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Abstract. Side-channel attacks are a threat to cryptographic algorithms
running on embedded devices. Public-key cryptosystems, including ellip-
tic curve cryptography (ECC), are particularly vulnerable because their
private keys are usually long-term. Well known countermeasures like reg-
ularity, projective coordinates and scalar randomization, among others,
are used to harden implementations against common side-channel at-
tacks like DPA.
Horizontal clustering attacks can theoretically overcome these counter-
measures by attacking individual side-channel traces. In practice hori-
zontal attacks have been applied to overcome protected ECC implemen-
tations on FPGAs. However, it has not been known yet whether such
attacks can be applied to protected implementations working on embed-
ded devices, especially in a non-profiled setting.
In this paper we mount non-profiled horizontal clustering attacks on two
protected implementations of the Montgomery Ladder on Curve25519
available in the µNaCl library targeting electromagnetic (EM) emana-
tions. The first implementation performs the conditional swap (cswap)
operation through arithmetic of field elements (cswap-arith), while the
second does so by swapping the pointers (cswap-pointer). They run on
a 32-bit ARM Cortex-M4F core.
Our best attack has success rates of 97.64% and 99.60% for cswap-arith
and cswap-pointer, respectively. This means that at most 6 and 2 bits
are incorrectly recovered, and therefore, a subsequent brute-force can fix
them in reasonable time. Furthermore, our horizontal clustering frame-
work used for the aforementioned attacks can be applied against other
protected implementations.
Keywords: ECC, EM analysis, ARM, horizontal clustering

1 Introduction

Public-key cryptosystems based on ECC [28,23] are frequently used in a wide
range of applications, such as: credit card, e-commerce and cryptocurrency. Run-
ning on embedded systems, they are a common target of side-channel attacks.
? This work was partially done by the author in a research internship at Riscure BV.



The main goal of these attacks is to recover the private key, which is typically
the scalar in a scalar multiplication – the main ECC operation in most protocols.

Horizontal attack (HA) is a methodology for side-channel attacks against
basic cryptographic operations in protocols based on RSA or ECC, the modular
exponentiation and the scalar multiplication (ECSM), respectively. In theory, a
horizontal attack against ECC allows the recovery of secret scalar bits through
the analysis of individual traces, i.e., a single trace from the actual target is suf-
ficient; thus, they are effective against implementations protected by classic and
popular countermeasures such as scalar randomization (SR), coordinate random-
ization (CR), point blinding and scalar splitting. A fundamental requirement for
an attacker to apply HA is the knowledge of the scalar multiplication algorithm;
implementation details, however, are not required. In addition, HA requires to
have a good comparison tool, thereafter referred to as a distinguisher, to effi-
ciently extract parts of the keys. The following methods can be applied, among
others: correlation, collision-correlation, cross-correlation and cluster analysis.

The correlation analysis method [5] follows the same principle as correlation
power analysis (CPA) applied to a set of traces arranged vertically. The differ-
ence in the horizontal context is that a single trace is divided in several segments
and a hypothetical intermediate value is assigned to each segment, based on a
guess about the key value. The correlation between the segment samples and
hypothetical values is computed in the same way as in CPA. This method works
against implementations protected only with scalar randomization, or when coor-
dinate randomization is applied with a short random parameter. The method of
collision-correlation analysis [2,1,4,41,39] computes the correlation or Euclidean
distance between segments of a trace. The goal is to identify the occurrence of the
same intermediate data in different parts of the trace, and by doing so derive the
secret bits. In theory, this method is feasible against the classic countermeasures.

Many side-channel attacks do not work when a stronger version of coordinate
randomization is used, the so-called coordinate re-randomization (CRR) [30].
This countermeasure randomizes the working points coordinates at every ECSM
iteration. Therefore, the correlation or collision-correlation attacks are prevented,
because they rely on the fact that output points of an iteration are equal to the
input points of the next iteration. On the other hand, attacks that target itera-
tions independently, like the attacks presented in this paper, are not influenced
by this countermeasure. The implementations attacked in this paper are pro-
tected with all the aforementioned countermeasures.

Most horizontal attacks require advanced preprocessing of traces, character-
ization and leakage assessment before applying distinguishers. The main chal-
lenge of the horizontal approach revolves around extracting meaningful leakage
from a single trace, which usually has strong noise. In this paper we consider
the non-profiled scenario (also called unsupervised) in which the adversary does
not know and cannot change the private key in any test device. Moreover, she is
not allowed to turn off countermeasures3. Therefore, the second major challenge

3 Turning off the countermeasures is not always possible in the ICC EMVCo smart
card evaluations [9], for example.



is caused by the unavailability of labeled samples. Note that leakage assessment
methods, like TVLA [12], require labeled samples and this is not possible when
scalar randomization is enforced.

Related work. Unsupervised learning methods, especially those based on clus-
tering, have been applied to solve the aforementioned limitations and they have
been shown to be able to work in practice.

Heyszl et al [14] apply multi-dimensional K-Means [11,25] clustering to suc-
cessfully attack an FPGA-based ECC implementation by correctly classifying the
scalar bits. Sprecht et al. [37] later improved this attack by using Expectation-
Maximization clustering [7], Principal Component Analysis (PCA) [21] and mul-
tiple EM probes. Both methods target ECC implementations for FPGAs and
work well for low noise measurements. In this paper we do not employ dimension-
ality reduction techniques such as PCA (unsupervised) or LDA [10] (supervised),
but instead we apply a points of interest selection method.

Perin et al [35], consider a heuristic approach based on unidimensional dif-
ference of means for points of interest selection. This method uses a single
trace for the leakage assessment, which is likely affected by noise. Perin and
Chmielewski [34] propose a methodology for clustering attacks to amend the
aforementioned deficiency by using multiple unlabeled traces for leakage assess-
ment and improving attack robustness in high noise scenarios. Similarly to the
above works we use unidimensional clustering for points of interest selection;
however, for the attack, we evaluate various clustering methods including the
multi-dimensional one.

