
On hybrid SIDH schemes using Edwards and
Montgomery curve arithmetic

Michael Meyer1,2, Steffen Reith1, and Fabio Campos1

1Department of Computer Science, University of Applied Sciences
Wiesbaden

2Department of Mathematics, University of Würzburg

Abstract

Supersingular isogeny Diffie-Hellman (SIDH) is a proposal for a quantum-
resistant key exchange. The state-of-the-art implementation works entirely
with Montgomery curves and basically can be divided into elliptic curve arith-
metic and isogeny arithmetic. It is well known that twisted Edwards curves
can provide a more efficient elliptic curve arithmetic. Therefore it was hinted
by Costello and Hisil, that by using only Edwards curves for isogeny and
curve arithmetic, or a hybrid scheme, that uses Edwards curve arithmetic
and switches between the models whenever needed, a speedup in the compu-
tation may be gained.

Following the latter case, we investigated how to efficiently switch between
Montgomery and twisted Edwards curves in SIDH, and how to insert Edwards
arithmetic in the current state-of-the-art implementation.
We did not gain a speedup compared to the results of Costello, Longa, and
Naehrig, but in some cases the performance of Edwards arithmetic is almost
equally fast. Thus, we suppose that a hybrid scheme does not improve the
performance of SIDH, but still can be interesting for platforms having special
hardware acceleration for Edwards curves. However, a full Edwards SIDH
version may give a speedup, if fast Edwards isogeny formulas can be found.

1 Introduction

In the recent years, the topic of post-quantum cryptography (PQC) has gained a
massive boost of attention and research. The threat of the possibility of building
large quantum computers soon, that could break e.g. elliptic curve cryptography
like ECDH by Shor’s algorithm (see [12]), led to a competition by the NIST for the

This work was partially supported by Elektrobit.

1



standardization of PQC primitives (see [10]).

One proposal for a PQC key establishment protocol is based on isogenies between
elliptic curves. First proposed by Rostovtsev and Stolbunov in 2006 (see [11]), using
ordinary elliptic curves, Jao and De Feo (see [8]) proposed the use of supersingular
elliptic curves in 2011, in order to obtain a quantum-resistant scheme. Since 2016,
when Costello, Longa and Naehrig published an efficient algorithm for the isogeny-
based key exchange (see [6]), SIDH has gained a lot of attention and research. The
use of twisted Edwards curves has been suggested by Costello and Hisil in [5].

2 Preliminaries

In the SIDH key exchange primitive, isogenies of large degree are computed as a com-
position of small degree isogenies. We work over a field Fp2 with a prime of the form
2m3nf ± 1 with a small integer f . We choose an initial supersingular elliptic curve
E0 over Fp2 and want to compute a 2m- and 3n-isogeny respectively for each party,
in the following called Alice and Bob. Therefore for generating the kernels of the
isogenies, whose sizes determine the degrees of the isogenies, we choose initial points
PA, QA, PB, QB lying in the corresponding torsion groups, namely PA, QA ∈ E0[2

m]
and PB, QB ∈ E0[3

n].
In the following, we describe Alice’s key generation, while Bob’s key generation
works in an analogous way.
Alice chooses a random integer mA and computes R0 = PA + [mA]QA as gener-
ator of the kernel for computing her 2m-isogeny. However, since computing large
degree isogenies is expensive, m isogenies of degree 2 are computed. Therefore,
we compute [2m−1]R0 as generator of the kernel of the 2-isogeny ϕ0, that maps to
E1 = E0/〈[2m−1]R0〉. ϕ0 can be computed by Vélu’s formulas (see [13]). In addi-
tion, R1 = ϕ0(R0) is computed. Following this approach, the next step is to compute
[2m−2]R1, ϕ1, E2 = E1/〈[2m−2]R1〉, and R2 = ϕ1(R1).
Following this pattern, we obtain a 2m-isogeny ϕA as composition of m isogenies of
degree 2, that maps from E0 to a curve EA.
The public key then consists of EA (in terms of the curve parameters), ϕA(PB), and
ϕA(QB). Alice receives Bob’s computed public key, which contains the curve EB,
ϕB(PA), and ϕB(QA).
Following the same strategy again, Alice then computes RBA = ϕB(PA)+[mA]ϕB(QA)
and uses this point as generator for computing the 2m-isogeny ϕBA, again as a com-
position of 2-isogenies, that maps from EB to EBA. Similarly, Bob obtains a 3n-
isogeny ϕAB, that maps from EA to EAB. The shared secret can then be computed,
since the j-invariants of the resulting curves EAB and EBA are equal.

