingular curve E [5] such that

#E(K) = (p+ 1)2 ,

E(K)[`A
eA ] = (Z / `AeAZ)2 ,

E(K)[`B
eB ] = (Z / `BeBZ)2 .

By having the two parties compute isogenies of degree `A
eA resp. `B

eB and composing these
we can define a Diffie–Hellman-like key exchange algorithm [12, §3.2]. Since these degrees are
exponentially large, they cannot be computed directly by polynomial evaluation. Instead, we
decompose an `A

eA-isogeny as a sequence of eA `A-isogenies, which are efficiently computable
for small `A [12, §4] (typically `A ∈ {2, 3}). Focusing on one of the sides, the secret key is
a tuple (γ, δ) ∈ (Z / `A

eAZ)2 where not both γ and δ are divisible by `A. Fixing a basis
E(K)[`A

eA ] = 〈P,Q〉, this corresponds to an isogeny with kernel 〈[γ]P + [δ]Q〉. As the kernel
is determined by its generator up to some invertible scalar multiple, and since at least one of
the two scalars must be invertible, all keys can either be put in the form (1, δ) or (γ, 1).

3 Isogenies on Weierstrass curves

We begin by stating a straightforward, but rather useful proposition. By assuming to have
knowledge on the action of an isogeny on a single point Q, we can translate this point by
elements of the kernel to obtain a simple description of the isogeny. Many curve models have
a natural choice for this point (eg. Q = (0, 0) in Montgomery form, see §4).

Proposition 1. Let K be a field and E/K an elliptic curve in Weierstrass form. Let G ⊂
E(K̄) be a finite subgroup defined over K and

φ : (x, y) 7→ (f(x), c0 · y · f ′(x) + g(x)) , c0 ∈ K̄∗ , (1)

a separable isogeny such that ker(φ) = G. Let Q ∈ E(K̄) such that Q /∈ G. Then

f(x) = c1 · (x− xQ) ·
∏

T∈G\{OE}

(x− xQ+T )

(x− xT )
+ f(xQ) , for c1 ∈ K̄∗ .

Proof. First note that the existence of φ follows from Vélu’s formulas [27], while a standard
result [13, Theorem 9.7.5] shows that it can be written in the form of Equation (1) (where
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f ′(x) is the formal derivative df / dx of f(x)). More explicitly, following the notation of [13,
Theorem 25.1.6], there exist functions u, t : G \ {OE} → K̄ such that

f(x) = x+
∑

T∈G1∪G2

(
t(T )

x− xT
+

u(T )

(x− xT )2

)
,

where G2 ⊂ G is the set of points of order 2 and G1 ⊂ E(K̄) is such that

G = {OE} ∪G2 ∪G1 ∪ {−T : T ∈ G1} .

Moreover, u(T ) = 0 if and only if T has order 2. Collecting denominators, it is then immediate
that there exists a function w ∈ K̄[x] such that deg(w) = |G| and

f(x) =
w(x)

v(x)
, where v(x) =

∏
T∈G\{OE}

(x− xT ) .

Now define
h(x) = w(x)v(xQ)− w(xQ)v(x) ,

so that h(x) = 0 if and only if f(x) = f(xQ). Note that clearly h(xQ) = 0. Since the value of
f is invariant under the action of points in G, we in fact have that h(xQ+T ) = 0 for all T ∈ G.
Therefore it follows that (x−xQ+T ) | h(x) for any T ∈ G. As deg(h) ≤ max(deg(w), deg(v)) =
|G|, there exist a constant c ∈ K∗ such that

h(x) = c ·
∏
T∈G

(x− xQ+T ) .

Thus,

f(x) =
w(x)

v(x)
=

h(x)

v(x)v(xQ)
+ f(xQ) .

The result follows by setting c1 = c / v(xQ). ut

Remark 1. Proposition 1 shows the connection between φ and the action of the point Q on
abscissas of kernel elements, as φ is given by a product of functions

x− xQ+T

x− xT
.

If this action is simple (eg. in Montgomery form where x(0,0)+T = 1 / xT ) then we can expect
simple formulas for isogenies.

