
Veri�cation of FPGA-augmented trusted computing

mechanisms based on Applied Pi Calculus

Alessandro Cilardo and Andrea Primativo∗

December 22, 2017

Abstract

Trusted computing technologies may play a key role for cloud security as they enable
users to relax the trustworthiness assumptions about the provider that operates the physical
cloud infrastructure. This work focuses on the possibility of embodying Field-Programmable
Gate Array (FPGA) devices in cloud-based infrastructures, where they can bene�t compute-
intensive workloads like data compression, machine learning, data encoding, etc. The focus is
on the implications for cloud applications with security requirements. We introduce a general
architecture model of a CPU+FPGA platform pinpointing key roles and speci�c assumptions
that are relevant for the trusted computing mechanisms and the associated security proper-
ties. In addition, we formally veri�ed the proposed solution based on Applied Pi Calculus,
a descendant of Pi Calculus, that introduces constructs allowing the symbolic description of
cryptographic primitives. The veri�cation phase was automated by means of ProVerif, a tool
taking as input a model expressed in Applied Pi Calculus along with some queries and an-
notations that de�ne security properties to be proved or denied. The results of the analysis
con�rmed that the properties de�ned in our work hold under the Dolev Yao attacker model.

1 Introduction and motivation

Information security has become a vital concern today and is expected to be even more important in
the future. Security vulnerabilities have been successfully exploited in disparate types of systems,
including personal communication [25], vehicles [19], and industrial appliances [15]. Cloud security,
in particular, is attracting much interest in areas ranging from theoretical works on cryptography to
architectural solutions and protocols, as major companies are migrating their services to the cloud
for the reduced costs of outsourced computation. As observed in [23], data in the cloud can be
accessed by the cloud provider, its sub-contractors, and employees. The service provider has indeed
physical access to the machines and can easily carry out attacks, both at the software and physical
level, to access user data. Outsourcing computation to the cloud needs, therefore, an additional
level of trust. A key role in this scenario is played by trusted computing technologies that enable
users to relax the trustworthiness assumptions about the provider operating the physical cloud
infrastructure. For instance, Intel Software Guard Extensions (SGX) address the above issues by
providing a mechanism to protect certain user memory regions, called enclaves, from processes
running at higher privilege levels. Albeit recently introduced, SGX has already been addressed by
a large body of research. [11] proposes a user credential protection architecture to be deployed in
cloud environments. In [13] a veri�able and con�dential implementation of MapReduce is built on
top of SGX. Further relevant works addressing SGX include [3, 9, 3]. Notice that the above works
are focused on performance and do not generally take a formal approach towards the veri�cation of
the security properties o�ered by the proposed solutions. On the other hand, there are a number
of works involving formal veri�cation of security properties [12, 7], some speci�cally addressing
existing tusted computing solutions. For example [10] proposes an alternative approach to support
concurrent isolated execution where the critical functions of attestation and memory isolation are
delegated to a software monitor, whose correctness is showed by means of a machine checkable
proof. [14] focuses on the formal modelling of SGX API in order to verify that an enclave satis�es
con�dentiality against an attacker accessing all the non-enclave memory. In particular, focusing

∗The authors are with the University of Naples Federico II, via Claudio, 21 - 80125 Napoli, Italy, email:

acilardo@unina.it

1

on a formal approach, the authors develop Moat, a system for statically verifying con�dentiality
properties of an enclave program.

Unlike the above works, this paper focuses on the possibility of embodying Field-Programmable
Gate Array (FPGA) devices in trusted cloud-based infrastructures. FPGA acceleration has been
explored for compute-intensive workloads like data compression, machine learning, data encoding
and decoding in cloud and datacenter settings [26, 4, 16]. The main motivation behind our inves-
tigation is the potential role that FPGA acceleration may play for cloud-based applications where
security is critical. In particular, we introduce a general architecture model of a CPU+FPGA
platform pinpointing key roles and speci�c assumptions that are relevant for the trusted comput-
ing mechanisms and the associated security properties. In that respect, our work di�ers from the
previous results as the de�nition of new architectures and mechanisms is carried out concurrently
with the formal veri�cation, which a�ected the way we shaped the proposed trusted computing
solution. There are a number of application scenarios involving hardware acceleration in the cloud
where security may play a crucial role. Some of them are listed below.

• Image processing that handles biometric information such as �ngerprint images or clinical
sensitive information, like radiography, can be successfully accelerated in hardware but, of
course, biometric data and the radiography images should never be revealed to unauthorized
parties.

• Data analytics can greatly bene�t from hardware acceleration but, if the analysis is carried
out on valuable data, there is the risk of heavy economical loss if the dataset, or part of it,
is exposed to competitors.

• Cryptographic services, e.g. public key infrastructures, are another example of security
sensitive applications often needing hardware acceleration, although the exchange of the
encryption/decryption keys or other critical data between the processor and the accelerators
may turn out to be a security bottleneck.

When such applications are outsourced to cloud services, the hardware acceleration platform is
potentially exposed to malicious hands that have physical access to the device and can, hence,
carry out invasive attacks accessing the data exchanged between the software environment and the
accelerators. As a further concern, besides physical attacks, consider that a user application is
not necessarily supposed to provide its own custom accelerator developed from scratch. Rather,
it may require a third party accelerator. This introduces the problem of authenticating the third-
party component, as an application should share sensitive data only with trusted accelerators. On
the other hand, if the application wants to deploy a custom accelerator, it should be provided
with guarantees that the recon�guration bitstream remains con�dential and the recon�guration
process is performed without any interference. The extended architecture model and trusted
computing mechanisms introduced by this work directly address this challenge. The model �ts
platforms made of a general-purpose processor with trusted computing mechanisms augmented
with a recon�gurable hardware fabric connected through a (possibly untrusted) channel eiher on- or
o�-chip. The key insight in the proposed solution is to retain the security properties already o�ered
to software applications by the trusted platform and e�ectively extend the trusted computing base
to the FPGA-implemented components. A protocol is proposed that enables a user application
to securely recon�gure a custom accelerator, attest its instantiation on the recon�gurable fabric,
and establish a secure communication channel with it. A possible technology mapping of such a
model is represented by Intel SGX extended to the new Intel Xeon+FPGA platforms, for which no
trusted mechanisms have been investigated so far in the technical literature. The protocol would
require limited modi�cations at the hardware level (the static part of the FPGA and the user
accelerator) and at the software level (a special service is needed to securely communicate with the
FPGA).

In addition to introducing an extended architecture and related protocols/mechanisms, this
work also aims at sound approaches for the formal veri�cation of the introduced solutions. In
general, formal veri�cation is a powerful tool that can be applied at any stage of a project life cycle,
including early stages as in our case. Applied Pi Calculus has been identi�ed as the formalism of
choice. It is a descendant of the Pi Calculus, a process calculus that can express communication of
parallel processes, but in addition it introduces constructs that allow the symbolic description of
cryptographic primitives and hence it is very suitable for our ultimate goals. The veri�cation phase
is automated by a tool, ProVerif, that takes as input a model expressed in Applied Pi Calculus (a

2

variant of it) with a series of queries and annotations that de�ne security properties on the model,
such as authentication or secrecy, and it is capable of proving or denying them. The results of the
analysis are encouraging since all the properties de�ned in this work hold even with a Dolev Yao
attacker model.

