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Abstract. In this paper we improve Wu and Wang’s method for finding impossible differ-
entials of block cipher structures. This improvement is more general than Wu and Wang’s
method that it can find more impossible differentials with less time. We apply it on Gen-
CAST256, Misty, Gen-Skipjack, Four-Cell, Gen-MARS, SMS4, MIBS, Camellia*, LBlock, E2
and SNAKE block ciphers. All impossible differentials discovered by the algorithm are the
same as Wu’s method. Besides, for the 8-round MIBS block cipher, we find 4 new impossible
differentials, which are not listed in Wu and Wang’s results. The experiment results show that
the improved algorithm can not only find more impossible differentials, but also largely reduce
the search time.
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1 Introduction

Impossible differential cryptanalysis, introduced by Biham et al. [4] and Knudsen [I7] independently,
is a special case of differential cryptanalysis that uses differentials with probability zero to sieve the
right keys from the wrong keys. It is one of the most powerful attacks for block ciphers and is
considered in many block cipher designs [37UTTIB51200TIT2I33]. The best cryptanalytic results for
some block ciphers are obtained by impossible differential cryptanalysis [RI4]. For example, the
currently best attack on the 31-round Skipjack is still the impossible differential cryptanalysis by
Biham et al. [4]

The key step in impossible differential cryptanalysis of a block cipher is to find the longest
impossible differential. Given two variables z1,x9 € FZ5, the difference of x; and z9 is usually
denoted as Ax = 1 @ x2. An impossible differential for an n-subblock block cipher is in the form
(Ain -, Aout) where Ain = (Axq, ..., Ax,) and Aout = (Ayy, ..., Ayy,). (Ain -, Aout) means
the probability of the output difference is Aout after r rounds of a block cipher for an input difference
Ain is zero. At the first glance, impossible differentials are obtained manually by observing the block
cipher structure. However, since the emergence of impossible differential cryptanalysis, automated
techniques for finding impossible differentials have been introduced.

The first automated technique is called the Shrinking method introduced by Biham et al [4].
This method is simple but very useful. It only considers truncated differentials whose differences
distinguish only between zero and arbitrary nonzero difference. Given a block cipher, the adversary
first designs a mini version of this block cipher, which is, scales down the block cipher but preserves
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the global structure. Then the adversary exhaustively searches for this mini cipher and obtains some
truncated impossible differentials. Usually these truncated impossible differentials of the mini cipher
remain impossible differentials in the normal version. This method can deal with most block ciphers
in the real world. However, it becomes very slow if the number of subblocks of a block cipher is as
large as 16, since exhaustive search on the mini version of this type of cipher is still a heavy load for
most computers.

The second automated technique is based on the miss in the middle approach. This method
combines two differentials, one from the input and the other from the output, both with probability
1. However, these two differentials cannot meet in the middle since they can never be equal in the
middle. The U method [I6I15] and the UID method [23] both belong to this category. In the U method
and the UID method, the adversary first represents the block cipher structure as a matrix, then given
a differential pair (Ain, Aout), he calculates the m-round intermediate difference from Ain forwardly
and the (r—m)-round intermediate difference from Aout backwardly by the matrix method. If there is
a contradiction for these two intermediate differences, then an impossible differential (Ain -, Aout)
is verified. Representing a block cipher by the matrix has been a popular method in impossible
differential, integral and zero correlation linear cryptanalysis [342TI36I3I33216IT9].

In [3I], Wu and Wang extend the U-method and UID method to a more generalized method
which does not use the miss in the middle approach. They treat the r-round block cipher struc-
ture as a system of equations, which describe the propagation behavior of differences in the inner
primitives, especially sbox permutations or branch swapping of the block cipher structure. To judge
if a truncated differential (Ain, Aout) is impossible, they predict information about unknown vari-
ables from the known ones iteratively. Finally a truncated differential is verified by checking the
constrained conditions in the system. This method is similar as a linear programming method for
solving optimization problems.

