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Abstract. In cut-and-choose protocols for two-party secure computa-
tion (2PC) the main overhead is the number of garbled circuits that
must be sent. Recent work (Lindell, Riva; Huang et al., Crypto 2014)
has shown that in a batched setting, when the parties plan to evaluate
the same function N times, the number of garbled circuits per execution
can be reduced by a O(logN) factor compared to the single-execution
setting. This improvement is significant in practice: an order of mag-
nitude for N as low as one thousand. Besides the number of garbled
circuits, communication round trips are another significant performance
bottleneck. Afshar et al. (Eurocrypt 2014) proposed an efficient cut-and-
choose 2PC that is round-optimal (one message from each party), but in
the single-execution setting.
In this work we present new malicious-secure 2PC protocols that are
round-optimal and also take advantage of batching to reduce cost. Our
contributions include:

– A 2-message protocol for batch secure computation (N instances
of the same function). The number of garbled circuits is reduced
by a O(logN) factor over the single-execution case. However, other
aspects of the protocol that depend on the input/output size of the
function do not benefit from the same O(logN)-factor savings.

– A 2-message protocol for batch secure computation, in the random
oracle model. All aspects of this protocol benefit from the O(logN)-
factor improvement, except for small terms that do not depend on
the function being evaluated.

– A protocol in the offline/online setting. After an offline preprocess-
ing phase that depends only on the function f and N , the parties
can securely evaluate f , N times (not necessarily all at once). Our
protocol’s online phase is only 2 messages, and the total online com-
munication is only ` + O(κ) bits, where ` is the input length of f
and κ is a computational security parameter. This is only O(κ) bits
more than the information-theoretic lower bound for malicious 2PC.

1 Introduction

Secure two-party computation (2PC) allows two parties to compute a function of
their inputs without revealing any other information. Yao’s garbled circuit pro-
tocol [46] provides an efficient general-purpose 2PC in presence of semi-honest

? Partially supported by NSF awards 1149647 & 1617197.

1



adversaries and has been the subject of various optimization [27,39,26,48]. The
most common approach for obtaining security against malicious adversaries is
the cut-and-choose paradigm wherein multiple circuits are garbled and a sub-
set of them are opened to check for correctness, while the remaining circuits
are evaluated to obtain the final output. A large body of work has focused on
making cut-and-choose 2PC more efficient by (i) reducing the number of gar-
bled circuits [29,42,28,18,30], (ii) minimizing rounds of interaction [1,10], and
(iii) optimizing techniques for checking consistency of inputs to the computation
[32,29,42,43,33,31].

Until recently, all protocols for cut-and-choose 2PC required at least 3λ gar-
bled circuits in order to ensure the majority output is correct with probability
1−2−λ. Lindell [28] proposed a new technique for recovering from cheating that
only relied on evaluation of one correct garbled circuit, hence reducing the num-
ber of garbled circuits to λ. The recent independent work of Lindell and Riva
[30], and Huang et al. [18], building on ideas from earlier work of [35,12], showed
how to further reduce the number of circuits to λ/O(logN) per execution, when
performing N instances of 2PC for the same function. This leads to signifi-
cant reduction in amortized communication and computation. For example for
N = 1024, only 4 garbled circuits per execution are sufficient to achieve cheat-
ing probability of less than 2−40. However, the proposed constructions require
at least 4 rounds of interaction between the parties, rendering round complexity
the main bottleneck when communicating over the internet as demonstrated in
the recent implementation of [31].

Previous Two-round 2PC and Shortcomings. A non-interactive secure com-
putation (NISC) protocol for general computation can be constructed from
Yao’s garbled circuit, non-interactive zero-knowledge proofs (NIZK), and fully-
secure one-round oblivious transfer (OT): P1, who is the evaluator of the circuit,
sends the first message of the OT protocol. P2, who is the circuit constructor,
returns a garbled circuit, the second message of the OT protocol, and a NIZK
proof that its message is correct. (See, for example, [7,17] for such protocols.)
Unfortunately, the NIZK proof in this case requires a non black-box use of cryp-
tographic primitives (namely, it must prove the correctness of each encryption
in each gate of the circuit).

Efficient NISC protocols that do not require such non black-box construc-
tions are presented in [20] based on the MPC-in-the-head technique of [21]. The
complexity of the NISC protocol of [20] is |C| ·poly(log(|C|), log(λ))+depth(C) ·
poly(log(|C|), λ) invocations of a Pseudo-Random Generator (PRG), where C is
a boolean circuit that computes the function of interest. (Another protocol pre-
sented in that work uses only O(|C|) PRG invocations, but is based on a relaxed
security notion.) Although the protocols in [20] are very efficient asymptotically,
their practicality is unclear and left as an open question in [20]. For instance, the
protocols combine several techniques that are very efficient asymptotically, such
as scalable MPC and using expanders in a non black-box way, each of which
contributes large constant factors to the concrete complexity.
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Afshar et. al [1], proposed a cut-and-choose 2PC with only two rounds of
interaction, with concrete efficiency comparable to the state-of-the-art single-
execution cut-and-choose 2PC. It is not clear how to adapt their solution to the
batched execution setting to achieve better amortized efficiency. In particular, in
batched cut-and-choose protocols, the sender generates and sends many garbled
circuits. The receiver chooses a random subset of these circuits to check, and
randomly arranges the remaining circuits into buckets. The kth bucket contains
the circuits that will be evaluated in the kth execution. A main step for turning
such a protocol into a NISC is a non-interactive mechanism for the “cut-and-
choose” step and the bucket assignment. While in the single-execution setting
this can be easily done using one OT per circuit [1], the task is more challenging
when assigning many circuits to N buckets.

However, a bigger challenge is that the sender has no way of knowing a priori
to which execution (i.e., which bucket) the ith circuit will be assigned. We must
design a mechanism whereby the receiver can learn garbled inputs of the ith
circuit that encode the input to kth execution, if and only if circuit i is assigned
to the kth execution. Furthermore, in a typical cut-and-choose protocol, different
mechanisms must be designed for checking consistency of the sender’s and the
receiver’s inputs. For example, the sender must convince the receiver that all
circuits in a particular bucket are evaluated with the same input, even though the
sender does not know in advance the association between circuits and inputs (and
other sibling circuits). Similarly, cheating-recovery enables the receiver to learn
the sender’s input if two valid circuits return different outputs in the same bucket.
However, existing techniques implicitly assume the sender knows all circuits
assigned to the same bucket, for example, by using the same wire labels on
output wires of those circuits.

To further highlight the difficulty, consider a simple solution where for each
garbled circuitGCi, the sender prepares its garbled inputs and the input-consistency
gadgets for all N possible bucket assignments and all inputs xk, k ∈ [N ]. Then,
for each circuit parties perform a 1-out-of-N OT where the receiver’s input is
the index k such that GCi is assigned to bucket k, and the sender’s inputs are
the N input garblings/gadgets for GCi. First, note that this is prohibitively ex-
pensive as it needs to be repeated for each circuit and incurs a multiplicative
factor of N2λ/ logN on input-related gadgets/commitments (compared to the
expected Nλ/logN or Nλ). Second, this still does not address how to route
receiver’s garbled input, and more importantly, how to incorporate cheating-
recovery techniques since the existing solutions also depend on the choice of
sibling circuits that are assigned to the same bucket.

Our Results. As discussed above, with current techniques, one either obtains
a two-round cut-and-choose 2PC that requires λ circuits per execution or a
multiple-round 2PC that requires O(λ/ logN) circuits per execution. The main
question motivating this work is whether we can obtain the best of both worlds
while maintaining concrete efficiency. Our results are several protocols that
achieve different combinations of features (summarized in Table 1):
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NISC RO-NISC online-offline

rounds 0 + 2 0 + 2 2 + 2
# GC O(Nλ/ logN) O(Nκ/ logN) O(Nλ/ logN)
# plain commit O(ninNλ/ logN) O(ninNκ/ logN) O(ninNλ/ logN)
# hom commit O(noutNλ/ logN) O(noutNκ/ logN) O(noutNλ/ logN)
OSN OTs O(nbothNλ) - -
other OTs O(ninN) O(ninN) O(ninN)

Table 1. Asymptotic efficiency of our protocols. nin, nout are number of input/output
wires. nboth = nin + nout. Rounds are listed as offline+online. κ is the computational
security parameter, and λ is the statistical security parameter.

– We propose the first cut-and-choose 2PC with two rounds of interaction that
only requires O(Nλ/ logN) garbled circuits to evaluate a function N times
in a single batch. The protocol is both asymptotically and concretely efficient
and can be instantiated in the standard model and using only symmetric-key
operations in the OT-hybrid model.

– In the above protocol, the number of garbled circuits is reduced by a factor
O(logN) compared to the single-execution setting. This is the only part of
the protocol whose cost depends on the size of the circuit for f . However,
several mechanisms in the protocol depend on the input/output length of f ,
and these mechanisms scale as O(Nλ) instead of O(Nλ/ logN).

We therefore describe a two-round protocol for batched 2PC in the random
oracle model, in which all aspects of the protocol benefit from batching. That
is, every part of the protocol whose cost depends on the choice of f scales
as O(κN/ logN) rather than O(κN).3

– In the offline-online setting, parties perform dedicated offline preprocessing
that depends only on the function f and number of times N they would like
to evaluate it. Then, when inputs are known, the parties can engage in an
online phase to securely obtain the output. The online phases need not be
performed in a single batch — they can happen asynchronously.

