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Abstract. In August 2015 the cryptographic world was shaken by a sudden and surprising
announcement by the US National Security Agency (NSA) concerning plans to transition
to post-quantum algorithms. Since this announcement post-quantum cryptography has be-
come a topic of primary interest for several standardization bodies. The transition from
the currently deployed public-key algorithms to post-quantum algorithms has been found
to be challenging in many aspects. In particular the problem of evaluating the quantum-bit
security of such post-quantum cryptosystems remains vastly open. Of course this question
is of primarily concern in the process of standardizing the post-quantum cryptosystems.
In this paper we consider the quantum security of the problem of solving a system of m
Boolean multivariate quadratic equations in n variables (MQ2); a central problem in post-
quantum cryptography. When n = m, under a natural algebraic assumption, we present
a Las-Vegas quantum algorithm solving MQ2 that requires the evaluation of, on average,
O(20.462n) quantum gates. To our knowledge this is the fastest algorithm for solving MQ2.

Keywords: Multivariate Quadratic Equations, Quantum Computation, Quantum Com-
plexity

1 Introduction

The goal of this paper is to study the complexity of solving systems of Boolean multivariate
quadratic equations (MQ2) in the quantum setting. This classical NP-hard problem [22] is stated as
follows:

MQ2
Input. f1(x1, . . . , xn), . . . , fm(x1, . . . , xn) ∈ F2[x1, . . . , xn].
Goal. Find – if any – a vector (z1, . . . , zn) ∈ Fn2 such that:

f1(z1, . . . , zn) = 0, . . . , fm(z1, . . . , zn) = 0.

MQ2 is a fundamental problem with many applications in cryptography, coding theory and beyond.
Typically, the security of multivariate schemes is directly related to the hardness of MQ2, e.g.
[20,27,9,5,16,17]. MQ2 is then central to evaluating the security of such multivariate cryptosystems.
Besides multivariate cryptography, the security of a wide variety of cryptosystems is related to MQ2,
via algebraic cryptanalysis [30]. This includes post-quantum cryptosystems [6] such as code-based
cryptography [19,18], lattice-based cryptography [2,1], . . .



The status of post-quantum cryptography is currently completely evolving. It is quickly moving
from a purely academic theme to a topic of major industrial interest. This is mainly driven by
the fact that post-quantum cryptography has recently received much attention from the standard-
ization and policy sectors. The triggering event appears to be the announcement in August 2015
by the National Security Agency (NSA) of preliminary plans to transition the existing systems to
quantum resistant algorithms6:

“Currently, Suite B cryptographic algorithms are specified by the National Institute of
Standards and Technology (NIST) and are used by NSA’s Information Assurance Directorate
in solutions approved for protecting classified and unclassified National Security Systems
(NSS). Below, we announce preliminary plans for transitioning to quantum resistant
algorithms.”

This was quickly followed by an announcement by NIST, detailing the transition process [15]. NIST
then released in January 2016 a call to select standards for post-quantum public-key cryptosystems:
public-key exchange, signature and public-key encryption [29]. The threat to see a large computer
in a medium term was considered to be sufficient by NIST to organize a renewal of the public-key
cryptosystems deployed in practice.

A key issue for the wide adoption of quantum-safe standards in the future is our confidence in
their security. There is, therefore, a great need to develop quantum cryptanalysis against post-
quantum cryptosystems. It is clear that a challenge in the next years will be to precisely evaluate
the quantum-bit security of post-quantum cryptosystems submitted to the NIST standardization
process.

We study here how quantum techniques can be used to improve the complexity of solving MQ2;
an important problem in post-quantum cryptography. In [4], the authors provide a theoretical
upper limit on the speed-up that can be obtained in the quantum setting. They demonstrated
that – relative to an oracle chosen uniformly at random – a problem in NP can not be decided
by any quantum algorithm in o(2n/2). On the other hand, Grover’s algorithm [25] is a quantum
algorithm than can decide any problem of NP in O(2n/2); including MQ2. Thus, Grover’s algorithm
is essentially optimal in the setting of [4]. We emphasize that this does not rule out the possibility
of a greater than quadratic speed-up in the quantum setting. However, it is mandatory to take
advantage of the problem structure to achieve this.

In this paper, we present an algorithm that beats the O(2n/2) bound for solving MQ2. To do so, we
combine Grover’s technique with a Gröbner basis-based algorithm.

1.1 State of the Art

Classical Setting. The question of solving MQ2 has been investigated with various algorithmic
techniques in the literature. We list below those techniques with the best asymptotic complexity.

Exhaustive search. The first, most obvious, technique for solving PoSSoq is exhaustive search. For
q = 2, the authors of [10] describe a fast exhaustive search for MQ2 and provide the exact cost of
this approach :

4 log2(n) 2n binary operations.

A classical (and challenging) theme for MQ2 is to design algorithms that are asymptotically faster
than exhaustive search, i.e. that beat the O(2n) barrier.

Approximation algorithm. Recently, the authors of [28] proposed new techniques which solve MQ2
faster than a direct exhaustive search. The techniques from [28] allows for the approximation
of a system F =

(
f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)

)
∈ F2[x1, . . . , xn] by a single, high-degree,

multivariate polynomial P over n′ < n variables. The polynomial P is constructed such that
it vanishes on the same zeroes as the original system F with high probability. We then must

6 https://www.nsa.gov/ia/programs/suiteb_cryptography/
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perform an exhaustive search on P to recover, with high probability, the zeroes F . This leads to
an algorithm for solving MQ2 with complexity

O∗
(
20.8765n

)
.

