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Abstract. We propose a novel multi-party computation protocol for
evaluating continuous real-valued functions with high numerical preci-
sion. Our method is based on approximations with Fourier series and
uses at most two rounds of communication during the online phase. For
the offline phase, we propose a trusted-dealer and honest-but-curious
aided solution, respectively. We apply our algorithm to train a logistic
regression classifier via a variant of Newton’s method (known as IRLS)
to compute unbalanced classification problems that detect rare events
and cannot be solved using previously proposed privacy-preserving op-
timization algorithms (e.g., based on piecewise-linear approximations of
the sigmoid function). Our protocol is efficient as it can be implemented
using standard quadruple-precision floating point arithmetic. We report
multiple experiments and provide a demo application that implements
our algorithm for training a logistic regression model.

1 Introduction

Privacy-preserving computing allows multiple parties to evaluate a function
while keeping the inputs private and revealing only the output of the function and
nothing else. Recent advances in multi-party computation (MPC), homomorphic
encryption, and differential privacy made these models practical. An example of
such computations, with applications in medicine and finance, among others,
is the training of supervised models where the input data comes from distinct
secret data sources [17], [23], [25], [26] and the evaluation of predictions using
these models.

In machine learning classification problems, one trains a model on a given
dataset to predict new inputs, by mapping them into discrete categories. The
classical logistic regression model predicts a class by providing a probability as-
sociated with the prediction. The quality of the model can be measured in several
ways, the most common one being the accuracy that indicates the percentage of
correctly predicted answers.
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It appears that for a majority of the datasets (e.g., the MNIST database of
handwritten digits [15] or the ARCENE dataset [14]), the classification achieves
very good accuracy after only a few iterations of the gradient descent using a
piecewise-linear approximation of the sigmoid function sigmo : R→ [0, 1] defined
as

sigmo(x) =
1

1 + e−x
,

although the current cost function is still far from the minimum value [25].
Other approximation methods of the sigmoid function have also been proposed
in the past. In [29], an approximation with low degree polynomials resulted in a
more efficient but less accurate algorithm. Conversely, a higher-degree polyno-
mial approximation applied to deep learning algorithms in [24] yielded more ac-
curate, but less efficient algorithms (and thus, less suitable for privacy-preserving
computing). In parallel, approximation solutions for privacy-preserving methods
based on homomorphic encryption [2], [27], [18], [22] and differential privacy [1],
[10] have been proposed in the context of both classification algorithms and deep
learning.

Nevertheless, accuracy itself is not always a sufficient measure for the quality
of the model, especially if, as mentioned in [19, p.423], our goal is to detect a rare
event such as a rare disease or a fraudulent financial transaction. If, for example,
one out of every one thousand transactions is fraudulent, a näıve model that
classifies all transactions as honest achieves 99.9% accuracy; yet this model has
no predictive capability. In such cases, measures such as precision, recall and
F1-score allow for better estimating the quality of the model. They bound the
rates of false positives or negatives relative to only the positive events rather
than the whole dataset.

The techniques cited above achieve excellent accuracy for most balanced
datasets, but since they rely on a rough approximation of the sigmoid function,
they do not converge to the same model and thus, they provide poor scores on
datasets with a very low acceptance rate. In this paper, we show how to regain
this numerical precision in MPC, and to reach the same score as the plaintext
regression. Our MPC approach is mostly based on additive secret shares with
precomputed multiplication triplets [4]. This means that the computation is
divided in two phases: an offline phase that can be executed before the data is
shared between the players, and an online phase that computes the actual result.
For the offline phase, we propose a first solution based on a trusted dealer, and
then discuss a protocol where the dealer is honest-but-curious.

1.1 Our contributions

Fourier approximation of the sigmoid function. Evaluation of real-valued func-
tions has been widely used in privacy-preserving computations. For instance, in
order to train linear and logistic regression models, one is required to compute
real-valued functions such as the square root, the exponential, the logarithm, the
sigmoid or the softmax function and use them to solve non-linear optimization
problems. In order to train a logistic regression model, one needs to minimize
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a cost function which is expressed in terms of logarithms of the continuous sig-
moid function. This minimum is typically computed via iterative methods such
as the gradient descent. For datasets with low acceptance rate, it is important
to get much closer to the exact minimum in order to obtain a sufficiently precise
model. We thus need to significantly increase the number of iterations (näıve
or stochastic gradient descent) or use faster-converging methods (e.g., IRLS [5,
§4.3]). The latter require a numerical approximation of the sigmoid that is much
better than what was previously achieved in an MPC context, especially when
the input data is not normalized or feature-scaled. Different approaches have
been considered previously such as approximation by Taylor series around a
point (yielding only good approximation locally at that point), or polynomial
approximation (by e.g., estimating least squares). Although better than the first
one, this method is numerically unstable due to the variation of the size of the
coefficients. An alternative method based on approximation by piecewise-linear
functions has been considered as well. In MPC, this method performs well when
used with garbled circuits instead of secret sharing and masking, but does not
provide enough accuracy.

In our case, we approximate the sigmoid using Fourier series, an approach
applied for the first time in this context. This method works well as it provides a
better uniform approximation assuming that the function is sufficiently smooth
(as is the case with the sigmoid). In particular, we virtually re-scale and extend
the sigmoid to a periodic function that we approximate with a trigonometric
polynomial which we then evaluate in a stable privacy-preserving manner. To
approximate a generic function with trigonometric polynomials that can be eval-
uated in MPC, one either use the Fourier series of a smooth periodic extension
or finds directly the closest trigonometric polynomial by the method of least
squares for the distance on the half-period. The first approach yields a super-
algebraic convergence at best, whereas the second converges exponentially fast.
On the other hand, the first one is numerically stable whereas the second one is
not (under the standard Fourier basis). In the case of the sigmoid, we show that
one can achieve both properties at the same time.

Floating-point representation and masking. A typical approach to multi-party
computation protocols with masking is to embed fixed-point values into finite
groups and use uniform masking and secret sharing. Arithmetic circuits can
then be evaluated using, e.g., precomputed multiplication triplets and follow-
ing Beaver’s method [4]. This idea has been successfully used in [13] and [12].
Whereas the method works well on low multiplicative depth circuits like cor-
relations or linear regression [17], in general, the required group size increases
exponentially with the multiplicative depth. In [25], this exponential growth is
mitigated by a two-party rounding solution, but the technique does not extend
to three or more players where an overflow in the most significant bits can oc-
cur. In this work, we introduce an alternative sharing scheme, where fixed-point
values are shared directly using (possibly multibit) floating points, and present
a technique to reduce the share sizes after each multiplication. This technique
easily extends to an arbitrary number of players.
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Significant reduction in communication time. In this paper, we follow the same
approach as in [25] and define dedicated triplets for high-level instructions, such
as large matrix multiplications, a system resolution, or an oblivious evaluation of
the sigmoid. This approach is less generic than masking low-level instructions as
in SPDZ, but it allows to reduce the communication and memory requirements
by large factors. Masks and operations are aware of the type of vector or matrix
dimensions and benefit from the vectorial nature of the high-level operations.
For example, multiplying two matrices requires a single round of communication
instead of up to O(n3) for coefficient-wise approaches, depending on the batching
quality of the compiler. Furthermore, masking is defined per immutable variable
rather than per elementary operation, so a constant matrix is masked only once
during the whole algorithm. Combined with non-trivial local operations, these
triplets can be used to achieve much more than just ring additions or multiplica-
tions. In a nutshell, the amount of communications is reduced as a consequence
of reusing the same masks, and the number of communication rounds is re-
duced as a consequence of masking directly matrices and other large structures.
Therefore, the total communication time becomes negligible compared to the
computing cost.

