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Corrections to “Further Improving Efficiency of
Higher-Order Masking Schemes by Decreasing

Randomness Complexity”
Shuang Qiu, Rui Zhang, Yongbin Zhou, Wei Cheng

Abstract—Provably secure masking schemes always require
too many random generations, which significantly increas-
es the implementation cost. Recently in IEEE TRANSAC-
TIONS ON INFORMATION FORENSICS AND SECURITY (TIFS)
(DOI:10.1109/TIFS.2017.2713323), Zhang, Qiu, and Zhou im-
prove the efficiency of the CPRR scheme by decreasing the
random generations. Recently, Barthe et al. claim that security
flaws exist in both proposals and provide the counter-examples.
In this paper, we fix these security flaws by changing the addition
order. In this way, the two proposals are corrected with no extra
random generation.

Index Terms—masking scheme, side-channel attacks, probing
model, randomness complexity.

I. INTRODUCTION

MASKING is the most widely deployed countermeasure
against the Side-Channel Attack (SCA). In the scope of

higher-order masking, randomness reduction is a crucial and
tough task. Recently in the above paper [8], Zhang, Qiu, and
Zhou have proposed two variants of the CPRR scheme, which
outperform the original CPRR scheme with 50% and 50%-
75% randomness reductions, respectively. Furthermore, under
the probing model, they prove that the two schemes, called
the ZQZ schemes, satisfy SNI and TNI, respectively.

Subsequently, Barthe, Dupressoir, and Grégoire [3] find two
security flaws and a typo existing in the ZQZ schemes with
the automated verifier MaskVerif [2], [1]:

1) the first proposal (the ZQZ-1 scheme) fail to achieve SNI,
as the first output share c0 shows dependence on the first
input share a0.

2) the second proposal (the ZQZ-2 scheme), which is de-
rived from the ZQZ-1 scheme, cannot achieve TNI.

3) there is a typo in the ZQZ-2 scheme, which makes it
unable to be generalized to odd orders d.

After revisiting the two masking schemes, we found that
both Problem 1 and Problem 2 are due to one simple mistake.
In the ZQZ schemes, the terms h(ri,j) + h(ai + ri,j) and
h(ai + ri,j + aj) + h(aj + ri,j) are dependent on the input
share ai, as the randomness ri,j is unfortunately counteracted.
In fact, this means that the random values are not correctly
added and each term in the ZQZ schemes is left unprotected.
As a result, the ZQZ-1 scheme cannot even achieve TNI, as all
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the random variables ri,j are invalid. As the ZQZ-2 scheme is
obtained by decreasing the randomness of the ZQZ-1 scheme,
the ZQZ-2 scheme cannot achieve TNI, either.

In order to fix the ZQZ schemes, we replace the two terms
h(ri,j)+h(ai+ ri,j) and h(ai+ ri,j +aj)+h(aj + ri,j) with
the modified terms h(ri,j) and h(ai + ri,j) + h(ai + ri,j +
aj)+h(aj + ri,j), which are independent of the input shares.
In this way, each two terms are protected by one randomness
ri,j , and thus the security bias is fixed.

II. PRELIMINARIES

A. Notations

Linear function is denoted as `(·). The arrow ← means
to assign the value of the right variable to the left variable.
$←−− means to randomly pick one value from the right set and

assign this value to the left variable. x 7→ y means a function
which maps from x to y. + denotes bit-xor operation, and ·
denotes the field multiplication on the finite field F2n .

∑m
i=0

represents the xor-sum, namely
∑m

i=0 xi = x0+x1+· · ·+xm.

B. Security Notions

Two security notions are involved in this paper, i.e. Non-
Interference (NI) and Strong-Non-Interference (SNI) [1]. Their
definitions are based on the notion of simulatability, which is
first proposed by Ishai et al. in [6] and then utilized by almost
all subsequent masking schemes.

Definition 1 (Simulatability): Denote by V = {v1, . . . , vm}
the set of m variables of a multiplication algorithm. If there
exists two sets I = {i1, . . . , it} and J = {j1, . . . , jt} of t
indices from set {0, . . . , d} and a random function S taking as
input 2t bits and outputting m bits such that for any fixed bits
(ai)0≤i≤d and (bj)0≤j≤d, the distributions of {v1, . . . , vm}
and {S(ai1 , . . . , ait , bj1 , . . . , bjt)} are identical, we say the
set V can be simulated with at most t shares of each input1

aI and bJ .
Definition 2 (d-Tight-Non-Interference): An algorithm sat-

isfies d-Tight-Non-Interference (d-TNI) if and only if every
tuple of t ≤ d variables can be perfectly simulated with at
most t shares of each input.