The notation O∗ omits polynomial factors.

Hybrid approaches. To date, the best methods for solving MQ2 are based on Gröbner bases [13,12].
More precisely, the fastest methods are hybrid techniques which combine exhaustive search and
Gröbner bases algorithms [8,7,3]. BooleanSolve, an algorithm originally presented in [3], falls
into this category and is the asymptotically fastest approach to solving MQ2(Section 2.1). When
m = n, the deterministic variant of BooleanSolve has complexity bounded by O(20.841n), while
a Las-Vegas variant has expected complexity

O(20.792n).

We emphasize that all stated complexities for BooleanSolve are obtained under the assumption
of a natural algebraic hypothesis on the input system. In contrast, the complexities of [10,28] do
not rely on any such assumption.

Quantum Setting. The hardness of MQq has been directly considered in [31], and somewhat
indirectly in [16].

Quantum exhaustive search. In [31], the authors proposed simple quantum algorithms for solving
MQ2. The principle is to perform a fast exhaustive search by using Grover’s algorithm. The authors
derive precise resource estimates for their algorithms, demonstrating that we can solve m−1 binary
quadratic equations in n− 1 binary variables using O(m+ n) qubits and requiring the evaluation
of O

(
mn22n/2

)
quantum gates. The authors also describe a variant using O

(
n+ log2(m)

)
qubits

but with twice as many quantum gates required, when compared to the first approach. In essence,
this work constructs a quantum oracle to be used along with amplitude amplification performed
by Grover’s algorithm. The oracle is fairly simple and takes advantage of the structure of the MQ2
problem, developing a straightforward way to evaluate a system of equations on a superposition
of all possible boolean variable assignments. Then, Grover’s algorithm is utilized to amplify those
inputs which satisfy all provided equations.

Quantum hybrid approach. The main goal of [16] is to construct a multivariate signature scheme
based on random instances of MQ2 and MQq (for field bigger than q > 2). However, in order to derive
secure parameters, the authors considered a quantum variant of the hybrid approach from [8,7]
using Grover’s algorithm. They used this approach to explicitly compute the quantum-bit security
of random instances of MQq for given parameters. However, the authors of [16] do not provide the
asymptotic complexity of their approach. In this paper, we provide such an asymptotic analysis and
build our quantum algorithm on top of BooleanSolve. It should be mentioned that BooleanSolve
is inspired, but different, from [8,7]. So, the quantum algorithm presented here is different from
the one sketched in [16].

1.2 Organization of the Paper and Main Results

Overview of the results. The main result of this paper is the fastest known quantum algorithm
algorithm for solving MQ2 (Section 3.1). More precisely:

Theorem 1 (summarized from Section 4). There is a quantum algorithm that solves MQ2 and
requires to

– evaluate O(20.47n) quantum gates for the deterministic variant,
– evaluate an expected number of O(20.462n) quantum gates for the probabilistic variant.
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Overview of the results. A natural step towards developing a quantum algorithm for the MQ2
problem which outperforms quantum exhaustive search via Grover’s algorithm [31] would be the
quantization of a classical algorithm for MQ2 which outperforms classical exhaustive search. A
first candidate for such quantization is the approximation algorithm [28] described above. The
quantization of such algorithm for use in Grover’s algorithm requires building a quantum circuit.
Unfortunately, a basic approach to quantize the approximation algorithm mentioned does not
seem to be possible, even for MQ2.
Fortunately, we have been able to quantize BooleanSolve using amplitude amplification techniques
[25,11]. Under a natural algebraic assumption the new algorithm beats quantum exhaustive search,
i.e. O(2n/2). This is arguably a significant complexity result for a central problem in post-quantum
cryptography, but more generally in computer science. The originality of our algorithm is to
instantiate Grover’s algorithm with a non-trivial oracle that implements the quantum circuit
corresponding essentially to a simplified Gröbner basis computation (Section 3.2). We construct
the quantum circuit required to implement the simplified Gröbner basis computation.

Cryptographic implications. The complexity analysis is especially important for selecting param-
eters in multivariate cryptography. It shows that in order to reach a quantum security level of
2s, one has to consider an instance of MQ2 with at least s/0.462 = 2.16 · s variables. In the table
below, we provide the minimal number of variables n (second column) required to reach a precise
security level (first column) The public-key in a multivariate cryptosystem is usually given by set
of boolean equations. We report in the last column the minimum size required for a given security
level.

quantum sec. level n O(n3)
64 139 167.36 KB
80 173 326,4 KB
128 277 1.33 MB
256 555 10.65 MB

Finally, we mention that in the signature scheme from [16], the authors proposed to use an instance
of MQ2 with n = m = 256 variables to achieve a quantum security level of 128 bits. According to
our new result, the quantum security is slightly less, i.e. 118 bits.

Organisation. After this introduction, the paper is organized as follows. In Section 2, we first
review the two main components of our quantum algorithm : BooleanSolve (Section 2.1) and
Grover’s algorithm (Section 2.2). We describe the new quantum algorithm, QuantumBooleanSolve,
in Section 3.1. We construct the quantum circuit for a simplified Gröbner basis computation, used
as Grover’s oracle, in Section 3.2. Finally, we derive in Section 4 the complexity of our algorithm.

2 Preliminaries

In the following we assume familiarity with standard classical and quantum computational nota-
tion, such as the standard bra-ket notation for specifying a quantum state. We use the following
subsections to overview the classical and quantum algorithms which will be of use in this paper.