Remark 2. By relying on Proposition 1 we simplify the proof compared to earlier works [21,6].
Whereas those works present rational maps and prove them to be isogenies, we turn this
argument around. We assume the existence of the isogeny (by Vélu’s formulas) and apply
appropriate isomorphisms to enforce some structure to be maintained (eg. (0, 0) 7→ (0, 0) in
Montgomery form). We can then apply Proposition 1 to get formulas for the isogeny up to
some constants. Finally we also use the formal group law. However, as opposed to proving that
the rational functions defining the isogeny satisfy the curve relation of the co-domain curve,
we can assume them to vanish and therefore extract the constants and the coefficients of the
co-domain curve. This significantly simplifies the proof compared to earlier works (eg. [21,
Theorem 2] and [6, Theorem 1]).
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4 Montgomery form and 2-isogenies

In [6, Theorem 1] Costello and Hisil present rational maps which they prove to be isogenies
between Montgomery curves. These isogenies are not unique, and are for example different
from the formulas directly derived using Vélu’s formulas. It is immediate that the isogenies
in [6] have the property of fixing (0, 0). In §4.1 we show that this fact, together with the
co-domain curve being in Montgomery form, characterizes their formulas (up to some sign
choices). This generalizes the theorem by Costello and Hisil, by removing the restriction of
kernels being cyclic and having odd order. In particular, in §4.2 we present formulas for 2-
isogenies determined by points of order 2 other than (0, 0). Until now these had not appeared,
and were considered to require the computation of a square root. In §4.3 we show how one
could apply these formulas in an implementation. Although it requires only a modest change
to the parameters, this does require care and can simplify the implementation. Finally in §4.4
we comment on a comparison to the state-of-the-art.

4.1 The general formula

We begin by stating Proposition 2, which is the analogue of [6, Theorem 1].

Proposition 2. Let K be a field with char(K) 6= 2. Let a ∈ K such that a2 6= 4 and E/K :
y2 = x3 + ax2 + x is a Montgomery curve. Let G ⊂ E(K̄) be a finite subgroup such that
(0, 0) /∈ G and let φ be a separable isogeny such that ker(φ) = G. Then there exist a curve
Ẽ/K : y2 = x3 +Ax2 + x such that, up to post-composition by an isomorphism,

φ : (x, y) 7→ (f(x), c0 · y · f ′(x))

where

f(x) = x ·
∏

T∈G\{OE}

xxT − 1

x− xT
.

Moreover, writing

π =
∏

T∈G\{OE}

xT , σ =
∑

T∈G\{OE}

(
xT −

1

xT

)
,

we have that A = π(a− 3σ) and c20 = π.

Proof. Over K̄ we can always move E / G to Montgomery form. Let P ∈ E(K̄) such that
xP = 1. Then [2]P = (0, 0), hence [2]φ(P ) = φ([2]P ) 6= OE/G while [4]φ(P ) = [2] (0, 0) =
OE/G. Thus φ(P ) is a point of exact order 4, and we apply an isomorphism such that xφ(P ) =

(−1)|G|−1 (see eg. [12, §4.3.2]). In particular this assures that φ : (0, 0) 7→ (0, 0). We then
twist the y-coordinate via another isomorphism to make the coefficient of y2 to be 1 and set

Ẽ = E / G : y2 = x3 +Ax2 + x .

Now apply Proposition 1 with Q = (0, 0). We obtain that

f(x) = c1 · (x− x(0,0)) ·
∏

T∈G\{OE}

(x− x(0,0)+T )

(x− xT )
+ f(x(0,0))

= c1 · x ·
∏

T∈G\{OE}

(
x− 1

xT

)
(x− xT )

.
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As we set up Ẽ such that f(1) = (−1)|G|−1, we find that

c1 =
∏

T∈G\{OE}

xT .

Feeding c1 back into the equation for f puts it in the right form. At this point it only remains
to find A and c0 (observe that g = 0 in Montgomery form [13, Theorem 9.7.5]). To this end
we utilize the formal group law, similar to [21,6].

Let t = x/y be a uniformizer at OE and write s = 1/y. By observing that s = t3+at2s+ts2

we can recursively substitute s into itself to get an expression s(t) ∈ Z[a]JtK as a power series1

s(t) = t3 + a · t5 + (a2 + 1) · t7 +O(t9)

This is well-defined, see for example [25, §IV.1]. As a result we can write

1 / s(t) = y(t) = t−3 − a · t−1 +O(t) ,

t · y(t) = x(t) = t−2 − a+O(t2) .

Let X(t) = f(x(t)). Then

X(t) = π · t−2 + π(σ − a) +O(t2) ,

dX / dt = −2π · t−3 +O(t) ,

dx / dt = −2 · t−3 +O(t) ,

(dx / dt)−1 = −t3 / 2 +O(t7) .