New protocol for the honest but curious offline phase extendable to n players.
We introduce a new protocol for executing the offline phase in the honest-but-
curious model that is easily extendable to a generic number n of players while
remaining efficient. To achieve this, we use a broadcast channel instead of peer-
to-peer communication which avoids a quadratic explosion in the number of
communications. This is an important contribution, as none of the previous
protocols for n > 3 players in this model are efficient. In [17], for instance, the
authors propose a very efficient algorithm in the trusted dealer model; yet the
execution time of the oblivious transfer protocol is quite slow.

2 Notation and Preliminaries

Assume that P1, . . . , Pn are distinct computing parties (players). We recall some
basic concepts from multi-party computation that will be needed for this paper.

2.1 Secret sharing and masking

Let (G, •) be a group and let x ∈ G be a group element.
A secret share of x, denoted by JxK• (by a slight abuse of notation), is a tuple

(x1, . . . , xn) ∈ Gn such that x = x1 • · · · • xn. If (G,+) is abelian, we call the
secret shares x1, . . . , xn additive secret shares. A secret sharing scheme is compu-
tationally secure if for any two elements x, y ∈ G, strict sub-tuples of shares JxK•
or JyK• are indistinguishable. If G admits a uniform distribution, an information-
theoretic secure secret sharing scheme consists of drawing x1, . . . , xn−1 uniformly
at random and choosing xn = x−1n−1 • · · · • x

−1
1 • x. When G is not compact, the

condition can be relaxed to statistical or computational indistinguishability.
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A closely related notion is the one of group masking. Given a subset X of
G, the goal of masking X is to find a distribution D over G such that the
distributions of x•D for x ∈ X are all indistinguishable. Indeed, such distribution
can be used to create a secret share: one can sample λ← D, and give λ−1 to a
player and x • λ to the other. Masking can also be used to evaluate non-linear
operations in clear over masked data, as soon as the result can be privately
unmasked via homomorphisms (as in, e.g., the Beaver’s triplet multiplication
technique [4]).

2.2 Arithmetic with secret shares via masking

Computing secret shares for a sum x+ y (or a linear combination if (G,+) has
a module structure) can be done non-interactively by each player by adding
the corresponding shares of x and y. Computing secret shares for a product
is more challenging. One way to do that is to use an idea of Beaver based on
precomputed and secret shared multiplicative triplets. From a general point of
view, let (G1,+), (G2,+) and (G3,+) be three abelian groups and let π : G1 ×
G2 → G3 be a bilinear map.

Given additive secret shares JxK+ and JyK+ for two elements x ∈ G1 and
y ∈ G2, we would like to compute secret shares for the element π(x, y) ∈ G3.
With Beaver’s method, the players must employ precomputed single-use random
triplets (JλK+, JµK+, Jπ(λ, µ)K+) for λ ∈ G1 and µ ∈ G2, and then use them to
mask and reveal a = x + λ and b = y + µ. The players then compute secret
shares for π(x, y) as follows:

– Player 1 computes z1 = π(a, b)− π(a, µ1)− π(λ1, b) + (π(λ, µ))1;
– Player i (for i = 2, . . . , n) computes zi = −π(a, µi)− π(λi, b) + (π(λ, µ))i.

The computed z1, . . . , zn are the additive shares of π(x, y). A given λ can
be used to mask only one variable, so one triplet must be precomputed for each
multiplication during the offline phase (i.e. before the data is made available
to the players). Instantiated with the appropriate groups, this abstract scheme
allows to evaluate a product in a ring, but also a vectors dot product, a matrix-
vector product, or a matrix-matrix product.

2.3 MPC evaluation of real-valued continuous functions

For various applications (e.g., logistic regression in Section 6), we need to com-
pute continuous real-valued functions over secret shared data. For non-linear
functions (e.g. exponential, log, power, cos, sin, sigmoid, etc.), different methods
are proposed in the literature.

A straightforward approach consists of implementing a full floating point
arithmetic framework [6, 12], and to compile a data-oblivious algorithm that
evaluates the function over floats. This is for instance what Sharemind and SPDZ
use. However, these two generic methods lead to prohibitive running times if the
floating point function has to be evaluated millions of times.
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The second approach is to replace the function with an approximation that is
easier to compute: for instance, [25] uses garbled circuits to evaluate fixed point
comparisons and absolute values; it then replaces the sigmoid function in the
logistic regression with a piecewise-linear function. Otherwise, [24] approximates
the sigmoid with a polynomial of fixed degree and evaluates that polynomial
with the Horner method, thus requiring a number of rounds of communications
proportional to the degree.

Another method that is close to how SPDZ [13] computes inverses in a finite
field, is based on polynomial evaluation via multiplicative masking: using a pre-
computed triplet of the form (JλK+, Jλ−1K+, . . . , Jλ−pK+), players can evaluate
P (x) =

∑p
i=0 apx

p by revealing u = xλ and outputting the linear combination∑p
i=0 aiu

iJλ−iK+.

Multiplicative masking, however, involves some leakage: in finite fields, it
reveals whether x is null. The situation gets even worse in finite rings where the
multiplicative orbit of x is disclosed (for instance, the rank would be revealed in
a ring of matrices), and over R, the order of magnitude of x would be revealed.

For real-valued polynomials, the leakage could be mitigated by translating
and rescaling the variable x so that it falls in the range [1, 2). Yet, in general, the
coefficients of the polynomials that approximate the translated function explode,
thus causing serious numerical issues.