2.1 Classical BooleanSolve

As explained in the introduction, BooleanSolve [3] is the fastest asymptotic algorithm for MQ2.
From now on, we will refer to this algorithm as ClassicalBooleanSolve. We will indeed present
a quantum version of this algorithm, QuantumlBooleanSolve, in Section 3.

Essentially, ClassicalBooleanSolve first specializes a subset of the variables x1, . . . , xk and then
checks the consistency of the specialized system using Macaulay matrices (Definition 1). If the
specialized system is found to be consistent, the original algebraic system is determined to have
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no solution. If the specialized system is inconsistent then the algorithm conducts an exhaustive
search on the remaining n− k variables and recovers the solutions for the MQ2 instance.

We cover the more relevant aspects of the theory behind the algorithm in an effort to keep this
paper self contained, and refer the reader to additional preliminary and theoretical information
which can be found in the original work [3].

Definition 1. Let f ∈ F2[x1, . . . , xn], and φ(f) be the square-free part of f , i.e. the reduction of
f modulo 〈x2i − xi〉1≤i≤n. The Boolean Macaulay matrix of degree d for a set of polynomials

F = (f1, . . . , fm) ∈ F2[x1, . . . , xn]m, denoted by Macaulay
d (F ), has the following structure: the

rows are the coefficients of polynomials {φ(tfi)} where 1 ≤ i ≤ m, deg(tfi) = d, t is a square-free
monomial, and the columns are the square free monomials in the polynomial ring of degree at most
d ordered descendingly with respect to Degree Reverse Lexicographic (DRL) ordering.

We recall below some bounds on boolean Macaulay matrices that will be useful in the complexity
analysis.

Proposition 1. ([3]) Let F = (f1, . . . , fm) ∈ F2[x1, . . . , xn]m. Denote by rMac (resp. cMac, sMac)
the number of rows (resp. columns, number of nonzero entries) of the associated boolean Macaulay

matrix Macaulay
d (F ). If 1 ≤ d <n

2 , then

cMac<
1− x
1− 2x

(
n

d

)
, rMac<m

x2

(1− 2x)(1− x)

(
n

d

)
, sMac<mn

2 x2

(1− 2x)(1− x)

(
n

d

)
where x = d

n .

ClassicalBooleanSolve [3] is based on a fundamental property of Macaulay matrices. Let F =

(f1, . . . , fm) ∈ F2[x1, . . . , xn]m and M = Macaulay
d (F ) be the corresponding boolean Macaulay

matrix in degree d. It holds that if the linear system

u·M = (0, 0, . . . , 0, 1)

has a solution then F does not have a solution in Fn2 . This reduces the problem of deciding the
consistency of non-linear equations to the problem of solving a linear system.

We now need to determine which degree of the Macaulay matrix should be considered. This degree
is the so-called witness degree defined below:

Definition 2. ([3]) Let F = (f1, . . . , fm) ∈ F2[x1, . . . , xn]m and I ⊂ F2[x1, . . . , xn] be the ideal
defined by F . We set:

I≤d =
{
p ∈ F2[x1, . . . , xn] | p ∈ I,deg(p) ≤ d

}
,

J≤d =
{
p ∈ F2[x1, . . . , xn] | ∃h1, . . . , hm+n,∀i ∈ {1, . . . ,m+ n},deg(hi) ≤ d− 2,

p =

m∑
i=1

hifi +

n∑
j=1

hm+j(x
2
j − xj)

}
.

The witness degree for F , denoted dwit(F ), is the smallest integer d0 such that

I≤d0 = J≤d0 and 〈{LM(f)|f ∈ I≤d0}〉 = LM(I),

where LM(f) is the leading monomial of the polynomial f with respect to DRL ordering.

Alternatively, the witness degree for F can be defined as the degree where any polynomial in a
(minimal) Gröbner basis of the system is obtained as a linear combination of the rows of the
Macaulay matrix in this degree. Therefore, given F = (f1, . . . , fm) ∈ F2[x1, . . . , xn]m, the witness

degree provides an upper bound on the degree d0 ofMacaulay
d0

(F ) required to adequately determine
the consistency of F .
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Under some algebraic assumptions, the witness degree can be computed explicitly from the Hilbert
series:

HS(m,n, k) =
(1 + t)n−k

(1− t)(1 + t2)m
. (1)

The witness degree, denoted by dwit(m,n, k), is given by the index of the first nonzero coefficient
of (1).

Now that we have reviewed all necessary background information, we can present the algorithm
from [3] for solving MQ2.

ClassicalBooleanSolve

Input: f1, . . . , fm ∈ F2[x1, . . . , xn]m with deg(fi) = 2 for all i ∈ {1, . . . ,m}.
Output: All boolean solutions to f1 = . . . = fm = 0

1: procedure ClassicalBooleanSolve(m,n,k)

2: S = {}
3: d0 ← dwit(m,n, k)
4: for (an−k+1, . . . , an) ∈ Fk2 do
5: for i = 1 . . .m do
6: f̃i(x1, . . . , xn−k)← fi(x1, . . . , xn−k, an−k+1, . . . , an) ∈ F2[x1, . . . , xn−k]
7: end for
8: M←Macaulay

d0
(f̃1, . . . , f̃m)

9: if u·M = r = (0, . . . , 0, 1) is inconsistent, determined by the SparseLinearSystemSolver
then

10: T = solutions of the system f̃1 = . . . = f̃m = 0 found by exhaustive search
11: S ← S ∪ T
12: end if
13: end for
14: Return S
15: end procedure