Now define

Y (t) = c0 · y(t) · (df / dx)

= c0 · y(t) · (dX / dt) · (dx / dt)−1 ,

so that

Y (t) = c0π · t−3 − c0aπ · t−1 +O(t) .

Writing

F (t) = Y (t)2 −
(
X(t)3 +AX(t)2 +X(t)

)
it follows that

F (t) = F−6 · t−6 + F−4 · t−4 +O(t−2) ,

with

F−6 = π2(c20 − π) , F−4 = π2
(
3π(a− σ)− ac20 −A

)
.

Now since by assumption φ is an isogeny with co-domain curve Ẽ, and since F is precisely
the equation defining Ẽ, we must have F = 0. Solving F−6 = 0 and F−4 = 0 simultaneously
leads to the desired equations for c20 and A. Note that this way we have only defined c0 up
to sign. However, the sign choice merely induces a composition with [−1] and therefore does
not affect φ up to isomorphism. ut
1 We denote by O(tn) a series whose coefficients of tm are zero for all m < n.
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Remark 3. It is perhaps not immediately obvious that Proposition 2 is a generalization of the
result by Costello and Hisil [6, Theorem 1]. Our result assumes the domain curve E to be of
the form y2 = x3+ax2+x, while their theorem also accounts for curves E0 : by2 = x3+ax2+x.
Moreover, the map itself looks slightly different. However, it is straightforward to check that
if one pre-composes with the isomorphism

ψ0 : E0 → E

(x, y) 7→ (x, y
√
b)

and post-composes with the isomorphism

ψ1 : Ẽ → E1 : By2 + x3 +Ax2 + x ,

(x, y) 7→
(
x,

y√
πb

)
then one recovers the theorem from Costello and Hisil in the case of odd-degree cyclic kernels.
Ignoring these twists in Proposition 2 simplifies the proof. For example, see Proposition 3.

Remark 4. If K = Fq is a (large-characteristic) finite field, then possibly π is a non-square

in Fq. As a result φ is not defined over Fq, and thus #E(Fq) 6= #Ẽ(Fq) by a theorem by
Tate [26, §3]. However, in that case the map

(x, y) 7→ (f(x), y · f ′(x))

is defined over Fq with co-domain curve Ẽ(t) : πy2 = x3 +Ax2 +x. This is the quadratic twist

of Ẽ which must therefore satisfy #Ẽ(t)(Fq) = #E(Fq). Since Ẽ and its twist have the same
Kummer line, we eliminate this issue by projecting to P1 (ie. by using x-only arithmetic).

Remark 5. If we set up an SIDH instance with `A = 2 and eA ≥ 2 then the x-coordinates of
points of order 2 are in fact squares. This follows from [14, Ch. 1, Thm 4.1] combined with
the doubling formulas for Montgomery curves, as noted in [7, §3.2]. Since all x-coordinates
of points with orders other than two appear twice in the equation for π, it follows that π is
actually a square. Therefore we always have #E(Fp2) = #Ẽ(Fp2), which is (implicitly) used
in formulas for public-key compression [7,28].

4.2 2-isogenies

As an immediate consequence of Proposition 2 we obtain formulas for 2-isogenies for 2-torsion
points other than (0, 0).

Proposition 3. Let K be a field with char(K) 6= 2. Let a, b ∈ K such that b 6= 0 and a2 6= 4,
and E/K : by2 = x3 + ax2 + x is a Montgomery curve. Let P ∈ E(K̄) such that P 6= (0, 0)
and [2]P = OE. Then

φ : E → Ẽ / K : By2 = x3 +Ax2 + x

(x, y) 7→ (f(x), y · f ′(x)) ,

with B = xP · b and A = 2
(
1− 2x2P

)
is a 2-isogeny with ker(φ) = 〈P 〉, where

f(x) = x · xxP − 1

x− xP
.
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Proof. This is exactly the statement in Proposition 2 composed with the isomorphisms ψ0

and ψ1 from Remark 3. The result follows by using the identity axP = −(x2P + 1) to derive
A. ut

We also compute the kernel of the dual of φ, which will be helpful in §4.3 for larger degree
isogenies.

Corollary 1. Let the setup be as in Proposition 3. Then ker(φ̂) = 〈(0, 0)〉.

Proof. Let ψ be a separable isogeny with domain Ẽ and kernel 〈(0, 0)〉. Then certainly E[2] ⊂
ker(ψ ◦ φ), and since deg(ψ ◦ φ) = 4 we in fact have E[2] = ker(ψ ◦ φ). Thus ψ = φ̂ up to
isomorphism by uniqueness of the dual isogeny, and hence ker(φ̂) = ker(ψ). ut

The statement and proof of Proposition 3 does not explain why we are able to compute
2-isogenies without explicit square roots, while earlier works [12,6] could not. We provide a
more direct computation in Remark 6 to show why this is the case.