Definition 3 (d-Strong-Non-Interference): An algorithm sat-
isfies d-Strong-Non-Interference (d-SNI) if and only if for
every set I of variables on intermediate variables (i.e. no

1The set {ai1 , . . . , ait} is written as aI , and the set {bj1 , . . . , bjt} is
written as bJ .
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Algorithm 1: ZQZ-1 Scheme.
Input: sharing (ai)0≤i≤d satisfying

∑
i ai = a, a LUT

for h(a) = a · `(a)
Output: sharing (ci)0≤i≤d satisfying

∑
i ci = a · `(a)

1 for i = 0 to d do
2 for j = i+ 1 to d do
3 ri,j

$←−− F2n

4 ti,j ← h(ri,j) + h(ai + ri,j)
5 tj,i ← h(ai + ri,j + aj) + h(aj + ri,j)

6 for i = 0 to d do
7 ci ← h(ai)
8 for j = 0 to d, j 6= i do
9 ci ← ci + ti,j

output shares) and every set O of variables on output shares
such that |I| + |O| ≤ d, the set I ∪ O can be simulated by
only |I| shares of each input.

C. ZQZ Schemes
In [5], Coron et al. propose d-th order masking scheme

for the dependent-input multiplication a · `(a), i.e. the CPRR
scheme. In [8], authors reduce the randomness complexity of
the CPRR scheme, and propose two masking schemes, which
we call the ZQZ-1 scheme and the ZQZ-2 scheme in the
sequel. The description of ZQZ-1 scheme is given in Alg. 1.
It is noteworthy that the involved function h(x) = x · `(x) is
computed by calling a Look-Up-Table (LUT).

The ZQZ-2 scheme is obtained by reusing the random
numbers of ZQZ-1, according to the randomness reusing
strategy in [4]. For clarity, an illustration of the ZQZ-2 scheme
in case d = 6 is given in Fig. 1, where ti,j(r) represents term
ti,j involving random value r, and the sum of all terms on
the i-th line equals the i-th output share ci. The reused terms
are printed in a larger blue font. It is noteworthy that, in the
ZQZ-2 scheme, terms

[
ti,j , ti,j−1

]
in one bracket is combined

into one term ti,j .

III. SECURITY ANALYSIS OF ZQZ SCHEMES

Based on the observation of Barthe et al. [3], we revisit the
security of the ZQZ schemes. Furthermore, we trace to the
source of the security flaws.

A. Counteracted Randomness and Undesirable Dependence
In the CPRR scheme [5] and the ZQZ schemes [8], ordinary

multiplications are replaced with quadratic function h(x) =
x·`(x). Each quadratic function h(x) = x·`(x) is implemented
by calling a precomputed LUT. In the ZQZ-1 scheme (Alg. 1),
ti,j and tj,i satisfies:

ti,j =h(ri,j) + h(ai + ri,j)

tj,i =h(ai + ri,j + aj) + h(aj + ri,j) .
(1)

According to the description of function h(·), term ti,j can be
rewritten as

h(ai + ri,j) + h(ri,j) = ai`(ri,j) + ri,j`(ai) + ai`(ai) . (2)

According to Eq. (2), when ai equals zero, ti,j will definitely
equal zero2. Namely, ti,j can be seen as the product of ai and
a function of (ai, ri,j):

ti,j = ai · f(ai, ri,j) . (3)

Obviously, ti,j leaks ai. Similarly, term tj,i can be rewritten
as

tj,i = h(aj + ri,j) + h(ai + (ri,j + aj))

= ai · f(aj + ri,j , ai) .
(4)

According to Eq. (4), tj,i also leaks ai
3.

B. Invalid Assumptions in Security Proofs

Given that ti,j leaks ai and tj,i leaks ai (j > i), the
assumption in the security proof for ZQZ-1 in [8] can no
longer hold:

1) variables in the fourth set h(ai) +
∑j0

j=0[h(ai + rj,i +
aj) + h(ai + rj,i)] (refer to [8], Page 7, right column,
Line 8) cannot be simulated with only ai, as each term
h(ai+ rj,i+aj)+h(ai+ rj,i) leaks aj . Hence, it should
be simulated with {ai, a0, a1, · · · , aj0}.