Instead of a field Fp2 with a prime of the form 2m3nf ± 1, any other prime of
the form `ma `

n
b f ± 1 with `a, `b coprime can be used. However, the above mentioned

choice seems to be the most efficient for SIDH. Anyway, in [6] 4-isogenies are used
instead of 2-isogenies.

2



Furthermore, we note that there are better strategies to obtain isogenies of degree
`m than described above. See [8] for a detailed analysis of optimal strategies.

3 Montgomery Arithmetic

In the current state-of-the-art implementation of SIDH in [6], Costello, Longa and
Naehrig use elliptic curves in Montgomery form. They are given by an equation
over a field K of the form

Ea,b : by2 = x3 + ax2 + x.

To avoid inversions during point additions and doublings, projective coordinates can
be used. Instead of the affine coordinates (x, y) ∈ Ea,b, we use (X : Y : Z) ∈ P2

with x = X/Z and y = Y/Z, and OE = (0 : 1 : 0) as point at infinity. If we
embed this into P1 by dropping the Y -coordinate, we can use the efficient arithmetic
given by Montgomery in [9]. Given a point Pn = (Xn : Zn), we can compute
[2]Pn = (X2n : Z2n) by

4XnZn = (Xn + Zn)2 − (Xn − Zn)2,
X2n = (Xn + Zn)2(Xn − Zn)2,
Z2n = (4XnZn)((Xn − Zn)2 + ((A + 2)/4)(4XnZn)).

Given another point Pm = (Xm : Zm) and the difference Pm−n = Pm−Pn = (Xm−n :
Zm−n), we can compute the sum Pm+n = Pm + Pn = (Xm+n : Zm+n) by

Xm+n = Zm−n((Xm − Zm)(Xn + Zn) + (Xm + Zm)(Xn − Zn))2,
Zm+n = Xm−n((Xm − Zm)(Xn + Zn)− (Xm + Zm)(Xn − Zn))2.

Thus an addition can be done using 4M + 2S, or 3M + 2S if Pm−n is normalized,
while a doubling needs 2M+ 2S+ 1C. As usual, we denote field multiplications by
M, field squarings by S, and multiplications by constants by C. We note that the
formulas above lose information, since we do not distinguish between the possible
corresponding coordinates Y and −Y . However, in the case of SIDH we do not need
this information and it suffices to work entirely with (X : Z) ∈ P1.

In the SIDH implementation in [6], not only the point coordinates, but also the
curve parameters are projectivized. Instead of a Montgomery curve of the form
given above, we work with an equation of the form

E(A:B:C) : By2 = Cx3 + Ax2 + Cx,

where (A : B : C) ∈ P2(K) such that a = A/C and b = B/C for the correspondig
curve Ea,b. The j-invariants of the curves are then given by

j(Ea,b) =
256(a2 − 3)3

a2 − 4
, and j(E(A:B:C)) =

256(A2 − 3C2)3

C4(A2 − 4C2)
.

3



From these formulas we see that the j-invariant does not depend upon b or B, respec-
tively. Therefore, it suffices to work with (A : C) ∈ P1(K) in the projective model.
Furthermore, neither the Montgomery arithmetic given above, nor the isogeny com-
putations during SIDH require the coefficients b or B, respectively. However, we
note that formulas that make use of the parameter a, like the Montgomery doubling
above, must be trivially modified by substituting a = A/C in order to work on
E(A:B:C), as described in [6]. In this case a doubling costs 2M + 2S + 2C.

4 Edwards Arithmetic

When it comes to elliptic curve computations, Edwards curves are often said to be a
model equipped with fast arithmetic. However, in the context of SIDH, we have to
compare the Edwards arithmetic formulas with the efficient XZ-only Montgomery
arithmetic. On the other hand, most of the discussions about fast Edwards arith-
metic focus on full coordinate models.