Remark 6. In [12, §4.3.2] the authors describe a 2-isogeny with kernel (0,0) as

ϕ : E → F : by2 = x3 + (a+ 6)x2 + 4(2 + a)x

(x, y) 7→
(

(x− 1)2

x
, y

(
1− 1

x2

))
.

The coefficient of x can be removed by computing 2
√
a+ 2 and composing with the isomor-

phism

(x, y) 7→
(

x

2
√
a+ 2

,
y

2
√
a+ 2

)
,

putting F in the desired form. This requires computing a square root, which could be avoided
by having knowledge of a point of order 8 P8 =

(
2
√
a+ 2,—

)
above (0, 0). Instead, we observe

that we can compose with the isomorphism

ψ : F → G :
b√

a2 − 4
y2 = x3 − 2a√

a2 − 4
· x2 + x

(x, y) 7→
(
x+ a+ 2√
a2 − 4

,
y√

a2 − 4

)
,

which moves the kernel of ϕ̃ to (0, 0). This requires computing
√
a2 − 4 and therefore also

relies on a square root. However, if P2 = (x2, 0) is a point of order 2 on E with x2 6= 0, then
x22 + ax2 + 1 = 0. Therefore it is immediate that√

a2 − 4 = 2x2 + a ,

allowing us to compute the isomorphism efficiently. We have such a point by assumption in
Proposition 3. We can now compute φ as ψ ◦ ϕ ◦ χ, where χ is an isomorphism mapping P2

to (0, 0) (eg. [12, Equation 15]).

To provide explicit operation counts2 we move to projective space and project to P1. Let
P = (XP : 0 : ZP ) be a point of order 2 on E : bY 2Z = X3 +aX2Z+XZ2 such that XP 6= 0.

2 We denote by M, S resp. a the cost of a field multiplication, squaring resp. addition or subtraction (which
are assumed to have equal cost).
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Then by Proposition 3

φ : E → Ẽ : BY 2Z = x3 +AX2Z +XZ2

(X : — : Z) 7→ (X(XXP − ZZP ) : — : Z(XZP − ZXP ))

is a 2-isogeny with kernel 〈P 〉. We have

A = 2(Z2
P − 2X2

P ) / Z2
P ,

and to avoid inversions we represent it projectively as

(A : 1) = (2(Z2
P − 2X2

P ) : Z2
P ) .

However, the doubling formulas on Montgomery curves use (A+ 2) / 4 instead of A, and we
see that

(A+ 2 : 4) = (−X2
P : Z2

P ) .

This can be computed in 2S+ 1a, but one can easily integrate the negation into the doubling
formulas to reduce the cost to 2S. Moreover, we observe that

X(XXP − ZZP ) = X
[
(X − Z)(XP + ZP ) + (X + Z)(XP − ZP )

]
,

Z(XZP − ZXP ) = Z
[
(X − Z)(XP + ZP )− (X + Z)(XP − ZP )

]
.

This can be computed in 4M + 6a via the sequence of operations

T0 = XP + ZP , T1 = XP − ZP , T2 = X + Z , T3 = X − Z , T4 = T3 · T0 ,
T5 = T2 · T1 , T6 = T4 + T5 , T7 = T4 − T5 , T8 = X · T6 , T9 = Z · T7 .

If we assume XP +ZP and XP −ZP to be pre-computed, the cost reduces to 4M+ 4a. This
would for example apply if we require multiple evaluations of the isogeny (eg. in SIDH).

4.3 Application to isogeny-based cryptography

In the general setting it is not true that the kernels appearing in the computations cannot con-
tain the point (0, 0), so it is not clear that the 2-isogenies can immediately be used. In a similar
fashion, it is not true in general that kernels of 4-isogenies cannot contain (1,±

√
(a+ 2)/b) or

(−1,±
√

(a− 2)/b). In [8, §3] and [6] this assumption is used without justification (implicitly

by replacing ψ4 with ψ̂4). This is dealt with by using a separate function first 4 isog for the
first 4-isogeny, which is the only kernel that can contain such a point (a proof of which does
not appear). However, Lemma 1 and Corollary 2 show that we can avoid these points with
only a minor restriction on the keyspace. Applying this restriction to [8] makes the function
first 4 isog redundant, simplifying the implementation.

