
E�cient Oblivious Data Structures for Database Services
on the Cloud

Thang Hoang∗ Ceyhun D. Ozkaptan† Gabriel Hackebeil‡ Attila A. Yavuz∗

Abstract

Database-as-a-service (DBaaS) allows the client to store and manage structured data on the
cloud remotely. Despite its merits, DBaaS also brings signi�cant privacy issues. Existing encryp-
tion techniques (e.g., SQL-aware encryption) can mitigate privacy concerns, but they still leak in-
formation through access patterns which are vulnerable to statistical inference attacks. Oblivious
Random Access Machine (ORAM) can seal such leakages, but the recent studies showed signi�cant
challenges on the integration of ORAM into databases. Speci�cally, the direct usage of ORAM on
databases is not only costly but also permits very limited query functionalities.

We propose new oblivious data structures called Oblivious Matrix Structure (OMAT) and Obliv-
ious Tree Structure (OTREE), which allow tree-based ORAM to be integrated into database systems
in a more e�cient manner with diverse query functionalities supported. OMAT provides special
ORAM packaging strategies for table structures, which not only o�ers a signi�cantly better perfor-
mance but also enables a broad range of query types that may not be practical in existing frame-
works. OTREE allows oblivious conditional queries to be deployed on tree-indexed databases more
e�cient than existing techniques. We fully implemented our proposed techniques and evaluated
their performance on a real cloud database with various metrics, compared with state-of-the-art
counterparts.
Keywords— Privacy-enhancing Technologies; Oblivious Data Structure; ORAM

1 Introduction

Services for outsourcing data storage and related infrastructure to the cloud have grown in the last
decade due to the savings it o�ers to companies in terms of capital and operational costs. For instance,
major cloud providers (e.g., Amazon, Microsoft) o�er Database-as-a-service (DBaaS) that provides rela-
tional database management systems on the cloud. This enables a client to store and manage structured
data remotely. Despite its merits, DBaaS raises privacy issues. The client may encrypt the data with
standard encryption, but this then prevents searching or updating information over the cloud, thereby
invalidating the e�ective utilization of database.

Various privacy enhancing technologies have been developed towards addressing this privacy ver-
sus data utilization dilemma. For instance, the client can use special encryption techniques such as
SQL-aware encryption (e.g., [18, 19]) or searchable encryption with various security, e�ciency and

∗School of EECS, Oregon State University, Corvallis, OR, 97331. Email: {hoangmin, attila.yavuz}@oregonstate.edu
†Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210
‡Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, 48109

Work done when the second and third authors were employed at Oregon State University. E-mail: {ozkaptac, hacke-
beg}@oregonstate.edu.

1

Query q2

Query q1

Table-A (Encrypted)

Client

Database-as-a-Service (DBaaS)

RowID Col1 Col2 Col3 Col4

Row1 A B C D

Row2 E F G H

Row3 I J K L

Row4 M O P Q

Encrypted Queries
to Table-A

(honest-but-curious)
Respond r1

Respond r2

Database can record and
analyze query (access) patterns

(q1,r1),…,(qn,rn)
Statistical Inference Attack Sensitive information may be

revealed [4, 12, 15, 20, 32]

Query qn

Respond rn

.

.

.

Figure 1: Information leakages through query access patterns over an encrypted database.

query functionality trade-o�s (e.g., [5, 29, 13, 3, 25, 26, 30, 31]) to achieve the data con�dentiality and
usability on the cloud. However, even such encryption techniques might not be su�cient for privacy-
critical database applications (e.g., healthcare), as sensitive information may be revealed through access
patterns during the execution of queries on the encrypted database. Recent works (e.g., [4, 12, 15, 20, 32])
showed that the information leakage through access patterns along with some prior contextual knowl-
edge can be used to launch statistical inference attacks and reveal vital information about encrypted
queries and database. For example, such information leakages may expose the prognosis of illness
for a patient or types/timing of �nancial transactions over valuable assets based on encrypted queries.
Therefore, it is an vital requirement for privacy-critical database applications to hide the access pattern.

Oblivious Random Access Machine (ORAM) [10] can be used to hide access patterns for such en-
crypted databases. Preliminary ORAM schemes (e.g., [10, 17]) were costly, but recent ORAM construc-
tions (e.g., [7, 22, 23, 24, 27, 28]) showed promising results. Most e�cient ORAM schemes (e.g., [9, 21,
24]) to date follow tree paradigm [22], which achieves asymptotic Ω(logN) lower-bound [2, 10, 27]
communication overhead. However, despite these improvements, there are several research gaps to-
wards achieving e�cient integration of ORAM in databases. In the following, we discuss these research
gaps and limitations of the existing approaches.

1.1 Limitations of Existing Approaches

The direct application of ORAM to the structured encrypted data has been shown to be highly costly
in the context of searchable encryption [1, 11]. Meanwhile, there is a very limited work on the appli-
cation and integration of ORAM for encrypted database systems. To the best our knowledge, the only
work that studied ORAM schemes for real database systems was proposed by Chang et al. in [6] with
a framework called SEAL-ORAM. In SEAL-ORAM, various ORAMs were implemented and compared
with a MongoDB database instance where ORAM blocks are constructed in a row-oriented manner.
While it shows the possibility of using ORAM for encrypted databases, the functionalities and perfor-
mance o�ered by such a direct adaptation seem to be very limited. We outline the limitations of two
direct ORAM applications in Figure 2, and further elaborate them as below:
∙ Limitations of Row-Oriented Approach: Recall that SEAL-ORAM packages each row of a database
instance into an ORAM block. We refer to this approach as RowPKG. Notice that RowPKG only al-
lows insert/delete/update queries on a row in the database table. However, to execute oblivious in-
sert/delete/update on a column, RowPKG requires to transfer all blocks in ORAM, which is not only
highly communication costly but also client-storage expensive. Similarly, the execution of any column-

2

RowID Col1 Col2 Col3 Col4

Row1 A B C D

Row2 E F G H

Row3 I J K L

Row4 M O P Q
Row_1

Row_2 Row_3

Row_4

Tree-based ORAM Construction of Table A

(a) Limitations of Row-Oriented Packaging in DBaaS

1. Statistical Queries: û
• Downloading all ORAM

blocks for statistical results

2. Conditional Queries: û
• Downloading all ORAM

blocks to check conditions

Tree-based ORAM Construction of Table A
(b) Limitations of Cell-Oriented Packaging in DBaaS

A
B

C

D

E
F

G

H

I
J

K

L

M
O

P

Q

1. Size of Position Map: û
• O(MN)

2. Row-Related Queries: û
• Round-trip delay to fetch all

cells in a row
3. Column-Related Queries: û
• Round-trip delay to fetch all

cells in a column for queries
such as conditional and
statistical

Table-A (MxN)
Client

Oblivious Access and
Query to Table-A

STATISTICAL
QUERY

CONDITIONAL
QUERY

ROW QUERY ROW QUERY

(c) OMAT (Oblivious Matrix Structure): An oblivious matrix structure and new
ORAM packaging strategies to permit diverse and efficient queries on table instances.
• Efficient and Oblivious Statistical Queries on Columns
• Efficient and Oblivious Conditional Queries on Columns without Indexing