We describe a 2PC protocol in this offline-online setting. As in other offline-
online protocols [30,18,40], the total costs are reduced by a O(logN) factor.
Unlike previous protocols, our online phase consist of only 2 rounds. The
total online communication can be reduced to only |x| + |y| + O(κ) bits,
where x is the sender’s input, y is the receiver’s input, and κ is a compu-
tational security parameter. We note that |x| + |y| bits of communication
are required for malicious-secure 2PC,4 so our protocol has nearly optimal
online communication complexity.

3 The protocol still has some costs that scale with λN , but these are small and are
independent of f . The use of the computational security parameter κ in place of λ
is due to the Fiat-Shamir Heuristic (see Section 6.2).

4 Each party must send a message at least as long as his/her input, otherwise it is
information-theoretically impossible for the simulator to extract a corrupt party’s
input.
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Our Techniques. Our main NISC construction takes advantage of a two-round
protocol for obliviously mapping garbled circuits and their associated input/output
gadgets to many buckets while hiding from the garbler the bucket assignment
and consequently what inputs a circuits would be evaluated on. As a result, we
need to extend and adapt all existing techniques for obtaining garbled inputs,
performing input consistency checks and cheating-recovery to this new setting.

Another main ingredient of our constructions is a homomorphic commit-
ment scheme with homomorphic properties on the decommitment strings. Such
a primitive can be efficiently instantiated using both symmetric-key and public-
key primitives, trading-off communication for computation. We show how such a
commitment scheme combined with an oblivious switching network protocol [34]
allows a sender to obliviously open linear relations between various committed
values without a priori knowledge of the choice of committed values. See section
4.1 for a detailed overview of the techniques used in our main protocol.

2 Preliminaries

2.1 Garbled Circuits

Garbled Circuits were first introduced by Yao [47]. A garbling scheme consists of
a garbling algorithm that takes a random seed σ and a function f and generates
a garbled circuit F and a decoding table dec; the encoding algorithm takes input
x and the seed σ and generates garbled input x̂ ; the evaluation algorithm takes
x̂ and F as input and returns the garbled output ẑ; and finally, a decoding
algorithm that takes the decoding table dec and ẑ and returns f(x). We require
the garbling scheme to satisfy the standard security properties formalized in [6].
Our construction uses the garbling scheme in a black-box way and hence can
incorporate all recent optimizations proposed in the literature. In the offline-
online setting, the scheme needs to adaptively secure in the sense of [5].

2.2 Commitments

A standard commitment scheme Com allow a party to commit to a message m,
by computing C = Com(m; d) using a decommitment d. To open a commitment
C = Com(m; d), the committer reveals (m, d). The verifier recomputes the com-
mitment and accepts if it obtains the same C, and rejects otherwise. We require
standard standalone security properties of a commitment scheme:

– Hiding: For any a, b, the distributions Com(a; da) and Com(a; db), induced
by random choice of da, db, are indistinguishable.

– Binding: It is computationally infeasible to compute m 6= m′, d, d′ such that
Com(m; d) = Com(m′; d′).

Homomorphic commitments. In a homomorphic commitment scheme HCom, we
further require the scheme to be homomorphic with respect to an operation on
the message space denoted by ⊕. In particular given two commitments Ca =
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HCom(a, da) and Cb = HCom(b, db), the committer can open a ⊕ b (revealing
nothing beyond a⊕ b) by giving da ⊕ db.

Note that here we have assumed that the homomorphic operation also oper-
ates on the decommitment values. This is indeed the case for most instantiations
of homomorphic commitments, as we discuss in Section 5.2. The security prop-
erties are extended for homomorphic commitments as follows:

– Hiding: For a set of values v1, . . . , vn and a set S ⊆ [n], define v(S) = ⊕i∈Svi.
Then, informally, the hiding property is that commitments to v1, . . . , vn and
openings of v(S1), . . . , v(Sk) reveal no more than the v(S1), . . . , v(Sk) values.
More formally, for all v = (v1, . . . , vn),v′ = (v′1, . . . , v

′
n), and sets S1, . . . , Sk

where v(Sj) = v′(Sj) for each j, the following distributions are indistinguish-
able:

(Com(v1; d1), . . . ,Com(vn; dn); d(S1), . . . , d(Sk)),

and (Com(v′1; d1), . . . ,Com(v′n; dn); d(S1), . . . , d(Sk))

– Binding: Intuitively, it should be hard to decommit to inconsistent values.
More formally, it should be hard to generate commitments C1, . . . , Cn and
values {(Sj , dj ,mj)}j such that dj is a valid decommitment of

⊕
i∈Sj

Ci to

the value mj , and yet there is no solution (in the xi’s) to the system of

equations defined by equations:
{⊕

i∈Sj
xi = mj

}
j
.

2.3 Probe-Resistant Input Encoding

In garbled-circuit-based 2PC, the receiver uses oblivious transfers to pick up his
garbled inputs. A standard problem is that a malicious sender can give incorrect
wire labels in these OTs. Furthermore, if the sender gives an incorrect values for
only one of the pair of wire labels, then the receiver picks up incorrect values
(and presumably aborts), based on his private input. Hence, a malicious sender
causes the receiver to abort, depending on the receiver’s private input. This
cannot be simulated in the ideal world, so it is indeed an attack.

A standard way to deal with this is the idea of a probe-resistant matrix:

Definition 1 ([29,43]). A boolean matrix M ∈ {0, 1}n×n′
is λ-probe resis-

tant if for all R ⊆ [n], the Hamming weight of
⊕

i∈RMi is at least λ, where Mi

denotes the ith row of M .

The idea is for Bob, with input y to choose a random encoding ỹ such that
Mỹ = y. Then the parties will evaluate the function f̃(x, ỹ) = f(x,Mỹ) =
f(x, y). The matrix M can be public, so the computation Mỹ uses only XOR
operations (free in a typical garbling scheme [27]).

Suppose the parties perform n′ OTs. In each OT the sender provides two
items, and the receiver uses the bits of ỹ to select one. The items can be either
good or bad, and the receiver will abort if it receives any bad item. If for any
single OT, both inputs are bad, then the receiver will always abort. However, if
every OT has at least one good item, then the receiver will abort based on ỹ.
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Lemma 2 ([29,43]). Suppose M is λ-probe-resistant, and fix a set of sender’s
inputs to the OTs as described above. Let P (y) denote the probability that the
receiver aborts (i.e., sees a bad item) when it chooses a random ỹ such that
Mỹ = y, and uses ỹ as the choice bits in the OTs. Then for all y, y′, we have
|P (y)− P (y′)| = O(2−λ).

Hence, the abort probability is nearly independent of the receiver’s input,
when using this probe-resistant technique.

2.4 Secure Computation and the NISC Model

We consider security in the universal composability framework of Canetti [8]. We
refer the reader to that work for detailed security definitions. Roughly speaking,
the definition considers a real interaction and an ideal one.

In the real interaction, parties interact in the protocol. Their inputs are cho-
sen by an environment, and their outputs are given to the environment. An ad-
versary who attacks the protocol takes control of one of the parties and causes it
to arbitrarily deviate from the protocol. The adversary may also communicate
arbitrarily with the environment before/during/after the protocol interaction.

In the ideal interaction, parties simply forward their inputs to a trusted
party called a functionality. They receive output from the functionality which
they forward to the environment.

A protocol UC-securely realizes an ideal functionality if, for all adversaries
attacking the real world, there exists an adversary in the ideal world (called
a simulator) such that for all environments, the view of the environment is
indistinguishable between the real & ideal interactions.

NISC. Ishai et al. [20] defined a special model of secure computation called non-
interactive secure computation (NISC). A protocol is NISC if it consists of a
single message from one party to the other, possibly with some (static, parallel)
calls to some ideal functionality (typically an oblivious transfer functionality).

One can think of replacing the calls to an ideal oblivious transfer functionality
with a two-round secure OT protocol (like that of [38]). Then the NISC protocol
becomes a two-message protocol: in the first message the OT receiver sends the
first OT protocol message. In the second message, the OT sender sends the OT
response along with the single NISC protocol message.

2.5 Correlation Robust

One of our techniques requires a correlation-robust hash function. This property
was defined in Ishai et al. [19].

Definition 3 ([19]). A function H : {0, 1}κ → {0, 1}n is correlation robust
if F (s, x) = H(x ⊕ s) is a weak PRF (with s as the seed). In other words,

the distribution of:
(
x1, . . . , xm;H(x1⊕ s), . . . ,H(xm⊕ s)

)
is pseudrandom, for

random choice of xi’s and s.
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2.6 Compressed Garbled Inputs

Applebaum et al. [2] described a technique for randomized encodings with low
online complexity. In the language of garbled circuits, this corresponds to a way
to compress garbled inputs in the online phase of a protocol, at the expense of
more data in an offline phase. We abstract their primitive as a garbled input
compression scheme, as follows.

Let e = (e1,0, e1,1, . . . , en,0, en,1) be a set of wire labels (i.e., ej,b is the wire
label encoding value b on wire j). In a traditional protocol, the garbled encoding
of a string x is (e1,x1

, . . . , en,xn
), which is sent in the online phase of the protocol.