Jarvinen et al [20] present an unsupervised clustering attack onm-ary ECSM
with precomputations4. The proposed attack is evaluated using a low noise 8-bit
AVR device. While our attacks target binary ECSM, they can be straightfor-
wardly extended to the m-ary case: instead of using binary clustering, the attack
would need to employ 2m clusters. Most clustering algorithms support an arbi-
trary number of clusters, e.g. K-Means.

Another related work concerns error correction. In [14], to derive the error
locations the authors use a probability for cluster belonging derived from the K-
Means results. Essentially, scalar indexes with the lowest probability are brute-
forced. Similarly, the papers [34,35] use probability density function for various
clustering algorithms to perform error correction.

We have applied the approach from [34] to detect the errors in the recovered
scalar. Unfortunately, this approach does not work for our experiments because
of a presence of strong noise pulses in the EM traces. Essentially, some bit
errors occur even if their probabilities of being correct are high. Therefore, we
have abandoned this approach and applied a brute-force method sped up by the
time-memory trade-off algorithm from [30].

Contributions. The main contributions of this paper are summarized below.
First of all, using EM we perform a horizontal clustering attack (HCA) against

4 In an m-ary method, m bits of the scalar are processed in one iteration of ECSM
while in a standard ECSM a single bit is processed per iteration.



the arithmetic-based cswap.5 Curve25519 µNaCl Montgomery Ladder running
on a 32-bit ARM Cortex-M4F. The implementation is additionally protected
with projective coordinate re-randomization and scalar randomization. We com-
pare a wide range of leakage assessment methods and statistical classifiers to find
out the best settings and we achieve the best success rate of 97.64%6. This means
there are at most 6 erroneous bits, which can be brute-forced in a reasonable
time even without knowing error locations.

Secondly, we attack the pointer-based cswap µNaCl Montgomery Ladder
implementation that is protected the same as for the first one. Our best attack
on this implementation has a success rate of 99.60%, i.e., only 2 errors.

Note that in our non-profiled approach, choosing the best settings implies
running the attack for all the considered parameters. This would significantly
increase the attack time. To partially mitigate this issue, we use the same settings
for both implementations. Moreover, the attack can be easily parallelized, for
example, by using cloud computing; significantly improved results justify this.

Thirdly, we improve the unsupervised RSA HCA framework from [34]. This
framework implements the leakage assessment by combining multiple RSA traces
protected with exponent blinding. We extend that framework to ECC by attack-
ing a randomized scalar instead of a blinded exponent. In addition, we propose
the usage of: (i) multiple dimensions clustering; (ii) methods for outlier detection;
and (iii) intrinsic quality evaluation of clusters.

Finally, we generalize the method from [30] to tolerate a certain number of
incorrectly recovered scalar bits without relying on confidence probabilities.

Our attacks demonstrate the feasibility of scalar recovery from the µNaCl-
based ECSM. Breaking ECSM implies that an attacker can compromise the key
exchange protocols: Elliptic Curve Diffie-Hellman (ECDH) and its ephemeral
version (ECDHE). Examples of current publicly known applications using µNaCl
on ARM Cortex-M devices, and thus potentially vulnerable, include: [8,40,36].
Paper organization. The remainder of this paper is structured as follows. In
Sec. 2, we describe the setup of the attacks. Subsequently, Sec. 3 covers prelim-
inaries and Sec. 4 presents our horizontal cluster framework. The experimental
results are shown in Sec. 5. We describe how to efficiently correct errors in Sec. 6.
Finally, Sec. 7 discusses countermeasures and future work.

2 Attack setup

2.1 Target software implementations

We target µNaCl7, a cryptographic library for ARM Cortex-M that provides
implementations of Curve25519, an elliptic curve at the 128-bit security level
5 Cswap means conditional swap. In a Montgomery ladder ECSM, the cswap condition
value tells whether or not to swap and it depends on the secret scalar bit. Thus, it
should ideally be constant time and not leak through other side channels.

6 We use the term success rate to refer to the percentage of correctly recovered bits.
7 http://munacl.cryptojedi.org/curve25519-cortexm0.shtml
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Algorithm 1 Montgomery ladder with cswap and coordinate re-randomization.
// ... initialization omitted ..
bprev ← 0
for i = 254 . . . 0 do

re_randomize_coords(work_state)
b← bit i of scalar
s← b⊕ bprev
bprev ← b
cswap(work_state, s)
ladderstep(work_state)

end for
// ... return ommited ..

and its associated X25519 key exchange protocol based on Diffie-Hellman. This
library provides two ECSM implementations, both based on the Montgomery
ladder algorithm (cf. Appendix A for details). They differ on how the condi-
tional swap (cswap) operation, fundamental to implement it in constant time,
is performed: either by arithmetic means (cswap-arith) or pointers swapping
(cswap-pointer).

At each algorithm iteration, the cswap condition depends on the secret scalar
bit processed at that iteration and thus its value should not leak. We argue that
in both implementations the cswap condition value leaks. We investigate and con-
firm that the leakage is strong enough to be exploited by our proposed attacks.

In the cswap-arith implementation, the if/else branch is replaced by condi-
tional swaps of the respective coordinate values of the working points, P1 =
(X1, Z1) and P2 = (X2, Z2), to achieve constant time. A high level description
of such strategy is described in Alg. 1. Another cswap implementation performs
a conditional swap of pointers to the field elements instead (cswap-pointer)8.
In the latter implementation, during each ECSM iteration, the mask is touched
far fewer times by the AND (&) instruction (3 times) than in the cswap-arith (16
times); thus, in theory, a weaker side-channel leakage is expected.

The ECSM implementations in µNaCl do not provide countermeasures against
power/EM analysis, besides a regular and constant-time implementation. To
evaluate our proposed attacks against properly protected targets, we added coor-
dinate re-randomization to both implementations 9. The re-randomization coun-
termeasure multiplies a randomly generated λ ∈ Fp with the coordinates of P1
and P2 at the beginning of every ECSM iteration (Alg. 1).

2.2 Target device and measurement setup

The target software runs on the STM32F4 microcontroller chip on the board,
with a 32-bit ARM-M4 CPU core, clocked at 168 MHz. We acquired electromag-
netic (EM) traces from the ECSM execution by the target device, using a single
8 Selected by preprocessor definition DH_SWAP_BY_POINTERS.
9 Our attack also works against implementations protected with scalar randomization.
We have not implemented this countermeasure, but instead we set a random scalar
for each ECSM execution.