Twisted Edwards curves over K are given by equations of the form

EE,a,d : aX2 + Y 2 = 1 + dX2Y 2,

with a, d 6= 0, d 6= 1, and a 6= d. For a = 1, the twisted Edwards curve EE,1,d = EE,d

is called Edwards curve. As seen in the Montgomery case, projective coordinates
can be used in order to avoid inversions during additions and doublings. However,
in the Edwards case there are three more models, as described in [2].

Similarly to the Montgomery case above, we can use projective coordinates (X :
Y : Z) ∈ P2 with x = X/Z and y = Y/Z for the corresponding affine point (x, y)
on Ea,d. The projective curve equation is given by aX2Z2 + Y 2Z2 = Z4 + dX2Y 2.
A projective point P = (X1 : Y1 : Z1) can be doubled using

B = (X1 + Y1)
2; C = X2

1 ; D = Y 2
1 ; E = aC;

F = E + D; H = Z2
1 ; J = F − 2H;

X3 = (B − C −D) · J ; Y3 = F · (E −D); Z3 = F · J ,

where [2]P = (X3 : Y3 : Z3). Therefore, a doubling needs 3M + 4S + 1C (see [1]).

Another model for twisted Edwards curves is given by the extended curve equa-
tion aX2 + Y 2 = Z2 + dT 2 with XY = ZT . Points on this curve are represented
by (X : Y : Z : T ) ∈ P3, where the corresponding affine point (x, y) is repre-
sented by (x : y : 1 : xy). According to [7], there is a fast way to add two points
(X1 : Y1 : Z1 : T1) and (X2 : Y2 : Z2 : T2) by

A = X1 ·X2; B = Y1 · Y2; C = Z1 · T2; D = T1 · Z2; E = D + C;
F = (X1 − Y1) · (X2 + Y2) + B − A; G = B + aA; H = D − C;
X3 = E · F ; Y3 = G ·H; Z3 = F ·G; T3 = E ·H,

4



where (X1 : Y1 : Z1 : T1) + (X2 : Y2 : Z2 : T2) = (X3 : Y3 : Z3 : T3). The cost of this
computation is 9M + 1C.

Two more models are given by the inverted curve aY 2Z2+X2Z2 = X2Y 2+dZ4 with
points (X : Y : Z) ∈ P2 and the completed curve aX2T 2 + Y 2Z2 = Z2T 2 + dX2Y 2

with points ((X : Z), (Y : T )) ∈ P1 × P1 (see [2]). However, for these models there
are no known doubling or addition formulas, that are more efficient than the ones
mentioned above.

Similar to the XZ-only Montgomery arithmetic, Castryck et al. introduced a Y Z-
only doubling formula for Edwards curves in [4]. In the same way as presented in
the mentioned paper, we can derive such a formula for twisted Edwards curves. For
an affine point P = (x, y), the twisted Edwards doubling formula is given by

[2]P = (x2, y2) =

(
2xy

1 + dx2y2
,
y2 − ax2

1− dx2y2

)
For the y-coordinate we have

y2 − ax2

1− dx2y2
=

y2(a− dy2)− a(1− y2)

(a− dy2)− dy2(1− y2)
=
−dy4 + 2ay2 − a

dy4 − 2dy2 + a
,

where we make use of the curve equation ax2 + y2 = 1 + dx2y2. Expressing this in
projective coordinates with P = (X : Y : Z) and [2]P = (X2 : Y2 : Z2), we obtain

Y2 = −dY 4 + 2aY 2Z2 − aZ4, and
Z2 = dY 4 − 2dY 2Z2 + aZ4.

This can be computed using 5S + 4C. In the case of an Edwards curve we have
a = 1, so the cost decreases by 2C. In [4] it is also pointed out that if ad is a square
and
√
ad is known, a doubling can be modified to cost 1M + 3S + 6C. Similarly,

in the Edwards case, if d is a square and
√
d is known, a doubling takes 1M+3S+3C.

As described in [1], the j-invariant of a twisted Edwards curve is given by

16(a2 + 14ad + d2)3

ad(a− d)4
,

which shows that in this case, we need both parameters a and d for the computation
of the j-invariant.

5 Switching between Montgomery and twisted Ed-

wards curves

If we want to combine some of the ideas for Montgomery and twisted Edwards
curves from above, we need an efficent way to switch between these two models.

5



We slightly change our notation here in the following way: For a Montgomery curve
over a field K with A ∈ K\{−2, 2} and B ∈ K\{0} we write

EM,A,B : Bv2 = u3 + Au2 + u.