2) the observed output share ci also leaks {a0, a1, · · · , ai},
which contradicts with the security proof (refer to [8],
Page 7, right column, Line 42).

Accordingly, the security proof for the ZQZ-1 scheme cannot
hold.

C. Counter Example to TNI

In [3], authors propose a counter-example to show that
the ZQZ-1 scheme is not SNI. Here, we further propose an
example to show that the ZQZ-1 scheme is not even TNI. The
last output share cd can be rewritten as,

cd =h(ad) +

d−1∑
j=0

[h(aj + rj,i + ai) + h(ai + rj,i)]

=h(ad) +

d−1∑
j=0

aj · f(ai + rj,i, aj) .

(5)

According to Eq. (5), it is easy to figure out that when
a0, a1, · · · , ad are all set to zero, the output share cd are
definitely zero, which implies that the output share cd show
some dependence on the joint distribution of d+1 input shares
of a. Moreover, as the ZQZ-2 scheme is derived from the ZQZ-
1 scheme, the ZQZ-2 scheme can hardly preserve its security
level, either.

IV. FIXED VERSIONS OF ZQZ-1 AND ZQZ-2

By eliminating the undesirable dependence (Sec. III), we
fix the security flaws in the ZQZ schemes, and thus obtain the
modified ZQZ schemes.

2In this paper, the linear function `(·) is assumed to be the squaring
operation over the finite field. In this case, when ai equals zero, `(ai) equals
zero as well.

3Note that tj,i does not leak aj , as it only relates with aj + ri,j .
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h(a0)

[
t0,6(r0,6) t0,5(r5)

] [
t0,4(r0,4) t0,3(r3)

] [
t0,2(r0,2) t0,1(r1)

]
h(a1)

[
t1,6(r1,6) t1,5(r5)

] [
t1,4(r1,4) t1,3(r3)

] [
t1,2(r1,2)

]
t1,0(r1)

h(a2)

[
t2,6(r2,6) t2,5(r5)

] [
t2,4(r2,4) t2,3(r3)

]
t2,1(r1,2) t2,0(r0,2)

h(a3)

[
t3,6(r3,6) t3,5(r5)

] [
t3,4(r3,4)

]
t3,2(r3) t3,1(r3) t3,0(r3)

h(a4)

[
t4,6(r4,6) t4,5(r5)

]
t4,3(r3,4) t4,2(r2,4) t4,1(r1,4) t4,0(r0,4)

h(a5)

[
t5,6(r5,6)

]
t5,4(r5) t5,3(r5) t5,2(r5) t5,1(r5) t5,0(r5)

h(a6) t6,5(r5,6) t6,4(r4,6) t6,3(r3,6) t6,2(r2,6) t6,1(r1,6) t6,0(r0,6)

Fig. 1: Illustration of randomness reusing in the ZQZ-2 scheme for d = 6.

Algorithm 2: Modified ZQZ-1 Scheme.
Input: sharing (ai)0≤i≤d satisfying

∑
i ai = a, a LUT

for h(a) = a · `(a)
Output: sharing (ci)0≤i≤d satisfying

∑
i ci = a · `(a)

1 for i = 0 to d do
2 for j = i+ 1 to d do
3 ri,j

$←−− F2n

4 ti,j ← h(ri,j)
5 tj,i ← h(ai + ri,j)+h(ai+ri,j+aj)+h(aj+ri,j)

6 for i = 0 to d do
7 ci ← h(ai)
8 for j = 0 to d, j 6= i do
9 ci ← ci + ti,j

A. Modified ZQZ-1 Scheme

In order to fix the above security bias of the ZQZ schemes,
we first slightly modify the ZQZ-1 scheme, as is given in
Alg. 2. In the modified ZQZ-1 scheme, ti,j and tj,i are
changed:

ti,j ← h(ri,j)

tj,i ←
[
h(ai + ri,j) + h(ai + ri,j + aj)

]
+ h(aj + ri,j) .

(6)
Obviously, ti,j and tj,i are independent of ai and aj, due to
the randomness ri,j . Till now, the security bias in the ZQZ-
1 scheme has been fixed, and the modified ZQZ-1 scheme
achieves d-SNI. The security proof is given in Appendix A.