EM probe. The setup consisted of a Lecroy Waverunner 8254M oscilloscope, a
Langer RF-U 2.5-2 H-field probe, an amplifier and analog low pass filter (250
MHz).

For the acquisition of each trace, the host PC sends to the target device a
pair of scalar (k) and input point (P ), both randomly generated. The device
receives the pair and executes the scalar multiplication, returning the output
point (R = [k]P ) to the host PC. We have acquired the traces with the following
settings: 2.5 GS/s sample rate, 16 mV amplitude and 70 million samples. We
have also used a low pass BNC analog filter: BLP-250+ from Mini-Circuits. We
acquired and analyzed traces using Riscure’s Inspector software package. 10

3 Preliminaries

3.1 Traces Characterization

The n-th measured side-channel trace, which represents the electromagnetic em-
anation (EM) of a device over the time domain, is denoted by the uni-dimensional
(1 × aL) vector tn = {On1 , On2 , ..., OnaL}. Here, we consider a trace tn as being
the side-channel information of an ECSM composed by a fixed number aL of
iterations. The factor a depends on the ECSM algorithm and L is the bit-length
of the scalar; for Montgomery Ladder on Curve25519, a = 1 and L = 255. The
trace tn can be described by a set of `-sized sub-vectors:

tn = {On1 , On2 , ..., Ona.L} =
{

(tn1,1, ..., tn1,`), (tn2,1, ..., tn2,`), ..., (tna.L,1, ..., tna.L,`)
}

where tni,j is the j-th element of each sub-vector Oni and ` is the number of
samples. The element tni,j can be viewed as a sample in time from the side-
channel trace tn. The set {tni,j}, i = 1..aL, refers to a set of samples where each
element tni,j is extracted from one ECSM iteration Oni for a fixed j. For example,
{tni,10} contains aL samples, each element tni,10 is selected from the 10th sample
of each sub-trace Oi).

A traceset is defined as the set of trace segments of one or more ECSM runs,
and each trace segment consists of the samples from a single ECSM iteration.
A full traceset is a set of traces of multiple ECSM runs, where each trace in the
set consists of the samples from a full ECSM run, i.e., it is a contiguous trace
containing all the samples from all iterations of that ECSM run. The tracesets
are assumed to be unlabeled, except in those traces used for known-key analysis.

Note that to analyze an ECSM trace we need to cut it into pieces that
represent single ECSM iterations. Subsequently, we need to align these traces to
be able to efficiently identify and exploit the leakage. The process is done in a
similar way to [34] and is explained in more detail in Appendix B.

10 http://www.riscure.com/
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3.2 Clustering

Clustering algorithms. The clustering algorithms successfully employed so
far in the context of horizontal attacks are K-Means (KM), Fuzzy K-Means
(FKM) and Expectation-Maximization (EM) [14,35,34,20]. K-Means is a rigid
clustering algorithm, meaning that each instance (a sample in the context of
HCA) is assigned (labeled) to a single cluster. On the other hand, Fuzzy K-
Means and EM are soft clustering algorithms, because their output includes an
association probability matrix, where each instance is associated with its degree
of linkage to each cluster.

Intrinsic cluster quality measure. Given a set of clustering outputs from
multiple clustering algorithm runs, an intrinsic cluster quality measure can be
applied to evaluate the best among them. Such measures are called intrinsic or
internal because they consider just the structure of the clusters, and do not take
into account any labeled information that might be available and could be used
for testing. A clustering result with the best intrinsic cluster quality measure
does not guarantee the best results for the application (in this work, for use by
cluster leakage assessment and horizontal cluster analysis). But, it is nevertheless
useful when clustering results cannot be otherwise tested.

Several intrinsic quality measures have been proposed for unsupervised clus-
tering, among them: Silhouette coefficient [22], Calinski-Harabaz index [3] and
Davies-Bouldin (DB) index [6]. We chose to use the DB index, which is based on
the ratio of within-cluster and between-cluster distances, and can be defined as:

DB = 1
k

k∑
i=1

maxj 6=i{Di,j} (1) Di,j = d̄i + d̄j
di,j

(2)

where Di,j is the within-to-between cluster distance ratio for clusters i and j;
d̄c is the mean distance between the centroid of cluster c and each point in that
cluster; and di,j is the Euclidean distance between the centroids of clusters i and
j. The smaller the DB index, the better is the clustering.

The DB index favors clusters that are compact and distant from each other.
These are exactly the properties we expect to get at points in time where the
clusters provide a good separation of the classes (two classes, one for each possible
value of the swap bit b in Alg. 1). We applied the Davies-Bouldin index measure
to the clustering outputs of multiple runs of the same randomized clustering
algorithm, each run with a different RNG seed, and selected the clustering output
with the best (i.e., smallest) index value.

3.3 Outlier detection and handling

According to Hawkings [13], “An outlier is an observation which deviates so
much from other observations as to arouse suspicions that it was generated by a
different mechanism.” In the HCA context, outliers can appear in the measured
samples due to, e.g., measurement errors or unknown device behavior, and have
a significant impact on clustering. Most clustering algorithms are not intrinsi-
cally robust to outliers, so depending on how large an outlier value deviates from



“normal” values, the resulting labels might be negatively influenced by the out-
lier. Then the resultant clusters might be completely different, and thus wrong,
from what would be expected, leading to potentially misleading results. Hence,
outlier detection is desirable as a preprocessing step before clustering in HCA.

We implemented and tested the following outlier detection methods for HCA:
distance from mean and Tukey’s test. A simple outlier detection method, here-
after called distance from mean, is given by considering the values that are far
from the mean as outliers, i.e., a value x is an outlier if |x − µ| ≥ βσ, for a
non-negative parameter β; µ and σ are the mean and standard deviation, re-
spectively. We chose β = 2.0.11 Tukey’s range test [33] is a method based on
order statistics. If Q1 and Q3 are the lower and upper quartile, respectively, and
IQ = Q3 − Q1 is the interquartile, any observation outside the closed interval
[Q1 − k · IQ,Q3 + k · IQ] is considered an outlier, for a non-negative parameter
k. We chose k = 1.5, the value proposed in [33].