2.4 Full threshold honest-but-curious protocol

Since our goal is to emphasize new functionalities, such as efficient evaluation of
real-valued continuous functions and good quality logistic regression, we often
consider a scenario where all players follow the protocol without introducing any
errors. The players may, however, record the whole transaction history and try
to learn illegitimate information about the data. During the online phase, the
security model imposes that any collusion of at most n−1 players out of n cannot
distinguish any semantic property of the data beyond the aggregated result that
is legitimately and explicitly revealed. To achieve this, Beaver triplets (used to
mask player’s secret shares) can be generated and distributed by a single entity
called the trusted dealer. In this case, no coalition of at most n−1 players should
get any computational advantage on the plaintext triplet information. However,
the dealer himself knows the plaintext triplets, and hence the whole data, which
only makes sense on some computation outsourcing use-cases. In Section 5, we
give an alternative honest-but-curious (or semi-honest) protocol to generate the
same triplets, involving this time bi-directional communications with the dealer.
In this case, the dealer and the players collaborate during the offline phase in
order to generate the precomputed material, but none of them have access to the
whole plaintext triplets. This makes sense as long as the dealer does not collude
with any player, and at least one player does not collude with the other players.
We leave the design of actively secure protocols for future work.
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3 Statistical Masking and Secret Share Reduction

In this section, we present in this section our masking technique for fixed-point
arithmetic and provide an algorithm for the MPC evaluation of real-valued con-
tinuous functions. In particular, we show that to achieve p bits of numerical
precision in MPC, it suffices to have p+ 2τ -bit floating points where τ is a fixed
security parameter.

The secret shares we consider are real numbers. We would like to mask these
shares using floating point numbers. Yet, as there is no uniform distribution
on R, no additive masking distribution over reals can perfectly hide the arbi-
trary inputs. In the case when the secret shares belong to some known range of
numerical precision, it is possible to carefully choose a masking distribution, de-
pending on the precision range, so that the masked value computationally leaks
no information about the input. A distribution with sufficiently large standard
deviation could do the job: for the rest of the paper, we refer to this type of
masking as “statistical masking”. In practice, we choose a normal distribution
with standard deviation σ = 240.

On the other hand, by using such masking, we observe that the sizes of the
secret shares increase every time we evaluate the multiplication via Beaver’s
technique (Section 2.2). In Section 3.3, we address this problem by introducing
a technique that allows to reduce the secret share sizes by discarding the most
significant bits of each secret share (using the fact that the sum of the secret
shares is still much smaller than their size).

3.1 Floating point, fixed point and interval precision

Suppose that B is an integer and that p is a non-negative integer (the number
of bits). The class of fixed-point numbers of exponent B and numerical precision
p is:

C(B, p) = {x ∈ 2B−p · Z, |x| ≤ 2B}.

Each class C(B, p) is finite, and contains 2p+1+1 numbers. They could be rescaled
and stored as (p + 2)-bit integers. Alternatively, the number x ∈ C(B, p) can
also be represented by the floating point value x, provided that the floating
point representation has at least p bits of mantissa. In this case, addition and
multiplication of numbers across classes of the same numerical precision are
natively mapped to floating-point arithmetic. The main arithmetic operations
on these classes are:

– Lossless Addition: C(B1, p1)×C(B2, p2)→ C(B, p) whereB = max(B1, B2)+
1 and p = B −min(B1 − p1, B2 − p2);

– Lossless Multiplication: C(B1, p1)×C(B2, p2)→ C(B, p) where B = B1 +
B2 and p = p1 + p2;

– Rounding: C(B1, p1) → C(B, p), that maps x to its nearest element in
2B−pZ.
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Lossless operations require p to increase exponentially in the multiplication
depth, whereas fixed precision operations maintain p constant by applying a
final rounding. Finally, note that the exponent B should be incremented to
store the result of an addition, yet, B is a user-defined parameter in fixed point
arithmetic. If the user forcibly chooses to keep B unchanged, any result |x| > 2B

will not be representable in the output domain (we refer to this type of overflow
as plaintext overflow).

3.2 Floating point representation

Given a security parameter τ , we say that a set S is a τ -secure masking set
for a class C(B, p) if the following distinguishability game cannot be won with
advantage ≥ 2−τ : the adversary chooses two plaintexts m0,m1 in C(B, p), a
challenger picks b ∈ {0, 1} and α ∈ S uniformly at random, and sends c =
mb+α to the adversary. The adversary has to guess b. Note that increasing such
distinguishing advantage from 2−τ to ≈ 1/2 would require to give at least 2τ

samples to the attacker, so τ = 40 is sufficient in practice.

Proposition 1. The class C(B, p, τ) = {α ∈ 2B−pZ, |α| ≤ 2B+τ} is a τ -secure
masking set for C(B, p)

Proof. If a, b ∈ C(B, p) and U is the uniform distribution on C(B, p, τ), the
statistical distance between a+U and b+U is (b− a) · 2p−B/#C(B, p, τ) ≤ 2−τ .
This distance upper-bounds any computational advantage. ut

Again, the class C(B, p, τ) = C(B + τ, p+ τ) fits in floating point numbers of
p+ τ -bits of mantissa, so they can be used to securely mask fixed point numbers
with numerical precision p. By extension, all additive shares for C(B, p) will be
taken in C(B, p, τ).

We now analyze what happens if we use Beaver’s protocol to multiply two
plaintexts x ∈ C(B1, p) and y ∈ C(B2, p). The masked values x + λ and y + µ
are bounded by 2B1+τ and 2B2+τ respectively. Since the mask λ is also bounded
by 2B1+τ , and µ by 2B2+τ , the computed secret shares of x · y will be bounded
by 2B1+B2+2τ , So the lossless multiplication sends C(B1, p, τ) × C(B2, p, τ) →
C(B, 2p, 2τ) where B = B1+B2 instead of C(B, p, τ). Reducing p is just a matter
of rounding, and it is done automatically by the floating point representation.
However, we still need a method to reduce τ , so that the output secret shares
are bounded by 2B+τ .

3.3 Secret share reduction algorithm

The algorithm we propose depends on two auxiliary parameters: the cutoff, de-
fined as η = B + τ so that 2η is the desired bound in absolute value, and an
auxiliary parameter M = 2κ larger than the number of players.

The main idea is that the initial share contains large components z1, . . . , zn
that sum up to the small secret shared value z. Additionally, the most significant
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bits of the share beyond the cutoff position (say MSB(zi) = bzi/2ηe) do not
contain any information on the data, and are all safe to reveal. We also know
that the MSB of the sum of the shares (i.e. MSB of the data) is null, so the sum
of the MSB of the shares is very small. The share reduction algorithm simply
computes this sum, and redistributes it evenly among the players. Since the sum
is guaranteed to be small, the computation is done modulo M rather than on
large integers. More precisely, using the cutoff parameter η, for i = 1, . . . , n,
player i writes his secret share zi of z as zi = ui + 2ηvi, with vi ∈ Z and ui ∈
[−2η−1, 2η−1). Then, he broadcasts vi mod M , so that each player computes the
sum. The individual shares can optionally be re-randomized using a precomputed
share JνK+, with ν = 0 mod M . Since w =

∑
vi’s is guaranteed to be between

−M/2 and M/2, it can be recovered from its representation mod M . Thus, each
player locally updates its share as ui + 2ηw/n, which have by construction the
same sum as the original shares, but are bounded by 2η. This construction is
summarized in Algorithm 3 in Appendix B.