Using the approach of [2], we can do the following to reduce the online cost:

– In an offline phase, the garbler runs Compress(e) → (sk, ê), and sends ê to
the evaluator.

– In the online phase, when garbled encoding of x is needed, the garbler runs
Online(sk, x)→ x̂ and sends x̂ to the evaluator.

– The evaluator runs Decompress(ê, x, x̂), which returns the garbled encoding
(e1,x1 , . . . , en,xn).

The security of the compression scheme is that (ê, x̂, x) can be simulated given
only the garbled encoding (e1,x1

, . . . , en,xn
). In other words, the compressed en-

coding reveals no more than the expected garbled encoding.

In a traditional garbling scheme, the size of the garbled encoding is nκ.
Applebaum et al. [2] give constructions where the online communication x̂ has
size only n + O(κ). These constructions are proven secure under a variety of
assumptions (DDH, LWE, RSA). We refer the reader to their paper for details.

3 Switching Networks

3.1 Definitions

A switching network is a circuit of gates that we call switches, whose behavior
is described below. The network as a whole has n primary inputs (strings, or
more generally, elements from some group) and p programming inputs (bits).
All wires in the network have no branching. Each switch has two inputs and
two outputs. A switch is parameterized by an index j ∈ [p]. The behavior of
an individual switch is that when its primary input wires have values (X,Y )
and the jth programming input to the circuit is 0, then the outputs are (X,Y );
otherwise (the jth programming input is 1) the outputs are (Y,X).

Note that many switches can be tied to the same programming input. When S
is a switching network and π is a programming string, we let Sπ(X1, . . . , Xn) de-
note the output of the switching network when the primary inputs areX1, . . . , Xn

and its programming input is π.
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3.2 Oblivious Switching Network Protocol

In the full version, we describe the oblivious switching network (OSN)
protocol of [34]. The idea is that the parties agree on a switching network S.
The sender has inputs (X1, . . . , Xn) and (Z1, . . . , Zm). The receiver has input π,
and learns Sπ(X1, . . . , Xn)⊕ (Z1, . . . , Zm). The sender learns nothing.

The protocol can be instantiated with just one message (from sender to
receiver) in the OT-hybrid model. The cost of the protocol is essentially a 1-
out-of-2 OT (for values on the switching network’s wires) for each switch in the
network.

This protocol will be used as a subroutine in our main NISC functionality.
Yet we do not abstract the OSN protocol in terms of an ideal functionality. This
is because the protocol does not ensure that a malicious sender acts consistently
with the switching network. However, this turns out to be non-problematic in our
larger NISC protocol. We simply abstract out the properties of this subprotocol
as follows:

Observation 4 When the sender is honest and the receiver is corrupt, the sim-
ulator can extract the corrupt receiver’s programming string π. When the OTs in
step 2 are performed in parallel, the simulator extracts π before simulating any
outputs from these OTs.

Observation 5 When the sender is honest, the receiver’s view can be simulated
given only π and Sπ(X1, . . . , Xn)⊕ (Z1, . . . , Zm).

While we described the OSN protocol for the ⊕ operation, we note that it
is easy to replace ⊕ for any group operations. In particular, we also use the
protocol in scenarios where ⊕ represent homomorphic operations on message
domain and/or decommitment domain of a homomorphic commitment.

4 Batched NISC

In this section we describe a protocol for securely evaluating many instances
of the same function f in a single batch. The ideal functionality we achieve is
described in Figure 1.

Parameters: A function f and number N of instances.

Behavior: On input (y1, . . . , yN ) from the receiver, internally record these values
and send (input) to the sender. Later, on input (x1, . . . , xN ) from the sender, do the
following. If xi = ⊥ for any i, then give output ⊥ to the receiver. Otherwise compute
zi = f(xi, yi) for i ∈ [N ] and give (z1, . . . , zN ) to the receiver.

Fig. 1. Ideal functionality for batch 2PC
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We let N denote the number of instances of 2PC being executed, N̂ the num-
ber of garbled circuits computed and B the number of garbled circuits assigned
to each execution/bucket. For a full treatment of these parameters, we refer the
reader to [30]. For our purposes, we will assume that the parameters satisfy

the following combinatorial property: The adversary generates N̂ items, some
good, some bad. The items are randomly assigned into N buckets of B items
each. The remaining N̂ − NB items are opened. Then the probability that all
opened items are good while there exists a bucket with all bad items is at most
2−λ. Here λ is a statistical security parameter (often λ = 40). Asymptotically,

N̂ = O(λN/ logN) and B = O(λ/ logN).
Regarding our conventions for notation: we use i to index a garbled circuit,

j to index a wire in the circuit computing f , k to index a bucket (an evaluation
of f , or the special “check bucket” defined below), and l to index a position
within a bucket. We let SendInpWires,RecvInpWires,OutWires denote the set of
wire indices corresponding to inputs of Alice, inputs of Bob, and outputs of f ,
respectively.

4.1 Overview of Techniques

Bucket-Coupling via Switching Networks. Recall that the receiver must choose
randomly which circuits are checked, and which circuits are mapped to each
bucket. For simplicity, let us say that checked circuits are assigned to “bucket
#0.” Recall that the cut-and-choose statistical bounds require the receiver to
choose a random assignment of circuits into buckets. Suppose the cut-and-choose
parameters call for N buckets, B circuits per bucket, and N̂ > NB total circuits
(with N̂ −NB circuits being checked). Think of this process as first randomly

permuting the N̂ circuits, assigning the first N̂ − NB circuits to bucket #0,
assigning the next B circuits to bucket #1, and so on. More formally, we can
define public functions bkt and pos so that, after randomly permuting the circuits,
the ith circuit will be the pos(i)’th circuit placed in bucket bkt(i).

A main building block in our NISC protocol is one we call bucket coupling,
which is a non-interactive way to bind information related to garbled circuits to
information related to a particular bucket, under a bucketing-assignment chosen
by the receiver. Suppose the parties use the OSN subprotocol of Section 3, on a
universal switching network S, where the sender’s input is (A1, . . . , AN̂ ), (B1, . . . , BN̂ ),
and the receiver’s input is the programming string for a random permutation π.
Then the receiver will learn Aπ(i) ⊕Bi.

Interpret π as the receiver’s random permutation of circuits when assigning
circuits to buckets as described above. Then we can interchangeably use Bv and
Bbkt(v),pos(v), since there is a one-to-one correspondence between these ways of
indexing. We have the following generic functionality:

Bucket coupling: The sender has an item Ai for each circuit i, and
an item Bk,l for each position l in the kth bucket. The receiver holds a
bucketing assignment π. The receiver learns Ai ⊕ Bk,l if and only if π
assigns circuit i to position l of bucket k.
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We can perform many such couplings, all with respect to the same permu-
tation π. Simply imagine a switching network that is a disjoint union of many
universal switching networks, but where corresponding switches are programmed
by the same programming bit (this is enforced in the OSN protocol).

Of course, our OSN protocol does not guarantee consistent behavior by the
sender. Furthermore, the sender might not even use the expected inputs to the
OSN protocol. However, we argue that these shortcomings do not lead to prob-
lems in our larger NISC protocol. Intuitively, the worst the sender can do is
to cause inconsistent outputs for the receiver in a way that depends on the re-
ceiver’s choice of bucket-assignments π. But π is chosen independently of his
input to the NISC protocol! Hence the simulator can exactly simulate the abort
probability of the honest receiver, by sampling a uniform π just as the honest
receiver does.

Basic cut-and-choose. The sender Alice generates N̂ garblings {Fi}i of f (along
with some other associated data, described below). Let σi denote the seed used
to generate all the randomness for the ith circuit. The parties can perform a
coupling whereby Bob learns σi if and only if circuit i is assigned to
bucket 0 (in the notation above, Ai = σi and B0,l = 0κ and Bk,l random for
k 6= 0). Then every circuit mapped to bucket 0 (i.e., every check circuit) can be
verified by Bob.

Delivering the receiver’s garbled input. Let RecvInpWires denote the set of input
wires corresponding to Bob’s input to f . Let ini,j,b denote the input wire label on
the jth wire of the ith circuit, encoding logical bit b. When circuit i is mapped
to bucket k, we must let Bob obtain his garbled input value ini,j,b, where b is the
jth bit of Bob’s input for the kth execution. Recall that the association between
circuits (i) and executions (k) is not known to Alice.

Alice commits to each input wire label as follows, and sends the commitments
to Bob:

C in
i,j,b ← Com(ini,j,b; d

in
i,j,b)

The randomness for these commitments is derived from σi, so that the commit-
ments can be checked by Bob if circuit i is assigned to be a check-circuit.

Then, for each execution k ∈ [N ] and each j ∈ RecvInpWires, Alice chooses
random input tokens tokk,j,0 and tokk,j,1. The parties use an instance of OT so
that Bob picks up the correct tokk,j,b, where b is Bob’s input value on wire j in
the kth evaluation of f .