Lemma 1. Let e, f ∈ Z≥0 and let p = 2e · 3f − 1 be prime. Let E / Fp2 be a supersingular
elliptic curve in Montgomery form such that #E(Fp2) = (p + 1)2. Let P,Q ∈ E(Fp2) such
that E[2e] = 〈P,Q〉 and [2e−1]Q = (0, 0). Let α ∈ Z2e. Then (0, 0) /∈ 〈P + [α]Q〉.

Proof. It is clear that 〈P +[α]Q〉 can only contain a single point of order 2, namely [2e−1](P +
[α]Q). But by assumption on Q we know that [2e−1](P + [α]Q) 6= (0, 0), hence the result
follows.
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By Lemma 1 we know that we can compute the 2e-isogenies as defined in Proposition 2.
However, as the degrees grow this will quickly be impractical. Instead, we do the computations
as a sequence of 2-isogenies (ie. as in Proposition 3) [12, §4]. Therefore we must show that
none of these intermediate isogenies has a kernel generated by (0, 0).

Corollary 2. Let the setup be as in Lemma 1 and write R = P + [α]Q. Let φ be an isogeny
such that ker(φ) = 〈R〉 and suppose that we compute

φ = φe−1 ◦ · · · ◦ φ0 ,
ker(φ0) = 〈[2e−1]R〉 ,
ker(φi) = 〈

[
2e−i−1

]
φi−1 · · ·φ0 (R)〉 , (for 1 ≤ i ≤ e− 1)

as a sequence of 2-isogenies, each one computed as in Proposition 3. Then (0, 0) /∈ ker(φi) for
all 0 ≤ i ≤ e− 1.

Proof. We apply induction on i. The statement for i = 0 follows from Lemma 1. Let i > 0.
Then ker(φ̂i−1) = 〈(0, 0)〉 by induction and by Corollary 1. But since the walk determined
by φ is non-backtracking, it follows that ker(φi) 6= 〈(0, 0)〉. As # ker(φi) = 2, it follows that
(0, 0) /∈ ker(φi).

The keyspace is determined by tuples (γ, δ) which define kernels of the form 〈[γ]P + [δ]Q〉,
where not simultaneously γ ≡ 0 mod 2 and δ ≡ 0 mod 2. We can divide the space into the
three disjoint sets (of equal size)

K(i,j) = {(γ, δ) : γ ≡ i mod 2 , δ ≡ j mod 2} ,

for (i, j) ∈ {(0, 1), (1, 0), (1, 1)}. The restriction on the keyspace then corresponds exactly to
disallowing K(0,1), removing 1 / 3 of the keyspace. It is easy to see that these keys define the
isogeny walks for which the first 2-isogeny has kernel 〈(0, 0)〉. Note that this does depend
on the choice of 2e-torsion basis {P,Q}, where we choose Q to lie above (0, 0). A similar
argument applies to the use of 4-isogenies in [8].

4.4 Relating 2-isogenies and 4-isogenies

It is easy to see that the 4-isogenies from [6, Appendix A], which are currently the fastest
formulas, can be derived by applying the 2-isogenies from §4.2 twice. That is, since they have
equal kernel they are equal up to composition with an isomorphism. Both isogenies have a
Montgomery curve as co-domain, of which there are at most six per isomorphism class (by
looking at the formula for the j-invariant). Also, in both cases the dual is generated by a point
P ∈ {(1,±

√
(a+ 2)/b), (−1,±

√
(a− 2)/b)}. Therefore we can transform one into the other

by possibly composing with the simple isomorphisms (x, y) 7→ (x,−y) and (x, y) 7→ (−x, i ·y),
where i ∈ K̄ such that i2 = −1. As a result, applying the 2-isogenies twice will not have more
efficient formulas than the 4-isogenies. Indeed, if this were the case we could use the above
transformation to obtain equally fast 4-isogenies. We summarize the costs in Table 1.
Besides their theoretic value, there are some small upsides to using 2-isogenies in an implemen-
tation. Firstly, the computation leaks only a single bit as opposed to two [12, §4.3.2]. Instead

3 Many of these additions are not needed to compute (A + 2 : 4), but are used as pre-computation for the
isogeny evaluation. We provide the counts as is to align with [6] since it does not affect our comparison of
the costs of large degree isogeny evaluations.
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Operation 2-isogeny 2×2-isogeny 4-isogeny [6]