The rest of the paper is organized as follows. Section 2 presents a general model of a baseline
trusted computing platform augmented with recon�gurable hardware, which could potentially be
built using currently available technologies. Section 3 introduces a proposal for architecture/runtime-
level support as well as a protocol for trusted user applications including an FPGA component.
Section 4 addresses key security-related properties and their formal veri�cation. Section 5 con-
cludes the paper with some �nal remarks.

2 Reference baseline architecture

In this section we de�ne a general baseline architecture model and we identify the key roles and
the trusted computing mechanisms that are assumed to be available in the software part of the
system. We assume the physical platform to be composed of two main subsystems, a CPU and an
FPGA that can be recon�gured at runtime. An instance of this model may be represented by the
new Intel multi-chip package solutions embodying a Xeon processors and and Altera FPGA.

CPU. We suppose to have a processor that supports at least the following trusted computing
features:

• Memory isolation: it is possible to instantiate isolated containers in the context of a
user application that are physically isolated, from the memory point of view, from the rest
of the system. The isolation is enforced at the microcode or the hardware level, so that
we can suppose that the privileged software (OS, hypervisor or �rmware) has no way to
break the isolation mechanism and is, therefore, excluded from the Trusted Computing Base
(TCB). In this paper we call the isolated containers instantiated by a user application User
Containers (UC). We can assume that the isolation mechanism enforced by the trusted
hardware protects the restricted memory both from software accesses (intervening in the
process of virtual address translation, for instance) and from peripherals that try to access
the restricted memory using physical addresses. This kind of memory isolation granularity
can be obtained, for instance, by means of SGX mechanisms.

• We also suppose that the each container is accompanied by a control structure that stores
identifying information about the container such as:

1. The container measurement, that represents a hash of all the container code and data

2. A digital certi�cate that is signed by the the container's author.

The measurement is crucial to guarantee the container integrity when it is loaded in memory,
while the certi�cate is useful to establish a relation between containers by the same author
(we will see below why this is important). The control structure associated with a container
is populated by the trusted hardware runtime whenever the container is loaded and stored
in protected memory. It must be only accessible to the trusted hardware, i.e. not even the
container associated with the control structure should access it.

• Key Derivation Function: It is a primitive that can generate cryptographic keys tied
to the container identity and to the hardware that generates them. This is an important
function that enables a number of crucial features:

1. Binding the key to the speci�c hardware instance that generates it is important to guar-
antee that the encrypted secret will never be decrypted outside the intended platform.
This is crucial because once the secret is encrypted and stored in an untrusted storage
or unprotected memory, it can be accessed by malicious applications and leaked to an-
other machine. If this machine has access to the same software (container) then it can
decrypt the secret because it can obtain the same key. The key can be bound to the
hardware including in the CPU a cryptographic secret that can be used as an input to
the key derivation function. This secret should be unique for every processor and stored

3

in a secure, possibly tamper-resistant storage. An example of such a storage can be the
CPU e-fuses. We will refer to this secret as the CPU Secret.

2. Binding the key to the container identity enables sealing the data, or, in other words,
encrypting them with the key that only the container can generate and storing them in
an untrusted medium (unprotected RAM or disk).

3. The key should also be bound to the container signed certi�cate. In this way containers
by the same author can securely share secrets. This is useful, for instance, if the two
containers represent di�erent versions of the same software.

Last, we also assume that the key derivation function implements a key anti wear out mech-
anism. This is implemented by adding another input to the key derivation function, the anti
wear-out (AWO) �eld, that is de�ned by the user and should preferably be a random value.

The instruction through which a container can request the creation of a seal key is the
following:

CREATEKEY (AWO,Policy,KeyType)

where:

� AWO is the anti wear out value. It should be random when the key requested is a seal
key. A default value can be used when, for instance, the key is a report key that must
be generated by two di�erent containers.

� policy indicates whether the key should be bound to the container's measurement or
to the author's signature. It can assume the values: �Measurement� or �Signature�.

� KeyType is used to di�erentiate di�erent type of keys. Other than seal keys the
container can in fact request keys for the veri�cation of report (see below).

• Local attestation scheme. It is needed in order to let containers authenticate each other
through the use of reports generated by the trusted hardware. The local attestation process
could be articulated in the following phases:

1. The source container requests the report creation to the trusted hardware, specifying
the identity (measurement) of the target container that has to authenticate the source
container and, optionally, a payload carrying user de�ned information.

2. The hardware generates the report including the identity information of the source
container and the optional payload. Then it computes a MAC tag on these �elds to
protect the report integrity. The MAC tag is computed using a keyed hash function.
The key in input to such a function is generated from the target container measurement
provided as input so that it can be the only one to verify that report.

3. The target container receives the report and requests to the hardware the generation of
a key bound to its measurement so that it can recompute the MAC tag on the report's
�elds and compare it to the MAC tag provided along with the report.

The instruction through which a container can request the creation of a report is the following:

CREATEREPORT (TargetMeasurement, Payload)

Remote attestation is also an important aspect of trusted computing but is not fundamental
for the purposes of this work.

FPGA. The FPGA communicates with the CPU through a dedicated bus and accesses the same
address space accessed by the CPU. It is composed by two main regions:

• A dynamically con�gured acceleration fabric, which is the region that can be con�gured
at runtime by the software environment and that will be con�gured with the accelerator
provided by the user, or user accelerator (UA). We suppose that the accelerator supports
a set of mandatory control/status registers needed to precisely identify the accelerator itself
and a set of user de�ned registers that expose the accelerator functions.

4

• A statically con�gured acceleration infrastructure, that acts as an interface between
the UA and the CPU and implements the physical communication protocol. This infras-
tructure contains a subsystem, called FPGA Manager (FM), that is responsible for the
recon�guration of the UA.

The communication between the UA and the acceleration infrastructure is implemented by a simple
interface that abstracts away the physical channel and implements a load/store semantics in order
to enable the UA to send requests and receive responses to/from the main memory. In addition,
we also suppose to have a software framework that abstracts the FPGA and provides a set of APIs
for the user application to interact with the accelerator. Notice that most of the above trusted
computing mechanisms are patterned after SGX and could be directly mapped to an SGX-enabled
platform.

3 Extended architecture and trusted computing mechanisms

Under the assumption of an architecture that provides hardware acceleration capabilities paired
with CPU support for trusted computing, we will now reason on how to provide a secure interaction
between software applications and accelerators, or, in other words, how to extend the trusted
computing support to the FPGA fabric. To this aim, we will �rst consider the extension of
the Trusted Computing Base (TCB) to include (part of) the FPGA. Then, we will focus on a
mechanism to enable attestation between an FPGA entity and a software container so that they
can share a secret key in order, for example, to decrypt a partial bitstream or encrypt sensitive
data.

3.1 Threat Model

The interaction between the FPGA and the CPU is not assumed to be secure. An attacker
can spoof the communication between CPU and FPGA, e.g. if he/she is able to de-package
a multi-chip package CPU+FPGA platform. Since we consider these platforms deployed in an
untrusted physical environment we do assume that an attacker has such an ability and, therefore,
this assumption leads to de�ning a passive attacker that can read all the messages exchanged over
the bus that links the CPU and FPGA.