Let PRF be a PRF. Then for each b ∈ {0, 1}, j ∈ RecvInpWires the parties
perform a coupling in which Bob learns dini,j,b⊕PRF(tokk,j,b; l) if and only if
circuit i is assigned to position l of bucket k. If Bob has input bit b on the
jth wire in the kth evaluation of f , then he holds tokk,j,b and can decrypt the
corresponding dini,j,b and use it to decommit to the appropriate input wire label
for the ith garbled circuit. If he does not have input bit b, then these outputs of
the coupling subprocess look independently pseudorandom by the guarantee of
the PRF.
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If Alice sends inconsistent values into the coupling, then Bob may not receive
the decommitment values dini,j,b he expects. If this happens, then Bob aborts.
Because this abort event would then depend on Bob’s private input, we have
Bob encode his input in a λ-probe-resistant encoding, following the discussion in
Section 2.3. This standard technique makes Bob’s abort probability independent
of his private input.

Enforcing consistency of sender’s inputs. We must ensure that Alice uses the
same input for all of the circuits mapped to a particular bucket k 6= 0, despite
Alice not knowing which circuits will be assigned to that bucket. This must
furthermore be done without leaking Alice’s input to Bob in the process.

We use an approach similar to [31] based on a XOR-homomorphic commit-
ment scheme. But here the sender does not know a priori which committed
values’ XOR it needs to open. Hence, we need a mechanism for letting the re-
ceiver obliviously learn the decommitment strings for XOR of the appropriate
committed values.

For each circuit i, we have Alice choose a random string si and commit
individually to all of her input wire labels, permuted according to si. More
precisely, she computes commitments:

C in
i,j,0 ← Com(ini,j,si,j ; dini,j,0)

C in
i,j,1 ← Com(ini,j,si,j ; dini,j,1)

Here si,j denotes the jth bit of si. Hence C in
i,j,b is a commitment to the input

wire label representing truth value b⊕ si,j .
Alice also commits to si under a homomorphic commitment scheme Csi ←

HCom(si; d
s
i ). As before, the randomness used in all of these commitments is

derived from σi so the commitments can be checked in the cut-and-choose.
For each bucket k, Alice gives a homomorphic commitment to xk, her input

in that execution — Cxk ← HCom(xk; dxk). The parties perform a coupling so
that Bob learns dsi ⊕ dxk iff circuit i is assigned to bucket k. The result
is a decommitment value that Bob can use to learn si ⊕ xk. The soundness
of the commitment scheme ensures that Bob knows values oi = si ⊕ xk for a
consistent xk. Given that the commitments to Alice’s input wires (C in

i,j,b) are
arranged/permuted using si (a property enforced with high probability by the
cut-and-choose), the commitments indexed by oi correspond to the garbled in-
puts that encode the logical value xk. Hence, to ensure that Alice uses consistent
inputs within each bucket, Bob expects Alice to open the commitments indexed
by oi.

Routing the sender’s inputs. We must let Bob obtain garbled inputs encoding
Alice’s inputs to the ith garbled circuit. As above, when circuit i is mapped
to bucket k, it suffices to let Bob learn the decommitment to C in

i,j,oi,j
where

oi = si⊕ xk. The challenge is to accomplish this without Alice knowing a priori
which circuit i will be assigned to which bucket k, and hence which input xk
needs to be garbled. We propose a novel and efficient technique for this step
that, for each input wire, only requires one symmetric-key operation and the
routing of one string of length κ through the switching network.
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For each wire j ∈ SendInpWires, Alice chooses random ∆j . As a matter of
notation, when b is a bit, we let b∆j denote the value [if b = 0 then 0κ else ∆j ].

For each circuit i and wire j ∈ SendInpWires, Alice chooses random ri,j and
sends an encryption ei,j,b = H(ri,j⊕b∆j)⊕dini,j,b to Bob. Here H is a correlation-
robust hash function (Section 2.5).

For each wire j ∈ SendInpWires the parties perform a coupling in which Bob
learns (ri,j⊕ si,j∆j)⊕xk,j∆j if and only if circuit i is assigned to bucket
k. Simplifying, we see that Bob learns:

Ki,j = (ri,j ⊕ si,j∆j)⊕ xk,j∆j = ri,j ⊕ (si,j ⊕ xk,j)∆j = ri,j ⊕ oi,j∆j

Indeed, this is the key that Bob can use to decrypt ei,j,oi,j to obtain dini,j,oi,j .
He can then use this value to decommit to the wire label encoding truth value
xk,j , as desired. Bob will abort if he is unable to decommit to the expected wire
labels in this way. Here, the abort probability depends only on Alice’s behavior,
and is not influenced by Bob’s input in any way.

Note that the decommitment values for the “other” wire labels are masked
by a term of the form H(Ki,j ⊕∆j), where ∆j is unknown to Bob. Even though
the same ∆j is used for many such ciphertexts, the correlation-robustness of H
ensures that these masks look random to Bob.

Cheating Recovery. Lindell [28] introudced a cheating recovery technique, where if
the receiver detects the sender cheating, the receiver is able to learn the sender’s
input (and hence evaluate the function in the clear). This technique is crucial
in reducing the number of garbled circuits, since now only a single circuit in a
bucket needs to be correctly generated. Our protocol also adapts this technique,
but in a non-interactive setting. The approach here is similar to that used in
[1], but it is describe more generally in terms of any homomorphic commitment
scheme and of course adapted to the batch setting.

For each output bit j and each bucket k, Alice generates wk,j,0 at random
and sets wk,j,1 = xk − wk,j,0. The main idea is two-fold:

– We will arrange so that if Bob evaluates any circuit in bucket k and obtains
output b on wire j, then Bob will learn wk,j,b.

– Then, if Bob evaluates two circuits in the same bucket that disagree on their
output — say, they disagree on output bit j — then Bob can recover Alice’s
input xk = wk,j,0 + wk,j,1.

For technical reasons, we must introduce pre-output and post-output wire
labels for each garbled circuit. When evaluating a garbled circuit, the evaluator
obtains pre-output wire labels. We denote by douti,j,b the pre-output wire label
for wire j of circuit i encoding truth value b. We use this notation since the
pre-output wire labels are used as decommitment values.

Alice chooses random post-output wire labels, {outi,j,b} and generates a ho-
momorphic commitment to them using the pre-output labels as the randomness:

Cout
i,j,b ← HCom(outi,j,b; d

out
i,j,b)
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The technical reason for having both pre- and post-output labels is so that there
is a homomorphic commitment that is bound to each output wire of each circuit,
that can be checked in the cut-and-choose. Indeed, these commitments can be
checked in the cut-and-choose, since they use the circuit’s [pre-]output wire labels
as their randomness.

Separately, for each bucket k 6= 0, Alice generates and sends homomorphic
commitments:

Cw
k,j,b ← HCom(wk,j,b; d

w
k,j,b)

She sends a homomorphic opening to the linear expression wk,j,0 +wk,j,1−xk, to
prove that this expression is all-zeroes (i.e., to prove that wk,j,0 + wk,j,1 = xk).

Then, for each j ∈ outpwires and b ∈ {0, 1} the parties do a coupling in
which Bob learns douti,j,b⊕dwk,j,b when circuit i is assigned to bucket k. Bob
can use the result to decommit to the value of outi,j,b ⊕ wk,j,b.

Putting things together, Bob evaluates a circuit i assigned to bucket k. He
learns the corresponding pre-output wire labels douti,j,b, which he uses to decommit
to the post-output wire labels outi,j,b. Since he has learned outi,j,b ⊕wk,j,b from
the coupling, he can therefore compute wk,j,b (a bucket-specific value, whereas
outi,j,b was a circuit-specific value). If any two circuits disagree in their output,
he can recover the sender’s input xk as described above and compute the correct
output. Otherwise, since at least one circuit in the bucket is guaranteed (by the
cut-and-choose bounds) to be generated honestly, Bob can uniquely identify the
correct output.

4.2 Detailed Protocol Description

We present our complete protocol in Figure 2. We refer the reader to the full
version for the proof of the following Theorem.

Theorem 6. The protocol in Figure 2 is a UC-secure realization of the func-
tionality in Figure 1.

5 Protocol Efficiency & Choice of Commitments

We review the efficiency of our construction. First, we note that besides the
calls to an ideal OT (in the main protocol and also in the OSN subprotocol),
the protocol consists of a monolothic message from Alice to Bob (containing
garbled circuits, commitments, etc). All instances of OT are performed in par-
allel. Hence, ours is a NISC protocol in the sense of [20]. Concretely, the OT
can be instantiated with a two-round protocol such as that of [38], making our
protocol also a two-round protocol (Bob sends the first OT message, Alice sends
the second OT message along with her monolothic NISC protocol message.)
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Parameters: A function f and number N of instances. N̂ denotes the number of
garbled circuits, chosen according to the discussion in the text. λ is the statistical
security parameter.

Inputs: Alice has inputs (x1, . . . , xN ) and Bob has inputs (y1, . . . , yN ).

1. Bob chooses a random permutation π, and uses it as input to all coupling sub-
protocols below (i.e., all couplings are performed in parallel and bound to the
same π). The parties agree on a λ-probe resistant matrix M , and Bob encodes
each yk as ỹk where Mỹk = yk.