If an outlier detector flags some samples as outliers, they must be dealt with
in some way, i.e., the outliers have to be handled. Outlier handling methods
are usually heuristic and dependent of the context where they are applied [32].
A simple outlier handling method that could be applied in the context of this
work is to simply exclude the data point from consideration. Albeit simple, the
implementation of this method is potentially inefficient in the HCA context,
due to the need of more complex data structures (e.g., dynamic lists rather
than static arrays). To keep the implementation simple and efficient, we replace
outliers values by the median of non outliers.

4 Horizontal Cluster Analysis Framework

The horizontal attack described in this paper roughly follows the HCA frame-
work from [34], with contributed analysis methods. Fig. 1 shows the steps in the
HCA framework. The first step is to run clustering leakage assessment (CLA).
CLA takes as input iteration traces from multiple ECSM runs and finds points in
the traces where the leakage most likely is, known as points of interest (POIs).
Next, key recovery (KR) is run, yielding an approximate scalar. Then, given
the approximate scalar, points-of-interest optimization (POI-OPT) produces a
refined list of POIs. Finally, the final KR step outputs the recovered scalar.

Fig. 2 shows the full key recovery process in more detail, including the
inputs and outputs at each step. The inputs are a traceset to be used for leakage
assessment and the actual target traceset. The output is the correct recovered
key/scalar, if it could be found.

The “KR final” step takes as input a traceset with traces from multiple ECSM
runs and attacks the sets of segment traces of each ECSM run independently from
one another. This step is a probabilistic algorithm that consists of sequentially
running KR and error correction (Sec. 6) on each trace in the set, and recovering

11 Assuming that the sample values at a given index come from a normal distribution,
choosing β=2.0 implies that 95% of the values are within the interval [x− µ, x+ µ].



Fig. 1: HCA framework. Fig. 2: The full key recovery process.

the correct scalar for at least one of these traces, with a given probability of
success. We call this probability the success rate of the attack.

In our HCA framework, POIs are chosen from a leakage assessment trace,
be it a CLA or t-test trace. They are selected as the time indices of the top m
highest peaks in such traces, where m is a parameter. Suitable values for m are
derived experimentally (cf. Sec. 5 and Fig. 4).

4.1 Cluster Leakage Assessment (CLA)

Leakage assessment (LA) methods are used to determine whether a crypto-
graphic device leaks information through a side-channel and how strong such
leakage is. They are typically employed to find out the points in time (sample
indices) where the leakage is strongest, i.e., the points of interest. The sample
values at those points are used in later steps, e.g. in the key recovery phase, and
they serve two major purposes: (i) for dimensionality reduction, i.e., to use only
the samples that provide useful information and thus reduce computation time;
(ii) to avoid bringing noisy samples to the attack phase (i.e., key recovery), where
they will negatively impact the success rate and potentially turn unfeasible an
otherwise successful attack.

In the HCA and non-profiled attack contexts, leakage assessment methods
should not require knowledge of the secret key or ephemeral secret data (e.g.,
numbers randomly generated by the device). Essentially, these methods assume
that the adversary does not have control over device’s secret information. In par-
ticular, the countermeasures like SR and CRR cannot be disabled. Additionally,
it is desirable that LA methods be non-parametric and do not require leakage
models. That is because in the single-trace HCA attack context the target device
is not known a priori. Combined with the fact that real-world modern microcon-
trollers are complex devices, it means that the estimation of leakage distributions
and thus building an accurate leakage model is not trivial.

Distinguishers. Welch’s t-test is a parametric statistical test that can be em-
ployed to this end; e.g., in methodologies like the TVLA [12]. Certain conditions
have to be met for Welch’s t-test to be used: normality of the distributions,
equal variances and independence. The Mutual Information Analysis (MIA) is a
distinguisher that does not require a leakage model. Standaert et al [38] were the
first to propose the use of MI as an statistical leakage assessment tool in the SCA
context. Meynard et al [27] applied MIA as a method to locate strong leakage



in the frequency domain and, consequently, to find the frequency bands in EM
traces where the differences between modular squares and multiplications are
highest, from a device running RSA modular exponentiation. Mather et al [26]
compared the statistical power of t-test and the discrete and continuous versions
of MIA for detecting leakage in multiple leakage models. Following [34], we
provide results for four different methods for leakage detection: sum-of-squared
differences (SOSD), sum-of-squared t-values (SOST) and MIA. Details about
these techniques are described in Appendix D.

CLA. The LA method proposed in [34] shows how multiple traces can be com-
bined utilizing clustering, an unsupervised learning method, and demonstrate
it through an attack on a RSA software implementation. That method, here-
after called clustering-based leakage assessment (CLA), in principle works even
if the device applies any combination of the classic countermeasures for modu-
lar exponentiation, i.e., exponent blinding, message or modulus randomization.
Additionally, we implemented a supervised LA method in our framework, so
called HCA-KKA, to be able to compare the unsupervised method results to
the supervised ones. The description of HCA-KKA is in Appendix C.

4.2 Key Recovery (HCA-KR)

The key recovery methods implemented in this work can be classified into two
classes, based on the way clustering is applied: single or multi-dimensional. In
either case, the number of clusters output by a clustering algorithm is two, one
cluster for each possible key bit value.
Single-dimensional clustering method. In the first group, we run clustering
on the set of samples at a given single time index (POI), across multiple trace
segments. This is the approach used by [34]. After running the clustering for
every time index, a set of recovered key candidates is obtained, which are then
combined to decide the final key candidate. The following combination methods
are used for this purpose: majority rule (MJ) and log-likelihood (LL). We refer
the reader to [34] for more details.
Multi-dimensional clustering method. In the second group, clustering is
run on multiple attributes or dimensions, i.e., the clustering algorithm is run on
all samples, at all points of a set of time indices (POIs), at the same time.