There are two variants of ClassicalBooleanSolve : deterministic and Las-Vegas. The only dif-
ference is on the algorithm used in SparseLinearSystemSolver, presented in Section 3.2, which
can be deterministic or probabilistic. The computational complexity of ClassicalBooleanSolve
is lower bounded by the complexity of the consistency check of the Macaulay matrices in degree
d0. Therefore, a complete complexity analysis will merely determine the time required to complete
the consistency check in term of the input parameters. This yields:

Theorem 2. ([3]) Let θ, 2 ≤ θ ≤ 3 be such that any two n× n matrices [23] can be multiplied in
O(nθ) operations in the underlying field. For any ε > 0, and α ≥ 1 and sufficiently large m = dαne,
the complexity of all tests of consistency of Macaulay matrices in ClassicalBooleanSolve(m, n, k)
is:

– O(2(1−γ+θFα(γ)+ε)n) in the deterministic variant,

– O(2(1−γ+2Fα(γ)+ε)n) in the probabilistic variant,

where γ = 1− k
n , Fα(γ) = −γ log2(DD(1−D)(1−D)) with D = M(αγ ), and

M(x) = −x+
1

2
+

1

2

√
2x2 − 10x− 1 + 2(x+ 2)

√
x(x+ 2).

This complexity is obtained by evaluating the cost of checking the consistency of 2k = 2(1−γ)n

Macaulay matrices.

To derive the asymptotic complexity, we need to assume a certain algebraic condition on the
systems considered during the algorithm.
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Definition 3. Let F = (f1, . . . , fm) be quadratic polynomials in F2[x1, . . . , xn] and (1− γ)n ≤ n.
The system F is called γ-strong semi-regular if both the set of its solutions and the set{

(an−k+1, . . . , an) ∈ Fk2 | dwit

(
F (x1, . . . , xn−k, an−k+1, . . . , an)

)
> dwit(m,n, k)

}
have cardinality at most 2(1−γ+2Fα(γ)+ε), with ε > 0 and Fα as in Theorem 2.

Under this assumption, we can now minimize, in term of k, the complexities of Theorem 2. The
results are provided for various values of θ: 3 which is the upper bound, 2.376 which is the
current best theoretical bound [21], and 2 which requires careful consideration of the linear algebra
problem.

Lemma 1. Let the notations be as in Theorem 2. The function 1− γ + θFα(γ) is bounded by:

– 1− 0.112α, when θ = 3 and γ = 0.27α,
– 1− 0.159α, when θ = 2.376 and γ = 0.40α,
– 1− 0.208α, when θ = 2 and γ = 0.55α.

Finally:

Theorem 3. ClassicalBooleanSolve is correct and solves MQ2. If m = n, then the algorithm
has complexity O(20.841n), if the system is 0.40-strong semi-regular, for the deterministic variant,
and of expectation O(20.792n), if the the system is 0.55-strong semi-regular, for the Las-Vegas
probabilistic variant.

This is essentially the cost of the first step, i.e. testing the Macaulay matrices, since the second
step, i.e. exhaustive search, has negligible cost when compared to the consistency check.

2.2 Grover’s Algorithm

Grover’s algorithm [25], often called database search, is a quantum algorithm that can be imple-
mented to reduce computation time for the exhaustive search of a function over the entire function
domain. The problem solved by Grover’s algorithm is as follows: given a function f : {0, 1}n → F2,
determine the unique x∗ ∈ {0, 1}n such that f(x∗) = 1.
Determining such a x∗ with a classical computer requires exhaustive search on the entire function
domain of f . Classical computation techniques cannot do better than evaluating f over every
possible input, resulting in time complexity of O∗(2n). Grover’s quantum algorithm can determine
x∗ with merely 2

n
2 evaluations of F , the quantum circuit which evaluates the function f .

Grover’s algorithm can be extended to perform exhaustive search over a function where |f−1(1)| =
M with M ≥ 1, as well as searching over a function where the preimage of 1 has arbitrary size.
Here we present a simple version of the algorithm.
In the quantum oracle model, when presented with a quantum oracle for the evaluation of f , the
problem is to locate an x∗ such that f(x∗) = 1. The algorithm utilizes two unitary operations.
First, a rotation O±f : αx|x〉 → (−1)f(x)αx|x〉 which flips the sign of the phase of the desired x∗.

O±f :
1√
2n

∑
x∈{0,1}n

x→ 1√
2n

∑
x∈{0,1}n,x 6=x∗

|x〉 − 1√
2n
|x∗〉

Second, a diffusion operator D which rotates the state around the average amplitude, µ =
1
2n

∑
x∈2n ax of x ∈ 2n,

D :
∑

x∈{0,1}n
αx|x〉 →

∑
x∈{0,1}n

(2µ− αx)|x〉

Successive application of these two oracles performs amplitude amplification on the quantum
computer, essentially taking the state of the computer from a uniform superposition over all
inputs to a state that, when measured, with high probability will return x∗. To converge to such

a final state the oracles O±f and D must be applied dπ4
√

2n

|f−1(1)|e times.
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The algorithm proceeds as follows: begin by using a Hadamard gate, H⊕n, to prepare the quan-
tum computer in a uniform superposition over all possible inputs, 1√

2n

∑
x∈{0,1}n |x〉. Following

this, apply O±f D to the quantum state dπ4
√

2n

|f−1(1)|e times. Finally, measure to obtain x∗ with

high probability. The computational complexity of Grover’s algorithm is O(2n· F) where F is the
complexity of the quantum oracle for f .