In [28], Sun et al. show that Wu and Wang’s automatic search method can find all impossible
differentials of a cipher that are independent of the choices of the inner primitives. However, Wu
and Wang’s method can only find all truncated impossible differentials since the choice of truncated
difference may result in missing some impossible differentials. Wu and Wang’s method only considers
differences Ain = (x1,...,2,) and Aout = (y1,...,y,) where x; and y; are zero or nonzero values.
They assign an indicator to indicate the choice of z; and y;, representing by 0 a subblock without
difference and by 1 a subblock with a difference. The relationships between nonzero differences have
been omitted. For example, y; may be equal to some x;, where 1 < ¢, < n. If some linear constraints
between nonzero variables in Ain and Aout are needed, Wu and Wang claimed their method could
still work by translating all linear constraints into the system of equations. However, this method
increases the run complexity and implement of the search method. Since it changes the equation
system for every value of (Ain, Aout) and if the relationship between Ain and Aout is complicated,
the matrix will be very large.

The idea of the UID method is it represents the differential with symbols and utilizes the prop-
agation property of the linear accumulated symbols. The idea of the Wu-Wang method is to utilize
solving linear equations to determine an impossible differential. We show that the Wu-Wang method
can be improved by combining the idea of the UID method and Wu-Wang method. Instead of using
1 to represent the nonzero difference, we use a letter symbol to represent a difference and different
symbols represent different nonzero values. This method can represent more relationships between
these subblocks. For example, if Ain = (a,0,0,a) and Aout = (a,0,0,b) for a 4-subblock structure
where a and b are different nonzero values, then we have 1 = x4 = y; and y4 # x1. In our method,
the matrix of the system does not need to be changed with (Ain, Aout). We also improve the Wu-
Wang method by simplifying the test of whether there are solutions for linear systems. Since the
most time consuming part is the matrix operation, our improved method can find more impossible
differentials in less time.

We implement the method in java language and apply it to many block cipher structures, includ-
ing Gen-CAST256 [34], Gen-Skipjack [29], Four-Cell [10], Gen-MARS [16], Gen-RC6 [29], SMS4 [23],
Misty [24], MIBS [13], Camellia* [I], LBlock [32], E2 [I4] and SNAKE [I8]. For these block ciphers,
we rediscover all known impossible differentials. Especially for the 8-round MIBS cipher, we find 4
new impossible differentials, which are not listed in Wu and Wang’s work. Our improvement largely



reduced the run time for finding impossible differentials. In [30], the results for MIBS, LBlock and
E2 are obtained in a few hours on a 2.66 GHz processor with MAGMA package. However, our results
for MIBS, LBlock and E2 are obtained within 10 seconds on a 2.20 GHz processor.

2 Preliminaries

In this section we introduce some basic concepts and notions used in this paper. We first introduce
the block cipher structures. Next we review the solvability of a system of linear equations.

2.1 Block Cipher structures

There are two mainly block cipher structures, which are the Feistel structure and its generaliza-
tions and the substitute permutation network (SPN). The round function of most of those struc-
tures consists of three basic operations: the sbox look-up, the exclusive-or addition (Xor) and the
branch swapping, where the only nonlinear component is the sbox look-up operation. In differential
cryptanalysis, the Xor differences of plaintext/ciphertext pairs are considered, we omit the key and
constant addition since they have no relevance to our analysis. We assume a block cipher structure
has n sub-blocks (branches), and the input and output differences are denoted by (Azy, ..., Azx,)
and (Ayi, ..., Ay,) respectively.

2.2 The solvability of a linear system

Now we review the basics in linear algebra of determining the solvability of a system of linear
equations. Let m,n be two positive integers, m < n, let Ax = b be a system of m linear equations
with n variables, where A is a m X n matrix over Fy and = (x1,...,2,) and b = (by,...,by,) are
two bit vectors, then the augmented m x (n + 1) matrix B = [A|b] can determine the solvability of
the linear system.
A regular method is to deduce the reduced row echelon form (a.k.a. row canonical form) of matrix
B by Gauss-Jordan Elimination algorithm. The reduced row echelon form of a matrix is unique and
denoted by B’. One start to check B’ from the last row to the first, to see if there exist a row which
the first n entries are zeros and the last entry is nonzero. If there are such rows, then the linear
system has no solution. For example, if the augmented matrix B of a linear system in reduced row
echelon form is
1000,
B'=[10100b
000 bs

where b3 is nonzero, then the linear system has no solution.