Moreover we consider the software environment hostile as well, meaning that all the system
software (operating system and hypervisor) is considered malicious. For instance, this allows the
presence of corrupted drivers. Such drivers orchestrate the interaction between applications and
the accelerator and all the con�guration messages, as well as the data messages, are mediated by
a driver instance. In other words, a malicious driver or container can potentially modify or replay
messages, it could even try to impersonate a legitimate accelerator or software container. In this
case the attacker is said to be active, referring to the ability to manipulate the messages on the
channel under control.

Secrecy. Secrecy is required in two cases:

• An application that recon�gures a UA with a custom design typically requires the custom
design to remain con�dential and be stored in memory in encrypted form. Given the above
threat model, however, decrypting the bitstream before sending it to the FPGA is not
enough as the CPU/FPGA channel is not con�dential. For this reason, the FPGA should be
responsible for the bitstream decryption. To this aim, the user application must communicate
the bitstream decryption key to the FPGA. This exchange must guarantee con�dentiality of
the key.

• An application that uses an accelerator to perform operations on sensitive data wants to
exchange such data con�dentially and, hence, a mechanism should be provided to guarantee
con�dentiality in this case.

Authentication. User applications do not necessarily provide their custom accelerators. It is
rather likely that they will use an accelerator developed by a third party. This introduces the
problem of authenticating the third-party component as an application should share sensitive data
only with trusted hardware accelerators.

5

3.2 Extended architecture-level support

Trusted Computing Base. The �rst aspect to consider is that the FPGA needs to be included
in the Trusted Computing Base alongside the CPU hardware. To achieve this, we need that the
CPU and the FPGA share the secrets on which the CPU trusted computing features rely. In
particular, if the FPGA had access to the CPU secret (Section 2) it could use it as input material
for the same Key Derivation Function used by the CPU so that the same generation of keys and
reports is possible on the FPGA.

Another crucial aspect of trusted computing solutions is the ability to isolate a piece of software
from the external environment. In a software environment this basically means to protect the
software memory, which is indeed what our CPU does. Similarly, a UA should be physically
isolated from other UAs on the same FPGA. Since the concurrent instantiation of di�erent UAs
is not supported by currently available technologies, like Intel CPU+FPGA MCP solutions, we
neglected this aspect in this work.

Figure 1: Support to accelerator measurement

UA Partial Recon�guration and Mea-
surement We need a way to assure the
integrity of the recon�gured bitstream. We
will see in the next sections how integrity
can be proved to an application that wants
to use the UA, but from a hardware point of
view we need at least a trusted hash func-
tion that can compute a hash checksum on
the partial bitstream being programmed. A
possible solution is illustrated in Figure 1.
A hash block that receives, in parallel with
the Partial Recon�guration Controller, the
decrypted bitstream. It can be assumed
that the UA exposes an interface that pro-
vides its expected measurement so that only
if it is equal to the one computed, the freeze
signal is de-asserted and the UA can start operations.

3.3 Details of the extended trusted computing mechanisms

In this scenario we consider an application with security requirements that wants to recon�gure
an accelerator. We can assume that the bitstream that the application will supply to the FPGA
be encrypted, and so the main problem is to give the FPGA Manager (FM), in charge of the
recon�guration, the key for the decryption of the bitstream. To this aim, we can exploit the
key derivation features that allows containers by the same author to share a cryptographic key. A
problem here is that the user container, accessing the FPGA, and the FPGAManager, acting as the
container that receives the secret, are not from the same author. We can therefore introduce a new
container, signed and delivered by the platform manufacturer, that can o�er a brokerage service
to user containers needing hardware accelerator. Let us call this container FPGA Interface
Container (FIC). This container does have the same author as the FM, the platform manufacturer,
so if we consider the FM equipped with a certi�cate similar to that of a container (the Container
Control Structure), we can securely share a secret between these two entities. Moreover, there is
another key advantage in having such an architecture: the FIC can impose an access control policy
based on the container identity whenever a container requests the services o�ered by the FIC.

Once the UA will be con�gured, we should make sure that it is the expected accelerator, so
it should be attested. An container is usually remotely attested by the �nal user or its creator.
Anyway we could avoid to perform a remote attestation for the UA if we consider that there
already exists a trusted component executing on the platform, the user container that requested
the FPGA recon�guration. We then rely on such a container to attest the UA and, in case of
success, it can provide an activation token to the accelerator in order to activate the part of the
IP Core dedicated to the actual function it has to provide.

A �rst overview of the protocol is the following. We assume that there exists a secure com-
munication channel between the user container and the FIC. This can be established with one of
the several mechanisms provided by many user space libraries. The container, hence, can securely

6

Figure 2: Partial Bitstream decryption key exchange

communicate the partial bitstream decryption Key (PBK) to the FIC and give to it a reference
to the encrypted bitstream. At this point the FIC can apply an access control policy if needed
and, in case the requesting container is authorized, it can proceed by encrypting the PBK with a
key based on the CPU Secret and on its certi�cate's Signature and sending it to the FM. As we
mentioned before, the FM has access to the CPU secret and is signed by the same private key as
the FIC and can, therefore, generate the same symmetric key to decrypt the message.

At this point the FM can recon�gure the Partial Recon�guration (PR) Region. A key function
that the FM has to carry out during the recon�guration is to measure the bitstream being con�g-
ured. This provides a way for the user container to verify the integrity of the UA. In particular
the user container can check that the UA is not altered by these steps: If the FM measures the
bitstream as it is being con�gured we have the equivalent of the container's measurement for the
UA. We can then assume that a UA comes with a certi�cate signed with its author private key,
that the FM can request after the con�guration. So, as a con�rmation of the con�guration, the
FM can build a report, indicating the identity of the UA, send it to the user container that can
attest the UA's identity, and check that it was con�gured by trusted hardware since the keyed
hash in the report can only be generated by that speci�c hardware.

Keys wear out

The second aspect to consider is key wear out. In fact, since the FIC and the FM will always
communicate using the same cryptographic key (the one that the hardware generates from their
identities and the CPU secret), this key is subject to wear out, or, in other terms, an attacker could
repeatedly give the FIC a plaintext and observe the cyphertext in order to infer the key (which is
always the same). To mitigate this problem we can make FIC and FM agree on a common value
for the anti wear out �eld of the key generation function (Section 2) for every new con�guration
request. This, anyway, involves an additional phase in which FIC and FM agree on an anti wear
out (AWO) value. In this phase the FIC should choose a random value for AWO and send it in
encrypted form to the FM. This is the simplest solution, but actually does not solve the problem
because the �rst message will always be encrypted with the same key. Another way could be to
store, both on the processor and on the FPGA, an array of previously agreed AWOs and send, in
the �rst message, only the randomly chosen index of such array. Unfortunately, however, AWO
values are typically 256 bit wide, and storing a large array of such values could be infeasible. As
an intermediate solution, we could use a relatively small array of pre-agreed AWO values. For the
sake of simplicity let us assume that both the FIC and FM have this array stored in their respective
address space, encrypted with a seal key known only by them. One of the AWO contained in the
array is chosen to create the key that will encrypt the randomly generated AWO which, in turn,

7

Figure 3: Anti Wear Out Agreement

will be used for the current the session.
There is yet another advantage in using this scheme: the exchanged AWO can act as session

identi�er in order to avoid replay attacks.