Theorem 4 (Amplitude Amplification ([11])). Let A be a quantum algorithm that, with no
measurement, produces a superposition

∑
x∈G ax|x〉 +

∑
y∈B ay|y〉. Let a =

∑
x∈G |ax|2 be the

probability of obtaining, after measurement, a state in the good subspace G. Then, there exists a
quantum algorithm that calls A and A−1 as subroutines O( 1√

a
) times and produces an outcome

x ∈ G with a probability at least max(a, 1− a).

The key to successfully performing Grover’s algorithm for the function f is to determine the
quantum circuit for the function, in order to construct O±f . It is sufficient to provide an oracle
that computes the function f , i.e. provide a unitary operator Uf in the form of a quantum circuit
which calculates |x〉|y〉 → |x〉|y ⊕ f(x)〉, evaluating the function at a superposition of all possible
inputs. Then, Grover’s algorithm can be used to amplify the desired output for measurement.
What remains is to show that the quantum analog of ClassicalBooleanSolve is reversible and
computable on a quantum computer. In the following section, we will construct the quantum
circuit for the algorithm ClassicalBooleanSolve and analyze the complexity of the circuit.

2.3 Quantum Gates

The following gates are quantum gates of interest which operate on qubits, each directly cor-
responding to reversible classical gates. For qubits |x〉, |y〉, |z〉 the gates perform the following
operations:

– CNOT (XOR, Feynman)

CNOT|x〉|y〉 = |x〉|x+ y〉

– Toffoli (AND)

T|x〉|y〉|z〉 = |x〉|y〉|z + xy〉

– X (NOT)

X|x〉 = |x̄〉 = |1 + x〉

– n-qubit Toffoli (AND)

Tn|x1〉 . . . |xn〉 = |x1〉 . . . |xn−1〉|xn + (x1 . . . xn−1)〉

– Swap

S|x〉|y〉 = |y〉|x〉

It is important to note that T1 = X, T2 = CNOT and T3 = T . In terms of computational
complexity, X, SWAP and CNOT gates are relatively cheap to compute, while the n-qubit Toffoli
gates are more expensive; Tn is equivalent to computing 2n CNOT gates. Accounting for these
equivalences can change the reported computational complexity of a given circuit. Additionally, it
is important to note that one can emulate a Toffoli gate over Fq using log(q) basic T gates, in order
to determine the additional resources required for any general extension of quantum computations
over F2 to quantum computations over Fq.
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3 A Quantum Version of BooleanSolve

3.1 QuantumBooleanSolve

We explain here how to combine the ClassicalBooleanSolve algorithm (Section 2.1) with Grover’s
algorithm (Section 2.2). ClassicalBooleanSolve conducts two exhaustive searches over the vari-
ables. The first exhaustive search is over the last k variables, specializing xn−k+1, . . . , xn and
projecting to the k last components of a solution. The second exhaustive search, when necessary,
is on the first n − k variables, and allows the algorithm to determine the entire solution. It is
clear that one can utilize Grover’s algorithm, as in [14], to quantize the second exhaustive search
and obtain a speed up over the classical complexity. In what follows, QuantumSearch will refer to
the quantum algorithm [14] that solves MQ2. We will see that Grover’s algorithm can be used to
speed-up the first exhaustive search as well. Essentially, we will quantize the consistency check on
Macaulay matrices by providing a quantum circuit which can be used as the function oracle in
Grover’s algorithm.

Let F = (f1, . . . , fm) ∈ F2[x1, . . . , xn]m. We consider the function F cons
F,k : Fk2 7→ {0, 1} which

evaluates F on (x1, . . . , xn−k, y1, . . . , yk) with (y1, . . . , yk) ∈ Fk2 and returns 1 only if the non-
linear system defined below is consistent :

F̃ = (f̃1, . . . , f̃m)

=
(
f1(x1, . . . , xn−k, y1, . . . , yk), . . . , fm(x1, . . . , xn−k, y1, . . . , yk)

)
∈ Fm2 [x1, . . . , xn−k]

This is reduced to check whether the linear system below has a solution:

u·Macaulay
d (F̃ ) = (0, 0, . . . , 0, 1), for a well chosen d. (2)

In order to quantize ClassicalBooleanSolve, we then proceed in two steps. We first use Grover’s
algorithm, along with the quantum circuit which evaluates F cons

F,k to determine a2 := (an−k+1, . . . , an) ∈
Fk2 such that F cons

F,k (a2) = 1, i.e. a2 is such that the non-linear system below is consistent:

F̃ := (f̃1, . . . , f̃m) =
(
f1(x1, . . . , xn−k,a2), . . . , fm(x1, . . . , xn−k+1,a2)

)
.

The a2 then corresponds to the variable assignments of the last components in a solution for the
system F . We can then use Grover’s algorithm, via QuantumSearch on F̃ to find the remainder of
a complete solution corresponding to a2.

1: procedure QuantumBooleanSolve(m,n,k)

2: a2 := (an−k+1, . . . , an) := GroverSearch(F cons
F,k )

3: F̃ ← (f̃1, . . . , f̃m) =
(
f1(x1, . . . , xn−k,a2), . . . , fm(x1, . . . , xn−k+1,a2)

)
4: a1 := (a1, . . . , an−k) := QuantumSearch(F̃ )
5: Return (a1,a2)
6: end procedure

The most essential part of determining the advantage of using Grover’s algorithm to improve
the computational complexity of ClassicalBooleanSolve is to construct the quantum circuit for
F cons
F,k ). Below, we construct the quantum circuit that solves (2).