• Efficient and Oblivious Row Queries

(d) OTREE (Oblivious Tree Structure): An oblivious tree structure and new level-
based ORAM packaging strategies with a heap unification for tree-indexed databases.
• Efficient and Oblivious Access to Tree Data Structures
• Oblivious Access to Index-Tree for Efficient Conditional and Range Queries

Experiments and Open-Source
(i) OMAT and OTREE are fully implemented with Path-ORAM. (any tree-based ORAM scheme can be used)

(ii) Performance evaluations on LAN server and in-state remote (Amazon EC2) server with MongoDB instances

STATISTICAL
QUERY

CONDITIONAL
QUERY

Desirable Properties of Our Proposed Schemes

Research Gap: Limitations of Existing Oblivious Database Access Approaches

Figure 2: Research gap to be addressed and desirable properties of the proposed schemes.

related queries such as statistical or conditional queries is also very costly, as they require downloading
all the ORAM blocks and may not be practical for large databases. RowPKG (i.e., row-oriented packag-
ing) and its limitations are outlined in Figure 2-(a).
∙ Limitations of Cell-Oriented Approach: Another approach is to package each cell of the database into
an ORAM block. However, it signi�cantly increases the size of position map, which is a data structure
stored on the client to enable tree-based ORAM. To eliminate position map, oblivious 2D-grid structure
(referred as ODS-2D) proposed by Wang et. al [28] can be used to store database table by clustering
O(log(N)) cells into an ORAM block with pointers. However, this approach increases the number of
requests to be sent for each query to fetch all cells in a row or column. This incurs end-to-end delay due
to a large number of round-trip delays, and therefore, is not suitable for large databases. Cell-oriented
packaging and its limitations are summarized in Figure 2-(b).

The above discussion indicates that there is a signi�cant need for an e�cient oblivious data struc-
ture that permits diverse types of queries on encrypted databases. Hence, in this paper, we seek answers
to the following research questions:

“How can we create an e�cient oblivious data structure for encrypted databases that achieve di-
verse types of queries with a low overhead? How can we harness asymptotically optimal ORAMs
over structured data to create an oblivious data structure?"

1.2 Our Contributions

Given the availability of asymptotically e�cient ORAM building blocks, our objective is to create new
oblivious data structures by harnessing such ORAMs in e�cient ways. Speci�cally, we proposed two
e�cient oblivious data structures that permit various types of queries on encrypted databases:

(i) Our �rst scheme is referred to as Oblivious Matrix Structure (OMAT) (Section 3.1). The main idea
behind OMAT is to create an oblivious matrix structure that permits e�cient queries over table objects
in a database not only for rows but also columns. This is achieved via various strategies that are speci�-
cally tailored for matrix structure with a delicate balance between query diversity and ORAM overhead.
This allows OMAT to perform various types of oblivious queries without downloading a large number
of ORAM blocks or storing a very large position map. (ii) Our second scheme is referred to as Obliv-
ious Tree Structure (OTREE) (Section 3.2), which is designed for oblivious accesses on tree-structured

3

Table 1: Transmission cost and client storage for compared schemes.

Scheme Communication Costa E�ciencyb Client Storagec
End-to-End Delayd

Moderate
Network

High
Network

single column-related query (e.g., statistical, conditional queries)
RowPKG [6] Z ⋅ (B1 ⋅ N) ⋅ (2M − 1) 1.00 O(M ⋅ N) ⋅ w(1) 6096 s 776 s
ODS-2D [28] (M/4) ⋅ [Z ⋅ (16 ⋅ B1) ⋅ log2(M ⋅ N /16)] 17.04 O(M ⋅ log(M ⋅ N)) ⋅ w(1) 1245 s 292 s
OMAT Z 2 ⋅ (B1 ⋅ M) ⋅ log2(N) 28.44 O(M ⋅ log(N)) ⋅ w(1) 475 s 60 s

single row-related query (e.g., insert/delete/update queries)
RowPKG [6] Z ⋅ (B2 ⋅ N) ⋅ log2(M) 1.00 O(N . log(M)) ⋅ w(1) 567 ms 56 ms
ODS-2D [28] (N /4) ⋅ [Z ⋅ (16 ⋅ B2) ⋅ log2(M ⋅ N /16)] 0.19 O(N ⋅ log(M ⋅ N)) ⋅ w(1) 2380 ms 350 ms
OMAT Z 2 ⋅ (B2 ⋅ N) ⋅ log2(M) 0.25 O(N . log(M)) ⋅ w(1) 2032 ms 128 ms

traversal on database tree index (e.g., range queries)
non-caching
ODS-Tree [28] 2 ⋅ Z1 ⋅ B ⋅ (H + 1)2 1.00 O(H) ⋅ w(1) 7929 ms 1318 ms
OTREE Z2 ⋅ B ⋅ (H + 1) ⋅ (H + 2) 1.60 O(H) ⋅ w(1) 3762 ms 592 ms
half-top caching
ODS-Tree [28] 2 ⋅ Z1 ⋅ B ⋅ ⌈H+12 ⌉ ⋅ (H + 1) 1.00 O(

√
2H) + O(H) ⋅ w(1) 5979 ms 1008 ms

OTREE Z2 ⋅ B ⋅ ⌈H+12 ⌉ ⋅ (⌈H+12 ⌉ + 1) 3.20 O(
√
2H) + O(H) ⋅ w(1) 1676 ms 272 ms

∙ Table Notations: M and N denote the total number of (real) rows and columns in the matrix data structure, respectively. H is the
height of the tree data structure. Z and B denote the bucket size and size of each block (in bytes), respectively.
∙ Settings: We instantiate our schemes and their counterparts with underlying Path-ORAM for a fair comparison. The bottom half of
the table compares OTREE and ODS-Tree when combined with tree-top caching technique proposed in [16], in which we assume the
top half of tree-based ORAM is cached on the client during all access requests.
∙ Server Storage: All of the oblivious matrix structures require O(MN) server storage, however, the storage of OMAT is a constant (e.g.,
Z = 4) factor larger than others. OTREE is twice more storage e�cient than ODS.
a Represents the total cost in terms of bytes to be processed (e.g., communication/computation depends on the underlying ORAM
scheme) between the client and the server for each request. For OMAT , ODS-2D and RowPKG, the cost is for one access operation per
query. For OTREE and ODS, the cost is for traversing an arbitrary path in a binary tree.
b Denotes the communication cost e�ciency compared to chosen baseline, where Z = 4, B1 = 64, B2 = 128,M = 215, N = 29 for ODS-
2D, RowPKG and OMAT, and Z1 = 4, Z2 = 5 (for stability), B = 4096, H = 20 for ODS-Tree and OTREE.
c Client storage consists of the worst-case stash size to keep fetched data. Additionally, the position map of OMAT and RowPKG are
O((M + N) log(M + N)) and O(M ⋅ log(M)), respectively. For ODS based structures and OTREE, position map requires O(1) storage due
to pointers and half-top cached blocks are also included in client storage.
d The delays were measured with a MongoDB instance running on Amazon EC2 connected with the client on two di�erent network
settings which are described in Section 5.1.

database instances. Given a column whose values are sorted into a tree data structure (i.e., database in-
dex), OTREE allows e�cient oblivious conditional queries (e.g., a range query). OTREE achieves better
performance than the existing oblivious data structures [28] for such settings since the structure of the
data is already known.