The Protocol

Based on the previous considerations we can then de�ne the protocol for the con�guration of a UA
by an isolated container. Two phases can be distinguished:

1. The partial bitstream decryption key exchange, in which the user container communicates
the decryption key to the FM by using the FIC as a proxy. This phase is, in turn, composed
of two sub-phases:

• The agreement of the AWO between the FIC and FM.

• The actual communication of the decryption key.

2. The newly con�gured accelerator attestation, in which the user container veri�es, with the
support of the trusted hardware, that the UA con�gured is the intended one.

We will now give the details of the two phases.

Phase 1
In this phase we assume the communication between FIC and UC to be secure. The establish-

ment of a secure communication channel can be accomplished through one of the several mecha-
nisms provided by secure crypto libraries. The steps are the following:

1. The UC initiates the protocol session generating a report through the CREATEREPORT
instruction. The report is intended, of course, for the FIC. In the data �eld of the report
structure, the UC writes both the decryption key and a reference to the encrypted bitstream.
The UC sends the report to the FIC.

2. The FIC veri�es the report and possibly enforces a required access policy. If the container is
approved, the FIC generates a random integer i such that i ∈ [0, AWOV ectorDim), where
AWOV ectorDim is the size of the array containing the pre-agreed AWO values. Hence, it
proceeds by fetching AWOV ector[i] and calling

CREATEKEY (AWOV ector[i], ”Signature”, FpgaConfiguratioKey)

where the second parameter is the key derivation policy and the third the key name for the
FPGA recon�guration operation. Let us denote the obtained key with KEYvec(i).

3. The FIC generates another random value, this time a random sequence of bits, that represents
the AWO for the session: SessionAWO.

4. The FIC constructs the message (i, {SessionAWO}KEYvec(i)
) and generates a report through

8

CREATEREPORT (FM, (i, {SessionAWO}KEYvec(i)
))

The �rst parameter is the identity of the target of the report and, hence, the FM in this case.
The report is sent to the FM.

5. The FM veri�es the report, so that it can be sure of the integrity of the message. Then,
using i, it fetches AWOV ector[i] and decrypts the body of the report. In order to prove its
identity to the FIC, it generates the message:

{f(SessionAWO)}SessionKey,

where f() denotes any deterministic function, even as simple as a subtraction, and SessionKey
is the key obtained from SessionAWO.

6. The FIC can now authenticate the FM if the decryption succeeds and the decrypted value
equals f(SessionAWO), otherwise the session is aborted.

7. Last, the FIC sends the partial bitstream decryption key, encrypted with the session key. An
ACK is sent to the UC to indicate that the recon�guration is taking place.

In this phase the actual exchange of the key happens. Moreover the FIC attests the container
identity. Finally the FIC authenticates the FM. This step is necessary because the channel between
the two is not secure, hence the FM can not just send a report as this report could be intercepted
and then replayed. For this reason, the protocol implements a challenge/response scheme. The
challenge is the encrypted session AWO that only the FM can decrypt. The FIC checks that
it is talking with the FM only if the latter is able to decrypt the session AWO and send back
f(SessioAWO). Still, the FM response could be replayed and used in a di�erent session, but this
could not fool the FIC as the replayed SessionAWO would not be the one of the current session.

Phase 2
At this point the UC is recon�gured. Before it can begin to operate, however, it has to be

attested so that the user container can check that the recon�guration was successfully performed
and the UC can be activated. Note that the activation token should be kept secret. To do so, the
following steps are executed.

1. The FM compares the measurement of the bitstream it has computed with the measurement
associated with the user accelerator and if they match it enables the UA to proceed.

2. The UA generates a report through a dedicated interface with the FM. Such report includes
the UC's Measurement and its Certi�cate's signature, just like a container report. The report
is then sent to the user container.

3. The user container veri�es the report, and if the veri�cation is successful, it provides the UA
with an activation token that enables its functional region. There are two ways of providing
such a token to the UA, depending on whether the recon�guring container is from the same
author of the UC or not. In the former case the container can directly encrypt the token with
its seal key. The UC can generate the same key and decrypt the token. In the latter case,
the container can, again, take advantage of the FIC reusing the session key to exchange the
token with the FM that, in turn, will give it to the UA. We will consider the latter scenario
as it is the most general. It also covers the case of a container that wants to share a secret
key with the UA to establish a secure communication channel.

To summarize, we have the following exchanges:

Phase 1

Message1 UC → FIC : R(PBK,UCid)
Message2 FIC → FM : R((i, {SessionAWO}Key(i)), F ICid)
Message3 FM → FIC : {fn(SessionAWO)}SessionKey

Message4 FIC → FM : {PBK}SessionKey

Message5 FIC → UC : ACK

9

Phase 2

Message6 UA → UC : R(NIL,UAid)
Message7 UC → FIC : ActivationToken
Message8 FIC → FM : {ActivationToken}SessionKey

Message9 FM → UA : ActivationToken
where

• R() denotes the CREATEREPORT function in which the �rst parameter is the data �eld
(NIL stands for an empty data �eld and the report is only used to attest identity), the second
the identity of the sender.

• PBK is the Partial Bitstream decryption Key.

Accessing the trusted user accelerators

We now consider the situation where a user application including trusted software containers needs
to use a hardware accelerator. In this case, the key requirement is to ensure authentication between
the application and the selected accelerator. Based on the previous setting, we just need here that
the two entities exchange reports. For secrecy, this should not be considered mandatory because
of the overhead that it can introduce. Consider, for example, the case in which an application
wants to use a UA that o�ers a hardware accelerated symmetric encryption service. It would not
make any sense to encrypt the data, send them to the UA that in turn will decrypt the data and
re-encrypt them. So, we can imagine that an application may consider tolerating the risk that the
information sent to the FPGA will be spoofed and decide not to enforce secrecy.

On the other hand, if secrecy is required, then we need to exchange a key. This key will be
generated by the user container because, in any case, sealed data must be bound to its identity.
This case is very similar to the previous scenario, particuarly Phase 2, where the UC must attest
the UA, and, hence, the protocol de�ned above can be reused as-is. The only di�erence is that after
the FM receives the UC/UA key, it must pass it to the UA, which is hence supposed to provide
an interface to save the key. Moreover, once the key has been delivered to the UA, in addition to
attesting the UA, the container could require a proof that the UA actually has the intended key.
This can be accomplished by letting the user container generate a nonce that will be sent to the
UA along with the encryption key, encrypted by the UA, and sent back.

3.4 Outline of implementation-related aspects

In this section we will consider how the solution outlined above could be implemented in practice.