It is noteworthy that the addition order of tj,i in Eq. (6)
should be carefully chosen. During the computation of tj,i,
there exists one intermediate, where in the case of Eq. (6) it is
h(ai + ri,j) + h(ai + ri,j + aj). In order to make the security
proof valid, this intermediate variable should be dependent on
at most one input share. In this case, h(ai + ri,j) + h(ai +
ri,j + aj) can be rewritten as:

h(ai + ri,j) + h(ai + ri,j + aj)

=(ai + ri,j)`(aj) + aj`(ai + ri,j) + aj`(aj)

=aj · f(ai + ri,j , aj) .

(7)

Hence, h(ai + ri,j) + h(ai + ri,j + aj) only depends on aj .

Otherwise, if tj,i is computed following the order below:

tj,i =
[
h(ai + ri,j) + h(aj + ri,j)

]
+ h(ai + ri,j + aj) ,

(8)

the intermediate variable is h(ai + ri,j) + h(aj + ri,j), which
satisfies:

h(ai + ri,j)+h(aj + ri,j)

=ai · f(ai, ri,j) + aj · f(aj , ri,j) .
(9)

In this case, the intermediate will depend on both ai and aj
4,

and the masking scheme will be insecure.

B. Modified ZQZ-2 Scheme

In [8], the ZQZ-2 scheme is obtained by decreasing the ran-
domness of the ZQZ-1 scheme, with the randomness reduction
strategy proposed in [4]. As shown above, the ZQZ-1 scheme
is flawed and cannot achieve d-TNI. Since the ZQZ-2 scheme
is a randomness reduction version of the ZQZ-1 scheme, the
ZQZ-2 scheme cannot achieve d-TNI as well.

In this section, we obtain the modified ZQZ-2 scheme by
applying the randomness reduction strategy (see Fig. 1) to
the modified ZQZ-1 scheme. The modified ZQZ-2 is given in
Alg. 3. We claim that the modified ZQZ-2 scheme achieves its
claimed security level, the d-TNI. The security proof is given
in Appendix B.

Moreover, we modify the 14-th line of Alg. 3 and make the
description can be generalized to odd orders.

It is noteworthy that the addition order of ti,j (line 9)
is carefully chosen. Any change in addition order may lead
to security bias. As a counter-example, if the term ti,j is
computed according to the following order, where the fourth
term and the sixth term switch positions,

ti,j =
[
h(aj + ri,j) + h(aj + ri,j + ai) + h(ai + ri,j)

]
+
[
h(ai + rj−1) + h(aj−1 + rj−1 + ai)

+ h(aj−1 + rj−1)
]
,

(10)

4When ai = 0 and aj = 0, the intermediate h(ai+ri,j)+h(aj+ri,j) =
0 with the probability of 1.
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Algorithm 3: Modified ZQZ-2 Scheme.
Input: sharing (ai)0≤i≤d satisfying

∑
i ai = a, a LUT

for h(a) = a · `(a)
Output: sharing (ci)0≤i≤d satisfying

∑
i ci = a · `(a)

1 for i = 0 to d do
2 for j = 0 to d− i− 1 by 2 do
3 ri,d−j

$←−− F2n

4 for j = d− 1 downto 1 by 2 do
5 rj

$←−− F2n

6 for i = 0 to d do
7 ci ← h(ai)
8 for j = d downto i+ 2 by 2 do
9 ti,j ← h(aj + ri,j) + h(aj + ri,j + ai) + h(ai +

ri,j) + h(aj−1 + rj−1) + h(aj−1 + rj−1 + ai) +
h(ai + rj−1)

10 ci ← ci + ti,j

11 if i 6= d (mod 2) then
12 ti,i+1 ← h(ai+1 + ri,i+1) + h(ai+1 + ri,i+1 +

ai) + h(ai + ri,i+1)
13 ci ← ci + ti,i+1

14 if d = 0 (mod 2) then
15 ci ← ci + h(ri)

16 else
17 for j = i− 1 downto 0 do
18 ci ← ci + h(rj,i)

there will be intermediate t0i,j during the computation,

t0i,j =
[
h(ri,j) + aj`(ai) + ai`(aj)

]
+ h(ai + rj−1)

+ h(aj−1 + rj−1 + ai)

=
[
h(ri,j) + aj`(ai) + ai`(aj)

]
+ aj−1 · f(ai + rj−1, aj−1) .