We illustrate desirable properties of our schemes in Figure 2-(c,d), and discuss them as below:

∙ Highly e�cient and diverse oblivious queries: OMAT supports a diverse set of queries to be executed
with ORAM. Speci�cally, OMAT permits oblivious statistical queries over value-based columns such as
SUM, AVG, MAX and MIN. Moreover, oblivious queries on rows (e.g., insert, update) can be executed on
an attribute with a similar cost. As shown in Table 1, with the given parameters and experimental setup,
executing a column-related query such as statistical or conditional query with OMAT is approximately
28× more communication e�cient than that of RowPKG and this enables OMAT to perform queries
approximately 13× faster than that of RowPKG. Compared to ODS-2D, although OMAT is only 1.6 ×
communication e�cient, it performs approximately 5× faster in practice due to the large number of
additional round-trip delays. OTREE achieves better performance than ODS for obliviously accessing
database index, which is constructed from the values of a column as a tree data structure. The commu-
nication cost of OTREE is 1.6× less than that of ODS without any caching. This gain can be increased

4

up to 3.2× with tree-top caching strategy.
∙ Generic Instantiations from Tree-based ORAM Schemes: Any tree-based ORAM scheme can be used for
both OMAT and OTREE instantiations. This provides a �exibility in selecting the base ORAM scheme,
which can be adjusted according to the performance requirements of speci�c applications. Note that,
in this paper, we instantiated our schemes with Path-ORAM [24] due to its e�ciency, simplicity and
not requiring any server-side computation.
∙ Full-�edged Implementation and Comprehensive Experimental Evaluation: We implemented OTREE,
OMAT, and their counterparts under the same framework. We evaluated their performance with a
database instance of MongoDB running on a remote AmazonEC2 server with two di�erent network
settings: (1) moderate-speed network and (2) high-speed network. This permits us to observe the impact
of real network and cloud environment.

2 Preliminaries

We now present cryptographic techniques and implementation frameworks that are used by or are
relevant to our proposed schemes.

2.1 Tree-based ORAM

ORAM enables a client to access encrypted data on an untrusted server without exposing the access
patterns (e.g., memory blocks, their access time and order) to the server [10]. Existing ORAM schemes
rely on IND-CPA encryption [14] and an oblivious shu�ing to ensure that any data access patterns of
the same length are computationally indistinguishable by anyone but the client.

Recent ORAMs (e.g., [8, 9, 21, 24]) follow the tree paradigm [22], which consists of two main data
structures: A perfectly-balanced tree data structure stored on the server side and a position map (de-
noted as pm) stored at client side (Figure 3). Each node in the tree is called as a bucket (denoted as B)
which can store up to Z data blocks (e.g., Z = 4). Each block b has a unique identi�er id and all blocks
have the same size B (4 KB). A tree-based ORAM with N leaf nodes can store up to N real blocks, and
other empty slots are �lled with dummy data. (i) denotes a path from the root to leaf i of the tree.
The position map pm holds the location among 2N possible paths (i) for every block with identi�er
id. The size of pm is (N logN) which can be reduced to (1) by using recursive ORAMs to store
pm on the server with the communication overhead up to (logN) for each access operation. Table 2
summarizes notations being used for tree-based ORAM scheme.

There are two basic procedures in tree-based ORAMs: Block fetching and eviction. For each access
operation, the client gets the path ID of accessing block from the position map and sends the path

Table 2: Summary of notations in tree-based ORAM.
Symbol Description

N Total number of nodes in the tree-based ORAM
H Height of the ORAM tree structure
b, B Block and Block size
z Capacity (in blocks) of each node

(i) Path from leaf node i to root bucket in the tree
(i, �) Bucket at level � along the path (i)
 Client’s local stash (optional)
pm Client’s local position map

i ∶= pm[id] block identi�ed by id is currently associated with leaf node i, i.e., it resides
somewhere along (i) or in the stash.

5

Position mapClient

Server

𝑧 ℎ = log' 𝑁

Stash

Figure 3: Tree-based ORAM structure [22].

ID to the server who responds with all blocks residing in the requested path. The client decrypts
and processes the received data to obtain the desired block and call the eviction procedure which re-
encrypts the block and pushes it back to the ORAM tree in such a way that the server does not know
which block was being accessed. Notice that although recently proposed ORAM schemes that follow the
tree paradigm (e.g., [24, 21, 9]) provide di�erent trade-o�s between communication and computation
overhead, they all rely on the aforementioned basic procedures.

Path-ORAM: Path-ORAM [24] follows the same block fetching procedure of tree-based ORAM schemes.
After fetching, all downloaded real blocks are temporarily placed in client’s stash, a component intro-
duced in [23]. A new random address is then assigned to the accessed block and the local position map
is updated. Next, the blocks in the stash are evicted to the same path in the server. Path-ORAM o�ers
asymptotically optimal communication and computation cost of (logN) by storing (N logN)-sized
position map. As the recursive ORAMs have been shown to be highly costly in practice, we do not
discuss them in this work.

2.2 Oblivious Data Structure

Oblivious Data Structure (ODS) proposed by Wang et al. [28] leverages “pointer techniques” to re-
duce the bulk storage of position map components in non-recursive ORAM schemes to (1), if the
data to be accessed have some speci�c structures (e.g., grid, tree, etc.). For instance, given a binary
search-sorted array as illustrated in Figure 4, the ORAM block is augmented with k + 1 additional
slots that hold the position of the block along with the positions and identi�ers of its children as
b ∶= (id, data, pos, childmap), where id is the block identi�er, data is the block data, pos is its position
in ORAM structure, and childmap is a miniature position map with entries (idi , posi) for k children. To
ensure that the childmap is up to date, a child block must be accessed through at most one parent at
any given time. If a block does not have a parent (e.g., the root of a tree), its position will be stored in
the client. A parent block should never be written back to the server without updating positions of its
children blocks.

6

4

31

52

4 1 2 3 5

Tree T Tree-based ORAM of T

Figure 4: Oblivious Data Structure for a tree structure [28].

2.3 ORAM Implementation Framework

One of the most reliable and complete ORAM frameworks is CURIOUS [1], which gives a complete
implementation of the state-of-the-art ORAM schemes (e.g., Path-ORAM [24]) in Java. In this paper,
we chose CURIOUS to implement our oblivious data structures as it can be adopted with the library of
various database drivers such as MongoDB or MySQL.

3 The Proposed Techniques

We now present our proposed oblivious data structures, which are specially designed for e�cient op-
erations in database settings. We propose two schemes, one is referred to as Oblivious Matrix Structure
(OMAT) and the other is Oblivious Tree Structure (OTREE).

For our oblivious data structures, we choose Path-ORAM [24] as underlying ORAM for the follow-
ing reasons: (i) It is simple yet achieves asymptotic e�ciency. (ii) Unlike some recent ORAMs [9, 21]
that require computations at the server side, it requires only read/write operations. This is useful since
such advanced cryptographic operations might not be readily o�ered by well-known database instances
(e.g., MongoDB, MySQL). (iii) The availability of Path-ORAM implementations under frameworks (e.g.,
CURIOUS [1]) enables a fair experimental comparison of the proposed techniques with the state-of-
the-art.