For a twisted Edwards curve with distinct a, d ∈ K\{0} and d 6= 1 we write

EE,a,d : ax2 + y2 = 1 + dx2y2.

Then it is shown in [1] that EE,a,d is birationally equivalent to EM,A,B, where

A =
2(a + d)

a− d
and B =

4

a− d
,

and a birational equivalence is given by the map

(x, y) 7→ (u, v) =

(
1 + y

1− y
,

1 + y

(1− y)x

)
and its inverse

(u, v) 7→ (x, y) =

(
u

v
,
u− 1

u + 1

)
.

Note that these maps are not defined everywhere. For a way to handle exceptional
points, we refer to [1].

However, if we use projective coordinates, particularly the XZ-only Montgomery
arithmetic and the Y Z-only twisted Edwards arithmetic, switching between these
models is very simple. As seen in [4], a Montgomery point (XM : ZM) can be
transformed to the corresponding Edwards Y Z-coordinates (YE : ZE) by the map

(XM : ZM) 7→ (YE : ZE) = (XM − ZM : XM + ZM).

A twisted Edwards point (YE : ZE) can be transformed to the corresponding Mont-
gomery XZ-coordinates (XM : ZM) by the map

(YE : ZE) 7→ (XM : ZM) = (YE + ZE : ZE − YE).

Therefore, switching between these two models costs only two additions.

6 Elliptic curve arithmetic in SIDH

There are different stages of SIDH, where elliptic curve arithmetic takes place. In
[6], all the arithmetic is done in XZ-only Montgomery coordinates.

1. During the key generation, Alice and Bob compute Pi + [mi]Qi for
some initially chosen points Pi and Qi and a random integer mi.
Thus, the starting curve parameters and full coordinates of Pi and
Qi are known.

6



2. During the computation of the isogenies, Alice and Bob have to
compute several doublings or triplings, respectively. Since we work
on different curves after each computed isogeny, the curve parameters
are not fixed here. Furthermore, only the X- and Z-coordinates of
the points Ri that have to be doubled, or tripled, respectively, are
known.

3. During the computation of the shared secret, Alice and Bob again
have to compute P̂i + [mi]Q̂i for their secret integer mi and some
received points P̂i and Q̂i from the public key. Here, only the nor-
malized curve parameter A and the normalized X-coordinates of P̂i,
Q̂i, and their difference P̂i − Q̂i are known.

7 Edwards arithmetic in SIDH

Stage 1

The situation of Alice and Bob is equal here, except for the different initial points
provided and the probably different random numbers. Therefore, we don’t have to
distinguish between the two parties here. In the implementation from [6], we start
with the Montgomery curve y2 = x3 +x and the computation of [m]Q is done using
a Montgomery ladder. Per bit of the integer m, one doubling and one addition
are performed in Montgomery XZ-only arithmetic. Since the computation entirely
takes place in the basefield Fp and because of the choice of the curve parameters,
the cost of this is 5M + 4S per bit of m.

As seen above, and mentioned in [4], we can replace each doubling of a point Q
by a doubling in Edwards coordinates:

1. Compute the corresponding Edwards point QE,
2. Compute [2]QE by a twisted Edwards doubling,
3. Switch back to Montgomery coordinates to obtain [2]Q.

However, in the context of SIDH, this can be optimized as follows: Since the Mont-
gomery parameters of the starting curve are A = 0 and B = 1, the corresponding
Edwards parameters are a = 2 and d = −2. Therefore, all multiplications by curve
parameters can be replaced by additions. Plugging the parameters into the doubling
formulas, we obtain

Y2 = 2Y 4 + 4Y 2Z2 − 2Z4 and Z2 = −2Y 4 + 4Y 2Z2 + 2Z4.

Instead of computing the Edwards doubling and transforming back to Montgomery
coordinates afterwards by computing Y2 + Z2 and Z2 − Y2, we can combine these
steps, since

Y2 + Z2 = 2Y 2Z2 and Z2 − Y2 = Z4 − Y 4,

so we don’t have to compute Y2 and Z2 explicitly. Therefore, we save a few ad-
ditions. Furthermore, we get the transformation to Edwards coordinates for free,

7



since in each ladder step, a Montgomery differential addition is performed, during
which the required values occur. In total, the Edwards doubling costs 5S here, and
the combined Montgomery differential addition and Edwards doubling, and hence
one step in the ladder, costs 3M + 7S.