4 Fourier Approximation

Fourier theory allows us to approximate certain periodic functions with trigono-
metric polynomials. The goal of this section is two-fold: to show how to evaluate
trigonometric polynomials in MPC and, at the same time, to review and show
extensions of some approximation results to non-periodic functions.

4.1 Evaluation of trigonometric polynomials

Recall that a complex trigonometric polynomial is a finite sum of the form
t(x) =

∑P
m=−P cme

imx, where cm ∈ C is equal to am + ibm, with am, bm ∈ R.
Each trigonometric polynomial is a periodic function with period 2π. If c−m = cm
for all m ∈ Z, then t is real-valued, and corresponds to the more familiar cosine
decomposition t(x) = a0 +

∑N
m=1 am cos(mx) + bm sin(mx). Here, we describe

how to evaluate trigonometric polynomials in an MPC context, and explain why
it is better than regular polynomials.

We suppose that, for all m, the coefficients am and bm of t are publicly
accessible and they are 0 ≤ am, bm ≤ 1. As t is 2π periodic, we can evaluate it
on inputs modulo 2π. Remark that as R mod 2π admits a uniform distribution,
we can use a uniform masking: this method completely fixes the leakage issues
that were related to the evaluation of classical polynomials via multiplicative
masking. On the other hand, the output of the evaluation is still in R: in this
case we continue using the statistical masking described in previous sections.
The inputs are secretly shared and additively masked: for sake of clarity, to
distinguish the classical addition over reals from the addition modulo 2π, we
temporarily denote this latter by ⊕. In the same way, we denote the additive
secret shares with respect to the addition modulo 2π by J·K⊕. Then, the transition
from J·K+ to J·K⊕ can be achieved by trivially reducing the shares modulo 2π.
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Then, a way to evaluate t on a secret shared input JxK+ = (x1, . . . , xn) is to
convert JxK+ to JxK⊕ and additively mask it with a shared masking JλK⊕, then
reveal x⊕λ and rewrite our target JeimxK+ as eim(x⊕λ) ·Jeim(−λ)K+. Indeed, since
x⊕λ is revealed, the coefficient eim(x⊕λ) can be computed in clear. Overall, the
whole trigonometric polynomial t can be evaluated in a single round of commu-
nication, given a precomputed triplet such as (JλK⊕, Je−iλK+, . . . , Je−iλP K+) and
thanks to the fact that x⊕ λ has been revealed.

Also, we notice that to work with complex numbers of absolute value 1 makes
the method numerically stable, compared to power functions in regular polyno-
mials. It is for this reason that the evaluation of trigonometric polynomials is a
better solution in our context.

4.2 Approximating non-periodic functions

If one is interested in uniformly approximating (with trigonometric polynomi-
als on a given interval, e.g. [−π/2, π/2]) a non-periodic function f , one cannot
simply use the Fourier coefficients. Indeed, even if the function is analytic, its
Fourier series need not converge uniformly near the end-points due to Gibbs
phenomenon.

Approximations via C∞-extensions. One way to remedy this problem is to look
for a periodic extension of the function to a larger interval and look at the
convergence properties of the Fourier series for that extension. To obtain expo-
nential convergence, the extension needs to be analytic too, a condition that can
rarely be guaranteed. In other words, the classical Whitney extension theorem
[28] will rarely yield an analytic extension that is periodic at the same time. A
constructive approach for extending differentiable functions is given by Hestenes
[20] and Fefferman [16] in a greater generality. The best one can hope for is to
extend the function to a C∞-function (which is not analytic). As explained in
[8], [9], such an extension yields a super-algebraic approximation at best that is
not exponential.

Least-square approximations. An alternative approach for approximating a non-
periodic function with a trigonometric functions is to search for these functions
on a larger interval (say [−π, π]), such that the restriction (to the original inter-
val) of the L2-distance between the original function and the approximation is
minimized. This method was first proposed by [7], but it was observed that the
coefficients with respect to the standard Fourier basis were numerically unstable
in the sense that they diverge (for the optimal solution) as one increases the
number of basis functions. The method of [21] allows to remedy this problem by
using a different orthonormal basis of certain half-range Chebyshev polynomials
of first and second kind for which the coefficients of the optimal solution become
numerically stable. In addition, one is able to calculate numerically these coeffi-
cients using a Gaussian quadrature rule. More details are given in Appendix C.
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Approximating the sigmoid function. We now restrict to the case of the sigmoid
function over the interval [−B/2, B/2] for some B > 0. We can rescale the
variable to approximate g(x) = sigmo(Bx/π) over [−π/2, π/2]. If we extend g by
anti-periodicity (odd-even) to the interval [π/2, 3π/2] with the mirror condition
g(x) = g(π − x), we obtain a continuous 2π-periodic piecewise C1 function. By
Dirichlet’s global theorem, the Fourier serie of g converges uniformly over R, so
for all ε > 0, there exists a degreeN and a trigonometric polynomial gN such that
‖gN−g‖∞ ≤ ε. To compute sigmo(t) over secret shared t, we first apply the affine
change of variable (which is easy to evaluate in MPC), to get the corresponding
x ∈ [−π/2, π/2], and then we evaluate the trigonometric polynomial gN (x) using
a Fourier triplet. This method is sufficient to get 24 bits of precision with a
polynomial of only 10 terms, however asymptotically, the convergence rate is
only in Θ(n−2) due to discontinuities in the derivative of g. In other words,
approximating g with λ bits of precision requires to evaluate a trigonometric
polynomial of degree 2λ/2. Luckily, in the special case of the sigmoid function, we
can make this degree polynomial by explicitly constructing a 2π-periodic analytic
function that is exponentially close to the rescaled sigmoid on the whole interval
[−π, π] (not the half interval). Besides, the geometric decay of the coefficients of
the trigonometric polynomial ensures perfect numerical stability. The following
theorem, whose proof can be found in Appendix D summarizes this construction.

Theorem 1. Let hα(x) = 1/(1+e−αx)−x/2π for x ∈ (−π, π). For every ε > 0,
there exists α = O(log(1/ε)) such that hα is at uniform distance ε/2 from a 2π-
periodic analytic function g. There exists N = O(log2(1/ε)) such that the N th
term of the Fourier series of g is at distance ε/2 of g, and thus, at distance ≤ ε
from hα.

5 Honest but Curious Model

In the previous sections, we defined the shares of multiplication, power and
Fourier triplets, but did not explain how to generate them. Of course, a single
trusted dealer approved by all players (TD model) could generate and distribute
all the necessary shares to the players. Since the trusted dealer knows all the
masks, and thus all the data, the TD model is only legitimate for few computa-
tion outsourcing scenarios.