3.1 Oblivious Access on Table Structures

The direct application of tree-based ORAMs to access encrypted tables in general [1] and database
systems in speci�c [6] have been shown to be highly ine�cient for large datasets. Speci�cally, if each
row in the table is packaged into an ORAM block as in [6], then performing queries to fetch a column
in such a table (e.g., statistics) would require the client to download all blocks in the ORAM structure,
which is impractical. Similarly, applying ORAM to each cell in the table incurs a high network delay
and client storage overhead due to a large position map. Thus, we investigate on how to translate the
table into an oblivious data structure so that each row and column of it can be both accessed e�ciently
by a given ORAM scheme. Below, we �rst describe our oblivious data structure and then present our
OMAT access scheme on top of it.

3.1.1 Oblivious Data Structure for OMAT

The main data structure we use for oblivious access on a table is a matrix-structured table (as in a binary
matrix in [29]). Given an input table T of size M ×N , we allocate a matrix M of size Z ⋅ 2⌈log2(M)⌉−1 × Z ⋅
2⌈log2(N)⌉−1. We arrange tree-based ORAM building blocks for oblivious access as follows:

7

ID 1 2 3 4 5

1 1 2 3 4 5

2 6 7 8 9 10

3 11 12 13 14 15

4 16 17 18 19 20

… C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28

… R1

… R2

… 16 20 17 18 19 R3

… R4

… 1 5 2 3 4 R5

… R6

… 6 10 7 8 9 R7

… R8

… 11 15 12 13 14 R9

… R10

… R11

… R12

(b) OMAT representation of Table A(a) Table A (c) Tree-ORAM based layout for oblivious row and column accesses

Oblivious row access (OROW)

Oblivious column access (OCOL)

1 C13
C14

5 C15
C16

C17
2 C18

C19
C20

C21
3 C22

C23
C24

C25
C26
C27

4 C28

C5
C6
C7
C8

C9
C10
C11
C12

C1
C2
C3
C4

3 R9
R10
R11
R12

1 R5
R6

2 R7
R8

R1
R2

4 R3
R4

Figure 5: OMAT structure for oblivious access on matrix-like table.

The layout of OMAT matrix M can be interpreted as two logical tree-based ORAMs de�ned as
oblivious rows (denoted as OROW) and oblivious columns (denoted as OCOL), as illustrated in Figure
5. That is, the ORAM for row access on OROW is formed by a set of blocks bi ∶= (idi , datai), where
idi is either a unique identi�er if bi contains the content of a row of the table T or otherwise null, and
datai ← M[i, ∗]. We group Z subsequent rows inM to form a bucket (i.e., node) in theOROW structure.
Similarly, the ORAM for column access on OCOL is formed by bj = (idj , dataj). Each (bucket) node in
OCOL is formed by grouping Z subsequent blocks.

We assign each row T[i′, ∗] (i′ = 1,… ,M) and each column T[∗, j′] (j′ = 1,… , N) to a random leaf
node IDs ui′ and vj′ in OROW and OCOL, respectively. That is, the data of T[i, ∗] and T[∗, j] reside in
some rows and columns ofM along the assigned paths(ui) inOROW and(vj) inOCOL, respectively.
In other words, M[i, j] ← T[i′, j′], where M[i, ∗] ∈ (ui′) in OROW and M[∗, j] ∈ (vj′) in OCOL. Our
construction requires two position maps ±row and ±col to store assigned paths for each row T[i′, ∗] and
each column T[∗, j′] of table T in OROW and OCOL, respectively. Our position maps store all necessary
information to locate the exact position of a row/column data in the tree-based ORAM structures as
pm ∶= (id, ⟨pathID, level, order⟩), where 0 ≤ level ≤ log2(N) indicates the level of the bucket, in which
the row/column with id resides, and 1 ≤ order ≤ Z indicates its order in the bucket.

3.1.2 OMAT Access Protocol

We present ourOMAT scheme, which is instantiated with Path-ORAM, in Scheme 1. We use subroutines
ReadBucket(⋅, ⋅) and WriteBucket(⋅, ⋅), which are tailored for OMAT purposes from Path-ORAM. These
subroutines take an extra parameter dim as the input, indicating which dimension the client wishes
to obliviously read/write on. For example, if dim = col, then ReadBucket(dim, bucket) subroutine
will read Z columns from the bucket corresponding to the OCOL structure. Moreover, we use two
stashes denoted as row and col to store the accessed rows and columns separately due to Path-ORAM
operations. As row access operation will update a row data to a new position, it is required to update
the order of all columns currently in the stash col and vice versa to maintain the consistency (Scheme
1, line 14). Rows/columns are IND-CPA decrypted and re-encrypted as they are read and written,
respectively. We assume that it is not required to hide the information whether a column or a row is
being accessed. However, this can be achieved with the cost of performing oblivious accesses on both
row and column (one of them is selected randomly) simultaneously for each access.

8

Scheme 1 data ← OMAT.Access(op, dim, id)
1: b ← pmdim[id].pathID
2: if dim = col then
3: pmdim[id].pathID

$←←←←←←←←← {1, … , 2⌈log2(N)⌉−1}
4: H ← ⌈log2(N)⌉
5: else
6: pmdim[id].pathID

$←←←←←←←←← {1, … , 2⌈log2(M)⌉−1}
7: H ← ⌈log2(M)⌉

⊳ Read all rows/columns on the path (b)
8: for each � ∈ {0, … , H} do
9: dim ← dim ∪ ReadBucket(dim,(b, �))

10: data ← Read row/column with id from dim
11: data ← FilterDummy(data,¬ dim)
12: ¬ dim ← Update(¬ dim, pmdim)
13: if op = write then
14: dim ← (dim ⧵ {(id, data)}) ∪ {(id, data∗)}

⊳ Evict blocks from the stash
15: for each � ∈ {H ,… , 0} do
16: ′dim ← {(id′, data′) ∈ dim|(b, �) = (pmdim[id′].pathID, �)}
17: ′dim ← Select min(|′dim|, Z) blocks from ′dim
18: dim ← dim ⧵ ′dim
19: o ← 1
20: for each (id′, data′) ∈ ′dim do
21: pm[id′].level ← �
22: pm[id′].order ← o , o ← o + 1
23: WriteBucket(dim,(b, �),′dim)
24: return data

3.1.3 Use case: Statistical and Conditional Queries

Recall that, in row-oriented packaging, implementing secure statistical queries on a column requires
downloading the entire ORAM blocks from the database. In contrast, OMAT structure allows queries
such as add, delete, update not only on its row but also on its column. Thus, we can implement
statistical queries (e.g., MAX, MIN, AVG, SUM, COUNT, etc.) over a column in an e�cient manner
via OMAT. Note that OMAT also permits conditional query on rows with WHERE statement. Similar
to statistical queries, the query can be implemented by reading the attribute column on which the
WHERE clause looks up OCOL �rst to determine appropriate records that satisfy the condition, and
then obliviously fetching such records on OROW structure. For example, assume that we have the
following SQL-like conditional search:

SELECT * FROM A WHERE C > k;

It can be implemented by:

1. Read the column C with id′ on OCOL:
C[∗, id′] ← OMAT.Access(read, col, id′).

2. Get IDs of rows whose value larger than k, and such IDs are in pmrow:
 ← {id|id ∈ pmrow.id ∧ C[id, id

′] > k}

9

3. Access on OROW to get the desired result:
R[id, ∗] ← OMAT.Access(read, row, id), for each id ∈ .

The aforementioned approach can work with any unindexed columns. In the next section, we
propose an alternative approach that can o�er a better performance if the columns are indexed with
certain restrictions.