On one hand, the multi-dimensional method has two main advantages over
the single-dimensional. First, the combination step is not required. And second,
it is capable of exploiting higher order leakage, while the first method exploits
only leakage of first order. On the other hand, we verified experimentally that
key recovery based on multi-dimensional clustering is more sensitive to noisy
samples, because a very noisy sample at a given POI can directly negatively
influence the value of the output key candidate. Note that for the first group of
attacks the noisy sample effect is contained, i.e., only the key candidate at that
POI is affected. Therefore, outlier detection and handling are mandatory in the
multi-dimensional method to achieve satisfactory results.



First key-recovery step (“KR for CLA” in Fig. 1). After points of interest
have been found by CLA, key recovery is run on the “LA traceset” using the
POIs from the CLA trace. The outcome is a list of recovered candidate keys for
those traces (“LA traceset w/ recv.bits”).

POI optimization step (POI-OPT in Fig. 1). The “LA traceset w/ recv.bits”
is used as input for the points of interest selection optimization step. This step
refines the POIs found from CLA by applying a t-test with two groups, the first
group containing the traces whose corresponding candidate key bit is zero and
the second group corresponds to the traces where the candidate key bit is one.
The points with the largest t-statistics are considered the refined POIs.

Final key recovery step (“KR final” in Fig. 1). Finally, given the refined list
of POIs (i.e., the peaks on “t-test trace”), key recovery is applied sequentially
to each trace in the target traceset. For each trace, the key recovery outputs a
(possibly incorrect) key/scalar, over which the probabilistic key error correction
algorithm in Sec. 6 is applied. If the correct scalar is found, it is returned and
the full key recovery process stops. Otherwise, the key recovery is applied to the
next trace in the target traceset and the process is repeated.12

5 Attack Results

We acquired 300 full Curve25519 ECSM traces for the cswap-arith, and the
same number of traces for the cswap-pointer. The traces were preprocessed,
resulting in two tracesets of 76,500 ECSM iteration traces each, that are used
in all experiments described in this section. Each iteration trace used for the
analysis contains 8,000 8-bit samples for cswap-arith. For cswap-pointer, as the
time interval where leakage happens is narrower (cf. Sec. 2.1), we trimmed the
traces to 1,000 samples for efficiency.13

In the evaluation experiments, the recovered scalars are the output of the
last KR step, but before error correction. The reported success rates are, unless
otherwise noted, the maximum success rates, i.e., if the success rate or percent-
age of correctly recovered bits for the target traces is SR1, . . . , SRnt

(where nt
is the number of traces in the target traceset), then the reported success rate is
max{SR1, . . . , SRnt

}. We use the maximum success rates because, as explained
in Sec. 4, our full HCA key recovery attack framework is probabilistic and recov-
ers the correct scalar for at least one of the target traces with a given probability
of success, the success rate of the attack. By taking the max success rate (SR∗)
in an attack evaluation experiment as the success rate, we guarantee (except

12 We note that the steps POI-OPT and key recovery can be repeated. Due to the high
increase in computational time required to run them more than once, as well as the
fact that the results using a single iteration were already feasible for a successful
attack, we chose not to further investigate whether that could improve the results.

13 We knew where and by how much to trim because we knew from the source code
and binary the approximate location of the cswap in the iteration traces.



Table 1: Key recovery max success rate (%) for cswap-arith and cswap-pointer, for
all combinations of CLA distinguishers (SOSD, MIA and SOST) and HCA statistical
combination methods. The best results for each implementation are highlighted.

cswap-arith cswap-pointer
MJ LL MD MJ LL MD

KM
SOSD 92.15 94.11 58.03 97.25 60.78 96.47
MIA 60.78 57.64 58.82 96.47 95.68 57.25
SOST 94.11 92.15 57.64 99.60 96.07 100.00

FKM
SOSD 87.84 57.25 58.43 57.64 58.82 98.82
MIA 60.78 84.31 59.60 99.60 99.21 56.86
SOST 67.45 59.21 58.03 59.60 98.82 100.00

EM
SOSD 60.00 61.56 60.39 97.64 57.64 57.64
MIA 60.39 68.23 60.39 99.21 95.29 99.60
SOST 64.31 61.96 57.64 97.64 95.29 57.64

with a negligible chance) that if the full key recovery attack with error correc-
tion is applied to a set of target traces, the recovered key for at least one of them
will have a ratio of at least SR∗ of correctly recovered bits. Therefore, the errors
can be successfully corrected by the error correction algorithm in Sec. 6.

5.1 Initial attack evaluation experiment

To evaluate the effect of different distinguishers for CLA and statistical combina-
tors for HCA-KR, we fixed the clustering algorithm (KM, FKM or EM) and ran
a full key recovery attack varying the value of such parameters. The evaluation
results are shown in Table 1.14

In this experiment we used: 100 traces for CLA; 100 traces and 20 POIs
for “KR for CLA” and “KR final”. We experimented with different numbers
of traces for these operations, but from those we tried, 100 was the minimum
number of traces that resulted in good enough attack success rates; we did not
see any improvement when more traces were used. POI-OPT is enabled. We used
Tukey test and replace by median as outlier detection and handling methods,
respectively. Intrinsic clustering quality evaluation is disabled.

According to Table 1, the cswap-pointer implementation has a very strong
leakage dependent on the cswap bit, in two cases reaching a success rate of 100%,
i.e., all scalar bits were correctly recovered. Despite having obtained 100% success
rate for two combinations of algorithms KM/SOST/MD and FKM/SOST/MD
for the cswap-pointer implementation, similar success rate results for such com-
binations of algorithms on the cswap-arith implementation do not hold. In fact
they were very low for that implementation, with success rates below 60%.

The results obtained in Table 1 do not indicate a single combination of pa-
rameters where the success rates are high enough (≥ 97%) for both implemen-
tations simultaneously, so as to enable a successful recovery of the correct scalar
in feasible time even when error correction (Sec. 6) is applied.
14 MJ, LL and MD stand for majority rule, log-likelihood and multi-dimensional, resp.



Fig. 3: Leakage assessment for cswap-arith (top-bottom): KKA, CLA, and POI-OPT.