We now explain how to generate the same triplets efficiently in the more tra-
ditional honest-but-curious (HBC) model. To do so, we keep an external entity,
called again the dealer, who participates in an interactive protocol to generate
the triplets, but sees only masked information. Since the triplets in both the
HBC and TD models are similar, the online phase is unchanged. Notice that in
this HBC model, even if the dealer does not have access to the secret shares, he
still has more power than the players. In fact, if one of the players wants to gain
information on the secret data, he has to collude with all other players, whereas
the dealer would need to collaborate with just one of them.

In what follows, we suppose that, during the offline phase, a private channel
exists between each player and the dealer. In the case of an HBC dealer, we also
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Algorithm 1 Honest but curious triplets generation for a trigonometric poly

Output: Shares (JλK, Jeim1λK+, . . . , JeimNλK+).
1: Each player Pi generates λi, ai (uniformly modulo 2π)
2: Each player Pi broadcasts ai to all other players.
3: Each player computes a = a1 + · · ·+ an mod 2π.
4: Each player Pi sends to the dealer λi + ai mod 2π.
5: The dealer computes λ+ a mod 2π and w(1) = eim1(λ+a), . . . , w(N) = eimN (λ+a)

6: The dealer creates Jw(1)K+, . . . , Jw(N)K+ and sends w
(1)
i , . . . , w

(N)
i to player Pi.

7: Each player Pi multiplies each w
(j)
i by e−imja to get (eimjλ)i, for all j ∈ [1, N ].

assume that an additional private broadcast channel (a channel to which the
dealer has no access) exists between all the players (Figure 5 in Appendix E).
Afterwards, the online phase only requires a public broadcast channel between
the players (Figure 6 in Appendix E). In practice, because of the underlying
encryption, private channels (e.g., SSL connections) have a lower throughput
(generally ≈ 20MB/s) than public channels (plain TCP connections, generally
from 100 to 1000MB/s between cloud instances).

The majority of HBC protocols proposed in the literature present a scenario
with only 2 players. In [11] and [3], the authors describe efficient HBC protocols
that can be used to perform a fast MPC multiplication in a model with three
players. The two schemes assume that the parties follow correctly the protocol
and that two players do not collude. The scheme proposed in [11] is very complex
to scale for more than three parties, while the protocol in [3] can be extended to
a generic number of players, but requires a quadratic number of private channels
(one for every pair of players). We propose a different protocol for generating
the multiplicative triplets in the HBC scenario, that is efficient for any arbitrary
number n of players. In our scheme, the dealer evaluates the non-linear parts
in the triplet generation, over the masked data produced by the players, then
he distributes the masked shares. The mask is common to all players, and it is
produced thanks to the private broadcast channel that they share. Finally, each
player produces his triplet by unmasking the precomputed data received from
the dealer.

In Appendix E, we present in detail two algorithms: one for the generation of
multiplicative Beaver’s triplets (Algorithm 4) and the other for the generation
of the triplets used in the computation of the power function (Algorithm 5),
both in the honest-but-curious scenario. Following the same ideas, Algorithm 1
describes our triplets generation for the evaluation of a trigonometric polynomial
in the HBC scenario.

6 Application to Logistic Regression

In a classification problem one is given a data set, also called a training set,
that we will represent here by a matrix X ∈ MN,k(R), and a training vector
y ∈ {0, 1}N . The data set consists of N input vectors of k features each, and the
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coordinate yi of the vector y corresponds to the class (0 or 1) to which the i-th
element of the data set belongs to. Formally, the goal is to determine a function
hθ : Rk → {0, 1} that takes as input a vector x, containing k features, and which
outputs hθ(x) predicting reasonably well y, the corresponding output value.

In logistic regression typically one uses hypothesis functions hθ : Rk+1 →
[0, 1] of the form hθ(x) = sigmo(θTx), where θTx =

∑k
i=0 θixi ∈ R and x0 = 1.

The vector θ, also called model, is the parameter that needs to be determined.
For this, a convex cost function Cx,y(θ) measuring the quality of the model at a
data point (x, y) is defined as

Cx,y(θ) = −y log hθ(x)− (1− y) log(1− hθ(x)).

The cost for the whole dataset is thus computed as
∑N
i=1 Cxi,yi(θ). The

overall goal is to determine a model θ whose cost function is as close to 0 as
possible. A common method to achieve this is the so called gradient descent
which consists of constantly updating the model θ as

θ := θ − α∇Cx,y(θ),

where ∇Cx,y(θ) is the gradient of the cost function and α > 0 is a constant
called the learning rate. Choosing the optimal α depends largely on the quality
of the dataset: if α is too large, the method may diverge, and if α is too small,
a very large number of iterations are needed to reach the minimum. Unfortu-
nately, tuning this parameter requires either to reveal information on the data,
or to have access to a public fake training set, which is not always feasible in
private MPC computations. This step is often silently ignored in the literature.
Similarly, preprocessing techniques such as feature scaling, or orthogonalization
techniques can improve the dataset, and allow to increase the learning rate sig-
nificantly. But again, these techniques cannot easily be implemented when the
input data is shared, and when correlation information should remain private.
In this work, we choose to implement the IRLS method [5, §4.3], which does not
require feature scaling, works with learning rate 1, and converges in much less
iterations, provided that we have enough floating point precision. In this case,
the model is updated as:

θ := θ −H(θ)−1 · ∇Cx,y(θ),

where H(θ) is the Hessian matrix.

6.1 Implementation and Experimental Results

We implemented an MPC proof-of-concept of the logistic regression algorithm
in C++. We represented numbers in C(B, p) classes with 128-bit floating point
numbers, and set the masking security parameter to τ = 40 bits. Since a 128-bit
number has 113 bits of precision, and the multiplication algorithm needs 2τ = 80
bits of masking, we still have 33 bits of precision that we can freely use through-
out the computation. Since our benchmarks are performed on a regular x86 64
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CPU, 128-bit floating point arithmetic is emulated using GCC’s quadmath li-
brary, however additional speed-ups could be achieved on more recent hardware
that natively supports these operations (eg. IBM’s next POWER9 processor).
In our proof of concept, our main focus was to improve the running time, the
floating point precision, and the communication complexity of the online phase,
so we implemented the offline phase only for the trusted dealer scenario, leaving
the honest but curious dealer variant as a future work.