3.2 Oblivious Access on Tree Structures

In an unencrypted database setting, conditional queries can be performed more e�ciently, if column
values are indexed by a search-e�cient tree data structure (e.g., Range tree, B+ tree, AVL tree). Figure
8 illustrates an example of a column indexed by Range tree for (non)-equality/range queries, in which
each leaf node points to a node in another linked-list structure that stores the list of matching IDs. We
propose an oblivious tree structure called OTREE, in which indexed data for such queries are translated
into a balanced tree structure. As in OMAT, OTREE can be instantiated from any tree-based ORAM
scheme. Notice that oblivious access on a tree has been studied by Wang et. al. in [28]. However, our
method requires less amount of data to be transmitted and processed, since the structure of indexed
values (i.e., the tree data structure) is not required to be hidden, and the client is merely required to
traverse an arbitrary path of the tree. We present the construction of OTREE as follows.

3.2.1 Oblivious Data Structure for OTREE

Given a tree structured data T of height H as input, we �rst construct the OTREE structure of height
H with ORAM buckets as illustrated in Figures 6(a–b). Then, each node of T at level � is assigned to a
random path and placed into a bucket of OTREE which resides on the assigned path at level � ′ where
� ′ ≤ � . In other words, any node of T at level 0 ≤ � ≤ H will reside in a bucket at level � or lower inOTREE.
If there is no empty slot in the path, the node will be stored in the stash if OTREE is instantiated with
stash-required ORAM schemes (e.g., Path-ORAM).

We assume T is sorted by nodes’ id and the position of nodes at level � is stored in its parent node
at level � − 1 using the pointer technique proposed in [28]. Hence, each node of T is considered as a
separate block in OTREE structure as: b ∶= (id, data, childmap), where id is the node identi�er sorted
in T (e.g., indexed column value), data indicates the node data, and childmap is of structure ⟨id, pos⟩
that stores the position information of node’s children.

1
3 4

2

2

4

OTREE

4
4

4321

42

(a) Tree-like data T (b) OTREE representation of T

L1 L2 L3 L4

Figure 6: The OTREE layout for a tree-like input.

10

3.2.2 OTREE Access Protocol

We give the proposed OTREE scheme, which is instantiated with Path-ORAM, in Scheme 2. Similar to
OMAT in Section 3.1, OTREE can also be instantiated with any tree-based ORAM (e.g., Ring-ORAM[21],
Onion-ORAM [9]) with modi�cations to corresponding read/write (i.e., ReadBucket,WriteBucket) and
eviction (lines 20-25) procedures but preserving the constraints of OTREE regarding the deepest level of
nodes. OTREE also receives a signi�cant bene�t from caching mechanisms like top-tree caching [16],
which can speed up bulk access requests. Notice that the construction and constraints ofOTREE require
stability analysis to ensure that tree-based ORAM scheme on OTREE behaves similarly to ODS in terms
of stash over�ow. We provide empirical stability analysis of OTREE with Path-ORAM as follows.

Scheme 2 (data) ← OTREE.Access(op, id, data∗)
1: x0 ← RootPos
2:  ←  ∪ ReadBucket((x0, 0), 0)

3: b0 ← Read block with id0 = 0 from 
4: for each � ∈ {0, … , H − 1} do
5: if compare(id, id�) = go_right then
6: (id�+1, x�+1) ← b� .child[1]
7: b� .child[1].pos

$←←←←←←←←← {0, … , 2� − 1}
8: else
9: (id�+1, x�+1) ← b� .child[0]

10: b� .child[0].pos
$←←←←←←←←← {0, … , 2�}

11:  ←  ∪ ReadBucket(�+1(x�+1, � + 1))
12: b� ← Read block id� from 
13: if id = id� then
14: data ← b� .data
15: if op = write then
16: S ← (S ⧵ {b�}) ∪ {(id, data∗, child)}

17: for each � ′ ∈ {� , … , 0} do
18: ′ ← {b′ ∈  ∶ � (b′.pos, � ′) = � (b� .pos, � ′) ∧ b′.level = �}
19: ′ ← Select min(|′|, z) blocks from ′
20:  ←  ⧵ ′
21: WriteBucket(� (x� , � ′),′)
22: return data

3.2.3 Stability Analysis of OTREE

We analyze the stability of OTREE in terms of average bucket load within levels of the ORAM tree.
Intuitively, one would expect an increase in average bucket load near the top of the ORAM tree, and
a possible increase in the average client stash size if a Path-ORAM variant (e.g., [21, 16]) is used. We
show empirically by our simulations, that OTREE behaves almost similar to ODS with a bucket size
of Z ≥ 4 with Path-ORAM. With Z = 5, bucket usage with OTREE structure approaches that of the
stationary distribution when using an in�nitely large bucket size.

Our empirical study considers experiments with an ORAM tree of height H = 14, storing N = 215−1
blocks. We run the experiments with di�erent bucket sizes to observe its e�ect on the stash size and
bucket usage. We treat ORAM blocks as nodes in a complete binary tree of H = 14. We insert nodes

11

0 2 4 6 8 10 12 14
Level Index (root is 0, leaf is 14)

0%

20%

40%

60%

80%

100%

Le
ve

lL
oa

d
(a

vg
%

of
bu

ck
et

us
ed

)

OTREE
ODS [24]

(a) Z = 4

0 2 4 6 8 10 12 14
Level Index (root is 0, leaf is 14)

0%

20%

40%

60%

80%

100%

Le
ve

lL
oa

d
(a

vg
%

of
bu

ck
et

us
ed

)

OTREE
ODS [24]

(b) Z = 5

1 10 100 1000
m

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

P
(

bl
oc

ks
in

st
as

h
≥
m

)

OTREE
ODS [24]

Z = 4

Z = 5

(c) Stash over�ow probability
Figure 7: (a,b) Average bucket load within each level of the ORAM tree for di�erent bucket sizes, (c)
the probability of stash size exceeding the threshold.

into storage in breadth-�rst order via access functions, which is followed by a series of (H + 1)-length
access requests, each of which consists of accessing a path of nodes from the root to a random leaf
node in the binary tree. A single-round experiment is the execution of 214 random root-to-leaf access
sequences as described.

Figures 7 - 7c show the results of these experiments for ODS and OTREE with di�erent bucket
sizes. The results were generated by �rst running 1000 warm-up rounds after initialization, and then
collecting statistics over 1000 test rounds. Figure 7 depicts that with a bucket size Z = 5, buckets near
the root of the OTREE structure contain roughly two non-empty blocks (one more than the average
number of blocks assigned to them). Figure 7c illustrates that with Z ≤ 4, the probability of the stash
size exceeding O(H) for OTREE diminishes quickly. These results suggest that using Z = 5 for OTREE
in order to make underlying ORAM scheme in OTREE behaves similarly to that with Z = 4 on ODS.