Besides, in a practical non-profiled or single-trace attack scenario, where the
attacker do not know details about the implementation targeted, she should
fix/choose beforehand the values of all parameters for the full key recovery15

and run “KR final” for every trace in the target traceset. The motive is the long
computation time required to run a full key recovery, where the most expensive
step, error correction, can take hours to complete on a common desktop machine.

For the aforementioned reasons, we test our attack with more combinations
of parameters values. The results of these experiments are in Appendix E. The
values of those parameters that gave the best results are presented in the next
subsection.

5.2 Final results

Fig. 3 illustrates, for cswap-arith, the approximated side-channel leakage assessed
right after the CLA and POI-OPT steps when compared with a known-key
analysis (KKA) trace. The leakage assessment trace after POI-OPT shows peaks
that match or are very close to those in the KKA trace. A known-key analysis
in essence consists of running the clustering algorithm at each sample index to
recover the scalar bit and comparing whether the guessed bit value is equals
the known key bit. The output is a trace with the success rate of these guesses,
which is indicates the strength of the leakage. Such an analysis is used only for
illustrative purposes, we remark that our attacks are completely unsupervised.

Fig. 4 shows the success rate evolution as the number of POIs used by
the final HCA-KR step increases, for both cswap implementations. For both
implementations, the number of traces used are 100 for CLA is 100, “KR for
CLA” and “KR final”, the same as in the other experiments. For cswap-arith,
the success rate is 97.64% for 100 POIs. The success rate for cswap-pointer is
above 90% if the number POIs used is in [7, 38]. In particular, it is 99.60% for
38 POIs. Thus, for cswap-pointer a small number of POIs is sufficient to achieve
15 Among them: number of traces for CLA, “KR for CLA” and “KR final” steps,

clustering algorithms, distinguishers and statistical combination methods.



Fig. 4: Success rate versus number of POIs for cswap-arith and cswap-pointer.

a very high success rate. The curves in Fig. 4 have quite different shapes. The
cswap-pointer curve shape means that leaks in narrow time intervals, so it is
sensitive to the number of POIs used. In this case, using a lot of POIs means
adding noise to the analysis, which decreases the success rate. On the contrary,
the cswap-arith curve means that it leaks on a wider time interval, so more POIs
can be added without dramatically affecting success rate.

Considering these success rate values and taking into account the fact that
only 251 bits out of the 255 bits of the scalar are unknown (the first bit is always
1 and the last three are fixed to 1002), there are at most 6 and 2 errors in the
recovered scalar for cswap-arith and cswap-pointer, respectively.

6 Error Correction

Due to noise and other aspects interfering with the side-channel analysis (mis-
alignment for example), the scalar derived by the attack contains errors. A naive
brute-force would check all possibilities of 6 and 2 errors in the 251 bits, for each
of the 100 recovered scalars. This totals to 100 ·

(251
6
)
≈ 244.9 operations for

cswap-arith and 100 ·
(251

2
)
≈ 221.6 for cswap-pointer. As we can see, the required

computation effort is quite feasible, especially for the cswap-pointer case.
Note that confidence probabilities coming from clustering can be used to

detect errors, as shown in [14,34,35]. We applied the approach from [34], but un-
fortunately this method occured unreliable: some errors occured with high confi-
dence probabilities. We suspect that it was caused by strong noise pulses present
in our traces. Therefore, we concentrate on improving the naive brute-force.

Efficient error correction based on precomputations. The above naive
brute-force can be further by using a modified algorithm from [30]. In [30] the
authors use template attack confidence scores to detect errors. Unfortunately, as
mentioned above, we cannot use confidence probabilities and therefore, we need
to modify the approach in [30], as described below.

First let us assume that the number of errors is at maximum 6 (like for cswap-
arith). Now let us divide the scalar in half and assume the errors locations are
uniformly distributed across it. Let us denote R = [k]P , where R is the resulting



point, k the scalar to be recovered, and P is the input point. Then, clearly
R = [k]P = [a ·2|k|/2 +b]P = [a]([2|k|/2]P )+[b]P , where a is the most significant
half of k and b is the least significant one16. If we denote [2|k|/2]P by H, then
the above equation reduces to R− [b]P = [a]H.

Consider all different possible guesses for a assuming that there are at most 4
errors in a: that is

(|k|/2
4
)
guesses. Following [30], for each guess, we compute [a]H

and store all pairs (a, [a]H). We then sort all pairs based on the value of [a]H
and store them in an ordered table. We make a guess for b assuming it contains
at most 4 errors (again

(|k|/2
4
)
guesses) and compute z = R − [b]P . If our guess

for b is correct, then z is present in the second column of some row in the table –
the first column is the corresponding a. If z is present then we have determined
the scalar. Otherwise, we make a new, different guess for b and continue. The
complexity of this attack totals to

(126
4
)
· 2 · 100 ≈ 231 operations, because there

are 251 unknown bits. The required memory is
(126

4
)
· 100 ≈ 230 points.

The above assumption on uniform distribution of errors can be dropped (cf.
Appendix F). We need to estimate the probability that the attack works. The
probability that out of 6 errors, 2, 3, or 4 of them are not in a equals: 14/64;
for details about computing this probability we refer the reader to Appendix F.
Thus, to minimize the error to approximately e.g., 0.0005, it is enough to repeat
the algorithm 5 times. Then the overall complexity of the attack would be 236.

7 Countermeasures and Future Work

In this paper we described horizontal clustering attacks against two Curve25519
Montgomery Ladder ECSM implementations from the µNaCl library. We also
showed how to extend the RSA horizontal clustering framework from [34]. Fur-
thermore, we generalized the method from [30] to tolerate a certain number of
incorrectly recovered scalar bits without relying on normal exhaustive search.

Now we briefly discuss possible countermeasures against our attack. First let
us recall that the following countermeasures do not work against our attack:
point re-randomization, scalar blinding and splitting.

The countermeasure of [31] splits scalar into two parts and to randomly in-
terleave two scalar multiplications. We believe that our attack might still be
mounted if four clusters are used to recognize which bit is processed and during
which ECSM. The idea behind the memory-address countermeasure [16] is to
store sensitive variables at addresses that share the same Hamming weight. Al-
though this would decrease the effectiveness of the attack, the addresses leakage
may still be identified by clustering. This countermeasure can be improved by
randomizing not only the addresses but also the memory accesses [17,18,19].