(11)

This intermediate t0i,j depends on ai, aj , aj−1, and ri,j . Thus,
the joint distribution of two intermediate variables (t0i,j , ri,j)
depends on three input shares ai, aj , aj−1, which makes the
scheme insecure.

In the modified ZQZ-2 scheme, the intermediate sum t0i,j
satisfies

t0i,j =
[
h(ri,j) + aj`(ai) + ai`(aj)

]
+ h(aj−1 + rj−1)

+ h(aj−1 + rj−1 + ai)

=
[
h(ri,j) + aj`(ai) + ai`(aj)

]
+ ai · f(aj−1 + rj−1, ai) ,

(12)

hence the joint distribution of two intermediate variables
(t0i,j , ri,j) depends on only two input shares ai and aj , which
satisfies the requirement of TNI.

V. CONCLUSION AND PERSPECTIVE

In this paper, we fix the security flaws of the ZQZ schemes.
In this way, the randomness reduction expected in the original
paper [8] can be achieved. Besides, we suggest that any further

randomness reduction strategy for ISW-like schemes, e.g. the
new progress in CRYPTO 2017 [7], can also be securely
applied to the modified ZQZ-1 scheme, and thus one can
obtain a more efficient ZQZ-2 scheme achieving TNI.

APPENDIX A
PROOF OF MODIFIED ZQZ-1

Denote a tuple observations (I,O), where |I| + |O| ≤ d.
We aim to prove that this scheme is SNI, i.e. one can always
simulate (I,O) utilizing |I| shares of each input. Hence, this
proof consists in constructing set S of indices in {0, 1, · · · , d}
of size at most |I| and perfectly simulate (I,O) with the
shares (ai)i∈I .

First, we show how to construct set S. Initially, set S is
empty. We fill it in the following specific order according to
the possible leaked intermediate variables in I.

1) for any observed variables ai and h(ai), add i to S.
2) for any observed variables ri,j , h(ri,j), ai + ri,j , and

h(ai + ri,j), add i to S.
3) for any observed variables ai+ri,j+aj , h(ai+ri,j+aj),

aj + ri,j , h(aj + ri,j): if i /∈ S, add i to S, otherwise
add j to S.

4) for any observed variables tj,i = h(ai + ri,j) + h(ai +
ri,j + aj) + h(aj + ri,j): if i /∈ S, add i to S, otherwise
add j to S.

5) for the observed variable h(ai+ ri,j)+h(ai+ ri,j +aj),
add j to S.

6) for any observed variables h(ai)+
∑j0

j=0

[
h(aj + rj,i)+

h(aj + rj,i + ai)+ h(ai + rj,i)
]

with 1 ≤ j0 ≤ i− 1 and
h(ai) +

∑i−1
j=0

[
h(aj + rj,i) + h(aj + rj,i + ai) + h(ai +

rj,i)
]
+
∑j0

j=i+1 h(ri,j) with j0 < i < d, add i to S.
The output shares are the final value ci, which are included in
set O.

Now the set S has been determined. Each observation in I
adds at most one index to set S. Hence, the simulator satisfies
|S| ≤ |I|. Then, we prove that every observed value can be
perfectly simulated with the input shares whose indices are
among S.
• any variable in group 1 can be simulated with ai.
• any variable in group 2 can be simulated with ai and ri,j .
• for each variable in Group 3, we consider two cases. If

i ∈ S and we add j to S, any variable in Group 3 can be
simulated with ai, aj , and ri,j . If i /∈ S and we add i to
S, then ri,j and ai+ri,j does not enter in the computation
of any other variables. Hence, ai+ri,j +aj and aj +ri,j
can be assigned to a fresh random value.

• for variables in group 4, tj,i can be rewritten as h(ri,j)+
ai`(aj) + aj`(ai). If i ∈ S and we add j to S, tj,i can
be simulated with ai, aj , and ri,j . If i /∈ S and we add i
to S, then ri,j does not enter in the computation of any
other variables. Hence, tj,i can be assigned to a fresh
random value.