A different approach to compute a multiple [m]Q of a point by Edwards arith-
metic is given in the context of the elliptic curve method for factorization in [2],
where multiples of points are computed in full coordinates. The fastest way de-
scribed there is the combination of the doubling in projective coordinates and the
addition in extended coordinates that are stated above. Bernstein et al. use ’signed
sliding fractional window’ addition-subtraction chains that are defined in [3], that
define the sequence of doublings and additions for a fast computation of [m]Q. Us-
ing such a chain, only one doubling and ε additions are required per bit of m, where
ε converges to 0 for increasing bitlength of m. For Alice, the random integer m has
a maximal bitlength of 372. We see from [2], that a bitlength in this magnitude
requires approximately 0.99 doublings and 0.19 additions per bit. Thus, calculat-
ing with a bitlength of 372, we end up with roughly 1740M + 1473S in total for
the computation of [m]Q, ignoring further computations for switching between the
coordinate models. In comparison, the ladder from [6] needs 5M + 4S per bit of
m, and therefore a total of 1860M + 1488S. However, since m is randomly chosen
each time, we always have to compute a fast chain, and in addition, more storage is
required for the chain and the saved intermediate values.

Stage 2

In this stage of the algorithm, the situation of Alice and Bob is slightly different,
since they have to compute doublings or triplings, respectively. We first focus on
Alice’s computations, where doublings are needed. The first thing to note here is
that in every step, we work on a new curve with different parameters, and therefore
a multiplication by a curve coefficient costs as much as a general field multiplication
M, since we cannot expect the parameters to stay small. For a Y Z- only Edwards
doubling we thus need 4M+ 5S. A doubling in full projective coordinates would be
slightly cheaper, using 4M+4S, but we don’t have the X-coordinate here. Although
it is clear, that compared to the Montgomery arithmetic from [6], the computation
is more expensive this way, we show how it can be done.

For using these formulas, we first have to recover the corresponding Edwards pa-
rameters, in the following denoted by aE and dE. Since in the implementation of
[6], the curve parameters are in projective form (A : C), where the usual Mont-
gomery parameter a = A/C, and b, or B, respectively, is discarded completely, it is
not possible to use the formulas above directly to recover the Edwards parameters.
However, we can rewrite them as

A

C
=

2(aE + dE)

aE − dE
, and

B

C
=

4

aE − dE
.

8



We can then fix B = 1 and thus obtain

aE = A + 2C, and dE = A− 2C.

Therefore, all the doublings in this section of the algorithm can be done using
Edwards coordinates in the following way:

1. Compute the corresponding Edwards point (cost: 2 additions)
2. Recover the Edwards parameters aE and dE (cost: 3 additions)
3. Compute all the required doublings (cost: 4M + 5S each)
4. Transform the resulting point back into Montgomery coordinates

(cost: 2 additions)

On Bob’s side, we have to compute triplings. For using Edwards arithmetic, we
have to combine the Edwards doubling with the Montgomery differential addition,
leading to a cost of 8M + 7S per tripling. This is again more expensive than the
tripling from [6], which costs 8M + 4S.

Stage 3

Similar to stage 1, we want to compute P + [m]Q here. However the circum-
stances are different here. We are given the public keys, namely the normalized
X-coordinates of P , Q and P −Q, and the normalized Montgomery curve parame-
ter A, which is calculated from these values. In [6], the three-point-ladder from [8]
is used, which computes one differential addition and one combined doubling and
differential addition per step.
For the deployment of Edwards curves, we can again replace the doubling of the
combined step by an Edwards doubling. However, in contrast to stage 1, we cannot
expect the coefficients aE = A + 2 and dE = A − 2 to be small, so we have to
count them as full multiplications here as well. This leads to an extra cost of 4M
compared to the computation in stage 1, and thus a cost of 7M + 7S per combined
doubling and addition. A complete ladder step, which includes one more differential
addition, costs 10M+ 9S in this case. In comparison, a ladder step in [6] costs only
9M + 6S.

As in stage 1, another option would be to compute P + [m]Q in full Edwards
projective and extended coordinates. The problem here is that the Y -coordinates
of P and Q are not given.