Compute (A + 2 : 4) 2S 4S 4S + 5a3

First evaluation 4M + 6a 8M + 12a 6M + 2S + 6a

Subsequent evaluations 4M + 4a 8M + 8a 6M + 2S + 6a

Table 1. Comparison of the costs of evaluating 2-isogenies and 4-isogenies.

of leaking the dual of the final 4-isogeny, it would only leak the dual of the last 2-isogeny. Also,
in some cases one may be able to select smaller parameters for a certain given security level.
Primes of the form 2e ·3f−1 where e ≈ log2 (3f ) are somewhat sparse, and depending on one’s
requirements restricting e to be even could result in a (much) larger prime than hoped for.
Alternatively, one could of course achieve this by doing a single 2-isogeny followed by a chain
of 4-isogenies. However, this does come at the cost of having to implement more algorithms,
increasing the size and complexity of an (already complex) implementation. Finally, having
worked out formulas for isogenies of even degree and by showing how to avoid (0, 0), we are
able to straightforwardly write down formulas for 2e-isogenies with e ≥ 3. It remains to be
seen if these can be made more efficient than repeated applications of 4-isogenies.

5 Triangular form and 3-isogenies

Given the generality of Proposition 1, an obvious question is whether there are other classes
of curves which could possibly give rise to simple formulas for isogenies. In this section we
analyze curves in triangular form E /K : y2 + axy+ y = x3 containing a point (0, 0) of order
3. Most of the ideas from earlier sections apply and in particular we get analogous statements
for computing 3-isogenies (see §5.2). Although these allow to compute the co-domain curve
very efficiently, the evaluation of the isogeny is not as efficient as its Montgomery counterpart.
Moreover, since tripling formulas are currently slower, at this point Montgomery form still
performs better with respect to 3-isogenies.

5.1 The general formula

We start by presenting formulas for triangular curves that work for any separable isogeny
whose kernel is an odd order subgroup. It is possible to include groups of even order, but this
creates a case distinction which makes the proof more tedious. Since having (enough) rational
points of even order would enable us to go to Montgomery form and reduce to §4, we discard
that case here.

There are a couple of (minor) complications compared to the proof of Proposition 2.
Firstly, we cannot assume that g = 0. If we work on P1 this will not affect the efficiency, but
we will have to take it into account in the proof. Secondly, the action of (0, 0) does not involve
only x-coordinates. To eliminate the y-coordinates that arise, we group the kernel points into
sets {T,−T} (similar to [6, Theorem 1]).

Proposition 4. Let K be a field with char(K) 6= 2. Let a ∈ K such that a3 6= 27 and
E/K : y2 + axy+ y = x3 in triangular form. Let G ⊂ E(K̄) be a finite subgroup of odd order
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such that (0, 0) /∈ G and let φ be a separable isogeny such that ker(φ) = G. Let

X =

{
xP

∣∣∣∣ P ∈ G \ {OE}} .

Then there exist a curve Ẽ/K : y2 + Axy + y = x3 such that, up to post-composition by an
isomorphism,

φ : (x, y) 7→ (f(x), c0 · y · f ′(x) + g(x))

where

f(x) = x ·
∏
z∈X

x2z2 − x(az + 1)− z
(x− z)2

.

Moreover, writing

π =
∏
z∈X

z , σ =
∑
z∈X

(
1

z2
+
a

z
− 2z

)
,

we have that A2 = π2(a2 + 12σ) and c0 = (−1)|X| · π.

Proof. Let P = (0, 0). As φ(P ) 6= OE/G, while [3]φ(P ) = φ([3]P ) = OE/G, it follows that
φ(P ) must have exact order 3 on E / G. Therefore by moving φ(P ) to the origin we can put
E / G in triangular form and therefore assume that

Ẽ = E / G : y2 = Axy + y = x3 .

Now apply Proposition 1 with Q = P . We find that

f(x) = c1 · (x− x(0,0)) ·
∏

T∈G\{OE}

(x− x(0,0)+T )

(x− xT )
+ f(x(0,0))

= c1 ·
∏

T∈G\{OE}

(
x+ yT

x2T

)
(x− xT )

= c1 ·
∏
xT∈X

(
x+ yT

x2T

)(
x+

y−T

x2T

)
(x− xT )2

= c1 ·
∏
xT∈X

x2 − x(axT+1)
x2T

− 1
xT

(x− xT )2
.

Observe that we use the fact that there are no points of order 2, and that

yT y−T = −x3T , and yT + y−T = −a · xT − 1 .