2. For each circuit i ∈ [N̂ ]: Alice chooses a PRF seed σi and uses it to derive all
randomness used in this step of the protocol:
Alice generates a garbling of the function f̃(x, ỹ) = f(x,Mỹ); let Fi denote the
garbled circuit, and let ini,j,b (resp. douti,j,b) denote the input (resp. output) wire
label encoding truth value b on wire j of circuit i. She sends each Fi to Bob.
Alice chooses random “post-output” keys {outi,j,b}j∈OutWires,b∈{0,1}. She gener-
ates and sends the following commitments (where din and ds values are derived
randomly from σi):

C in
i,j,b ← Com(ini,j,b⊕si,j ; dini,j,b⊕si,j ) for j ∈ SendInpWires, b ∈ {0, 1}

C in
i,j,b ← Com(ini,j,b; d

in
i,j,b) for b ∈ {0, 1}, j ∈ RecvInpWires

Cout
i,j,b ← HCom(outi,j,b; d

out
i,j,b) for b ∈ {0, 1}, j ∈ OutWires

Csi ← HCom(si; d
s
i )

3. The parties perform a coupling with input for Alice {σi}i, all-zeroes masks for
bucket #0, and random masks for other buckets. Bob learns σi if circuit i is
mapped to bucket 0. For such i, Bob checks that Fi and corresponding commit-
ments from the previous step are generated using randomness derived from σi,
and aborts if this is not the case.

4. For j ∈ SendInpWires, Alice chooses a random ∆j . For j ∈ SendInpWires, i ∈ [N̂ ],
Alice chooses a random ri,j . Alice generates and sends input-encryptions:

ei,j,b = H(ri,j ⊕ b∆j)⊕ dini,j,b

5. For k ∈ [N ], j ∈ OutWires, Alice chooses random wk,j,0 and sets wk,j,1 = xk ⊕
wk,j,0 (recall xk is her input to the kth execution). Alice generates and sends
commitments:

Cw
k,j,b ← HCom(wk,j,b; d

w
k,j,b) for k ∈ [N ], j ∈ OutWires, b ∈ {0, 1}

Cxk ← HCom(xk; dxk) for k ∈ [N ]

Alice also gives homomorphic decommitments:

dwk,j,0 ⊕ dwk,j,1 ⊕ dxk for k ∈ [N ], j ∈ OutWires

Bob aborts if these values do not decommit Cw
k,j,0 ⊕Cw

k,j,1 ⊕Cxk to the all-zeroes
string.

(protocol description continues. . .)

Fig. 2. Batch NISC protocol
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6. For k ∈ [N ], j ∈ RecvInpWires, Alice chooses random tokk,j,0, tokk,j,1. Parties
engage in an instance of OT with inputs (tokk,j,0, tokk,j,1) for Alice and ỹk,j (i.e.,
jth bit of ỹk) for Bob. Bob gets input tokk,j,ỹk,j .

7. For k ∈ [N ], j ∈ RecvInpWires, b ∈ {0, 1}, the parties perform a coupling
with inputs {dini,j,b}i, {PRF(tokk,j,b; l)}k,l for Alice. Bob learns βi,j,b = dini,j,b ⊕
PRF(tokk,j,b; l) when circuit i is assigned to position l of bucket k. Bob aborts if
βi,j,ỹi,j ⊕ PRF(tokk,j,ỹi,j ; l) is not a valid decommitment of C in

i,j,ỹi,j
. Otherwise,

Bob sets in∗i,j to be the result of the decommitment.
8. The parties perform a coupling with input {dsi}i, {dxk}k for Alice. Bob learns

dsi ⊕ dxk when circuit i is assigned to bucket k, and aborts if this is not a valid
opening of Csi ⊕Cxk . Otherwise, Bob sets oi to be the result of this decommitment.

9. For k ∈ [N ], j ∈ SendInpWires the parties perform a coupling with input {ri,j ⊕
si,j∆j}i, {xk,j∆j}k for Alice. Bob learns Ki,j = (ri,j ⊕ si,j∆j) ⊕ xk,j∆j when
circuit i is assigned to bucket k.
For i ∈ [N̂ ], j ∈ SendInpWires, Bob aborts if ei,j,oi,j ⊕ H(Ki,j) is not a valid

decommitment to C in
i,j,oi,j . Otherwise, Bob sets in∗i,j to be the result of this de-

commitment.
10. For j ∈ OutWires, b ∈ {0, 1} the parties perform a coupling with input
{douti,j,b}i, {dwk,j,b}k for Alice. Bob gets douti,j,b⊕dwk,j,b if circuit i is assigned to bucket
k. Bob aborts if this value is not a valid decommitment to Cout

i,j,b ⊕Cw
k,j,b. Other-

wise, Bob sets δi,j,b to be the result of the decommitment.

11. For i ∈ [N̂ ], where circuit i has not been mapped to bucket #0: Bob evaluates
garbled circuit Fi with input wire labels {in∗i,j}j∈SendInpWires∪RecvInpWires. The result
is plain output zi and corresponding pre-output wire labels {douti,j,zi,j}. If for some

j, douti,j,zi,j is not a valid decommitment of Cout
i,j,zi,j then Bob changes zi = ⊥.

Otherwise, Bob opens the commitments to obtain outi,j,zi,j values.
12. For each bucket k 6= 0: If zi = ⊥ for all i assigned to this bucket, then abort. If

there are zi 6= zi′ , neither of them ⊥, in this bucket, then let j be some position
for which zi,j 6= zi′,j . Bob computes

x̃k = (outi,j,zi,j ⊕ δi,j,zi,j )⊕ (outi′,j,zi′,j ⊕ δi′,j,zi′,j )

and sets z∗k = f(x̃k, ỹk). Otherwise, let z∗k be the unique value such that zi ∈
{⊥, z∗k} for all i in this bucket.

13. Bob outputs z∗1 , . . . , z
∗
N .

Continuation of Figure 2.

5.1 Effect of Oblivious Switching Network

From Table 1 we see that the parts of the protocol that involve the oblivious
switching network (OSN) scale with Nλ, whereas everything else scales with
Nλ/ logN (or independent of λ altogether). The logN term in the denominator
is a result of savings by batching the cut-and-choose step. In particular, the num-
ber of garbled circuits (which is the main communication overhead in general),
as well as their associated commitments, benefits from batching.

However, information related to the various commitments is sent as input into
the OSN. The OSN incurs a log N̂ overhead which “cancels out” the benefits of
batching, for these values. We elaborate on this fact:
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We instantiate the OSN with a Waksman network [45], which is a universal
switching network (i.e., it can be programmed to realize any permutation). Each

“bucket coupling” step requires a permutation on N̂ items, leading to a Waksman
network with O(N̂ log N̂) = O(Nλ) switches.

Note that only decommitment and similar values are processed via the OSN
subprotocol (bucket coupling steps). The garbled circuits and their associated
commitments are not.

5.2 Instantiating Homomorphic Commitments

Pedersen Commitment Let g be the generator for a prime order group G
where the discrete-log problem is hard, and let h = gx for a random secret x. In
our setting g, h can either be chosen by the receiver and sent along with its first
OT message, or it can be part of a CRS.

In Pedersen commitments [37], to commit to a messagem, we let Com(m; r) =
gmhr for a random r. The decommitment string is (m, r). The scheme is statisti-
cally hiding and computationally binding. It is also homomorphic (with respect
to addition over Zp) on the message space and the decommitment. In particu-
lar, given Com(m; r) and Com(m′; r′), we can decommit to m + m′ by sending
(m+m′, r+r′) to the receiver who can check whether Com(m; r) ·Com(m′; r′) =
gm+m′

hr+r
′
.

Regarding their suitability for our scheme: Clearly Pedersen commitments
have optimal communication overhead (commitment length is equal to the mes-
sage length). However, they require exponentiations in a DH group. In practice
these operations are much slower than symmetric-key primitives like hash func-
tions or block ciphers, which would be preferred. Pedersen commitments are ho-
momorphic over the group (Zp,+). For many of the commitments in our scheme
(in particular, the outi,j,b and wk,j,b values) the choice of group is not crucial,
but we actually require the commitments to xk and si to be combined with re-
spect to bitwise XOR. Later in this section we discuss techniques for combining
Pedersen commitments with other kinds of homomorphic commitments.

OT-based homomorphic commitments We discuss a paradigm for homo-
morphic commitments based on simple OTs.

Starting point. Our starting point is an XOR-homomorphic commitment of Lin-
dell and Riva [31], that is further based on a techique of Kilian [24] for proving
equality of committed values (i.e., proving that the XOR of two commitments is
zero). The Lindell-Riva commitment has an interactive opening phase, but we
will show how to make it non-interactive.

Let Com be a regular commitment. To generate a homomorphic commit-
ment to message m, the sender secret shares m0 ⊕m1 = m and generates plain
commitments Com(m0) and Com(m1).

Suppose commitments to m and m′ exist (i.e., there are plain commitments
to m0,m1,m

′
0,m

′
1). To open m⊕m′ the parties do the following:

– Preamble: the sender gives ∆ = m ⊕m′ (the claimed xor of the two com-
mitments) and δ = m0 ⊕m′0
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– Challenge: receiver chooses random b← {0, 1}
– Response: sender opens Com(mb) and Com(m′b). Receiver checks: mb⊕m′b

?
=

δ ⊕ b∆

This scheme has soundness 1/2, but can be repeated in parallel λ times to achieve
soundness 2−λ.

If we settle for the Fiat-Shamir technique to generate the challenge bits, the
above scheme can easily become non-interactive. Similarly, in the offline-online
variant of our construction where the commitments and preambles can all be
sent in the offline phase, the online phase will be non-interactive (challenge and
response). But for our main construction in the standard model, we need to
make the above scheme non-interactive.