Algorithm 2 Model training: Train(X,y)

Input: A dataset X ∈MN,k(R) and a training vector y ∈ {0, 1}N
Output: The model θ ∈ Rk that minimizes CostX,y(θ)
1: Precompute Prodsi = XT

i Xi for i ∈ [0, N − 1]
2: θ ← [0, . . . , 0] ∈ Rk
3: for iter = 1 to IRLS ITERS do . In practice IRLS ITERS = 8
4: a← X · θ
5: p← [sigmo(a0), . . . , sigmo(aN−1)]
6: pmp← [p0(1− p0), . . . , pN−1(1− pN−1)]
7: grad← XT (p− y)
8: H ← pmp · Prods
9: θ = θ −H−1 · grad

10: end for
11: return θ

Model-training algorithm with the IRLS method. The algorithm is explained over the
plaintext. In the MPC instantiation, each player gets a secret share for each variables.
Every product is evaluated using the bilinear formula of Section 2, and the sigmoid
using the Fourier method of Section 4.

We implemented the logistic regression model training described in Algo-
rithm 2. Each iteration of the main loop evaluates the gradient (grad) and the
Hessian (H) of the cost function at the current position θ, and solves the Hes-
sian system (line 7) to find the next position. Most of the computation steps are
bilinear on large matrices or vectors, and each of them is evaluated via a Beaver
triplet in a single round of communication. In step 5 the sigmoid functions are
approximated (in parallel) by an odd trigonometric polynomial of degree 23,
which provides 20 bits of precision on the whole interval. We therefore use a
vector of Fourier triplets, as described in Section 4. The Hessian system (step 9)
is masked by two (uniformly random) orthonormal matrices on the left and the
right, and revealed, so the resolution can be done in plaintext. Although this
method reveals the norm of the gradient (which is predictable anyway), it hides
its direction entirely, which is enough to ensure that the final model remains pri-
vate. Finally, since the input data is not necessarily feature-scaled, it is essential
to start from the zero position (step 2) and not a random position, because the
first one is guaranteed to be in the IRLS convergence domain.

To build the MPC evaluation of Algorithm 2, we wrote a small compiler to
preprocess this high level listing, unroll all for loops, and turn it into a sequence of
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instructions on immutable variables (which are read-only once they are affected).
More importantly, the compiler associates a single additive mask λU to each of
these immutable variables U . This solves two important problems that we saw in
the previous sections: first, the masking information for huge matrices that are
re-used throughout the algorithm are transmitted only once during the whole
protocol (this optimization already appears in [25], and in our case, it has a
huge impact for the constant input matrix, and their precomputed products,
which are re-used in all IRLS iterations). It also mitigates the attack that would
retrieve information by averaging its masked distribution, because an attacker
never gets two samples of the same distribution. This justifies the choice of 40
bits of security for masking.

During the offline phase, the trusted dealer generates one random mask value
for each immutable variable, and secret shares these masks. For all matrix-vector
or matrix-matrix products between any two immutable variables U and V (com-
ing from lines 1, 4, 6, 7 and 8 of Alg.2), the trusted dealer also generates a
specific multiplication triplet using the masks λU of U and λV of V . More pre-
cisely, he generates and distributes additive shares for λU · λV as well as integer
vectors/matrices of the same dimensions as the product for the share-reduction
phase. These integer coefficients are taken modulo 256 for efficiency reasons.

6.2 Results

We implemented all the described algorithms and we tested our code for two and
three parties, using cloud instances on both the AWS and the Azure platforms,
having Xeon E5-2666 v3 processors. In our application each instance commu-
nicates via its public IP address. Furthermore, we use the zeroMQ library to
handle low-level communications between the players (peer-to-peer, broadcast,
central nodes etc...).

In the results that are provided in Table 1 in Appendix A, we fixed the
number of IRLS iterations to 8, which is enough to reach a perfect convergence
for most datasets, and we experimentally verified that the MPC computation
outputs the same model as the one with plaintext iterations. We see that for the
datasets of 150000 points, the total running time of the online phase ranges from
1 to 5 minutes. This running time is mostly due to the use of emulated quad-
float arithmetic, and this MPC computation is no more than 20 times slower
than the plaintext logistic regression on the same datasets, if we implement it
using the same 128-bit floats (yet, of course, the native double-precision version
is much faster). More interestingly, we see that the overall size of the totality
of the triplets and the amount of online communications are small: for instance,
a logistic regression on 150000 points with 8 features requires only 756MB of
triplets per player, and out of it, only 205MB of data are broadcasted during
the online phase per player. This is due to the fact that a Fourier triplet is
much larger than the value that is masked and exchanged. Because of this, the
communication time is insignificant compared to the whole running time, even
with regular WAN bandwidth.
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Finally, when the input data is guaranteed to be feature-scaled, we can im-
prove the whole time, memory and communication complexities by about 30%
by performing 3 classical gradient descent iterations followed by 5 IRLS iter-
ations instead of 8 IRLS iterations. We tested this optimization for both the
plaintext and the MPC version and in Appendix A, we show the evolution of
the cost function, during the logistic regression, and of the F-score (Figure 1
and 2), depending on the method used.

We have tested our platform on datasets that were provided by the banking
industry. For privacy reasons, these datasets cannot be revealed. However, the
behaviour described in this paper can be reproduced by generating random data
sets, for instance, with Gaussian distribution, setting the acceptance threshold
to 0.5%, and adding some noise by randomly swapping a few labels. Readers
interested in testing the platform should contact the authors.

Open problems. A first important open question is the indistinguishability of
the distributions after our noise reduction algorithm. On a more fundamental
level, one would like to find a method of masking using the basis of half-range
Chebyshev polynomials defined in the appendix as opposed to the standard
Fourier basis. Such a method, together with the exponential approximation,
would allow us to evaluate (in MPC) any function in L2([−1, 1]).
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A Timings for n = 3 players

We present in this section a table (Table 1) summarizing the different measures
we obtained during our experiments for n = 3 players. For this we considered
datasets containing from 10000 to 1500000 points having 8, 12 or 20 features
each.

Dataset size # features communication Precomputed Time (sec) Time (sec)
N k size (MB) data size (MB) offline phase online phase

10000 8 13.75 50.55 20.07 6.51

10000 12 21.88 66.18 26.6 9.81

10000 20 45.97 113.1 46.26 19.83

25000 8 34.2 126.23 51.59 19.24

25000 12 54.52 165.14 68.14 24.7

25000 20 114.5 281.98 115.56 48.8

50000 8 68.53 252.35 103.41 32.89

50000 12 108.93 330.1 135.07 49.99

50000 20 228.7 563.46 229.17 103.3

100000 8 137 504.6 205.53 67.11

100000 12 217.75 659.96 269.04 99.99

100000 20 457.1 1126.41 457.33 205.28

150000 8 205.48 756.84 308.14 101.36

150000 12 326.56 989.83 343.86 152.41

150000 20 685.51 1689.36 685.74 314.4

Table 1. Summary of the different measures (time, amount of exchanged data and
amount of precomputed data) for n = 3 players.

B Mask reduction algorithm

Algorithm 3 details our method, described in Section 3.3, for reducing the size of
the secret shares. This procedure is used inside the classical MPC multiplication
involving floating points.