3 Mathematical Models for Finding IDs of Block Cipher Structures

Our improvement is based on Wu and Wang’s method. If the nonlinear sbox S; in a block cipher
structure is a permutation, then there is a constraint on the input difference x; and output difference
y; for S;, that is, z; and y; can only both be zero or both be nonzero, denote by z; ~ y;. The
intermediate value of a block cipher structure is called the state. The state updates with the round
structure. In order to find impossible differential for an r-round block cipher structure, we first set
differential variables for the states, then transform the r-round block cipher structure into a system
of linear equations and constraints, denoted by S. Then for a given differential (Ain, Aout) where
Ain = (aq,...,ay,) and Aout = (by,...,by,), we can check if it is impossible by solving S with initial
values (ai,...,an,b1,...,by), if S has no solution, then Ain -, Aout.

Here we take the 5-round Feistel structure as an example. We first assign differential variables
for 5-round Feistel structure. In Fig[l} F;,1 < i < 5 are permutations, the output difference of F;
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Fig. 1. State variables for 5-round Feistel Structure

for input difference X; is Y;, thus X; ~ Y; . According to the computation graph of 5 round Feistel
structure, we obtain the following system S of equations and constraints:

Xo®aX,0Y1 =0 X, ~Y;
X1 Xs®Y, =0 Xy~ Yy
Xo®Xs®Ys=0 X;~Y;
Xs®Xs Y, =0 Xi~Ys
Xi®Xe®Ys =0 X5~ Y5

In order to check if (a,0) — (a,0) is an impossible differential where a is a nonzero value, we solve
the above system with Xg = a, X; =0, X5 = 0, Xg = a. Since X; ~ Y7 and X5 ~ Y5 we have Y; =0
and Y5 = 0. From linear equations of S, we get Y3 = 0, thus X3 = 0 since X3 ~ Y3, next from linear
equations S we obtain Y5 = 0, however X5 = a and X5 ~ Y5, thus the system S has no solution and
(a,0) — (a,0) is an impossible differential for 5-round Feistel structure.

Now we want to find all impossible differentials for 5-round Feistel structure, we enumerate all the
possible differential pairs (Ain, Aout) € {(0,a), (a,0), (a,a), (0,b),(b,0), (b,d), (b,a), (a,b)} where a
and b are two different nonzero values. For each value of (Ain, Aout), we judge if it is an impossible
differential, after all cases are tested, we will find all impossible differentials.

Thus the general algorithm for finding all r-round impossible differentials for a block cipher
structure is outlined as:

1. Generate all the possible differential pairs (Ain, Aout) in a set D.

2. Assign differential variables according to the computation figure of the r-round block cipher
structure. Generate the system S of linear equations and constraints with the differential vari-
ables.

3. For each (Ain, Aout) € D, solve the system S with initial value (Ain, Aout) and check if S has
no solution. If there is no solution, then (Ain — Aout) is an impossible differential. After all
cases are checked we obtain all impossible differentials.

4 The Detailed Algorithm

In this section we describe the detailed algorithm and implementation details.

4.1 Generate all possible differential pairs

We use symbols a;, b;, 1 < i <n to denote 2n different the nonzero values. For a block cipher struc-
ture, the input difference is (AlL,. .., Al,) where AI; € {0,a4,...,a,} and the output difference is



(AOy,...,AO0,) where AO; € {0,a1,...,ay,b1,...b,}. Note that the input difference and output
difference will not be zero since it will be trivial in differential cryptanalysis. Thus there are total
((n+1)"=1)-((2n+1)™ —1) differential pairs. This value is large for many block cipher structures.

However, an impossible differential (Al, ..., AlL,) - (AO,...,AO,) for a block cipher struc-
ture is usually simple, that is, there are very few nonzero values in (AlL, ..., Al,) and (AOq, ..., AO,).
Since if the input or output differential are complicate, it will propagate fast due to the round
structure of the cipher. Thus it is reasonable to consider simple differential pairs. Actually all the
impossible differentials found for block cipher structures in the literature are simple.

In this paper we only consider the input difference (Al ..., AL,) where Al; € {0,a} and the
output difference (AOq,...,AO0,,) where AO; € {0,a,b}. Thus there are total (2" — 1)(3" — 1)
differential pairs need to be checked.