FPGA side. For what concerns the FPGA side, we should consider the following implementation
aspects:

• The �rst issue is the storage of the CPU secret. Modern FPGAs provide two ways for
securely storing keys on chip [1]: the volatile storage is composed of reprogrammable and
erasable battery-backed RAM registers, while the non volatile storage consists of fuses-
based registers that are one time programmable. Both methods are implemented such that
the extraction of the key is di�cult. However, if we consider that the static part of the FPGA
containing the FM is encrypted, then necessarily one of the two secure storages must be used
to preserve the decryption key for that static FPGA part.

• Then key derivation and encryption and decryption modules have to be implemented. The
key derivation process could implement the method described in FIPS SP 800-108, with
AES-CMAC as pseudo random function, while AES can be used for encryption. Both the
AES module and the key derivation function should be included in the FPGA static part
that contains the FM, and both the UA and the FM should have the possibility to access
these modules.

• Similar considerations hold for the generation and veri�cation of reports. The main func-
tionality of report creation and veri�cation is represented by the keyed hash function that
computes a MAC tag on the report's body. This function could be implemented with a block
cypher-based MAC (CMAC) based, in turn, on 128-bit AES.

10

• Additional logic should be introduced in the static part of the FPGA in order to implement
the protocol. This should include a control unit to orchestrate the exchange of messages and
the hardware to perform the measurement of the bitstream.

• Last, as for the accelerator, it should include additional mandatory registers that represent
its measurement and its signature so that the FM can verify such values.

Software Side. The privileged container introduced (FIC) is a trusted piece of software that
allows secure recon�guration of the FPGA, beside providing a way to exchange secrets between the
application and the UA. User applications allegedly interact with the FPGA through a software
framework, so such a service should be integrated within the architecture. That means that new
APIs should be added implementing the secure recon�guration of an accelerator or the secure own-
ership acquisition. The new functionality backing the secure communication should, of course, be
implemented by structuring the application in containers, in order to make the service trustworthy.

4 Formal veri�cation

A major goal of this work was to prove the soundness of the proposed solution. We do not
have an implementation since no physical platform was available for demonstrating the proposed
architecture-level support. Nevertheless, our formal veri�cation addresses the high-level speci�-
cation of the protocol and does not depend on a speci�c implementation. Many formalism and
techniques exist that aim at the veri�cation of security protocols like [17, 18, 21]. For an extensive
survey the reader can refer to [22] and [5].

The choice that most suits the needs of this work is the Applied Pi Calculus [2]. It is
explicitly designed for describing and analysing security protocols and, in fact, it extends the
Pi Calculus [20] by including primitives for expressing encryption and decryption and assumes a
Dolev and Yao attacker model [8], where the attacker has full control over the communication
channels. Moreover, in this formalism, the intruder is not even modelled explicitly, but it is
implicitly represented as another process of the calculus. The formalism also allows modelling
a system as a group of processes interacting with each other through the exchange of messages.
Applied Pi Calculus (like its parent, Pi Calculus) also supports the concept of channel modelling the
means by which information �ows. Through the de�nition of a set of function symbols (signature
(Σ)) and their relations (equational theory), described as equations, the Applied Pi Calculus
enables the expression of the rich semantic of a protocol. This, along with the fact that all the
operations of a participant to the protocol can be described in terms of processes, makes it a very
powerful methodology because the analysis takes into account all the internal operations carried
out by protocol principals and not only the messages they exchange. Moreover this representation
is closer to a possible implementation unlike, for instance, a BAN Logic model which is more
formal but more di�cult to relate to a possible protocol implementation. On the other hand,
since the cryptographic primitives are de�ned through a set of equations on function names, they
are only symbolic, meaning that they are seen as black box operations that do not expose the
internal behaviour. In other words, the underlying assumption is that cryptography is perfect.
Hence models expressed in Applied Pi Calculus do not take into consideration attacks on the
cryptographic primitives. The reader may refers to [2, 24] for details on Applied Pi Calculus.

Another advantage of the chosen formalism consists in the availability of a number of automated
veri�cation tools. The most prominent of such tools is probably ProVerif [6]. It is a symbolic
protocol veri�er that internally represents the protocol by Horn clauses. Horn clauses are �rst
order logical formulas in the form F1 ∧ · · · ∧ Fn ⇒ F where F1, . . ., Fn, F are facts. This
representation keeps relation information on messages but introduces abstractions that do not
guarantee termination. The input of ProVerif is a model expressed in a variant of the Applied
Pi Calculus. This language, called typed Pi Calculus, supports several cryptographic primitives
expressed as rewrite rules or equations. Another input of ProVerif is a set of properties to be tested
on the modelled protocol. The tool is able to prove secrecy, authentication, and some observational
equivalence properties. Such properties are expressed as queries that are translated into derivability
queries on the Horn clauses to which the protocol is mapped. The resolution process of ProVerif
tries to determine whether a fact is derivable from the clauses. If the fact is not derivable, then the
property is proved. On the contrary, if the fact is derivable an attack may be found. Note that due
to the abstraction introduced by Horn clauses, there is the possibility of false attacks. If the attack

11

is true, however, ProVerif is able to reconstruct the attack in terms of messages exchanged. If it
cannot reconstruct the attack then the output is �I don't know�, meaning that the found derivation
is probably a false attack. Secrecy and authentication are the most important security properties
for most protocols and ProVerif provides a simple way to query such properties.

Secrecy of a term (secret) can be easily queried through the following command:

query a t tacke r (s e c r e t) .

Authentication is based on correspondence properties and, referring for instance to a clien-
t/server scenario, it can be queried in ProVerif through:

query event (serverEnd) ==> event (c l i e n t S t a r t)

meaning that if serverEnd occurs (the server has accepted the client) then clientStart has occurred
before (the client has indeed sent a request to the server), or in other words, it cannot happen that
the server accepts a request that is not from the client.

4.1 The Applied Pi Calculus instance used in this work

In this section we give a description of the instance of the Applied Pi Calculus used to model the
protocol of Section 3. The �rst step is to de�ne function symbols and an equational theory for
modelling the messages and the operations performed by the protocol participants.

4.2 Σ and Equational Theory

For this study, Σ was chosen to have the following grammar for terms:
M, I, U, V, P,A ::= Terms
c, n, s names
K,T, k, r,m, z, a variables
senc(U, I) symmetric encryption
sdec(U, I) symmetric decryption
identity(I) generate container identity from initialization token
H(U, I) keyed cryptographic hash function
derMaterial(V, P,A) derivation material to feed key generation function
e, g, d constants for derivation policy and default anti wear out
sealKey(I,M) symmetric seal key generation function
repKey(I, V) key used to compute the MAC of a report
repV erKey(I) key used to verify a report
report(U, V) constructor for report
F report
U , F report

V projections for report
fn(V) generic deterministic function
actToken(U) Generate an activation token bound to a secret

Shared key cryptography. In order to model shared key cryptography two binary symbols
were introduced: senc(_,_) and sdec(_,_) for encryption and decryption, respectively. The
equation that rules their use is:

sdec(senc(x, k), k) = x

where x represents the message to be encrypted and k the symmetric key.

Container Identity. The container identity is bound to an initialization token that proves its
identity. A function was introduced that, given an initialization token, returns the container
identity. Of course there is no inverse function that can return a token from the container identity
as the token must remain secret while the identity of the container is public.