By [13, Theorem 9.7.5] we can write

g(x) =
1

2

(
−A · f(x)− 1 + c0 · a · x · f ′(x) + c0 · f ′(x)

)
,
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so that g(0) = (−1 + c0 · f ′(0)) / 2. Now we use the fact that φ([2]P ) = [2]φ(P ), ie. φ :
(0,−1) 7→ (0,−1). Therefore

− 1 = c0 · −1 · f ′(0) + g(0)

⇐⇒ − 1 = (−1− c0 · f ′(0)) / 2

⇐⇒ c0 = 1 / f ′(0)

⇐⇒ c0 = (−1)|X| · π3 / c1 . (2)

It remains to find A and c1 and for this we use the same strategy as earlier. Let t = x / y be
the uniformizer at OE and write s = 1 / y. Then as a power series

s(t) = t3 − a · t4 + a2 · t5 +O(t6) .

As y = 1 / s and x = t · y we find that

x(t) = t−2 + a · t−1 +O(t) ,

y(t) = t−3 + a · t−2 +O(1) .

Letting X(t) = f(x(t)) we get

X(t) = c1 · t−2 + ac1 · t−1 − c1σ +O(t) ,

dX / dt = −2c1 · t−3 − ac1 · t−2 +O(1) ,

dx / dt = −2 · t−3 − a · t−2 +O(t) ,

(dx / dt)−1 = −t3 / 2 + a · t4 / 4− a2 · t5 / 8 +O(t6) .

It follows that

g(x(t)) =
1

2

(
−AX(t)− 1 + c0 · (dX / dt) · (dx / dt)−1 ·

(
a · x(t) + 1

))
=

1

2
(ac0c1 −Ac1) · t−2 +

1

2
a (ac0c1 −Ac1) · t−1 +O(1) .

Now define Y (t) = c0 · y(t) · (dX / dt) · (dx / dt)−1 + g(x(t)) and

F (t) = Y (t)2 +AX(t)Y (t) + Y (t)−X(t)3 .

We get that
F (t) = F−6 · t−6 + F−5 · t−5 + F−4 · t−4 +O(t−2) ,

where

F−6 = c21
(
c20 − c1

)
,

F−5 = 3ac21
(
c20 − c1

)
,

F−4 = c21 ·
(
13a2c20 / 4−A2 / 4 + 3c1σ − 3a2c1

)
.

Again, as F is precisely the equation defining Ẽ, we must have F−6 = F−5 = F−4 = 0. The
first two identities lead to c1 = c20, which together with Equation (2) gives c31 = π6. Therefore
c1 = ζ3 ·π2 where ζ3 ∈ K̄ is such that ζ33 = 1. Inserting this into F−4 and equating to zero we
find that

A2 = π2
(
a2 + 12 · σ

)
/ ζ23 .

Therefore, by composing with the isomorphism (x, y) 7→ (ζ23 ·x, y) we can assume that ζ3 = 1.
From Equation (2) we get that c0 = (−1)|X| · π. The result is now clear. ut
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5.2 3-isogenies

We work out explicit formulas for 3-isogenies.

Proposition 5. Let K be a field with char(K) 6= 2. Let a ∈ K such that a3 6= 27 and
E/K : y2 + axy+ y = x3 in triangular form. Let P ∈ E(K̄) a point such that [3]P = OE and
xP 6= 0. Then

φ : E → Ẽ/K : y2 +Axy + y = x3

(x, y) 7→
(
f(x),−xP · y · f ′(x) + g(x)

)
with A = −3 · (2 + a · xP ) is a 3-isogeny such that ker(φ) = 〈P 〉, where

f(x) = x ·
x2x2P − x(axP + 1)− xP

(x− xP )2
.

Proof. This is Proposition 4 with X = {xP }. Using the division polynomial

ψ3(x) = x ·
(
3x3 + a2x2 + 3ax+ 3

)
it follows that 9 · (2 + axP )2 = π2

(
a2 + 12σ

)
. Hence, A = ±3 · (2 + a · xP ) and the only

remaining uncertainty is the choice of sign. However, setting A = −3 · (2 + a · xP ), a direct
computation shows that

f ′(x) = x2P ·
(
(x− xP )3 − (6x2P + a2xP + a) · x+ x3P + 1

)
(x− xP )3

,

while

g(x) = x3 ·
(
(3 + a · xP ) · x2P · x+ x3P + 1

)
(x− xP )3

.

For X = f(x) and Y = −xP · y · f ′(x) + g(x), a straightforward calculation shows that
Y 2 +AXY + Y = X3. It is then clear that φ is an isogeny and that ker(φ) = 〈P 〉. ut

Again, as a consequence of fixing (0, 0) the dual will be generated by it.