4.2 Generate the system S

Given a block cipher structure, we first need to draw the computational figure and assign differential
variables, as introduced in the analysis of 5-round Feistel structure. This step is varying according to
different block cipher structures. However, since most block cipher structures iterate the same round
structure for several times, these variables are regular and easy to implement in a computer program.
As in the analysis of 5-round Feistel structure, the input difference of a nonlinear permutation is
denoted by variable X; and the output difference is denoted by variable Y;. Thus if we see a variable
Y;, it must be some output difference of a nonlinear permutation.

For a block cipher structure with r rounds, there are p variables X;,0 < i < p and ¢ numbers of
variables Y;,1 < i < ¢. The number p and ¢ are determined by the round structure and the round
number 7. For the r-round Feistel structure, p = r + 2 and ¢ = r. We first denote all variables in a
variable vector as

X = (X07"'5Xp—17Y17"'7Y(1)7

then linear equations in system S can be write as M X = 0 where M is a kr x (p+¢) matrix over F
and 0 is a (p + ¢)-dimensional zero vector, where k is the number of linear equations in one round
of the block cipher structure. The augmented matrix of these linear equations is B = [M|0]. For the
5-round Feistel structure, the augmented matrix B is denoted in Table [1f.

o 1 2 &8 4 S5 6 7 & 9 10 11 12

Xo Xi Xo X5 Xy X5 X6 Y1 Yo Y3 Yi Ys O
r 1.0 1 O O o o 1 0 0 0 0 O
2 0 1 o0 1 O O O o 1 O 0 0 o0
$ o0 o0 1 o0 1 o0 o o o0 1 0 0 O
4 0 0 o0 1 o0 1 0 o0 0 o0 1 0 O
5 0 o0 o0 o 1 o0 1 o0 0 0 0 1 o0

Table 1. The 5 x 13 augmented matrix of 5-round Feistel structure

The set of constraints in & can be maintained as a map N. Let id(X;) denotes the index of
the variable X; in vector X, given a constraint X; ~ Y;, we add (id(X;),id(Y;)) into the map N
For the 5-round Feistel structure, N' = {< 1,7 >,< 2,8 >, < 3,9 > < 4,10 >,< 5,11 >}. In
the real implementation, it is noted that for most block cipher structures, the distance between a
constraint X; and Y; is fixed and determined by the round structure and the round number, that
is, 4d(Y;) — id(X;) is a constant. For example, the distance of constraint X; and Y; for a r-round
Feistel structure is 7+ 1. Thus the map N is not needed to be implemented but only the fixed index
distance is needed. This observation facilitates the real implementation of the algorithm.



4.3 Determine the solvability of S

In the beginning, we assign a symbol ’?’ to each variable in the variable vector X, which means
every variable is undetermined. Given a differential pair (Ain, Aout), we need to check if there
exist solutions of the system S with the initial value (Ain, Aout). We first need to initialize the
variable vector X according to (Ain, Aout). As in the 5-round Feistel structure, for a differential
pair Ain = (a,0), Aout = (a,0), the variable vector X is initialized as:

Xo X1 Xo X3 Xy X5 X V1 Yo Y3 Y, Y5
a O 7?7 ? 7?7 0 a ? 7 7 7 7

For a constraint X; ~ Y;, the algorithm updates (X;,Y;) and detects contradictions as follows.

— If the value X; is updated,
e If X; =0and Y; =7, then Y; is set to 0;
e If X, is a nonzero symbol and Y; =7, then Yj is set to the nonzero symbol "*’;
e If X; =0 and Y; is an nonzero symbol, then we obtain a contradiction;
— If the value Y; is updated,
e IfY; =0 and X; =7, then X; is set to 0;
o If Y; =0 and X is an nonzero symbol, then we obtain a contradiction;

We use @ to denote the symmetrical difference (Xor) of X; and X,. For example, if X1 = {a;}
and X2 = {bl}, then Xl EBXQ = {al,bl}; if Xl = {al} and X2 = {O}, then Xl EBXQ = {al}; if
X, = {al} and X5 = {al,bl}, then X7 & X5 = {bl}

The function UpdateMatrix(B, X) updates the augmented matrix B according to the variable
vector X. If the i-th variable in X is 0, then the corresponding i-th column of B is set to a zero
vector. As in [31], this method keeps solutions of the augmented matrix B unchanged. If X; is not
in the set {0, 7, %}, we check each row of B, if the value of the i-th column at the r-th row B,.; is 1,
then we Xor X; to the last element of the r-th row of B and set B,.; to 0.