8 Implementation results

We implemented SIDH with an optimal strategy based on [6] in Python 2.7. This
was used as a reference for performance comparisons to the described Edwards
arithmetic. The Python scripts can be found on https://gitlab.cs.hs-rm.de/

pqcrypto/SIDH. In the Edwards script, we implemented the stages 1 and 2 from

9



above, namely in stage 1 a basefield ladder, that uses a combination of an Edwards
doubling and a Montgomery differential addition, and in stage 2 Edwards doublings
and triplings as described. In total, the computational effort increased by roughly
10% with all these changes. However this gap will probably a little smaller, if we
adjust the optimal strategy for this case.
Work on a detailed comparison of the different operations in a C implementation is
still in progress.

9 Conclusion and future work

As a result we can suppose, that a hybrid SIDH scheme, that uses Edwards arith-
metic whenever possible, does not yield a speedup for SIDH. However, since the
computations are almost as efficient as in the state-of-the-art implementation [6], it
is still possible, that a full Edwards version of SIDH with efficient Edwards isogeny
formulas can improve the performance of SIDH. In this case, if Y Z-only arithmetic
is used, it may be even advantageous to switch to Montgomery curves in some
cases, e.g. to speed up doublings. However, we leave this question open for further
investigation.

10



References

[1] Daniel J. Bernstein, Peter Birkner, Mark Joye, Tanja Lange, and Christiane Pe-
ters. Twisted edwards curves. In Serge Vaudenay, editor, Progress in Cryptology
- AFRICACRYPT 2008, pages 389–405. Lecture Notes in Computer Science,
5023, Springer, 2008.

[2] Daniel J. Bernstein, Peter Birkner, Tanja Lange, and Christiane Peters. ECM
Using Edwards Curves. Mathematics of Computation, 82(282):1139–1179, 2013.

[3] Daniel J. Bernstein and Tanja Lange. Analysis and optimization of elliptic-
curve single-scalar multiplication. In Gary L. Mullen, Daniel Panario, and
Igor E. Shparlinski, editors, Finite Fields and Applications: Papers from the
8th International Conference, pages 1–19. Contemporary Mathematics, 461,
American Mathematical Society, 2008.

[4] Wouter Castryck, Steven Galbraith, and Reza Rezaeian Farashahi. Efficient
arithmetic on elliptic curves using a mixed edwards-montgomery representation.
Cryptology ePrint Archive, Report 2008/218, 2008. http://eprint.iacr.

org/2008/218.

[5] Craig Costello and Huseyin Hisil. A simple and compact algorithm for sidh
with arbitrary degree isogenies. Cryptology ePrint Archive, Report 2017/504,
2017. https://eprint.iacr.org/2017/504.

[6] Craig Costello, Patrick Longa, and Michael Naehrig. Efficient algorithms for
supersingular isogeny diffie-hellman. In M. Robshaw and J. Katz, editors, Ad-
vances in Cryptology - CRYPTO 2016, pages 572–601. Lecture Notes in Com-
puter Science, 9814, Springer, 2016.

[7] Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson. Twisted
edwards curves revisited. In Josef Pieprzyk, editor, Advances in Cryptology -
ASIACRYPT 2008, pages 326–343. Lecture Notes in Computer Science, 5350,
Springer, 2008.

[8] David Jao, Luca De Feo, and Jérôme Plût. Towards quantum-resistant cryp-
tosystems from supersingular elliptic curve isogenies. Journal of Mathematical
Cryptology, 8(3):209–247, 2014.

[9] Peter L. Montgomery. Speeding the Pollard and Elliptic Curve Methods of
Factorization. Mathematics of Computation, 48(177):243–264, 1987.

[10] The National Institute of Standards and Technology (NIST). Submission re-
quirements and evaluation criteria for the post-quantum cryptography stan-
dardization process, 2016.

[11] A. Rostovtsev and A. Stolbunov. Public-key cryptosystem based on isogenies.
Cryptology ePrint Archive, Report 2006/145, 2006. http://eprint.iacr.

org/2006/145.

11



[12] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In M. Robshaw and J. Katz, editors, Foundations of Computer
Science, 1994 Proceedings., 35th Annual Symposium on, pages 124–134. 1994.

[13] J. Vélu. Isogénies entre courbes elliptiques. C.R. Acad. Sc. Paris, Série A.,
271:238–241, 1971.

12