Making it non-interactive. In our NISC application, we already assume access
to an ideal oblivious transfer functionality. Then the above approach can be
modified to both do away with the standalone commitments and to make a
non-interactive decommitment phase.

The idea is to replace commitments and a public challenge with an instance
of OT. To commit to m, the commitment phase proceeds as follows:

– The receiver chooses a random string b = b1 · · · bλ and uses the bits of b as
choice bits to λ instances of OT.

– The sender chooses λ pairs (m1,0,m1,1), . . . , (mλ,0,mλ,1) so that mi,0 ⊕
mi,1 = m. The sender uses these pairs as inputs to the instances of OT.
Hence, the receiver picks up mi,bi .

We note that when committing to many values as is the case in our constructions,
the same OTs are used for all commitments. That is, the same challenge bits b
are used for all commitments.

Suppose two such commitments have been made in this way, to m and to
m′. Then to decommit to ∆ = m ⊕ m′ the sender can simply send ∆ and
δ = (δ1, . . . , δλ) = (m1,0 ⊕ m′1,0, . . . ,mλ,0 ⊕ m′λ,0). The receiver can check the
soundness equations:

mi,bi ⊕m′i,bi
?
= δi ⊕ bi∆

Note that the same bi challenges are shared for all commitments, so the receiver
will indeed have mi,bi and m′i,bi for a consistent bi. Since the sender’s view
is independent of the receiver’s challenge b, soundness follows from the same
reasoning as above.

In this way, the decommitment string for a commitment tom is (m,m1,0, . . . ,mλ,0).
Furthermore, to decommit to m ⊕m′, the decommitment value is the XOR of
the individual decommitment values. In other words, the scheme satisfies the
homomorphic-opening property described in Section 2.2. Finally, note that since
we use the same challenge bits for all commitments, it easy to prove multiple
XOR relations involving the same committed value.

Code-based homomorphic commitments. A recent series of works [11,13] con-
struct homomorphic commitments from an oblivious-transfer-based setup.
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Looking abstractly at our presentation of the Lindell-Riva commitment above,
their construction takes the payloadm and generates (m1,0,m1,1, . . . ,mλ,0,mλ,1),
where (m1,0 ⊕m1,1, . . . ,mλ,0 ⊕mλ,1) is an encoding of m. In this case, the en-
coding is a λ-repetition encoding.

The idea behind [13] is to choose an encoding with better rate. Namely, the
sender generates (m1,0,m1,1, . . . ,mn,0,mn,1), where (m1,0 ⊕ m1,1, . . . ,mn,0 ⊕
mn,1) encodes m in some error-correcting code. Here the total length of the
encoding may be much smaller than 2λ|m| as in the Lindell-Riva scheme. The
binding property of the construction is related to the minimum distance of this
code. We refer the reader to [13] for details about the construction and how to
choose an appropriate error-correcting code. Instead, we point out some facts
that are relevant to our use of homomorphic commitments:

– When the error-correcting code is linear, then the commitments are addi-
tively homomorphic. Following our pattern, the decommitment value for a
commitment is the vector (m,m1,0, . . . ,mn,0). These decommitment values
are indeed homomorphic in the sense we require.

– The rate of a commitment scheme is the length of the commitment’s payload
divided by the communication cost of the commitment. For example, the
Lindell-Riva scheme has rate O(1/λ). By a suitable choice of error-correcting
codes, the rate of the scheme in [13] can be made constant, or even 1 + o(1).
Concretely, to commit to 128 bits requires the committer to send only 262
bits when using an appropriate BCH code, leading to a rate 0.49.

Unfortunately, unlike the Lindell-Riva construction, the scheme of [13] requires
some additional interaction in the setup phase. In particular, there must be some
mechanism to ensure that the sender is indeed using valid codewords. The sender
can violate binding, for instance, by choosing a non-codeword that is “halfway
between” two valid codewords. In [13], after the parties have performed the OTs
of the setup phase, the receiver challenges the sender to open some random
combination of values to ensure that they are consistent with valid codewords.

Removing this interaction turns out to be problematic. In our offline/online
application the extra interaction is in the offline phase, and so not a problem. In
our offline/online application we therefore use this highly efficient commitments.
However, we cannot afford the extra round of interaction in our batch NISC ap-
plication. Hence, our options are: (1) use less efficient homomorphic commitment
schemes like the Lindell-Riva one; (2) remove the round of interaction using the
Fiat-Shamir heuristic, since the receiver’s challenge is random.

5.3 Reducing Cost of Homomorphic Commitments

We described our main protocol without specifying exactly which homomorphic
commitment to use. Based on the previous discussion, we have several options,
none of them ideal:

– Pederson commitments, which are rate 1, but require public-key operations
and are homomorphic only with respect to addition in Zp.
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– Lindell-Riva-style commitments based on OTs, which have rate O(1/λ) and
are homomorphic with respect to XOR.

– FJNT [14] commitments, which have constant rate and are homomorphic
with respect to XOR, but require some interaction in the initialization step
(unless one is satisfied with the Fiat-Shamir heuristic).

The only “off-the-shelf” choice that is compatible with our construction is
the Lindell-Riva-style commitments, which are the least efficient in terms of
communication.

We therefore describe two methods to significantly improve the efficiency
related to homomorphic commitments in our construction.

Linking Short-to-Long Commitments. The protocol performs homomorphic de-
commitments that combine xk and wk,j,b values — hence, these values must
have the same length (|SendInpWires|). There is an wk,j,b value for each bucket
k ∈ [N ] and each circuit output wire j ∈ OutWires. Accounting for the total
communication cost for these commitments in the Lindell-Riva-style scheme,
we get O(λN |OutWires| · |SendInpWires|). For circuits with relatively long in-
puts/outputs, the cost |OutWires| · |SendInpWires| is undesirable.

We propose a technique for reducing this cost when |SendInpWires| is long
(longer than a computational security parameter κ). Recall that the purpose of
the wk,j,b values is that if the receiver learns both wk,j,0 and wk,j,1, then he can
combine them to learn xk. We modify the construction so that the sender gives
a homomorphic commitment to a random (“short”) wk for each bucket k, where

wk,j,0 ⊕ wk,j,1 = wk (∀j ∈ OutWires)

(i.e., we have replaced xk with wk in the above expression). The wk,wk,j,b values
have length κ, so the total cost of these commitments to wk,j,b isO(κλN |OutWires|).

Now we must modify the protocol so that if the receiver ever learns wk, then
he (non-interactively) can recover xk, where wk is “short” and xk is “long.” Recall
that to commit to xk and wk in the Lindell-Riva scheme, the sender needs to gen-
erate λ independent additive sharings: {xk,0,i, xk,1,i}i∈[λ] and {wk,0,i,wk,1,i}i∈[λ]
and using them as sender’s inputs to the challenge OTs. To “link” wk to xk,
we simply have the sender also send ciphertexts {Enc(wk,b,i;xk,b,i)}i∈[λ],b∈{0,1},
i.e. encrypting each additive share of xk using the corresponding share of wk as
the key. Note that Enc can be a symmetric-key encryption scheme and therefore
relatively fast.

In the Lindell-Riva scheme, the receiver learns one share from each pair
of shares. He learns either (wk,0,i, xk,0,i) or (wk,b,i, xk,b,i). Hence, the receiver
can check half of the ciphertexts sent by the sender, and abort if any are not
correct/consistent. If the receiver doesn’t abort, this guarantees that with high
probability the majority of these linking encryptions are correct. To bound the
probability of error to 2−λ, we must increase the number of parallel repetitions
to ∼ 3λ.

Now if the receiver learns wk at some later time, it can solve for both shares
wk,0,i,wk,1,i for every i, and use them to decrypt the shares xk,0,i, xk,1,i. The
receiver thus recovers xk as the majority value among all xk,0,i ⊕ xk,1,i.
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If the receiver never cheats, then the value of xk remains hidden by the
semantic security of the Enc-encryptions.

Replacing with Pedersen Commitments. We can reduce the κλ term in the com-
munication complexity to κ by using Pedersen commitments for the output wires.
In particular, O(|OutWires|N̂) Pedersen commitments are sufficient for commit-
ting to the wk, wk,j,b, and outi,j,b values. However, we also need to “link” wk
to xk. To do so, we can use the input consistency check technique used in [1]
that uses an El Gamal encryption of xk, and algebraically links the Pedersen
commitments to the output wires with the Elgamal encryption of the input. We
refer the reader to [1] for details of this approach.

We note that the use of Pedersen Commitments provides a trade-off between
communication and computation as the computation cost will likely increase due
the public-key operations required by the scheme, but we save on the communi-
cation requires for cheating-recovery.

Reducing communication using the Seed Technique. In the full version of the
paper, we show how to further reduce communication of our protocol by incor-
porating the seed technique of [16,1] wherein only the garbled circuits that are
evaluated are communicated in full.

6 Optimizations for the Offline-Online Setting & Random
Oracle Model

Using the random oracle model, we can remove or improve several sources of
inefficiency in our construction. To introduce these improvements, we first de-
scribe a 2PC protocol in the offline-online setting, which may be of independent
interest.