Function UpdateMatrix(B, X)

// Update the augmented matrix B according to the variable vector X

1 K + the size of X;

2 fori<+ 0 to K —1do

3 t <« X[i] ;

4 if ¢ is 0 then

5 ‘ Every element of the i-th column of B is set to 0.
6 else if t is not "2’ and t is not '*’ then
7 L < the number of rows of B;

8 forr<0toL—1do

9 if B[r,i] is 1 then
10 Bjr,i] + 0;
11 Bjr,K —1]+ B[r,K —1]®t;
12 end

13 end

14 end

15 end

The function UpdateVector(X, N, j,J) updates the j-th variable YJ— with the value J, at the
same time all constraints in A/ are maintained. As described in the beginning of this subsection, the
function updates Yj with the value J by checking each constrint in A/ and returns true if succeeds
or false if there is a contradiction. There are many subcases, ad described in the detailed algorithm.

During the updating process, there may be contradictions. For example, if X; = {a} and J = {a, b}



which means J = a © b, there is a contradiction since a © b can never be a. If J is {0} but the
corresponding variable which is the sbox output of X; is nonzero, or J is {0} but the corresponding
variable which is the sbox input of X ; is nonzero, there will be contradictions.

The function ReducedRowEchelon(B) transforming the ¢ x x matrix B into the reduced row
echelon form by Gauss-Elimination algorithm. Note that every element in the first K — 1 columns of
B is in 5, while elements in the last column of B are represented by a set of symbols. Thus the Xor
operation in the last column of B is the symmetrical difference operation. The readers can refer to
[26] for the detailed algorithm of transforming a matrix into the reduced row echelon form.

The detailed algorithm for checking if a differential is impossible is described in Algorithm [} In
Algorithm |1} the variable vector X is first initialized according to the differential pair (Ain, Aout)
and the constraint array A. Then the algorithm continue checks if there is a contradiction with a
loop test until B and X is not updated any more. During the loop the algorithm first updates B
according to X by the UpdateMatrix(B, X) function, and then transforms B into the reduced row
echelon form by the ReducedRowEchelon(B) function to see if B has solutions. If B has no solutions,
the algorithm obtains a contradiction and stops. Otherwise if there exists a solution for a variable
from the reduced row echelon form, the index and the value of the variable is denoted as (j, J). The
algorithm update the variable vector X with (j, J) by the UpdateVector(X, N/, 7, J) function , if the
updating process return false, a contradiction is obtained and the algorithm stops, otherwise, the
algorithm continues to run.

Function UpdateVector(X, N, j, J)
// Update the variable vector X according to the variable (j,.J) where J is the value

of the j-th variable in X. N is the array of constraints.
input : the variable vector X, the constraint array N, (4, J).
output: A boolean flag indicates if the update procedure success.

1 flag + true;

2 foreach a € N do

3 ko + a[O]; ki + a[l];

4 if j is equal to ko then

5 if J@Yko is not 0 then

6 flag < false; // Ex. J =a® b but yko =a, a contradiction.
7 return flag;

8 else if J is 0 and Yko is 2 then

9 if X[k1] is not 0 then flag < false;
10 | return flag;
11 end
12 Y%(—O;Y;ﬂ(—();

13 else if J is a nonzero value then

14 | Xk < J 3 Xiy 4 %5

15 end

16 else if j is equal to k1 then

17 if J@Ykl is not 0 then flag + false
18 ‘ return flag;

19 else if Ykl is 2 and J is 0 then
20 | Xk, < 0; Xg, < 0;
21 end
22 end
23 end

24 return flag;




Algorithm 1: The algorithm for checking an impossible differential

input : A differential pair (Ain, Aout) and the system S
output: A boolean flag indicates if (Ain, Aout) is an impossible differential

1 B is the ¢ X k augmented matrix of S;

2 X is the k — 1 dimension variable vector ;

3 N is the map of constraints of S;

4 flag«—false;

5 index<true;