12

Keyed cryptographic hash. This function is used to calculate a keyed hash value on reports.
It is modelled with a binary function, H(_,_), that has no equations in order to express the
one-way nature of hash functions. Note that H(x, k) = H(x′, k′) ⇐⇒ x = x′ and k = k′ which
implies that this hash function is collision free.

Derivation material. The seal key generation process is fed by a series of inputs collectively
named key derivation material. The derMaterial(_,_,_) symbol allows generating derivation
material from the requester identity, the policy for key derivation, and a value used as anti wear
out. The latter value plays a key role in the protocol.

Seal key generation function. This constructor models the key generation process that creates
symmetric seal keys from a token owned by every initialized container and from a set of values, the
key derivation material, including the container's measurement and an anti wear out value. It is
analogous to the previous de�ned hash function as it is not invertible and, for the same derivation
material, generates the same keys.

Report key generation functions. The repKey(I, V) constructor generates the keys that are
used in the keyed cryptographic hash function to hash reports. Its inputs are the initialization
token of the container requesting the key (only an initialized containers can request keys) and the
identity of the target container. On the other hand, the repV erKey(I) constructor generates a
key used to verify a report. The two constructors are linked by the equation:

repKey(y, identity(x)) = repV erKey(x)

where y is the initialization token of the container generating the report, x is the initialization
token of the target container, and identity(x) is the identity of the target container. This equation
ensures that only the target container can verify the report as if the identity speci�ed in reportKey
does not correspond to token x, the generated keys will not match.

Reports. The report function symbol introduces in Σ the creation of reports. A report is built
using report(x, t), where x is the data to be inserted in the body of the report, and t is the
initialization token of the container generating the report. In order to extract such information
from the report, two inverse un-ary functions are added, one to extract data and one to extract
the identity of the creator from the report. The equations that rule such behavior are:

F report
data (report(x, t)) = x

F report
identity(report(x, t)) = identity(t)

where identity is the constructor de�ned above. This solution re�ects the hypothetical report
mechanism because, since the initialization token is never exported outside the scope of the software
container (or accelerator) process, only the container in possession of the token can generate reports
that attest the container's identity. Hence the attacker cannot forge reports carrying another
container's identity.

Generic function. This symbol just models a generic deterministic operation on its input. It is
used in the challenge/handshake exchange to verify that the receiver has been able to decrypt the
message. To prove the decryption, the receiver calculates f(x) where x is the challenge and sends
this value to the initiator. The initiator checks it to accept the receiver. The comparison is based
on the equation:

fInv(f(x)) = x

where fInv is the inverse function of f

Activation token. Last, the actToken symbol allows generating activation tokens in Σ. A
container uses this function to generate a token that activates the function speci�c region of an
accelerator. We let this token be bounded to the key that decrypts the bitstream for the UA.

13

Figure 4: Processes and channels

4.3 The Applied Pi Calculus model

In this section we will discuss the representation of the communication channels, the identi�ed
roles, and the attacker in the Applied Pi Calculus model.

Communication

A �rst exchange of messages takes place between the UC and the FIC. As speci�ed before, we
assume that these two containers have already established a secure communication channel. This
is easily achievable by making the two containers attest each other, in order to establish their
identity, and then perform a Di�e-Hellman exchange to establish a shared key to encrypt their
communications. As a consequence, we can model this channel as a private Pi Calculus channel.
The attacker cannot interfere with this channel. This re�ects our assumption that CPUmechanisms
are considered secure and trustworthy.

The relation between FM and UA is similar to that of UC and FIC, so the communication
between the former principals is also considered secure. This is a reasonable assumption as this
communication takes place on the FPGA and it would be extremely expensive for an attacker to
tap the communication within the chip. Moreover we assume that a malicious UA is not able
to obtain any information on the communication in place between UA and FM. Finally, we have
the communication channel between the FPGA and the processor. We assume that an attacker
can successfully read all communication on the communication bus between them and hence we
modelled it as a free Pi Calculus channel.

Roles and processes

As explained in Section 3, there are four di�erent roles that participate in a protocol run: the User
Container, the FPGA Interface Container, the FPGA Manager, and the User Accelerator. In our
model we refer to every principal by their identities using the variables IDA, IDB , and so on. The
context:

IDENTITIESA[_] = νTA.(IDA = identity(TA) | [_])

is associated to every principal A, so that the use of the initialization token TA is restricted to the
process in the context. Moreover, the identity IDA is exported without revealing the token TA to
the environment since no inverse function exists for identity(_).

Four processes were de�ned that implement the roles de�ned above. Each of them follows the
steps de�ned informally in Section 3. The FIC and FM processes correspond to the homonymous
architectural components and implement the core of the protocol. The FIC accepts requests from
a UC and cooperates with the FM to securely recon�gure a partition. The UC and UA processes
represent the users of the protocol and must conform to its speci�cation. The UC can request the
con�guration of a partition and, once this is done, it can attest the UA and then provide it with
an activation token that will be securely transmitted to the UA through the FIC and FM.

Following is the implementation of these processes in Applied Pi Calculus. The communication
channels are:

14

• CsecC (Containers secure channel): the secure channel between User Container and FPGA
Interface Container.

• FsecC (FPGA secure channel): the secure channel between User Accelerator and FPGA
Manager.

• pubC: the public channel that links CPU and FPGA.

Each process is created with a token Tx. Note that the FIC and the FM are created with the
same token. This re�ects the fact that these two components are conceptually one trusted entity
distributed over two nodes. Moreover every UC process is associated with the identity of the UA
it wants to con�gure (IDua) and, vice versa, every UA process is associated with the identity of
the recon�guring container (IDuc).

process User Container

UCTe

IDua
= !νKPB . the Partial Bitstream decryption key

let(Kr = repKey(Te, IDfic) in report key
let(ruc = report(KPB , identity(Te)) in report (data = decryption key)
CsecC(ruc, H(ruc,Kr)). output report and MAC of report
CsecC(= identity(Te), ACK). wait for the ACK
pubC(= identity(Te), rua,mua). wait for the UA to send its report
let(Kv = repV erKey(Te)) in report veri�cation key
let((= mua) = H(rua,Kv)) in veri�cation of the report
if(IDua = F report

identity(rua)) then check if identity is the one expected
let(t = actToken(KPB)). activation token
CsecC(t, IDua) send activation token through FIC

process FIC

FICTi

IDfm
= !CsecC(ruc,muc) wait for incoming reports

let(Kv = repV erKey(Ti)) in report veri�cation key
let((= muc) = H(ruc,Kv)) in report veri�cation
νa. new session anti wear out
let(z = derMaterial(identity(Ti), g, d)) in derivation material (default anti wear out)
let(Kd = sealKey(Ti, z)) in seal key
let(Kr = repKey(Ti, IDFM)) in report key
let(rfic = report(senc(a,Kd), identity(Ti))) in report (data = encrypted session anti wear out)
pubC(rfic, H(rfic),Kr) send report to FM
pubC(x) wait for FM response
let(z′ = derMaterial(identity(Ti), g, a)) in derivation material (session anti wear out)
let(Ksession = sealKey(Ti, z