3.2 Quantum Oracle

QuantumBooleanSolve consists of constructing a quantum oracle for the consistency check of
Macaulay matrices, i.e. for F cons

F,k . We provide the classical complete sparse linear system solver
for classical consistency checks below, as presented by Giesbrecht et al. [24], and then provide an
outline of the quantum circuit. Classical algorithm complexity is provided in a black-box model,
where we assume access to a black-box for computing matrix-matrix and matrix-vector products.
Then, the complexity is given as the number of calls to such black boxes, as well as the number
of additional field operations required.
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Classical case. SparseLinearSystemSolver is the classical algorithm employed to determine
the consistency of the Macaulay matrices in degree d0. The algorithm takes as input a matrix
A, a vector b and a subset of the field or a field extension L, and outputs either a solution x to
Ax = b or a certificate of inconsistency, u. This classical algorithm requires O(n) evaluations of
black box algorithms for matrix-vector multiplications, as well as an additional O(n2 log n log log n)
additional field operations. Subroutines of the SparseLinearSystemSolver can be found below.

SparseLinearSystemSolver

Input: A ∈ Fn×n, b ∈ F,L ⊂ F with |L| >2n(n− 1)
Output: Any of the following 3 return values, as an evaluation of the matrix A: (nonsingular,
x) where x = A−1b, (singular-consistent, x) with x a random element of the solution space,
(singular-inconsistent, u) with utA = 0 and utb 6= 0, certifying the inconsistency of the system.

1: procedure SparseLinearSystemSolver

2: (f̂(z), x)← Wiedemann(A, b,L)
3: if x ∈ Fn×1 and Ax = b then
4: Return (nonsingular,x)
5: end if
6: α2, α3, . . . , αn, β2, . . . , βn, γ1, . . . , γn

$←− L
7:

U =


1 α2 α3 α4 . . . αn−1 αn
0 1 α2 α3 . . . αn−2 αn−1
0 0 1 α2 . . . αn−3 αn−2
. . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 0 1


8:

L =


1 0 0 0 . . . 0 0
β2 1 0 0 . . . 0 0
β3 β2 1 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
βn βn−1 βn−2 βn−3 . . . β2 1


9: B ← UAL

10: f̂(z)← Wiedemann(B, 0,L) the minpoly of B

11: f(z)← f̂(z)
z

12: if z|f(z) then
13: Repeat all steps following the random generation of U,L
14: end if
15: r ← deg(f)
16: c← Ub
17: if (True,u) ← RandomSol(Bt, 0, f,L) and utc 6= 0 then
18: Return (singular-inconsistent, u)
19: end if
20: if (True, x) ← RandomSol(B, c, f,L) then
21: Return (singular-consistent, x)
22: end if
23: Return to Step 6
24: end procedure

RandomSol: a subroutine of SparseLinearSystemSolver, intended to return a random element of
the solution space to the system Ax = b. The algorithm is stated to require O(r) evaluations of
the black-box for matrix-vector product, and O(nr) additional field operations.

RandomSol

Input: A ∈ Fn×n, b ∈ Fn×1, f(z) ∈ F[z] with f(0) 6= 0, and L ⊂ F with |L| >2n(n− 1)
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Output: One of the following two return values: (False) indicating no solution, (True, x̂) with x̂
a random solution to the system Ax = b.

1: procedure RandomSol

2: w ← (w1, . . . , wn)t with wi ∈$ L
3: r ← deg(f(z))
4: b′ = (b′1, . . . , b

′
r)← b+Aw, the first r entries of the calculated vector b′

5: Ar, the leading r × r submatrix of A
6: x← −

∑n
i=1

fi
f0
Airb

′

7: if Ax = b then
8: Return (True, x)
9: end if

10: Return (False)
11: end procedure

Wiedemann: a subroutine of SparseLinearSystemSolver. The deterministic version of the Wiedemann
algorithm is presented below, as seen in [32].

Wiedemann

Input: A ∈ Fn×n, b ∈ Fn×1, L ⊂ F
Output: One of the following two return values: x such that x ∈ Fn×1 and Ax = b or f̂(z), a
factor of minpoly(A) ∈ F[z].

1: procedure Wiedemann

2: S = {}
3: for i = 0 . . . 2n-1 do
4: S = S ∪ {Aib}
5: end for
6: k ← 0
7: g0(z)← 1
8: while deg(gk) <n and k <n do
9: uk+1 ← ek+1

10: sk ← {(uk+1, A
ib)}2n−1i=0

11: gsk ← {(uk+1, A
igk(A)b)}2n−1−deg(gk)i=0

12: fk+1 ← minpoly(gsk) using the Berlekamp-Massey algorithm
13: gk+1 ← fk+1gk
14: k ← k + 1
15: end while
16: Return x = −

∑deg(gk)
i=1 gk[i]Ai−1b

17: end procedure

From the presentation of the classical algorithm SparseLinearSystemSolver, and the subroutines,
it is clear that the significant operations performed classically are matrix multiplication and vector-
matrix products. The complexity analysis for such operations is given in a black-box model.
Therefore, it is sufficient to show that these operations can be executed (in comparable time) by
a quantum circuit on a quantum computer, in order to construct a quantum oracle for matrix
consistency checking.

Quantum case. As the basic operations implemented by the classical consistency check are lin-
ear algebra on matrices, it is important to verify that this linear algebra can be computed on a
superposition of inputs via a quantum circuit. We must check that a reversible unitary opera-
tion can compute the required algebraic computations on a quantum computer, with comparable
computational complexity to their classical analogs.