6 Initialize every variable in X according to (Ain, Aout) and the constraints in N;

7 while indez do

8 UpdateMatrix (B, X)// Update B according to X ;

/* Transform B into the reduced-row-echelon form by Gauss-Jordan Elimination */

9 ReducedRowEchelon (B);

10 if B has no solution then

11 flag<—true;

12 break;

13 else

14 index <« false;

15 count<— 0 ;

16 for i < ¢t to 1 do

17 ¥ « Row i of B ;

18 if the sum of the first K — 1 elements of 7 is 1 then

19 j + the index of the element 1 in
20 J < the last element of 7'; // the solution of the j-th variable in X
21 /* update the variable vector X with (j,J) and return true if there is

no contradiction and return false otherwise. */

22 b < UpdateVector (X, N, 4, J);
23 if b is false then
24 flag < true;

25 return flag;

26 else

27 ‘ index <« true;

28 end

29 end

30 end

31 end

32 end

33 return flag;

4.4 Complexity

For the ¢ x k matrix B and the k — 1 dimension vector X, the time complexity of the function
UpdateMatrix is ¢ - x, the time complexity of the function ReducedRowEchelon is ¢ - &, the time
complexity of the function UpdateVector is a constant ¢. The while loop continues running /2 times
since there at most x — 1 values in X and in each loop either 2 variables are updated or there is a
contradiction. Thus the total complexity of the algorithm is 5 - 1?k%, where c is a small constant.
The space complexity is dominated by storing the matrix B and is about ¢ - . The time complexity
of the Wu-Wang method is T - 1?.? and this T is much larger than our ¢. The Wu-Wang method

stores 3 matrices, thus its space complexity is at least triple of our method.

4.5 Comparison with Previous method

In [30], Wu and Wang proved that the U/-method and the UID-method are specific cases of the Wu-
Wang method. They found that their method can find longer impossible differential for the MIBS



cipher than by U-method and the UID-method. However, in the UID-method, for an impossible
differential pair ((AlL,...,Al,),(AO,...,AO0,)), the relationship between input variables and
output variables are considered since UID-method uses symbols to denote values. For example, the
UID-method considers the relation between AI; and AQ; and checks if they are equal, however the
U-method and Wu-Wang method only use 0 and 1 to denote zero and non-zero values, which omit
the relationship between input and output differentials.

Our improved method combines the advantages of the UID-method and Wu-Wang method.
Every impossible differential found by the UID-method and Wu-Wang method can be found by
our improved method. As Wu and Wang’s method, impossible differentials found by our improved
method must be correct if the algorithm is implemented correctly. Compare with Wu and Wang’s
method, our improved method is more complete. The symbol representation of a difference can
represent more relationships between different difference values. Thus it can find more impossible
differentials and the matrix B does not change with different values of (Ain, Aout) in the beginning
of the algorithm. While in the Wu-Wang method, to add linear relationships between nonzero values
in (Ain, Aout), the matrix B must change with different values of (Ain, Aout). This will consume
more time during the run of the algorithm.

The most time consuming part in the algorithm is the matrix operation. To check if the augmented
matrix has any solutions, the Wu-Wang method needs to compute the rank of the matrix M and B.
We show this step is not required since we can check the solvability of the system from the reduced
row echelon form of the matrix B, as introduced in the preliminaries section. Thus our improvement
largely reduces the search time of finding impossible differentials of a block cipher structure.

5 Applications and Experiment results

We implement the algorithm in java language and apply it to many block cipher structures, including
Gen-CAST256 [25], Misty [24], Gen-Skipjack [29], Four-Cell [10], Gen-MARS [25], Gen-RC6 [25],
SMS4 [27], MIBS [13], Camellia* [1/30], LBlock [32], E2 [14] and SNAKE [I8]. We present the
java code of this algorithm and complete impossible differential results in GitHub [22]. To reduce
the space of this paper, we present some of the impossible differential results in Table [bl The file
Impossible Differential.tzt in [22] lists the complete impossible differential results for these block
cipher structures. Most impossible differentials discovered by our algorithm are the same as the
Wu-Wang method.