Algorithm 3 Mask reduction

Input: JzK+ and one triplet JνK+, with ν = 0 mod M .
Output: Secret shares for the same value z with smaller absolute values of the shares.
1: Each player Pi computes ui ∈ [−2η−1, 2η−1) and vi ∈ Z, such that zi = ui + 2ηvi.
2: Each player Pi broadcasts vi + νi mod M to other players.
3: The players compute w = 1

n
(
∑n
i=1(vi + νi) mod M).

4: Each player Pi computes the new share of z as z′i = ui + 2ηw
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Fig. 1. Evolution of the cost function depending on the method
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Figure 1 shows the evolution of the cost function during the logistic regression as a
function of the number of iterations, on a test dataset of 150000 samples, with 8 features
and an acceptance rate of 0.5%. In yellow is the standard gradient descent with optimal
learning rate, in red, the gradient descent using the piecewise linear approximation of
the sigmoid function (as in [25]), and in green, our MPC model (based on the IRLS
method). The MPC IRLS method (as well as the plaintext IRLS) method converge
in less than 8 iterations, against 500 iterations for the standard gradient method. As
expected, the approx method does not reach the minimal cost.

Fig. 2. Evolution of the F-score depending on the method

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  10  100  1000

S
c
o

re

Iteration number (logscale)

Accuracy
Standard F1-score

Piecewise F1-score
XOR IRLS F1-score

Figure 2 shows the evolution of the F-score during the same logistic regression as a
function of the number of iterations. The standard gradient descent and our MPC
produce the same model, with a limit F-score of 0.64. However, no positive samples are
detected by the piecewise linear approximation, leading to a null F-score. However, in
the three cases, the accuracy (purple) is nearly 100% from the first iteration.
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C Approximation of functions by trigonometric
polynomial over the half period

Let f be a square-integrable function on the interval [−π/2, π/2] that is not
necessarily smooth or periodic.

C.1 The approximation problem

Consider the set

Gn =

{
g(x) =

a0
2

+

n∑
k=1

ak sin(kx) +

n∑
k=1

bk cos(kx)

}

of 2π-periodic functions and the problem

gn(x) = argming∈Gn‖f − g‖L2
[−π/2,π/2]

.

As it was observed in [7], if one uses the näıve basis to write the solutions, the
Fourier coefficients of the functions gn are unbounded, thus resulting in numerical
instability. It was explained in [21] how to describe the solution in terms of two
families of orthogonal polynomials closely related to the Chebyshev polynomials
of the first and second kind. More importantly, it is proved that the solution
converges to f exponentially rather than super-algebraically and it is shown
how to numerically estimate the solution gn(x) in terms of these bases.

We will now summarize the method of [21]. Let

Cn =
1√
2
∪ {cos(kx) : k = 1, . . . , n}.

and let Cn be the R-vector space spanned by these functions (the subspace of
even functions). Similarly, let

Sn = {sin(kx) : k = 1, . . . , n},

and let Sn be the R-span of Sn (the space of odd functions). Note that Cn ∪Sn
is a basis for Gn.

C.2 Chebyshev’s polynomials of first and second kind

Let Tk(y) for y ∈ [−1, 1] be the kth Chebyshev polynomial of first kind, namely,
the polynomial satisfying Tk(cos θ) = cos kθ for all θ and normalized so that
Tk(1) = 1 (Tk has degree k). As k varies, these polynomials are orthogonal

with respect to the weight function w1(y) = 1/
√

1− y2. Similarly, let Uk(y) for
y ∈ [−1, 1] be the kth Chebyshev polynomial of second kind, i.e., the polynomial
satisfying Uk(cos θ) = sin((k+ 1)θ)/ sin θ and normalized so that Uk(1) = k+ 1.
The polynomials {Uk(y)} are orthogonal with respect to the weight function

w2(y) =
√

1− y2.
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It is explained in [21, Thm.3.3] how to define a sequence {Thk } of half-range
Chebyshev polynomials that form an orthonormal bases for the space of even
functions. Similarly, [21, Thm.3.4] yields an orthonormal basis {Uhk } for the odd
functions (the half-range Chebyshev polynomials of second kind). According to
[21, Thm.3.7], the solution gn to the above problem is given by

gn(x) =

n∑
k=0

akT
h
k (cosx) +

n−1∑
k=0

bkU
h
k (cosx) sinx,

where

ak =
2

π

∫ π
2

−π2
f(x)Thk (cosx)dx,

and

bk =
2

π

∫ π
2

−π2
f(x)Uhk (cosx) sinxdx.

While it is numerically unstable to express the solution gn in the standard
Fourier basis, it is stable to express them in terms of the orthonormal basis
{Thk } ∪ {Uhk }. In addition, it is shown in [21, Thm.3.14] that the convergence is
exponential. To compute the coefficients ak and bk numerically, one uses Gaus-
sian quadrature rules as explained in [21, §5].

D Proof of Theorem 1

We now prove Theorem 1, with the following methodology. We first bound the
successive derivatives of the sigmoid function using a differential equation. Then,
since the first derivative of the sigmoid decays exponentially fast, we can sum
all its values for any x modulo 2π, and construct a C∞ periodic function, which
approximates tightly the original function over [−π, π]. Finally, the bounds on
the successive derivatives directly prove the geometric decrease of the Fourier
coefficients.

Proof. First, consider the σ(x) = 1/(1 + e−x) the sigmoid function over R.
σ satisfies the differential equation σ′ = σ − σ2. By derivating n times, we
have σ(n+1) = σ(n) −

∑n
k=0

(
n
k

)
σ(k)σ(n−k) = σ(n)(1− σ)−

∑n
k=1

(
n
k

)
σ(k)σ(n−k).

Dividing by (n+ 1)!, this yields∣∣∣∣ σ(n+1)

(n+ 1)!

∣∣∣∣ ≤ 1

n+ 1

(∣∣∣∣σ(n)

n!

∣∣∣∣+

n∑
k=1

∣∣∣∣σ(k)

k!

∣∣∣∣ ∣∣∣∣ σ(n−k)

(n− k)!

∣∣∣∣
)

From there, we deduce by induction that for all n ≥ 0 and for all x ∈ R,∣∣∣σ(n)(x)
n!