The countermeasure of [15] protects against localized EM template attacks on
Montgomery ladder ECSM by randomly swapping the ladder registers at the end
of a ladder iteration. This countermeasure is uniform in its operation sequence
what makes our attack infeasible in principle. In addition, several randomization-
based protection techniques for the Montgomery ladder are presented in [24].
16 |k| denotes the length of the base 2 representation of the scalar k.



Similar to [15], these techniques generate operation sequences independent from
the scalar and thus, our attack might be ineffective against them.

We consider evaluating and improving our attacks with respect to the two
latter countermeasures as future work. We also regard attacking other ECC
implementations improving our attacks with PCA as future developments.
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A Montgomery Ladder Implementation Details

In this paper we consider the µNaCl library that provides two ECSM imple-
mentations for Curve25519. Both of them are based on the Montgomery ladder
algorithm, which is presented in Alg. 2.

Algorithm 2 Montgomery ladder for Curve25519
Input: 255-bit scalar s, x-coordinate xP of input point P.
Output: (X[s]P , Z[s]P ), such that x[s]P = X[s]P /Z[s]P .
P1← (1, 0); P2← (xP , 1).
for i← 254 downto 0 do

if si = 1 then
P1← padd(P1, P2, xP )
P2← pdbl(P2)

else
P2← padd(P1, P2, xP )
P1← pdbl(P1)

end if
end for
return P1

For concreteness, Listing 1.1 shows the actual C implementation of the arith-
metic conditional swap of two field elements in µNaCl (call to CSWAP in Alg. 1).
This is an arithmetic CSWAP implementation with XOR and AND instructions,
and is known to leak the value of mask through side-channels, e.g. on the AVR
architecture [30]. Listing 1.2 shows the relevant part of the cswap-pointer im-
plementation that “touches”, i.e., operates on the secret-dependent condition
(bit s in Alg. 1).

https://github.com/h2o/picotls
https://github.com/h2o/picotls
https://github.com/aanon4/HomeKit


Listing 1.1: Conditional swap based on arithmetic of field operands limbs.
void fe25519_cswap ( fe25519 * in1 , fe25519 * in2 , int condition )
{

int32 mask = condition ;
uint32 ctr;
mask = -mask;
for (ctr = 0; ctr < 8; ctr ++)
{

uint32 val1 = in1 -> as_uint32 [ctr ];
uint32 val2 = in2 -> as_uint32 [ctr ];
uint32 temp = val1;
val1 ^= mask & (val2 ^ val1);
val2 ^= mask & (val2 ^ temp);
in1 -> as_uint32 [ctr] = val1;
in2 -> as_uint32 [ctr] = val2;

}
}

Listing 1.2: Conditional swap of pointers to field operands.
void swapPointersConditionally (void **p1 , void **p2 , uint8 condition )
{

uintptr mask = condition ;
uintptr val1 = ( uintptr ) *p1;
uintptr val2 = ( uintptr ) *p2;
uintptr temp = val2 ^ val1;

mask = ( uintptr )( - ( intptr ) mask );
temp ^= mask & (temp ^ val1);
val1 ^= mask & (val1 ^ val2);
val2 ^= mask & (val2 ^ temp);

*p1 = (void *) val1;
*p2 = (void *) val2;

}



Fig. 5: Example Trace Alignment

B Traces Preprocessing

Trace cutting. First each side-channel trace of a complete ECSM run is cut
in trace segments, one per each algorithm iteration. In the context of this work,
the ECSM implementation is based on Montgomery Ladder, so each iteration i
corresponds to the processing of the swap bit (s in Alg. 1), which depends on
i-th scalar bit. The trace cutting was done by first applying a low pass filter and
then detecting patterns that appeared repeatedly for 254 times using a threshold
(i.e., for all ECSM iterations, except the last one). The patterns were detected
visually with ease. A simple time-based trace cutting did not work in our case,
despite the constant timeness of the target implementation, due to visible time
drifts in the measured samples, probably due to clock drifting or measurement
imprecisions. The above technique is similar to the one used in [34].
Trace alignment. After the traces are cut they are not precisely aligned. To
overcome this issue we align the traces at the location shown in Figure 5. To
align the traces exactly on the underlined pattern we used Pearson correlation.
We have selected the pattern based on the time of a single Montgomery ladder
iteration and source code analysis of the implementation.

C Known-Key Analysis (HCA-KKA)

Known-key analysis (KKA) consists of finding “good” POIs given the knowledge
of the key, i.e., to find points (sample indices) where the leakage is strongest.

Due to the need to know the value of the key, KKA is employed only in a
profiled attack scenario or when testing an attack against a device similar to
the target, to help answer practical questions such as the following: (i) how do
we know whether the traces are properly aligned (ii) for a given device, how
many traces are necessary for the leakage assessment method (CLA) to find the
known-good POIs? This can be done by checking whether the top POIs from
CLA (partially) match the known-good ones foreseen by KKA.

Such an analysis is done as follows. We first apply the clustering algorithm
to the set of samples at a given point, across the traces in the traceset. Two
clusters are obtained: the first corresponds to the samples labeled with the value
b ∈ {0, 1}, and the second with the opposite value b̄. At this point we do not
know if b is equal to 0 or 1. Second, we use the key knowledge to figure out how
many samples were correctly labeled.

The procedure described above is repeated for all sample points, and the
result is a trace of the strength of key-dependent leakage for all sample points



Fig. 6: Known-key analysis (KKA) process.

(Fig. 6). The list of such points, in decreasing order of the number of correctly
labeled samples, is considered the known-good POIs.

D Leakage Detection Methods

Let us consider the n-th trace represented as a set of samples. We apply a
clustering algorithm to each set of samples {tni:l0+l1,j} at a fixed sampling time
j. The clustering returns two centers c0,j and c1,j and two groups of clustered
samples {g0,j} and {g1,j} containing p0,j and p1,j elements, respectively.