• for variables in group 5, according to Eq. (7), h(ai +
ri,j) + h(ai + ri,j + aj) can be rewritten as aj · f(ai +
ri,j , aj). If i ∈ S, h(ai + ri,j)+h(ai + ri,j + aj) can be
simulated with ai, aj , and ri,j . If i /∈ S, then ai + ri,j
does not enter in the computation of any other variables.
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Hence, h(ai + ri,j) + h(ai + ri,j + aj) can be simulated
with aj and a fresh random value.

• for each variable in group 6, we consider the different
terms. The first term h(ai) can be simulated with ai.
Then, for the sum of h(aj + rj,i) + h(aj + rj,i + ai) +
h(ai + rj,i), we consider two cases. If j ∈ S, this sum
can be perfectly simulated with ai, aj and rj,i. Otherwise,
rj,i does not enter in the computation of other variables.
Hence, it can be assigned to a fresh random value.

In order to prove SNI, we still have to simulate the ob-
served output values for rows on which no internal values
are observed. Remarking that simulating the i-th line also
necessarily fixed the value of all random variables appearing
in the i-th column (so that dependencies between variables are
preserved). After internal observations are simulated, at most
|I| lines of the matrix are fully filled. Therefore, at least |O|
random values are not yet simulated on lines on which no
internal observations are made. For each output observation
made on one such line (say i), we can therefore pick a different
ri,j that we fix so that output i can be simulated using a fresh
random value.

APPENDIX B
PROOF OF MODIFIED ZQZ-2

This proof consists in constructing set S of indices in
{0, · · · , d} of size at most d and perfectly simulate any d-
tuple observations I ∪ O of intermediate variables with the
shares (ai)i∈S . As the shares (ai)i∈S are independent of the
sensitive variable a, any d-tuple of intermediate variables are
independent of a. We now describe the construction of S.

First, we show how to construct the set S. Initially, set S
is empty. We fill it in the following specific order according
to the possible leaked intermediate variables.

1) for any observed variables ai and h(ai), add i to S.
2) for any observed variable rj , put j to S.
3) for any intermediate sum occurring during the compu-

tation of ci, assign from shortest sums (in terms of
number of terms) to longest sums: if i /∈ S, add i to S.
Otherwise, if ci involves corrective terms (i.e., randoms
not in ri,j), consider them successively (from left to
right). For a random of the form rj,i, if j /∈ J , add j to
S, otherwise, consider the next random. For a random of
rj , if j /∈ S , add j to S. If there are no more corrective
terms to consider, or if ci does not involve corrective
terms, consider the involved ti,j in reverse order (from
right to left). Add to S the first index j that is not in S.

4) for any observed variables ri,j , ai + ri,j , h(ri,j), and
h(ai + ri,j): if i /∈ S, add i to S, otherwise add j to S.

5) for any observed intermediate sum t0i,j occurring during
the computation of ti,j with at most three terms (no rj−1).
If i /∈ S, add i to S, otherwise add j to S .

6) for any observed intermediate sum t0i,j occurring during
the computation of ti,j with strictly more than three terms
(with rj−1). If j−1 /∈ S, add j−1 to S. Otherwise, add
i to S, otherwise add j to S.

Now that the set S has been determined, and note that
each observation adds at most one index in S. With at most

d variables, their cardinals hence cannot be greater than d.
Before simulating, the following observations are given,

1) all variables involves ri,j are ti,j , ci, and cj ,
2) all variables involves rj−1 are tk,j , cj−1 and ck, for any

k ≤ j − 2,
3) all variables involves both ri,j and rj−1 are ci and ti,j .

Then, we prove that every observed value can be perfectly
simulated with the input shares whose indices are among S.

1) any variable in group 1 can be trivially simulated with
ai.

2) any variable in group 4 can be trivially simulated with ai
and ri,j .

3) any variable rj (group 2) is assigned to a fresh random
value.