Block Cipher UID [23] Wu-Wang [30] This paper
Gen-Skipjack [[16: ( - same as UID
Gen-CAST256([19: ( - same as UID
Four-Cell 18: ( - same as UID
Gen-MARS |[11: - same as UID

Gen-RC6 9:

- same as UID

SMS4 11: (0,0,0,a) »~11 (a,0,0,0) - same as UID
Misty - - 4:(0,a) =4 (b,b)
SNAKE - - 11:(0,0,0,0,0,0,a,0) -1 (0,0,5,0,0,0,0,0)
Camellia* - 8-round, 4 IDs same as Wu-Wang
MIBS - 8-round, 6 IDs 8-round, 10 IDs
LBlock - 14-round, 80 IDs same as Wu-Wang
E2 - 6-round, 56 IDs same as Wu-Wang

Table 2. Summary of Impossible differentials (IDs) of some well-known block ciphers structures
found by different methods

Moreover, for the 8-round MIBS, we find new 4 impossible differentials, which are not found by
the Wu-Wang method since these new 4 impossible differentials are not simple truncated impossible
differentials. MIBS is a 16-subblock Feistel structure with substitution and permutation (SP) round
function. In the SP round function, the 8 subblock is first substituted by 8 sboxes, then a 8 x 8



matrix is applied as the permutation. The permutation matrix P is

There are total 10 impossible differentials are found for 8-round MIBS by our improved algorithm.

11011011

01111110
11101101
01110011
10111001
11011100
11100110
10110111

The new four 8-round impossible differential found are listed in Table [3]

No. Ain Aout Reference
1 (0,0,0,0,0,0,0,0;0,0,0,0,0,a,0,0) (b,0,0,0,0,0,0,b;0,0,0,0,0,0,0,0)
2 (o0,0,0,0,0,0,0,0;0,0,0,0,0, a, 0,0) (0,0,0,0,b,0,0,0;0,0,0,0,0,0,0,0) .
This paper
3 (0,0,0,0,0,0,0,0;a,0,0,0,0,0,0,a) (0,0,0,0,0,b,0,0;0,0,0,0,0,0,0,0)
4 (0,0,0,0,0,0,0,0;0,0,0,0,a,0,0,a) (0,0,0,0,0,b,0,0;0,0,0,0,0,0,0,0)
5 (0,0,0,0,0,0,0,0;0,0,a,0,0,0,0,0) (0,0,0,0,b,0,0,0;0,0,0,0,0,0,0,0)
6 (0,0,0,0,0,0,0,0;0,0,a,0,0,0,0,0) (0,0,0,0,0,0,0,b;0,0,0,0,0,0,0,0)
7 (0,0,0,0,0,0,0,0;0,0,0,0,a,0,0,0) (0,0,b,0,0,0,0,0;0,0,0,0,0,0,0,0) 0]
8 (0,0,0,0,0,0,0,0;0,0,0,0,a,0,0,0) (0,0,0,0,0,0,b,0;0,0,0,0,0,0,0,0)
9 (0,0,0,0,0,0,0,0;0,0,0,0,0,0, a,0) (0,0,0,0,b,0,0,0;0,0,0,0,0,0,0,0)
10 (0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,a) (0,0,b,0,0,0,0,0;0,0,0,0,0,0,0,0)

Table 3. Impossible differentials for 8-round MIBS. There are 4 new found impossible differentials.
a and b are nonzero values and a and b can have the same value.

Compare with Wu and Wang’s algorithm, this improvement is more general since it not only
finds more impossible differentials for a block cipher structures, but also has better efficiency. The
results for MIBS are obtained on a 2.66 GHz processor with MAGMA package in a few hours by Wu
and Wang’s algorithm [30]. However, our results for MIBS are obtained on a 2.20 GHz processor in
Java language in less than 10 seconds. Thus, the algorithm presented in this paper is more efficient
than Wu and Wang’s algorithm.

6 Conclusion

In this paper we improve Wu and Wang’s algorithm for finding impossible differentials of block cipher
structures. The improved method is more general than Wu and Wang’s method that it can find more
impossible differentials with less time. We apply this method to many block cipher structures. The
experiment results show that this improvement can largely reduce the search time for the impossible
differentials of a block cipher. Since there are known relationships between impossible differential,
integral and zero correlation linear cryptanalysis [7J5J28]. This method can be used as a cryptanalytic
tool to evaluate the security of a block cipher against these kinds of cryptanalysis.
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