3.2.4 Use case: Conditional Query on Columns

We exemplify an implementation of a database index structured as OTREE for conditional queries as
follows: Consider a column whose values are indexed by a sorted tree T of height ℎ by putting distinct
values as keys on leaf nodes as depicted in Figure 8. The leaf nodes of T points to a node ID in a linked-
list structure that contains a list of matching IDs with the key. We translate T to OTREE, where each
node at level � < H stores the position maps of its children. We store a list of IDs in each linked-list
node using an inverted index with compression. As the data structure for the linked-list, we employ

ID Name National ID # k

1 … … 20

2 … … 40

3 … … 40

4 … … 20

5 … … 80

6 … … 60

7 … … 20

8 … … 40

(a) Table A

80

4020

40

(b) Database Index as Range Tree for Values of k

8060

80

{1,4,7} {2,3} {6} {5}

Figure 8: Tree-indexed column values, and a linked list to retrieve matched IDs for conditional query.

12

ODS to store it in another ORAM structure (see [28] for details). Hence, each leaf node of T stores the
position map of a linked-list node in ODS it points to. An example of a given conditional query:

SELECT * FROM A WHERE C = k ,

where the column C is indexed into OTREE. It can be executed obliviously as follows:

1. Traverse a path with OTREE to get a leaf node: b1 ← OTREE.Access(k).

2. Get ID and position map of linked-list node which node points to: (id, pos) ← b.childmap

3. Access on ODS to get the desired result:
 ← ODS.Access(id, pos, null)

The overall cost for this approach is: O(log(N)2) + k ⋅ O(log(N)), where k is the distance from the
�rst element of the linked-list. First part is the overhead of OTREE and second part is the overhead of
ODS without padding.

4 Security Analysis

Our security analysis, as in Path-ORAM [24], is concise as the security of our proposed schemes are
evident from their base ORAM.

De�nition 1 (ORAM security [24]). Let y⃗ ∶= ((op1, id1, data1), … , (opM , idM , dataM)) be a data request
sequence of length M , where each opi denotes a read(idi) or a write(idi , data) operation. Let A(y⃗) denote
the sequence of accesses made to the server that satis�es the user data request sequence y⃗ . An ORAM
construction is secure if: (1) For any two data request sequences y⃗ and z⃗ of the same length, the access
patterns A(y⃗) and A(z⃗) are computationally indistinguishable to an observer, and (2) it returns the data
that is consistent with the input y⃗ with probability ≥ 1 − negl(|y⃗|). That is, the ORAM fails with only a
negligible probability.

Claim 1. Accessing OMAT leaks no information beyond (i) the size of rows and columns, (ii) whether
the row or column dimension being accessed, given that the ORAM scheme being used on top is secure by
De�nition 1.

Proof (sketch). Let M be an OMAT structure comprised of two logical tree-based ORAM structures
OROW and OCOL as described in Section 3.1.1 with dimensions M and N , respectively. Let the bit
B = 0 if the query is on OROW and B = 1, otherwise. A construction providing OMAT leaks no in-
formation about the location of a node u being accessed in M beyond the bit B and dimensions (M, N).
This is due to the fact that OMAT uses a secure ORAM that satis�es De�nition 1 to access each block
of OROW and OCOL in M. Thus, as long as the node accessed within OROW or OCOL is not distin-
guishable from any other node within that OROW and OCOL through the number of access requests,
it is indistinguishable by De�nition 1.

Note that the information on whether the row or column was accessed can be hidden by performing
a simultaneous row and column access on both dimensions for each query. This poses a security-
performance trade-o�. One can also hide the size of row and column by setting OMAT matrix with
equal dimensions, but this may introduce extreme costs.

13

Claim 2. Accessing OTREE leaks no information about the actual path being traversed, given that the
ORAM scheme being used on top is secure by De�nition 1.
Proof (sketch). Let T be a tree data structure of height H . Let T� be the set of nodes at level 0 ≤ � ≤ H
in the tree. A construction providing OTREE leaks no information about the location of a node u ∈ T�
being accessed in the tree beyond that it is from T� . This is due to OTREE uses a secure ORAM that
satis�es De�nition 1 to access each level of the tree. Thus, as long as a node accessed within level �
is not distinguishable from any other node within that level through the number of access requests, it
will be indistinguishable according to De�nition 1.

5 Performance Evaluation

5.1 Con�gurations

∙ Implementation: We implemented our schemes and their counterparts on CURIOUS framework [1].
We integrated additional functionalities into the framework to perform batch read/write operations to
prevent unnecessary round-trip delays, and also to communicate with MongoDB instance via MongoDB
Java Driver. We chose MongoDB instance as our database and storage engine. We preferred MongoDB
since its Java Driver library is well-documented and easy to use. Moreover, it supports batch updates
without restrictions, which is important for consistent performance analysis.
∙Data Formatting: We created our table structure from randomly generated data with a di�erent number
of rows, columns, and �eld sizes. We then used the table to construct tree-based ORAMs for compared
schemes. For instance, in OMAT, we created OROW and OCOL structures from this table, while an
oblivious tree structure is created for OTREE, as described in Section 3.
∙ Experimental Setup and Con�gurations: For our experiments, we used two di�erent client machines
on two di�erent network settings: (i) A desktop computer that runs CentOS 7.2 and is equipped with
Intel Xeon CPU E3-1230, 16 GB RAM; (ii) A laptop computer that runs Ubuntu 16.04 and is equipped
with Intel i7-6700HQ, 16 GB RAM. For our remote server, we used AmazonEC2 with instance type of
t2.large that runs Ubuntu Server 16.04. While the connection between the desktop and the server was
a high-speed network with download/upload speeds of 500/400 Mbps and an average latency of 11 ms,
the connection between the laptop and the server was a moderate-speed network with download/upload
speeds of 80/6 Mbps and an average latency of 30 ms.
∙ Evaluation Metrics: We evaluated the performance of our schemes and their counterparts based on the
following metrics. (i) Response time (i.e., end-to-end delay) that includes decryption, re-encryption and
transmission times to perform a query; (ii) Client storage that includes the size of stash and position
map; (iii) Server storage. We compare the response times of OMAT and its counterparts for both row
and column related queries (e.g., statistical, conditional). For OTREE and ODS-Tree, we compare the
response times of traversing an arbitrary path on the tree-indexed database.

We now describe our experimental results and compare our schemes with their counterparts.

5.2 Experimental Results

∙ Statistical and Conditional Queries (Column-Related): We �rst analyze the response time of column-
related queries for OMAT, ODS-2D and RowPKG. With these queries, the client can fetch a column
from the encrypted database for statistical analysis or a conditional search. Given a column-related
query, the total number of bytes to be transmitted and processed by each scheme are shown in Table
1. RowPKG’s transmission cost is the size of all ORAM buckets, where Z ⋅ (B ⋅ N) and (2M − 1) denote
the bucket size and the total number of buckets, respectively. As for OMAT, its oblivious data structure

14

102 103
0

2

4

6

8

⋅102

columns

D
el

ay
(s)

OMAT
RowPKG [6]
ODS-2D [28]

(a) Column-related queries with 215 rows

103 104 105 106
0

2

4

⋅102

rows

D
el

ay
(m

s)

OMAT
RowPKG [6]
ODS-2D [28]

(b) Row-related queries with 25 columns

Figure 9: End-to-end delay of queries for OMAT and counterparts with high-speed network setting.