6.1 Offline-Online Protocol

The setting. In this setting, the parties know that they will securely evaluate
some function f , N times (perhaps not altogether in a single batch). In an
offline phase they perform some pre-processing that depends only on f and N .
Then, when it comes time to securely evaluate an instance of f , they perform
an online phase that is as inexpensive as possible, and depends on their inputs
to this evaluation of f .

We will describe how to modify our NISC protocol to obtain an offline-online
2PC protocol where:

– The offline phase is constant-round.
– Each online phase is two rounds, consisting of a length-|y| message from the

receiver Bob followed by a message of length (|x|+ |y|)κ (or |x|+ |y|+O(κ),
after further optimization) from Alice.

– The total cost of N secure evaluations of f is O(N/ logN) times that of
a single secure evaluation. In particular, batching improves all aspects of
the protocol by a logN factor (unlike in the NISC protocol where the cost
associated with circut inputs/outputs did not have a logN -factor saving).
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Removing the Switching Network. Recall that in our NISC protocol the costs
associated with garbled circuits scale as O(N/ logN), while the costs associated
with circuit inputs/outputs scales as O(N). The reason is that decommitment
information related to inputs/outputs is sent through the oblivious switching

network (OSN). The switching network has log N̂ depth, and incurs a log N̂
factor overhead that cancels out the logN savings incurred by the batch cut-
and-choose.

The main reason for the oblivious switching network protocol was to non-
interactively choose an assignment of circuits to buckets. We showed how to
perform this task using a two-round OSN protocol in the standard model. How-
ever, the assignment of circuits to buckets can be done in the offline phase, as it
does not depend on the parties’ inputs to f .

Let π denote the receiver’s assignment of circuits to buckets. In the non-
interactive setting, it was necessary to hide π from the sender — the sender
cannot know in advance which circuits will be checked in the cut-and-choose.
However, in principle π does not need to be completely secret; it merely suffices
for it to be chosen after the sender commits to the garbled circuits.

When we allow more interaction in the offline phase, we can do away with the
oblivious switching network (and its log N̂ overhead on garbled inputs/outputs)
altogether. The main changes to remove the OSN subprotocols are as follows:

– The receiver chooses a random assignment π and commits to it.
– For the coupling subprotocols involving σi, we instead have the sender com-

mit individually to each σi. The sender also sends all of the garbled circuits
and various commitments, just as in the NISC protocol.

– After the σi’s are committed, the receiver opens the commitment of π.
– The sender opens the commitments to σi for i assigned to be checked. This

allows the receiver to learn the σi’s while avoiding the bucket-coupling sub-
protocol involving these values. For all other couplings, the sender simply
sends whatever the receiver’s output would have been in the NISC protocol.
This is possible since the sender knows π.

In this way, we remove all invocations of the switching network, and their asso-
ciated O(log N̂) overhead.

To argue that the protocol is still secure, we need to modify the simulator for
the NISC protocol. When the sender is corrupt, the simulator extracts the σi val-
ues, but does not use any special capabilities for the other couplings — it merely
runs these couplings honestly and uses only their output. In this offline/online
modification, the simulator can still extract the σi’s from the commitments.
Then it can receive the other values (formerly obtained via the couplings) di-
rectly from the sender. To simulate a corrupt receiver, the simulator need only
extract the commitment to π in the first step, similar to how the NISC simula-
tor extracts π as its first operation. However, in this setting the inputs to the
function are chosen after the receiver has seen the garbled circuits. Hence, we
require a garbling scheme that has adaptive security [5].

Note that in this setting we can apply the optimization of Goyal et al. [16]:
the sender can initially send only a hash of each garbled circuit. For circuits that
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are assigned to be checked, it is not necessary to send the entire garbled circuit –
the receiver can simply recompute the circuit from the seed and compare to the
hash. Only circuits that are actually evaluated must be sent. This optimization
reduces concrete cost by a significant constant factor.

Optimizing Sender’s Garbled Input. First, we can do away with the encryptions
ei,j,b (step 4) and the associated coupling (step 9). These were needed only to
route the sender’s inputs to the correct buckets without a priori knowledge of the
bucketing assignment. Instead, the sender (after learning the bucketing assign-
ment) can simply directly send the decommitments to the correct commitments
to her garbled input.

Besides this optimization, we observe that the NISC protocol uses the sender’s
input xk in several places. We briefly describe ways to move the bulk of these
operations to the offline phase.

Offline commitments to sender’s input: In the NISC protocol the sender gives
a homomorphic commitment to xk. For each circuit i assigned to bucket k, the
receiver learns the decommitment to si⊕xk, and in the online phase will expect
the sender to open commitments indexed by si ⊕ xk, since these will be the
commitments to wire labels holding truth value xk. Furthermore, the sender
chooses bucket-wide values wk,j,b so that xk = wk,j,0 ⊕ wk,j,1. The idea is that,
if the receiver obtains conflicting outputs within a bucket, he can learn xk.

To reduce the online dependence on xk, we make the following change. Instead
of giving a homomorphic commitment to xk, the sender uses a random value µk.
Since µk is unrelated to her input xk, all of the commitments and homomorphic
openings can be done in the offline phase. In other words, the homomorphic
commitments are arranged so that the receiver learns µk ⊕ si, and so that the
receiver learns µk if he obtains conflicting outputs in the bucket. Then in the
online phase, the sender simply gives xk⊕µk in the clear. The receiver will expect
the sender to open commitments indexed by (xk ⊕ µk)⊕ (µk ⊕ si) = xk ⊕ si. If
cheating is detected, the receiver learns µk and thus obtains xk = (xk⊕µk)⊕µk.

Packaging together sender’s garbled inputs: Suppose there are B circuits as-
signed to each bucket. The receiver will be expecting the sender to decommit to
B values for each input bit (j ∈ SendInpWires). This leads to O(B|x|κ) commu-
nication from the sender in each execution.

But since the sender knows the bucket-assignment in the offline phase, she
can “package” the corresponding decommitment values together in the following
way. For each of her input wires j ∈ SendInpWires and value b ∈ {0, 1} the sender
can choose a bucket-specific token tokk,j,b. Then, in she can encrypt all of the B
different openings that will be necessary in the event that she has truth value b
on wire j in the online phase. She can generate these ciphertexts in the offline
phase and send them (in a random order with respect to the b-values). Then in
the online phase, she need only send a single tokk,j,b value for each bit of her
input, at a cost of only |x|κ per execution.

Optimizing Receiver’s Garbled Input. In the online phase, the parties must per-
form the OTs for the receiver’s inputs. As in the NISC protocol these OTs are
already on bucket-wide “tokens” and not B sets of wire labels per input wire.
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Note that the number of OTs per execution is |ỹk|, where ỹk is the λ-probe-
resistant encoding of the receiver’s true input yk. Indeed, ỹk is longer than yk
by a significant constant factor in practice. However, we can reduce the online
cost to |yk| by using an optimization proposed by Lindell & Riva [31] in their
offline/online protocol, which we describe below:

Recall that M is the λ-probe-resistant matrix, and the parties are evaluating
the function f̃(x, ỹ) = f(x,Mỹ). We instead ask the parties to evaluate the
function g(x, r̃,m) = f(x,m ⊕ Mr̃). Note that r̃ is the length of a λ-probe-
resistant-encoded input, while m has the same length as y. The idea is for Bob
to choose an encoding r̃ of a random r, in the offline phase. The parties can
perform OTs for r̃ in the offline phase. Then in the online phase, Bob announces
m = r ⊕ y in the clear. Alice must then decommit to the input wire labels
corresponding to m (in the protocol description we refer to these input wires of
g as PubInpWires). As above, the decommitments for all B circuits in this bucket
can be “packaged” together with encryptions sent in the offline phase. Therefore,
the online cost attributed to the receiver’s input is the receiver sending m and
the sender sending |m| encryption keys (where |m| = |y|).
Futher compressing the online phase. Using the optimizations listed above, each
online phase consists only of a length-|y| message from Bob and a reply from
Alice of length (|x|+ |y|)κ. However, we point out that the message from Alice
can be shortened even further using a technique of Applebaum et al. [2] that
we summarize in Section 2.6. As a result, the total communication in the online
phase is |x|+ |y|+O(κ) bits — only O(κ) bits less than the information-theoretic
minimum for secure computation.

Protocol description. The detailed protocol description is given in Figure 4. For
simplicity this description does not include the technique of Applebaum et al. [2]
for compressing garbled inputs in the online phase. This optimization can be
applied in a black-box manner to our protocol. Furthermore, we use the homo-
morphic commitment in a black-box way but explain in the full version how to
plug-in the more efficient code-based homomorphic commitments to this proto-
col.

Theorem 7. The protocol in Figure 4 is a UC-secure realization of the func-
tionality in Figure 3. The online phase is 2 rounds, and requires a length-|y|
message from the receiver and length-(|x|+O(κ)) message from the sender.

Parameters: A function f and number N of instances.

Behavior: On input setup from the sender, give output setup to the receiver. Then
do the following N times: wait for input x from the sender and y from the receiver.
Then give output f(x, y) to the receiver.

Fig. 3. Ideal functionality for offline/online 2PC
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Parameters: A function f and number N of instances. N̂ denotes the number of
garbled circuits, chosen according to the discussion in the text. λ is the statistical
security parameter.