∣∣∣ ≤ 1 and it decreases with n, so for all n ≥ 1,∣∣∣σ(n)(x)
∣∣∣ ≤ n!σ′(x) ≤ n! e−|x|
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Fig. 3. Odd-even periodic extension of the rescaled sigmoid
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The rescaled sigmoid function g(αx) is extended by anti-periodicity from [−π
2

; π
2

] to
[π
2

; 3π
2

]. This graph shows the extended function for α = 1, 3, 5. By symmetry, the
Fourier serie of the output function has only odd sinus terms: 0.5+

∑
n∈N a2n+1 sin((2n+

1)x). For α = 20/π, the first Fourier form a rapidly decreasing sequence: [6.12e-1, 1.51e-
1, 5.37e-2, 1.99e-2, 7.41e-3, 2.75e-3, 1.03e-3, 3.82e-4, 1.44e-4, 5.14e-5, 1.87e-5, ...], which
rapidly achieves 24 bits of precision. However, the sequence asymptotically decreases in
O(n−2) due to the discontinuity in the derivative in −π

2
, so this method is not suitable

to get an exponentially good approximation.

Fig. 4. Asymptotic approximation of the sigmoid via Theorem 1
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As α grows, the discontinuity in the rescaled sigmoid function g(αx)− x
2π

vanishes, and
it gets exponentially close to an analytic periodic function, whose Fourier coefficients
decrease geometrically fast. This method is numerically stable, and can evaluate the
sigmoid with arbitrary precision in polynomial time.
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We now construct a periodic function that should be very close to the
derivative of hα: consider gα(x) =

∑
k∈Z

−α
(1+e−α(x−2kπ))(1+eα(x−2kπ))

. By sum-

mation of geometric series, gα is a well-defined infinitely derivable 2π-periodic
function over R. We can easily verify that for all x ∈ (−π, π), the difference∣∣h′α(x)− 1

2π − gα(x)
∣∣ is bounded by 2α ·

∑∞
k=1 e

α(x−2kπ) ≤ 2αe−απ

1−e−2πα , so by choos-

ing α = Θ(log( 1
ε )), this difference can be made smaller than ε

2 .
We suppose now that α is fixed and we prove that gα is analytic, i.e. its

Fourier coefficients decrease exponentially fast. By definition, gα(x) =
∑
k∈Z σ(α(x−

2kπ)), so for all p ∈ N, g
(p)
α (x) = αp+1

∑
k∈Z σ

(p+1)(αx − 2αkπ), so
∥∥∥g(p)α

∥∥∥
∞
≤

2αp+1(p+ 1)!. This proves that the n-th Fourier coefficient cn(gα) is

≤ minp∈N
2αp+1(p+1)!

np . This minimum is reached for p + 1 ≈ n
α , and yields

|cn(gα)| = O(e−n/α).
Finally, this proves that by choosing N ≈ α2 = Θ(log(1/ε)2), the N -th term

of the Fourier serie of gα is at distance ≤ ε
2 of gα, and thus from h′α − 1

2π . This
bound is preserved by integrating the trigonometric polynomial (the g from the
theorem is the primitive of gα), which yields the desired approximation of the
sigmoid over the whole interval (−π, π). ut

E Honest but curious model

E.1 Honest but curious communication channels

The figures presented in this section represent the communication channels be-
tween the players and the dealer in both the trusted dealer and the honest but
curious models. Two types of communication channels are used: the private chan-
nels, that correspond in practice to SSL channels (generally < 20MB/s), and the
public channels, corresponding in practice to TCP connections (generally from
100MB to 1GB/s). In the figures, private channels are represented with dashed
lines, while public channels are represented with plain lines.

Figure 5 illustrates the connections during the offline phase of the MPC
protocols. In the TD model, the dealer is the only one generating all the pre-
computed data. He uses private channels to send to each player his share of the
triplets (one-way arrows). In the HBC model, the players collaborate for the
generation of the triplets. To do that, they need an additional private broadcast
channel between them, that is not accessible to the dealer.

Figure 6 represents the communication channels between players during the
online phase. The online phase is the same in both the TD and the HBC models
and the dealer is not present.

E.2 Honest but curious algorithms

In this section we give two detailed algorithms in the honest but curious model,
already described in Section 5. The first algorithm (Algorithm 4) describes the
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Fig. 5. Communication channels in the offline phase - The figure represents
the communication channels in both the trusted dealer model (left) and in the honest
but curious model (right) used during the offline phase. In the first model, the dealer
sends the triplets to each player via a private channel. In the second model, the players
have access to a private broadcast channel, shared between all of them and each player
shares an additional private channel with the dealer. The private channels are denoted
with dashed lines. The figure represents 3 players, but each model can be extended to
an arbitrary number n of players.

P1

P2

P3

Fig. 6. Communication channels in the online phase - The figure represents the
communication channels (the same type for both the honest but curious and the trusted
dealer model) used during the online phase. The players send and receive masked values
via a public broadcast channel (public channels are denoted with plain lines). Their
number, limited to 3 in the example, can easily be extended to a generic number n of
players.

generation of Beaver’s multiplicative triplets, while the second algorithm (Algo-
rithm 5) details the generation of the triplets used in the MPC computation of
a power function.

In both algorithms, the dealer and the players collaborate for the generation
of triplets and none of them is supposed to have access to the whole information.
The general idea is that the players generate their secret shares (of λ and µ, in
the first case, and of λ only, in the second case), that each one keeps secret.
They also generate secret shares of a common mask, that they share between
each other via the broadcast channel, but which remains secret to the dealer.
The player then mask their secret shares with the common mask and sends them
to the dealer, who evaluates the non-linear parts (product in Algorithm 4 and
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power in Algorithm 5). The dealer generates new additive shares for the result
and sends these values back to each player via the private channel. This way,
the players don’t know each other’s shares. Finally, the players, who know the
common mask, can independently unmask their secret shares, and obtain their
final share of the triplet, which is therefore unknown to the dealer.

Algorithm 4 Honest but curious triplets generation

Output: Shares (JλK, JµK, JzK) with z = λµ.
1: Each player Pi generates ai, bi, λi, µi (from the according distribution).
2: Each player Pi shares with all other players ai, bi.
3: Each player computes a = a1 + · · ·+ an and b = b1 + · · ·+ bn.
4: Each player Pi sends to the dealer ai + λi and bi + µi.
5: The dealer computes a+ λ, b+ µ and w = (a+ λ)(b+ µ).
6: The dealer creates JwK+ and sends wi to player Pi, for i = 1, . . . , n.
7: Player P1 computes z1 = w1 − ab− aµ1 − bλ1.
8: Player i for i = 2, . . . n computes zi = wi − aµi − bλi.

Algorithm 5 Honest but curious triplets generation for the power function

Output: Shares JλK and Jλ−αK.
1: Each player Pi generates λi, ai (from the according distribution).
2: Each player Pi shares with all other players ai.
3: Each player computes a = a1 + · · ·+ an.
4: Each player Pi generates zi in a way that

∑n
i=1 zi = 0.

5: Each player Pi sends to the dealer zi + aλi.
6: The dealer computes µλ and w = (µλ)−α.
7: The dealer creates JwK+ and sends wi to player Pi, for i = 1, . . . , n.
8: Each player Pi right-multiplies wi with µα to obtain (λ−α)i.