For every trace tn, we have a set of parameters cn0,j , cn1,j , {gn0,j}, {gn1,j}, pn0,j
and pn1,j (j ∈ {1, .., `}) that can be used for the leakage assessment. We provide
results for four different techniques: sum-of-squared differences (SOSD), sum-of-
squared t-values (SOST) and mutual information analysis (MIA).

The equations for SOSD and SOST are given by:

ςj = 1
N

∑N

n=1 |c
n
0,j − cn1,j |2 (SOSD) (3)
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Considering σ2(n)
j as the variance for the sample set {g0,j(n)} ∪ {g1,j(n)},

and % = pn0,j/(pn0,j + pn1,j), the mutual information value υj at each sample index
j is computed by:

υj =
N∑

n=1

log

√
1

pn
0,j

+ pn
1,j
− 1

σ
2(n)
j

+
1∑

k=0

(−1)%k(1− %)1−k log

√
1

(pn
1−k,j

)− 1
σ

2(n)
1−k,j

(5)

E Evaluation of the Effects of Attack Parameters

We compute the average of the success rates in Table 1 grouped by parameters
clustering algorithm, CLA distinguisher or HCA statistical combinator (Table 2).
KM, SOST and MJ give the best results, on average. Thus in the next exper-
iments we fix those parameters to these values and explore the effect of other
parameters. 17

17 In this section, the values of the parameters used in an experiment are the best ones
(i.e., they resulted in the biggest success rate) found in the previous experiment,
excluding those parameters that are being evaluated in the experiment in question.



Table 2: Averages of the HCA-KR success rates (%) in Table 1 grouped by parameter.

(a) Clustering algorithm.

KM FKM EM
81.39 73.46 72.91

(b) CLA distinguisher.

SOSD MIA SOST
72.91 76.12 78.73

(c) Combination method.

MJ LL MD
80.69 77.45 69.63

Points of interest optimization is an essential step in the key recovery process
(Fig. 2), without which the leakage assessment trace (CLA trace) is usually not
accurate enough for the KR final step to produce a successful key recovery. For
example, the HCA-KR success rates for the attack with KM+SOST+MJ with
POI-OPT are 94.11% and 99.60%, while without POI-OPT the results drop to
60.39% and 58.82%, resp. for cswap-arith and cswap-pointer.

The effect of number of traces used for leakage assessment (the CLA step) in
the success rate is shown in Table 3, for a few different values of this parameter
and for both implementationsAs can be seen, the difference in the success rate
is small among them, and 100 traces for CLA gives the best result.

Table 3: Effect of the number of traces
for CLA. Max success rate (%).

50 100 200 300
arith 92.34 94.11 93.04 92.78

pointer 98.27 99.60 98.83 96.25

Table 4: Effect of outlier detection and
handling. Results for cswap-arith. Aver-
age success rate (%).

Repl. by median
No outlier detector 72.34
Distance from mean 73.80

Tukey test 72.86

We evaluated the attack without outlier detection and with the methods
distance from mean and Tukey test applied. When outlier detection is applied,
we replace the outliers values by the median of the other data points. Table 4
shows the average success rate against the cswap-arith implementation. We can
see that, on average, outlier detection slightly improves success rate.

The number of points of interest selected from the CLA trace determines the
amount of signal (secret-dependent leakage) and noise that will be used in the
1st HCA-KR step (i.e., the first step in POI-OPT) and the 2nd/final HCA-KR
step.18 Table 5 shows the results of our evaluation on how these parameters
affect the attack success rate for the cswap-arith traceset. As can be seen, the
success rate plummets from above 80% to 60% if fewer than 10, or more than
20, POIs for the 1st HCA-KR step are used, with a peak of 96.07% for 20 POIs.
For the 2nd HCA-KR step, the best results were obtained with 100 POIs.

18 I.e., how many POIs to use from the POI-OPT t-test trace to use in the attack
phase.



Table 5: Effect of the number of POIs used in the first and second HCA-KR step.
Results for cswap-arith. Max success rate (%).

num. POIs on 1st/2nd step 20 50 100 200 300
5 63.13 59.60 57.25 56.89 56.86
10 91.76 93.72 93.72 89.80 87.45
20 94.11 95.29 96.07 89.01 84.31
50 60.39 59.60 60.39 60.78 60.78
100 61.56 62.35 61.56 61.96 60.39

Table 6 shows the effect of the number of iterations for the Davies-Bouldin
clustering intrinsic quality evaluation, when applied only in the CLA step for
the cswap-arith traceset. The success rate improves slightly if two iterations are
used, but then starts to drop afterwards, reaching 90.19% for 10 iterations.

Table 6: Effect of the number of iterations of Davies-Bouldin clustering intrinsic qual-
ity evaluation applied in the CLA step. Results for cswap-arith.

Num. of iterations 1 2 5 10
Max success rate (%) 96.07 97.64 95.68 90.19

F Probability of Successful Efficient Error Correction

We assumed in Sec. 6 that the errors are uniformly distributed. Now we show
how to drop this assumption. We create a in the following way: we randomly
choose a set A of indices in k such that |A| = |k|/2 and we set the corresponding
bits to zero. Then we create b by setting the remaining indices of the original k to
zero (the set of indices is denoted as B). Now R = [a]P +[b]P holds and if we set
H = P then R− [b]P = [a]H. The attack can be performed as before assuming
that when we guess a and b, we limit the indices to A and B, respectively.

We now compute the probability that the attack from Sec. 6 works correctly,
namely, that the 6 errors are corrected. Without loss of generality let us first
assume that positions of the 6 errors position are fixed, because the partition to
a and b is random. Therefore, the following situations are possible:
– all errors are in a or in b: 2 possibilities;
– one error is in a or b: 12 possibilities;
– two errors are in a or b: 30 possibilities;
– three errors are in both a and b: 20 possibilities.

In the first two cases the numbers of errors in a is 0, 1, 5, or 6. Therefore, the
probability that out of 6 errors, 2, 3, or 4 of them are not in a equals:

1 + 6 + 6 + 1
2 + 12 + 30 + 20 = 14

64 .
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