′)) in session seal key
let(= fn(a)) = sdec(x,Ksession) in check the challenge response from FM
pubC(senc(F report

data (ruc),Ksession)). send PB decryption key to FM

CsecC(F report
identity(ruc), ACK). send ACK to user container

CsecC(y, IDua). wait for the activation token
pubC(senc(y,Ksession), IDua) send to FM the encrypted activation token

process FM

FMTi

IDfic
= !pubC(rfic,mfic) wait for incoming reports

let(Kv = repV erKey(Ti)) in report veri�cation key
let((= mfic) = H(rfic,Kv))) in report veri�cation
let(z = derMaterial(identity(Ti), g, d)) in derivation material (default anti wear out)
let(Kd = sealKey(Ti, z)) in seal key
letx = sdec(F report

data (rfic),Kd) decrypt session anti wear out
let(x′ = fn(x)) apply fn to x
let(z′ = derMaterial(identity(Ti), g, x)) in derivation material (session anti wear out)

15

let(Ksession = sealKey(Ti, z
′)) in session seal key

pubC(senc(x′,Ksession)). send fn(x) to FIC
pubC(k). wait for FIC to send PBK
let(k′ = sdec(k,Ksession)) in now the FM can recon�gure the UA
pubC(y, IDua). wait for the activation token
FsecC(IDua, sdec(y,Ksession)). send the activation token to the intended UA

process UA

UA
Tf

IDuc
= !νKPB .

let(Kr = repKey(Tf , IDuc)) in report key
let(rua = report(NIL, identity(Tf)) in report (data = NIL)
pubC(IDuc, rua, H(rua,Kr)) report (send report to UC)
FsecC(= IDuc, a) report (wait for the activation token)

This model abstracts away some implementation details. In particular, we do not model the
hardware initialization check involving the measurement of the UA bitstream. This does not hurt
the validity of the model, as a failed initialization would imply that the accelerator would never
send its report to the UC and, hence, the session would be aborted.

4.4 Veri�cation with ProVerif

We will now present the translation of security properties, to be tested in ProVerif, in events and
queries. Then, we will carry out a series of tests adjusting the resolution strategy of ProVerif and
introducing a malicious process to simulate key compromise.

Security properties

The proof for security properties is carried out in ProVerif using correspondences. Correspondences
express a property that we would like to hold for the model provided. We will now describe the
correspondences de�ned.

1. Authentication of User Container to FIC. A user container is granted access to the
FPGA for recon�guration only if the FIC can attest its identity. Actually this step could be
skipped as the UC and FIC already share a secure channel and this should imply that they already
have authenticated each other. Anyway, we still de�ne the following correspondence:

event (FICAuthenticateUC(MAC, UCIdentity, Key)) ==>
event (UCstartAuthToFIC(MAC, UCIdentity, Key)).

where MAC is the MAC tag computed on the report that the UC creates, UCIdentity is the
signature of the container's certi�cate, Key is the decryption key for the partial bitstream, included
in the report. This correspondence means that if the FIC has received a report from the container
UCIdentity, with a MAC equal toMAC and Key included in the report data �eld, then a container
should have sent it before.

2. Mutual Authentication of FIC and FM. The exchange of messages between FIC and
FM starts with a challenge/response. We can relate the challenge with the response by using the
correspondences:

event (FIC_Rec_Resp_From_FM(SessionAWO)) ==>
inj-event(FM_Send_Resp_To_FIC(SessionAWO)).

event (FM_Rec_Report_From_FIC(SessionAWO)) ==>
event(FIC_Send_Report_To_FM(SessionAWO)).

The �rst one tells us that if the FIC receives a challenge response from the FM then the FM
must have sent such response with the same SessionAWO sent by the FIC. This correspondence is
injective because the event on the right must be distinct for every occurrence of the event on the
left. The second one expresses the same concept in the opposite direction, but it is not injective as
the challenge from the FIC could actually be replayed and the FM would not have a way to know
that. This, anyway, is not a concern as the replayed message would not allow the attacker to know
the session key in any case.

16

3. Attestation of UA to UC. Once the UA process is started, it sends a report to the UC
in order to attest its identity. We prove that the attestation process in not manipulated by the
attacker with the correspondence:

event (UCAttestUA(MAC,UAIdentity, UCIdentity)) ==>
event (UAstartAttestUC(MAC, UAIdentity, UCIdentity)).

In other words, if the user container identi�ed by UCIdentity has received a report with the MAC
MAC from the UA identi�ed by UAIdentity, then the event UAstartAttestUC must have been
executed by the UA with UAIdentity with the same parameters received by the user container.

4. Send and Receive of Activation Token. This correspondence is used to check that when
the UA receives an activation token, it is indeed sent by the container that recon�gured it.

event (UAReceiveActivationToken(UAIdentity, UCIdentity, token)) ==>
event (UCSendActivationToken(UAIdentity,UCIdentity,token)).

Secrecy. Last, we want to be sure that the attacker cannot obtain the decryption key. The session
anti wear out value agreed between the FIC and FM is a further key value that, if compromised,
can break the the secrecy guarantee on the key, so we also query secrecy on this value. Finally,
the activation token must also remain secret or otherwise the attacker could activate an UA that
does not successfully attest its identity to the recon�guring container. The queries for secrecy are
the following:

query a t tacke r (new UCBitStreamKey) .
query a t tacke r (new SessionAWO) .
query a t tacke r (new ActivationToken) .

Assumptions. In order to simplify the proof of such properties, we can de�ne assumptions on
the attacker's knowledge that make ProVerif exclude some hypotheses and therefore speed up the
resolution process. The assumptions made are the following:

not a t ta cke r (PRIVILEGED_TOKEN) .
not a t ta cke r (new UCINITTOKEN) .
not a t ta cke r (new UAINITTOKEN) .

Basically, we say that the attacker cannot know the container's tokens used to generate the keys.
This is a reasonable assumption as the tokens are used to model the fact that the identities used
in the key derivation process are automatically and safely chosen by the trusted hardware on the
basis of the calling container.

4.5 Tests

A series of tests were carried out for various settings of ProVerif regarding the resolution process.
In particular, we considered the following settings:

• set setIgnoreType: this setting determines how ProVerif treats types. If it is set to true
then ProVerif ignores types, allowing the attacker to send ill-typed terms, while when set
to false the protocol complies with the type system and hence ill-typed terms are detected.
When this setting is true there are more chances to �nd an attack because type-�ow attacks
are detected; on the other hand, when set to false the state space is smaller and the veri�cation
faster.

• set attacker: we can choose to have an active or a passive attacker. A passive attacker
cannot send messages, but only read and do computation.

The protocol was run with all the four combinations of the above settings. All the de�ned
properties were proved to hold.

17

Compromised Keys. We cannot use the keyCompromise setting, which models compromised
keys for some sessions of the protocol, because this setting is incompatible with the use of phases
(which our model uses). Consequently, we represent the compromised sessions with a new process
that outputs its token on the public channel. First we model the violation of some user container's
tokens by introducing the following process:

l e t DishonestConta iner
(DISHONESTCONTSTRUC: cont ro lS t ruc tu r e , DISHONESTTOKEN: in i tToken) =

out (pubChannel , (DISHONESTCONTSTRUC,DISHONESTTOKEN)) .

and then we let the attacker know the token of the FIC and FM with the process:

l e t DishonestConta iner
(DISHONESTCONTSTRUC: cont ro lS t ruc tu r e , DISHONESTTOKEN: in i tToken) =

out (pubChannel , PRIVILEGED_TOKEN) .