102 103
0

2

4

6

⋅103

columns

D
el

ay
(s)

OMAT
RowPKG [6]
ODS-2D [28]

(a) Column-related queries with 215 rows

103 104 105 106
0

1

2

3
⋅103

rows

D
el

ay
(m

s)
OMAT
RowPKG [6]
ODS-2D [28]

(b) Row-related queries with 25 columns

Figure 10: End-to-end delay of queries for OMAT and counterparts with moderate network speed.

OCOL allows e�cient queries on column dimension with O(log(N)) communication overhead, which
outperforms the linear overhead of O(N) of RowPKG. While OMAT and RowPKG can fetch the whole
column with one request, it requires M/4 synchronous requests for ODS-2D where each request costs
Z ⋅ (16 ⋅ B1) ⋅ log2(M ⋅ N /16) bytes due to 4 × 4 clustering of the cells.

We measured the performance of OMAT and its counterparts with arbitrary column queries. In
this experiment, we set parameters as B = 64 bytes and Z = 4. The number of columns N varies from
24 to 29, where the number of rows is �xed to be M = 215 . Figure 9a and Figure 10a illustrate the
performance of the schemes on two di�erent network settings with two di�erent client machines as
described in Section 5.1. For a database table with 210 rows and 29 columns, OMAT’s average query
times are 60 s and 475 s compared to RowPKG’s 775 s and 6100 s, and ODS-2D’s 292 s and 1245 s on high-
and moderate-speed networks, respectively. This makes OMAT about 13× faster than RowPKG. While
OMAT performs 2.6× faster than ODS-2D on the moderate-speed network, it becomes 4.9× on high-
speed network since the latency starts to dominate the response time of ODS-2D with M/4 requests
due to its construction with pointers.
∙ Single Row-Related Queries: We now analyze the response time of row-related queries forOMAT and its

15

103 104 105 106
0

0.5

1

1.5
⋅103

leaves (Indexed Values)

D
el

ay
(m

s)

ODS-Tree [28]
ODS-Tree [28] with Caching
OTREE

OTREE with Caching

(a) Moderate-Speed Network Setting

103 104 105 106
0

2

4

6

8

⋅103

leaves (Indexed Values)

D
el

ay
(m

s)

ODS-Tree [28]
ODS-Tree [28] with Caching
OTREE

OTREE with Caching

(b) High-Speed Network Setting

Figure 11: End-to-end delay of traversal on tree-indexed database for OTREE and ODS-Tree.

counterparts. Given a row-related query, the total number of bytes to be transmitted and processed by
OMAT and its counterparts are summarized in Table 1. For OMAT and RowPKG, (B ⋅N) and Z ⋅ log2(M)
denote the total row size and the overhead of Path-ORAM, respectively. Due to OMAT’s OCOL and
OROW structures, OMAT is always a constant factor of Z = 4 more costly than RowPKG. Clustering
strategy of ODS-2D also introduces more cost and makes ODS-2D 4.2×more costly than RowPKG when
N = 32.

We measured the performance of OMAT and its counterparts with arbitrary row queries, where the
number of rows M varies from 210 to 220. The block size is B = 128 bytes and the number of columns is
�xed as N = 32. By this setting, the total row/record size is B ⋅N = 4096 KB. Figure 9b and 10b illustrate
the performance of the compared schemes for both network settings. We can see that OMAT performs
slower than RowPKG by a constant factor of approximately 2.3× and 3.6× on high and moderate-speed
network, respectively. As for ODS-2D, Figure 9b explicitly shows the e�ect of the round-trip delay
introduced by network latency on ODS-2D due to N/4 synchronous requests. Although ODS-2D has
similar cost with OMAT, it performs approximately 220ms and 380ms slower than OMAT.
∙ Traversal on Tree-indexed Database: We analyze the response time of oblivious traversal on database
index that is constructed as a range tree by putting distinct values of a column to the leaf of the tree.
Figure 8 exempli�es the constructed range tree, and this structure is used along with its linked list to
perform conditional queries (e.g., equality, range) on an indexed column, and fetch matching IDs. We
compare our proposed OTREE and ODS-Tree with no caching and half-top caching strategies.

Given a database index tree constructed with values of the column, the total number of bytes to
be transmitted and processed by OTREE and ODS-Tree without caching are Z2 ⋅ B ⋅ (H + 1) ⋅ (H + 2)
and 2 ⋅ Z1 ⋅ B ⋅ (H + 1)2, respectively, where H is the height of tree data structure. While ODS traverses
the tree with O(H), the additional overhead of Path-ORAM makes the total overhead to be O(H 2). As
for OTREE, its level restriction on ORAM storage reduces the transmission overhead by 1.6×. With
half-top caching strategy, overheads of both schemes reduce as shown in Table 1, however, OTREE’s
construction bene�ts more from caching by performing traversal 3.2× less costly than ODS-Tree.

For this experiment, we set the block size B = 4 KB, the number of blocks inside a bucket for ODS-
Tree is Z1 = 4, and the number of blocks inside a bucket for OTREE is Z2 = 5 (see Subsection 3.2.3
for stability analysis). We benchmarked OTREE and ODS-Tree with arbitrary equality queries when
the number of indexed values varies from 29 to 219. The number of indexed values is set to 219 for

16

large database setting. For both network settings, Figure 11 demonstrates the e�ect of half-top caching
strategy and how the structure of OTREE gives more leverage in response time. While OTREE without
caching performs around 2× faster than its counterpart, caching allows OTREE to perform 3.6× faster
than ODS-Tree with caching for both network settings.

5.3 Client and Server Storage

We now analyze the client storage overhead of our schemes and their counterparts. The position map
of OMAT requires O((M +N)⋅log(M +N)) storage, while RowPKG requires O(M ⋅log(M)), since only the
position map of rows are stored. However, the dominating factor is M , since large databases have more
rows than columns. ODS’s pointer technique allows it to operate with O(1) storage for position map.
Moreover, the worst-case stash size changes with the query type, because stash is also used to store
currently fetched data and the worst-case storage costs are summarized in Table 1. For row-related
queries, the worst-case stash storage is the same for both OMAT and RowPKG but ODS-2D requires
more storage due to clustering. For column-related queries, RowPKG requires storing O(M ⋅ N) that
corresponds to all ORAM buckets. Besides the query performance issues, this also makes RowPKG
infeasible for very large databases to perform column-related queries. In addition, ODS-2D also requires
O(log(M)) times more client storage compared to OMAT. While RowPKG and ODS-2D have the same
server storage size, OMAT requires constant z× more storage due to additional dummy blocks.

Since OTREE and ODS do not require position map to operate, the client storage consists of stash
and additionally cached block according to the caching strategy used. For the worst-case, both schemes
have the same client storage with the same caching strategy, however, OTREE’s stash may be more
loaded than ODS as shown in Figure 7c due to its level restriction. Moreover, server storage of OTREE
is 2× times less than ODS, since Path-ORAM of ODS requires one more level than OTREE.