Corollary 3. Let the setup be as in Proposition 5. Then ker(φ̂) = 〈(0, 0)〉.

Proof. Since (0, 0) ∈ E has order 3 and is not in ker(φ), it follows from φ̂ ◦ φ = [3] that
φ ((0, 0)) 6= O

Ẽ
, while (φ̂ ◦ φ) ((0, 0)) = OE . Hence φ ((0, 0)) ∈ ker(φ̂), and since deg(φ̂) = 3

we have that ker(φ̂) = 〈φ ((0, 0))〉. The result is now immediate by observing that φ ((0, 0)) =
(0, 0). ut

5.3 Application to isogeny-based cryptography

By doing an analogous analysis as in §4.3 it is straightforward to see that it is theoretically
possible to use the triangular form as above in isogeny-based systems. More specifically, by
choosing a basis E(Fp2)[3e] = 〈P,Q〉 such that [3e−1]Q = (0, 0) and by only allowing secret
kernels of the form 〈P +[α]Q〉, we can always apply the isogeny from Proposition 5. However,
to be seriously considered for implementations the efficiency must be at least on par with
those coming from the Montgomery form. Although the computation of A can be done with
only two multiplications, we have not been able to reduce the cost of the 3-isogeny evaluation
far enough to be considered as efficient as its Montgomery counterpart. Moreover, the x-
only tripling formulas (which can for example be obtained by using the 3-isogenies from [3,
Theorem 5.4]) are significantly slower.
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5. Reinier Bröker. Constructing Supersingular Elliptic Curves. J. Comb. Number Theory, 1(3):269–273, 2009.
4

6. Craig Costello and Huseyin Hisil. A simple and compact algorithm for SIDH with arbitrary degree
isogenies. Cryptology ePrint Archive, Report 2017/504, 2017. 2, 5, 6, 7, 8, 9, 10, 11, 12

7. Craig Costello, David Jao, Patrick Longa, Michael Naehrig, Joost Renes, and David Urbanik. Efficient
compression of SIDH public keys. In Advances in Cryptology - EUROCRYPT 2017 - 36th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, Paris, France, April 30
- May 4, 2017, Proceedings, Part I, pages 679–706, 2017. 2, 8

8. Craig Costello, Patrick Longa, and Michael Naehrig. Efficient Algorithms for Supersingular Isogeny Diffie-
Hellman. In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology - CRYPTO 2016 -
36th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Pro-
ceedings, Part I, volume 9814 of Lecture Notes in Computer Science, pages 572–601. Springer, 2016. 2, 10,
11

9. Craig Costello, Patrick Longa, and Michael Naehrig. SIDH Library, 2016. http://research.microsoft.

com/en-us/downloads/bd5fd4cd-61b6-458a-bd94-b1f406a3f33f/. 1

10. Jean Marc Couveignes. Hard Homogeneous Spaces. IACR Cryptology ePrint Archive, 2006. 1

11. Whitfield Diffie and Martin E. Hellman. New Directions in Cryptography. IEEE Trans. Information
Theory, 22(6):644–654, 1976. 1
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21. Dustin Moody and Daniel Shumow. Analogues of Vélu’s formulas for isogenies on alternate models of
elliptic curves. Math. Comput., 85(300):1929–1951, 2016. 2, 5, 7

22. Alexander Rostovtsev and Anton Stolbunov. Public-key cryptosystem based on isogenies. IACR Cryptology
ePrint Archive, 2006:145, 2006. 1

16

http://research.microsoft.com/en-us/downloads/bd5fd4cd-61b6-458a-bd94-b1f406a3f33f/
http://research.microsoft.com/en-us/downloads/bd5fd4cd-61b6-458a-bd94-b1f406a3f33f/


23. Claus P. Schnorr. Efficient Identification and Signatures for Smart Cards. In Gilles Brassard, editor,
Advances in Cryptology - CRYPTO ’89, volume 435 of LNCS, pages 239–252. SV, 1989. 1

24. Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In Foundations
of Computer Science, 1994 Proceedings., 35th Annual Symposium on, pages 124–134. IEEE, 1994. 1

25. Joseph H. Silverman. The Arithmetic of Elliptic Curves, 2nd Edition. Graduate Texts in Mathematics.
Springer, 2009. 3, 7

26. John Tate. Endomorphisms of Abelian Varieties over Finite Fields. Inventiones mathematicae, 2(2):134–
144, 1966. 8
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