Equality Testing. Binary equality testing, i.e. checking if b = b̃, can be computed via one CNOT
and one X gate, as follows: |b〉|b̃〉|0〉 → |b〉|b̃〉|b⊕ b̃⊕ 1〉.
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Matrix Vector Multiplication. The formula for matrix vector multiplication Ax calculates each
element of the product vector b = (b1, . . . , bn) = (a11x1 + a12x2 + a1nxn, a21x1 + a22x2 + . . . +
a2nxn, . . . , an1x1+an2x2+. . .+annxn). To compute each bi we require at most n products between
the elements of A and of x. Therefore, the matrix-vector product requires at most n2 products. It
remains to show that the computation is reversible.
Figure 1 shows a reversible circuit for computing the inner product between two vectors. This is
simply done by replacing the products by Toffoli gates. This quantum circuit is also itself reversible;
applying the circuit twice leads to identity. In total, the inner product of two n-bit vectors can be
computed, on a superposition of inputs, using n Toffoli gates. Therefore, the computation of such
a matrix vector multiplication requires at most n2 Toffoli gates.

|a1〉
...

|an〉
|b1〉

...

|bn〉

|0〉

T T

|a1〉
...

|an〉
|b1〉
...

|bn〉

|a1b1 + · · ·+ anbn〉
. . .

Fig. 1. Computing the inner product on a superposition of inputs.

Matrix Multiplication. In the same fashion it is possible to compute matrix products in the quan-
tum setting. Each column of the matrix can be computed using matrix vector multiplication,
which, in turn, can be implemented using n2 Toffoli gates. In total, a reversible quantum circuit
for computing matrix multiplication on a superposition of inputs requires at most n3 Toffoli gates,
for square matrices.

Utilizing this quantum circuit for inner product between two vectors the quantum oracle for
consistency checking can be constructed. Despite the fact that this naive quantum matrix multi-
plication is computed in O(n3), time greater than O(nω) where ω ∼ 2.376 is the current classical
complexity of matrix multiplication with the Coppersmith-Winograd algorithm, quantizing this
computation will result in a lower quantum computational time for the classical MQ2 problem.
ClassicalBooleanSolve, as well as SparseLinearSystemSolver and the provided subroutines
are analyzed in the black box model, where matrix multiplication such as x → Ax for a vector
x and a matrix A are given by black boxes. We have provided the above construction to as-
sure that such computations can be carried out by a quantum computer, reversibly and without
entanglement concerns.

4 Complexity Analysis

We can now study the complexity of QuantumBooleanSolve (Section 3.1). This analysis consists of
constructing the quantum oracle QBS implementing F cons

F,k : {0, 1}k → {0, 1}, which on input a ∈
Fk2 specializes the polynomial system F and indicates the consistency of the associated Macaulay
matrix Ma of appropriate degree. This can be done by analyzing SparseLinearSystemSolver and
any associated subroutines separately, either illustrating the equivalence between the complexity
of the classical function and the quantum circuit or proving that the quantum circuit is more
efficient.
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For example, the quantization of the subroutine RandomSol would consist of constructing a quan-
tum circuit QRS. RandomSol takes as input a matrix A ∈ Fn×n, a vector b ∈ Fn×1, a polynomial
f(z) ∈ F[z] with f(0) 6= 0 (and L ⊂ F, which is in the case of MQ2 a field extention of F2. We
would build

QRS : |a11〉 . . . |ann〉|f [0]−1〉|f [1]〉 . . . |f [n]〉|r〉|w1〉 . . . |wn〉|b1〉 . . . |bn〉|0〉 . . . |0〉 →
|a11〉 . . . |ann〉|f [0]−1〉|f [1]〉 . . . |f [n]〉|r〉|w1〉 . . . |wn〉|b1〉 . . . |bn〉|0〉 . . . |0〉|b′1〉 . . . |b′r〉|x1〉 . . . |xn〉|sA〉

This quantum circuit takes as input the elements of the matrix A, the coefficients of the function
f , the elements of the random vector w, r = deg(f), and the elements of the vector b, as well as

wires for computation space, and returns b′r = b+Aw, x = −
∑n
i=1

f [i]
f [0]A

i
rb
′
r, a boolean sA which

takes the value of 1 if Ax = b and 0 otherwise, along with the input for reversibility.

Theorem 5. The quantum circuit

QRS : |A〉|f〉|w〉|r〉|b〉|0〉 . . . |0〉 → |A〉|f〉|w〉|r〉|b〉|0〉 . . . |0〉|b′〉|x〉|sA〉

implementing RandomSol requires O(n3 + 2n2 + 3n+ 1) quantum gates to compute. In the black-
box model, when provided with an oracle to compute matrix-vector and matrix-matrix products,
QRS requires O(r) evaluations of the black box, and O(nr) operations in the base field F, which
is equivalent to the classical complexity of RandomSol.

A proof of the above theorem is fairly straightforward when directly analyzing a quantum analogue
of the classical algorithm provided above for RandomSol. It is clear that steps 4, 6, and 7 of
RandomSol are the only steps computed by the QRS quantum circuit. Firstly, step 4 consists
of the computation of b′r = (b′1, . . . , b

′
r) = b + Aw, the first r entries of the vector b′. This is

merely matrix-vector multiplication and vector-vector addition; we compute the r entries of b′

with rn T gates for multiplication and r CNOT gates for addition, totaling O(rn+r) ≤ O(n2 +n)
quantum gates. In the black box model, we have 1 oracle query for matrix-vector multiplication
and O(r) field operations for addition of two vectors. Secondly, step 6 consists of computing for
i = 1 . . . n the matrix-vector product (A)· (Ai−1b′) with n2 T gates, followed by the computation
of fi

f0
via one T-gate, and computing the ith term of the sum with an additional T gate. This is

O(n(n2 + 2) + 1) quantum gates to compute x when we consider the additional NOT gate at the
end of the computation. In the black box model, we have O(n) black box matrix-vector product
queries and O(nr) field operations for the sum. Finally, the equality test conducted in step 7
consists of computing the matrix-vector product Ax with n2 T gates, followed by n CNOT gates
to compute, element by element, (Ax)i⊕bi, and then one Tn+1 gate to compute the value sA. In the
black box model, this is 1 call to the matrix-vector product oracle. Therefore, we have established
the equivalence of the classical complexity of the subroutine RandomSol with the quantum oracle
implementing the function QRS in the black-box model.