As expected, in the �rst case all the properties still hold. In fact this is the case where the
attacker has control of a malicious container. This container, however, cannot do much to interfere
with the exchange of the key. On the contrary, when the attacker has the PRIVILEGED_TOKEN,
and hence controls the privileged container, all the properties are violated. In particular the
attacker can obtain the decryption key. This is not surprising since compromising this token means
that the attacker can impersonate the FIC and/or the FM. For this to happen, an attacker needs
to circumvent the trusted hardware and make it believe that it is actually a privileged container,
nullifying all the assumptions on the CPU security guarantee. To do that it would be necessary
to overwrite the attacker container's control structure, which is stored in protected memory and
is not even accessible by the container associated with the control structure. Only the processor
microcode (or hardware) can access that particular memory region and, therefore, the attacker
should be able to compromise the CPU microcode or to physically inject particular values at a
speci�c location of the RAM chip.

5 Conclusions and future work

This work proposed an architecture and a protocol for trusted platforms supporting secure appli-
cation containers that include an FPGA part. The solution can be mapped to existing trusted
computing solutions, e.g., Intel SGX, with limited impact mostly related to the software-side and
the FPGA-side runtime support. Importantly, a model of the protocol and the underlying trusted
computing mechanisms was developed to formally verify its properties. The formalism adopted for
the model was the Applied Pi Calculus, a process calculus speci�cally designed to verify security
protocols. The veri�cation was supported and automated by means of the ProVerif tool. The
results were encouraging as the modelled security properties were proved to hold under reasonable
assumptions regarding the platform integrity.

As a future work, we plan to investigate the actual technology mapping of the proposed archi-
tecture/protocol and deeper implementation-related aspects. These include the possible extension
of FPGA software runtime layers, e.g. Intel Open Programmable Acceleration Engine (OPAE), the
role of memory protection mechanisms enforced to the FPGA accelerators as well as the security
implications of relaxed memory consistency models, particularly when di�erent physical channels
are used as in the CCI-P interface provided by Intel Xeon+FPGA platforms.

References

[1] Intel Arria 10 Core Fabric and General Purpose I/Os Handbook.

[2] Martín Abadi and Cèdric Fournet. The Applied Pi Calculus: Mobile values, new names, and
secure communication. [Research Report] ArXiv., 2001.

[3] Baumann Andrew, Marcus Peinado, and Galen Hunt. Shielding applications from an untrusted
cloud with haven. ACM Transactions on Computer Systems, 2015.

[4] Hassan Artail, Mazen A. R. Saghir, Mageda Sharafeddin, Hazem Hajj, Abdulrahman Kaitoua,
Raghid Morcel, and Haitham Akkary. Speedy Cloud: Cloud computing with support for
hardware acceleration services. IEEE Transactions on Cloud Computing, 2017.

18

[5] Bruno Blanchet. Security protocol veri�cation: Symbolic and computational models. Pro-
ceedings of the First international conference on Principles of Security and Trust, 2012.

[6] Bruno Blanchet. Modeling and verifying security protocols with the Applied Pi Calculus and
ProVerif. Foundations and Trends in Privacy and Secruity, 2016.

[7] Bruno Blanchet. Symbolic and computational mechanized veri�cation of the ARINC823
avionic protocols. Diss. Inria Paris, 2017.

[8] Danny Dolev and Andrew C. Yao. On the security of public key protocols. IEEE Transactions
on information theory, 1983.

[9] Arnautov Sergei et al. SCONE: Secure linux containers with Intel SGX. OSDI, 2016.

[10] Ferraiuolo Andrew et al. Komodo: Using veri�cation to disentangle secure-enclave hardware
from software. Proceedings of the 26th Symposium on Operating Systems Principles, 2017.

[11] Liang Xueping et al. Man in the cloud (MITC) defender: SGX-based user credential protec-
tion for synchronization applications in cloud computing platform. IEEE 10th International
Conference on. IEEE, 2017.

[12] Pai Suhas et al. Formal veri�cation of OAUTH 2.0 using alloy framework. Communication
Systems and Network Technologies (CSNT), 2011.

[13] Schuster Felix et al. VC3: Trustworthy data analytics in the cloud using SGX. Security and
Privacy, 2015.

[14] Sinha Rohit et al. Moat: Verifying con�dentiality of enclave programs. Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security, 2015.

[15] N. Falliere, L. O. Murchu, and E. Chien. W32.Stuxnet dossier. Technical report, Symantec,
2011.

[16] J.Fowers, G.Brown, P.Cooke, and G. Stitt. A performance and energy comparison of FP-
GAs, GPUs, and multicores for sliding-window applications. SIGDA Int'l Symp. on Field
Programmable Gate Arrays, pp. 47-56, 2012.

[17] Millen J.K., Clark S.C., and Freedman. The Interrogator: Protocol security analysis. IEEE
Transactions on Software Engineering, 1987.

[18] Burrows M., Abadi M., and Needham R. A logic of authentication. Proceedings of the Royal
Society of London, 1989.

[19] C. Miller and C. Valasek. Remote exploitation of an unaltered passenger vehicle. Black Hat
USA, 2015.

[20] Robin Milner. Communicating and mobile systems: the Pi-Calculus. Cambridge University
Press, 1999.

[21] Durgin N., Mitchell J.C., and Pavlovic D. A compositional logic for proving security properties
of protocols. Journal of Computer Security, 2003.

[22] Martin Pitt. Modeling and veri�cation of security protocols. Dresden University of Technology,
Advanced seminar paper, 2012.

[23] Mark D. Ryan. Cloud computing security: The scienti�c challenge, and a survey of solutions.
The Journal of Systems and Software, 2013.

[24] Mark D. Ryan and Ben Smyth. Applied Pi Calculus. School of Computer Science, University
of Birmingham, United Kingdom, 2010.

[25] Trautman, Lawrence J., Ormerod, and Peter C. Corporate directors' and o�cers' cybersecu-
rity standard of care: The yahoo data breach. American University Law Review, 02/2017.

[26] Y.Shan, B.Wang, J.Yan, Y.Wang, N.Xu, and H. Yang. FPMR: Mapreduce framework on
FPGA. a case study of RankBoost acceleration. Proceedings of the 18th annual ACM/SIGDA
international symposium on Field programmable gate arrays. ACM, 2010.

19

	Introduction and motivation
	Reference baseline architecture
	Extended architecture and trusted computing mechanisms
	Threat Model
	Extended architecture-level support
	Details of the extended trusted computing mechanisms
	Keys wear out
	The Protocol
	Phase 1
	Phase 2
	Accessing the trusted user accelerators

	Outline of implementation-related aspects

	Formal verification
	The Applied Pi Calculus instance used in this work
	 and Equational Theory
	The Applied Pi Calculus model
	Communication
	Roles and processes
	process User Container
	process FIC
	process FM
	process UA

	Verification with ProVerif
	Security properties

	Tests

	Conclusions and future work