Offline phase:

1. Bob chooses a random permutation π, and commits to it.
2. For each circuit i ∈ [N̂ ]: Alice chooses a PRF seed σi and uses it to derive all

randomness used in this step of the protocol:
Alice generates a garbling of the function f̃(x, r̃,m) = f(x,m⊕Mr̃); let Fi denote
the garbled circuit, and let ini,j,b (resp. douti,j,b) denote the input (resp. output)
wire label encoding truth value b on wire j of circuit i. She computes hi = H(Fi)
where H is a CRHF, and sends hi to Bob.
Alice chooses random “post-output” keys {outi,j,b}j∈OutWires,b∈{0,1}. She gener-
ates and sends the following commitments (where din and ds values are derived
randomly from σi):

C in
i,j,b ← Com(ini,j,b⊕si,j ; dini,j,b⊕si,j ) for j ∈ SendInpWires, b ∈ {0, 1}

C in
i,j,b ← Com(ini,j,b; d

in
i,j,b) for b ∈ {0, 1}, j ∈ RecvInpWires

Cout
i,j,b ← HCom(outi,j,b; d

out
i,j,b) for b ∈ {0, 1}, j ∈ OutWires

Csi ← HCom(si; d
s
i )

3. For each i ∈ [N̂ ], Alice commits to each σi.
4. Bob opens the commitment to π.
5. For all i assigned to be checked by π, Alice opens the commitment to σi. Bob

checks that hi and corresponding commitments from the previous step are gen-
erated using randomness derived from σi, and aborts if this is not the case.
For all i not assigned to be checked, Alice sends Fi; Bob aborts if hi 6= H(Fi).

6. For k ∈ [N ], Alice chooses a random µk. For k ∈ [N ], j ∈ OutWires, Alice
chooses random wk,j,0 and sets wk,j,1 = µk ⊕ wk,j,0. Alice generates and sends
commitments:

Cw
k,j,b ← HCom(wk,j,b; d

w
k,j,b) for k ∈ [N ], j ∈ OutWires, b ∈ {0, 1}

Cµk ← HCom(µk; dxk) for k ∈ [N ]

Alice also gives homomorphic decommitments:

dwk,j,0 ⊕ dwk,j,1 ⊕ dµk for k ∈ [N ], j ∈ OutWires

Bob aborts if these values do not decommit Cw
k,j,0⊕Cw

k,j,1⊕Cµk to the all-zeroes
string.

7. For j ∈ OutWires, b ∈ {0, 1} and all circuits i assigned to bucket k, Alice sends
douti,j,b ⊕ dwk,j,b. Bob aborts if this is not a valid decommitment to Cout

i,j,b ⊕ Cw
k,j,b;

otherwise he sets δi,j,b to be the result of this decommitment.
8. For all circuits i assigned to bucket k, Alice sends dµk ⊕ d

s
i . Bob aborts if this is

not a valid decommitment to Cµk ⊕ C
s
i ; otherwise he sets oi to be the result of

this decommitment.

(protocol description continues. . .)

Fig. 4. Online-offline protocol
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9. For all k ∈ [N ], Bob chooses a random λ-probe-resistant encoding r̃k. For
j ∈ RecvInpWires, the parties engage in an instance of OT with inputs
({dini,j,0}i, {dini,j,b}i) for Alice and input r̃k,j for Bob. Here the index i ranges
over circuits assigned to bucket k.
Hence Bob learns input wire labels {dini,j,r̃k,j

}i. He aborts if these are not valid

decommitments to {C in
i,j,r̃k,j

}i. Otherwise he sets in∗i,j to be the corresponding
decommitted values.

10. For k ∈ [N ], j ∈ SendInpWires, b ∈ {0, 1}, Alice chooses a random token tokk,j,b,
generates and sends an encryption:

ek,j,b = Enc
(
tokk,j,b; {dini,j,µk,j

}i
)

Here the index i ranges over circuits assigned to bucket k. These are decommit-
ments to wire labels indexed by µk, hence wire labels having truth value µk⊕ si.
Similarly, for k ∈ [N ], j ∈ PubInpWires, b ∈ {0, 1}, Alice chooses a random token
tokk,j,b, generates and sends an encryption:

ek,j,b = Enc
(
tokk,j,b; {dini,j,b}i

)
11. For k ∈ [N ], Alice generates compressed garbled encodings of the tokens for her

input wires and public input wires:

(skk, êk)← Compress({tokk,j,b | j ∈ SendInpWires ∪ PubInpWires; b ∈ {0, 1}})

She sends êk to Bob.
(protocol description continues. . .)

Continuation of Figure 4.

6.2 NISC, Optimized for Random Oracle Model

In the offline/online protocol we just described, the receiver first commits to π,
receives garbled circuits & commitments, then opens π. Suppose we remove the
commitment to π from the protocol. In other words, suppose the offline phase
begins with the sender giving the garbled circuits & associated commitments,
and then the receiver sends a random π in the clear.

This modified offline phase is then public-coin for the verifier. The only mes-
sages sent by the verifier are the random π and a random challenge for the FJNT
homomorphic commitment scheme setup (not explicitly shown in the protocol
description). We can therefore apply the Fiat-Shamir technique to make the
protocol non-interactive again, in the programmable random oracle model.5 In
doing so we obtain a batch-NISC protocol that is considerably more efficient
than our standard-model protocol. In particular:

– The RO protocol makes no use of the switching network, so avoids the as-
sociated overhead on garbled inputs/outputs.

5 When considering a corrupt receiver, instead of extracting π from the commitment,
the simulator can simply choose π upfront and then program the random oracle to
output π on the appropriate query.
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Online phase: For the kth time the online phase is invoked, Alice has input xk and
Bob has input yk.

1. Bob computes mk = yk ⊕Mr̃k and sends it to Alice.
2. Alice computes γk = xk⊕µk. She computes online compressed garbled encoding

v̂k ← Online(skk,mk‖γk), and sends both γk and v̂k to Bob.
3. Bob decompresses the garbled encodings:

{tokk,j,mk,j | j ∈ PubInpWires} ∪ {tokk,j,γk,j | j ∈ SendInpWires}
← Decompress(êk,mk‖γk, v̂k)

4. Bob decrypts the corresponding ciphertexts as follows:

{dini,j,γk,j
}i = Dec

(
tokk,j,γk,j ; ek,j,γk,j

)
for j ∈ SendInpWires

{dini,j,mk,j
}i = Dec

(
tokk,j,mk,j ; ek,j,mk,j

)
for j ∈ PubInpWires

Bob aborts if the dini,j,b values are not valid decommitments of the corresponding
C in
i,j,b commitments. Otherwise, Bob sets in∗i,j to be the result of decommitment.

Now, for all circuits i in this bucket, Bob has a complete garbled input (with
wire labels for RecvInpWires obtained in step 9 of the offline phase).

5. For each circuit i assigned to bucket k, Bob evaluates garbled circuit Fi with
input wire labels {in∗i,j}j . The result is plain output zi and corresponding pre-
output wire labels {douti,j,zi,j}. If for some j, douti,j,zi,j is not a valid decommitment

of Cout
i,j,zi,j then Bob changes zi = ⊥. Otherwise, Bob opens the commitments to

obtain outi,j,zi,j values.
6. If zi = ⊥ for all i assigned to this bucket, then abort. If there are zi 6= zi′ , neither

of them ⊥, in this bucket, then let j be some position for which zi,j 6= zi′,j . Bob
computes

x̃k = (outi,j,zi,j ⊕ δi,j,zi,j )⊕ (outi′,j,zi′,j ⊕ δi′,j,zi′,j )⊕ γk

and outputs z∗k = f(x̃k, yk). Otherwise, Bob outputs the unique value z∗k such
that zi ∈ {⊥, z∗k} for all i in this bucket.

Continuation of Figure 4.

– The RO protocol can be instantiated with the lightweight homomorphic
commitments of [14].

– The RO protocol avoids communication for garbled circuits that are assigned
to be checked.

– Unlike in the NISC setting, the offline/online protocol can take advantage of
efficient OT extension techniques [19,25,4,3,23] which greatly reduce the cost
of the (many) OTs in the protocol, but require interaction. This property is
of course shared by all 2PC protocols that allow for more than 2 rounds.

Unfortunately, in this protocol we must use the computational security parameter
κ (e.g., 128), and not the statistical security parameter λ (e.g., 40) to determine
the bucket sizes. In the other protocols, the sender is committed to her choice of
garbled circuits before the cut-and-choose challenge and bucketing assignment
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are chosen. Hence, cheating in the cut-and-choose phase is a one-time opportu-
nity. In this Fiat-Shamir protocol, the sender can generate many candidate first
protocol messages, until it finds one whose hash is favorable (i.e., it allows her to
cheat undetected). Since this step involves no interaction, she has as many oppor-
tunities to try to find an advantageous first protocol message as her computation
allows. Hence the probability of undetected cheating in the cut-and-choose step
must be bound by the computational security parameter.

We note that the garbled-input-compressing technique of Applebaum et al. [2]
is not useful in NISC since it increases total cost to improve online cost. In the
NISC setting, there is no distinction between offline and online, so their technique
simply increases the cost.

Theorem 8. There is a UC-secure batch NISC protocol in the programmable
random oracle model, that evaluates N instances of f with total cost N/O(logN)
times more than a single evaluation of f (plus some small additive terms that
do not depend on f).
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