Similar arguments demonstrate the equivalence of SparseLinearSystemSolver as well as the
entire quantum circuit QBS. Due to the equivalence of the classical and quantum consistency
checks in the black-box model, it is straightforward to adapt Theorem 2 to QuantumBooleanSolve,
as follows.

Theorem 6. Let θ, 2 ≤ θ ≤ 3 is such that any two n × n matrices can be multiplied in O(nθ)
operations in the underlying field. For any ε > 0, and α ≥ 1 and sufficiently large m = dαne,
testing the consistency of all Macaulay matrices in QuantumBooleanSolve(m, n, k) requires the:

– evaluation of O(2(
1−γ
2 +θFα(γ)+ε)n) quantum gates in the deterministic variant;

– evaluation, on average, O(2(
1−γ
2 +2Fα(γ)+ε)n) quantum gates in the probabilistic variant,

where γ = 1 − k
n , Fα(γ) = −γ log2(DD(1 − D)(1−D)) with D = M(αγ ) and M(x) = −x + 1

2 +

1
2

√
2x2 − 10x− 1 + 2(x+ 2)

√
x(x+ 2) and
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The above complexity is obtained through the full evaluation of the cost of the consistency check
oracle, QBS, which is equivalent to the cost of the classical consistency check in the black box
model. The quantum circuit for QBS can then be run in superposition over all generated Macaulay
matrices,

∑
a∈Fk2

|Ma〉. Amplitude amplification is then utilized, as in Grover’s algorithm, to de-

termine the a ∈ Fk2 such that Ma is inconsistent.

If we are guaranteed only one input a ∈ Fk2 is such that the generated Macaulay matrix Ma is

inconsistent, the algorithm requires O(2k/2) = O(2(
(1−γ)n

2 ) evaluations of the quantum circuitQBS
implementing F cons

F,k for F ∈ F2[x1, . . . , xn]m as well as the diffusion gate D for Grover’s algorithm.
When we have more than one a ∈ F2 such that Ma is inconsistent, amplitude amplification must
be run

O

(
π

4

√
2k

|a ∈ Fk2 : Ma inconsistent|

)
times to recover such a ∈ Fk2 .

As in the classical analysis of ClassicalBooleanSolve, in the case that the Macaulay ma-
trices are found to be inconsistent, the full system F may be consistent. We therefore must
determine the remainder of the solution, once we have found a ∈ Fk2 such that Ma is in-
consistent. This exhaustive search can be performed using Grover’s algorithm with a quantum
oracle for the specialized system F̃a, where if a = (y1, . . . , yk) we have F̃ = (f̃1, . . . , f̃m) =
(f1(x1, . . . , xn−k, y1, . . . , yk), . . . , fm(x1, . . . , xn−k, y1, . . . , yk)). Similarly to the classical analysis,
we find that an overwhelming amount of computational cost is the consistency check performed
by QBS; the cost of the second exhaustive search, performed over the remaining n− k variables,
is negligible. By definition of strong semi-regularity, the number of such searches is bounded by
O(2(1−2γ+2Fα(γ)ε)n), and therefore the cost of the second exhaustive search is bounded by the cost
of the consistency check.

To derive the asymptotic complexity, we now minimize (for example, numerically) the exponents
stated in Theorem 6.

Lemma 2. Let the notations be as in Theorem 6 and α = 1. Then, the function (1−γ)
2 + θFα(γ)

is bounded by:

– 0.477 = 1− 0.523, when θ = 3 and γ = 0.1,
– 0.47 = 1− 0.53, when θ = 2.376 and γ = 0.13,
– 0.462 = 1− 0.538, when θ = 2 and γ = 0.17

It can be remarked that the value of θ has a minimal impact on the bounds provided in the Lemma
below; less than in the classical setting (see Section 2.1). Note that these results can be extended
to any α ≥ 1.

To assure the reader that such computations can be performed on a quantum computer, we have
provided a naive matrix-vector and matrix-matrix product circuit computed via inner product in
the previous section. Finally, in summary, we have:

Theorem 7. QuantumlBooleanSolve is correct and solves MQ2. If m = n, then – for any ε > 0 –
the deterministic variant of the algorithm requires to evaluate O(2(0.47+ε)n) quantum gates provided
that the system is 0.13-strong semi-regular. The Las-Vegas probabilistic variant requires to evaluate
an expected number of O(2(0.462+ε)n) quantum gates if the system is 0.17-strong semi-regular.

This theorem follows directly from the equivalence of the classical and quantum complexity of the
consistency checks, as well as the above Lemma 2.
This complexity should be directly compared to the ideal of a pure quadratic speed-up over the
classical complexity of ClassicalBooleanSolve, which is O(2(0.396n)), as well as a quadratic
speed-up on the classical approximation algorithm from [28] which is O(2(0.438n)). Note that none
of these complexities have been obtained so far and are thus an open challenge.
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