6 Conclusions

In this paper, we developed two new oblivious data structure techniques that we call as OMAT and
OTREE, which achieve diverse queries with high e�ciency on table and tree structured database in-
stances, respectively. We introduce strategies such as oblivious data structures tailored for encrypted
database access, which are supported with special ORAM packaging, leveled access and heap uni�ca-
tion techniques. Our schemes can be instantiated from any tree-based ORAM scheme. OMAT enables
various query types that may be highly ine�cient for its counterparts that only rely on row-oriented
packaging. Speci�cally, OMAT o�ers signi�cantly more e�cient column-related queries such as statis-
tical (e.g., SUM, AVG, MAX) and conditional queries (e.g., range queries) than that of its counterparts.
OTREE permits an e�cient private access on tree structured database instances. OTREE provides more
e�cient conditional queries (e.g., range query) than that of the existing ODS techniques, and also re-
ceives more bene�t from caching optimizations. To the best of our knowledge, these properties make
OMAT andOTREE the most e�cient oblivious data structure techniques for encrypted databases known
to date. Finally, our cryptographic framework will be released as an open-source library to provide op-
portunities for researchers to develop more e�cient techniques.

References
[1] V. Bindschaedler, M. Naveed, X. Pan, X. Wang, and Y. Huang. Practicing oblivious access on cloud storage:

the gap, the fallacy, and the new way forward. In Proceedings of the 22nd ACM SIGSAC Conference on

17

Computer and Communications Security, pages 837–849. ACM, 2015.

[2] E. Boyle and M. Naor. Is there an oblivious ram lower bound? In Proceedings of the 2016 ACM Conference
on Innovations in Theoretical Computer Science, pages 357–368. ACM, 2016.

[3] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou. Privacy-preserving multi-keyword ranked search over en-
crypted cloud data. IEEE Transactions on parallel and distributed systems, 25(1):222–233, 2014.

[4] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-abuse attacks against searchable encryption. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pages 668–679.
ACM, 2015.

[5] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, and M. Steiner. Dynamic searchable
encryption in very-large databases: Data structures and implementation. IACR Cryptology ePrint Archive,
2014:853, 2014.

[6] Z. Chang, D. Xie, and F. Li. Oblivious ram: a dissection and experimental evaluation. Proceedings of the
VLDB Endowment, 9(12):1113–1124, 2016.

[7] B. Chen, H. Lin, and S. Tessaro. Oblivious parallel ram: Improved e�ciency and generic constructions. In
Theory of Cryptography Conference, pages 205–234. Springer, 2016.

[8] J. Dautrich and C. Ravishankar. Combining oram with pir to minimize bandwidth costs. In Proceedings of
the 5th ACM Conference on Data and Application Security and Privacy, pages 289–296. ACM, 2015.

[9] S. Devadas, M. van Dijk, C. W. Fletcher, L. Ren, E. Shi, and D. Wichs. Onion oram: A constant bandwidth
blowup oblivious ram. In Theory of Cryptography Conference, pages 145–174. Springer, 2016.

[10] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious rams. Journal of the ACM
(JACM), 43(3):431–473, 1996.

[11] T. Hoang, A. Yavuz, and J. Guajardo. Practical and secure dynamic searchable encryption via oblivious access
on distributed data structure. In Proceedings of the 32nd Annual Computer Security Applications Conference
(ACSAC). ACM, 2016.

[12] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure on searchable encryption: Rami-
�cation, attack and mitigation. In Annual Network and Distributed System Security Symposium – NDSS,
volume 20, page 12, 2012.

[13] S. Kamara, C. Papamanthou, and T. Roeder. Dynamic searchable symmetric encryption. In Proceedings of
the 2012 ACM Conference on Computer and Communications Security, pages 965–976. ACM, 2012.

[14] J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman & Hall/CRC, 2007.

[15] C. Liu, L. Zhu, M. Wang, and Y.-a. Tan. Search pattern leakage in searchable encryption: Attacks and new
construction. Information Sciences, 265:176–188, 2014.

[16] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic, J. Kubiatowicz, and D. Song. Phantom: Practical
oblivious computation in a secure processor. In Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security, pages 311–324. ACM, 2013.

[17] B. Pinkas and T. Reinman. Oblivious ram revisited. In Advances in Cryptology–CRYPTO 2010, pages 502–519.
Springer, 2010.

[18] R. A. Popa, C. Red�eld, N. Zeldovich, and H. Balakrishnan. Cryptdb: protecting con�dentiality with en-
crypted query processing. In Proceedings of the Twenty-Third ACM Symposium on Operating Systems Prin-
ciples, pages 85–100. ACM, 2011.

[19] R. A. Popa, C. Red�eld, N. Zeldovich, and H. Balakrishnan. Cryptdb: processing queries on an encrypted
database. Communications of the ACM, 55(9):103–111, 2012.

18

[20] D. Pouliot and C. V. Wright. The shadow nemesis: Inference attacks on e�ciently deployable, e�ciently
searchable encryption. In Proceedings of the 2016 ACM Conference on Computer and Communications Secu-
rity. ACM, 2016.

[21] L. Ren, C. W. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. van Dijk, and S. Devadas. Ring oram: Closing the
gap between small and large client storage oblivious ram. IACR Cryptology ePrint Archive, 2014:997, 2014.

[22] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious ram with o ((logn) 3) worst-case cost. In Advances
in Cryptology–ASIACRYPT 2011, pages 197–214. Springer, 2011.

[23] E. Stefanov, E. Shi, and D. Song. Towards practical oblivious ram. arXiv preprint arXiv:1106.3652, 2011.

[24] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas. Path oram: an extremely simple
oblivious ram protocol. In Proceedings of the 2013 ACM SIGSAC conference on Computer and Communications
security, pages 299–310. ACM, 2013.

[25] B. Wang, Y. Hou, M. Li, H. Wang, and H. Li. Maple: scalable multi-dimensional range search over encrypted
cloud data with tree-based index. In Proceedings of the 9th ACM symposium on Information, computer and
communications security, pages 111–122. ACM, 2014.

[26] B. Wang, M. Li, and H. Wang. Geometric range search on encrypted spatial data. IEEE Transactions on
Information Forensics and Security, 11(4):704–719, 2016.

[27] X. Wang, H. Chan, and E. Shi. Circuit oram: On tightness of the goldreich-ostrovsky lower bound. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pages 850–861.
ACM, 2015.

[28] X. S. Wang, K. Nayak, C. Liu, T. Chan, E. Shi, E. Stefanov, and Y. Huang. Oblivious data structures. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pages 215–226.
ACM, 2014.

[29] A. A. Yavuz and J. Guajardo. Dynamic searchable symmetric encryption with minimal leakage and e�cient
updates on commodity hardware. In Selected Areas in Cryptography – SAC 2015, Lecture Notes in Computer
Science. Springer International Publishing, August 2015.

[30] H. Yin, Z. Qin, J. Zhang, L. Ou, and K. Li. Achieving secure, universal, and �ne-grained query results
veri�cation for secure search scheme over encrypted cloud data. IEEE Transactions on Cloud Computing,
2017.

[31] R. Zhang, R. Xue, L. Liu, and L. Zheng. Oblivious multi-keyword search for secure cloud storage service. In
Web Services (ICWS), 2017 IEEE International Conference on, pages 269–276. IEEE, 2017.

[32] Y. Zhang, J. Katz, and C. Papamanthou. All your queries are belong to us: The power of �le-injection attacks
on searchable encryption. In 25th USENIX Security Symposium (USENIX Security 16), pages 707–720, Austin,
TX, 2016.

19