4) for any intermediate (group 5) t0i,j during the computation
of ti,j with at most three terms (including aj+ri,j+ai and
aj+ri,j): if j ∈ S, intermediate variables can be perfectly
simulated with ai, aj and ri,j . Otherwise, if j /∈ S , we
show that these observations can be assigned to a random
value (variable h(aj + ri,j) + h(aj + ri,j + ai) can be
simulated with ai and a random value). In particular, we
show that if they are non-random, we must have i, j ∈ S.
All those intermediate variables involve ri,j . This variable
can only appear in intermediate variables of group 4, in
ci, in cj , in t0i,j of less than three terms part of ti,j , or in
t0i,j of more than three terms part of ti,j .
• ri,j appears in group 4: this probe involved i ∈ S ,

and hence the probe in group 5 added j to S.
• ri,j appears in an observed ci: this probe involved

i ∈ S, and hence the probe of group 5 added j to S.
• ri,j appears in an observed cj : this probe involved

j ∈ S, and hence the probe of group 5 added i to S.
• ri,j appears in an observed t0i,j of less than three

terms: this probe involved i ∈ S, and hence the probe
of group 5 added j to S.

• ri,j appears in an observed t0i,j of strictly more than
three terms: in this case, this probe also involves
the random rj−1. We know that rj−1 can either be
observed alone, in cj−1, in t0i,j of more than three
terms part of tk,j or in ck. Once again, considering
rj−1, in cj−1, and t0i,j , we get that j − 1, j, i ∈ S.
Considering t0i,j of more than three terms, or ck, if
k = i, we have already treated this case and we have
i, j ∈ S, otherwise, the variable involves rk,j . All
variables whose expression involves rk,j are: rk,j ,
tk,j , ck and cj . It can be checked that i, j, k, j − 1
are in S for each variables that are not part of ck
or tk,j . Consequently, each other probe that does
not imply i, j ∈ S are variables of these kinds.
However, each of these variables involve both rj−1
and rk,j for a certain k. To summarize, t0i,j has been
queried, which involves only ri,j , and the only other
possible variables involve rj−1 and rl,j , which l is
the index of the line. Hence, the parity of the number
of occurrences of rj−1 is different from the parity of
the number of occurrences of rl,j . This ensures that
it is possible to get rid of rj−1 and all variables rl,j
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at the same time. Therefore, in those cases t0i,j can
be assigned to a random value.

5) if t0i,j is a sum of strictly more than three terms (group
6):
• if i, j, j− 1 ∈ S, then t can be simulated with ai, aj

and random numbers.
• t0i,j involves ri,j and rj−1. Observations (1) and (2)

provide us the variables in which these randomness
are involved. For all but four cases, we trivially have
i, j, j − 1 ∈ S. These four cases are the queries of
(ri,j , t

0
k,j) with t0k,j part of tk,j and involving strictly

more than three terms, (c0i , c
1
i ), where c0i and c1i

are part of ci, (t1i,j , t
0
k,j) with t1i,j part of ti,j and

t0k,j part of tk,j , where t0k,j is assigned before t0i,j ,
both involving more than three terms, and finally, any
other couple involving a part of ck.
– the cases (ri,j , t

0
k,j) and (t1i,j , t

0
k,j) imply the in-

volvement of rk,j . Thanks to Observation (1), all
possible cases can be exhausted, and we obtain
i, j, j − 1 ∈ S.

– the case (c0i , c
1
i ) is particular. Indeed, we can as-

sume that c0i is computed during the computation
of c1i . We can hence safely assign t0i,j to a random
variable if this is the only case where ri,j and rj−1
have been involved.

– the query of a c0k, part of ck involving rj−1 in-
volves the variable rk,j . From Observation (i), we
can exhaust the possible cases. For each of these
cases except five, we have i, j, j−1 ∈ S. The five
remaining cases are (cj , cj), (cj , ck), (rk,j , ck),
(ci, ck), (ti,j , ck). With the case involving cj , by
construction we have that rk,j and ri,j appear
after the addition of all the terms of the form tjl.
Consequently, this expression involves the term
rj−1,j . Using Observation (i), we find out that
the only way not to have i, j, j − 1 ∈ S is to
make another probe to cj . However, this case is
similar to the one we just observed: it is safe
to randomly assign t0i,j . For any another case,
the random tk,j reappears, and we must hence
query another variable to get rid of it. The only
possibility is to query ck once more. Hence t0i,j
can be randomly assigned.

6) for each variable in group 3, we consider the different
terms. The first term h(ai) can be simulated with ai. For
term ti,j with rj−1 (more than three terms), if i, j, j−1 ∈
S , it can be perfectly simulated. Otherwise, it can be
assigned to a random value. For term ti,j without rj−1
(at most three terms), it can be perfectly simulated with
i, j ∈ S. Otherwise, it can be assigned to a random value.
�
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