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Abstract. The anticipated emergence of quantum computers in the
foreseeable future drives the cryptographic community to start consider-
ing cryptosystems, which are based on problems that remain intractable
even with strong quantum computers. One example is the family of
code-based cryptosystems that relies on the Syndrome Decoding Prob-
lem (SDP). Recent work by Misoczki et al. [34] showed a variant of
McEliece encryption which is based on Quasi Cyclic - Moderate Density
Parity Check (MDPC) codes, and has significantly smaller keys than
the original McEliece encryption. It was followed by the newly proposed
QC-MDPC based cryptosystems CAKE [9] and Ouroboros [13]. These
motivate dedicated new software optimizations.
This paper lists the cryptographic primitives that QC-MDPC cryptosys-
tems commonly employ, studies their software optimizations on modern
processors, and reports the achieved speedups. It also assesses methods
for side channel protection of the implementations, and their perfor-
mance costs. These optimized primitives offer a useful toolbox that can
be used, in various ways, by designers and implementers of QC-MDPC
cryptosystems.

1 Introduction

Strong quantum computers are believed to emerge in some foreseeable future.
Their potential existence threatens the security current public key cryptosys-
tems that rely on the difficulty of factorization (e. g., RSA) and the discrete log
problem (e. g., ECDSA/ECDH), and this has already driven the cryptographic
community to start planning for new standardized cryptosystems [1]. Families
of problems that are believed to provide an adequate basis for quantum safe
cryptosystems are based on codes, lattices, hash functions, and multivariate
polynomials. It is conceivable that future standards would include representa-
tives from each family, as a safe strategy for the ecosystem. This paper focuses
on code-based cryptography.

The first code-based public key cryptosystem, known (after its inventor) as
“McEliece” [31], is based on the difficulty of the SDP: identify and correct errors
in a given binary vector to which errors have been added. McEliece cryptosystem
is believed to be secure, but its very large associated keys challenge its practical-
ity. Similarly, other error-correcting code based cryptosystems also require large
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keys, and are therefore considered less practical (e. g., [12, 29, 39]). Introducing
some structure to the codes, reduces the key sizes (e. g., [5,10,32]), but may also
lead to some security issues (e. g., [14, 36]). For example, Low Density Parity
Check (LDPC) codes [15] can leverage the structure to improve performance
and decrease the key sizes, but seem to be insecure (e. g., [4, 6, 7, 35]).

A recent study by Misoczki et al. [33, 34] suggests that using QC-MDPC
codes with a McEliece encryption type cryptosystems enjoy relatively short keys
(shorter than McEliece). However, as an encryption scheme, it was shown to be
susceptible to an attack [24] by an adversary with some budget of chosen decryp-
tion queries. The attack leverages the fact that there is some probability, termed
(by [34]) Decoding Failure Rate (DFR), that the decoding may fail to compute
the errors. Indeed, [24] showed that merely knowing if decoding failed with some
adversary-crafted ciphertexts, allows the adversary to reveal the private key.
Nevertheless, a corresponding Key encapsulate Mechanism (KEM) scheme can
still be secure, if ephemeral public-private key pairs are used for each exchange,
as proposed by the recent KEM scheme CAKE [9]. For 128=bits quantum se-
curity, CAKE is estimated to have a DFR of 10−7. Ouroboros [13] is a different
QC-MDPC code based KEM scheme. It has the same parameters, almost the
same decoding as MDPC McEliece, and a security reduction to decoding ran-
dom quasi-cyclic codes in the Random Oracle Model [3]. It also has a public key
which is roughly 2x smaller than that of CAKE and an estimated DFR varying
between 10−5 to 10−7 (depending on the parameters).

The proposed QC-MDPC codes McEliece-style encryption [33, 34] sparked
the study of the practical aspects of such cryptosystems, with a thorough study
by Maurich et al. [30]. This comprehensive work covers a variety of optimiza-
tions, from FPGA’s, lightweight architectures (IoT), ARMs Cortex-M4 micro-
controller, and vectorization features of modern general-purpose x86 architec-
tures, specifically for a) 80 bits classical security (FPGA/IoT/ARM); b) 40/64/
128-bit quantum security (x86 platforms).

In this paper, we investigate general software optimizations for QC-MDPC
codes cryptosystems, focusing mainly on 128 bits quantum security parameter
as the primary motivation.

Our contribution. We study several software optimizations that leverage
special features of modern processor architectures, and compare our results to
those achieved in [30]. By listing the main primitives that are needed for the
related protocols, we explain these software optimizations can be used (beyond
the McEliece-type encryption) for general QC-MDPC codes cryptosystems, such
as CAKE [9], and Ouroboros [13]. We show how different parameter choices af-
fect the performance, demonstrate techniques for side channel protection of such
implementations, and analyze their costs.

The paper is organized as follows. Section 2 describes QC-MDPC codes,
briefly explains the selection of parameters, and defines some notation. Section
3 lists the related primitives, discusses different types of side channel threats,
and shows methods for optimizing the relevant building blocks. Section 4 reports
the achieved performance improvements. The paper concludes with Section 5.
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2 Preliminaries and notation

2.1 QC-MDPC

Let n, r be positive integers. A binary (n, r) linear-code C of length n, dimension
k = n − r, and codimension r is a (n − r) dimension vector subspace of Fn2 .
It can be defined, equivalently, by either: 1) a generator-matrix G ∈ F k×n2 ,
where C = {mG ∈ Fn2 |m ∈ Fk2}; 2) a parity check matrix H ∈ Fr×n2 , where
C = {c ∈ Fn2 |HcT = 0}. The syndrome s ∈ Fr2 of x ∈ Fn2 is defined by s = HxT ,
where s = 0 iff x ∈ C.

An (n, r)-linear code is called Quasi Cyclic (QC) if there exists an integer
n0, such that every cyclic shift by n0 positions, of a codeword c ∈ C, is also
a codeword in C. If n = n0p for some integer p ≥ 1, then both the generator
and the parity-check matrices are composed of p × p circulant blocks. These
matrices are uniquely defined by the first row of each circulant block. With such
interpretation, this row can be viewed as a polynomial in Fn2 [x]

/
(xr + 1). These

equivalent interpretations are used hereafter interchangeably.
LDPC and MDPC codes are (n, r, w)-codes that are defined by a parity-check

matrix where the Hamming weight of each row is w. While w is small for LDPC
codes (e. g., less than 10), MDPC codes typically have w = O(

√
n log n). An

(n, r, w)-QC-MDPC code is an (n, r, w)-MDPC code that is QC where n = n0r
(typically, n0 = 2).

2.2 Choices of parameters

To illustrate the parameters’ range we are interested in, Table 1 shows a few
QC-MDPC codes protocols choices, aiming at λ = 128-bit quantum security.
Table 1 unifies the notation of [13, 33, 34] as follows: w is the weight of a sparse
r-bits vector, and we is the weight of the error vector (their values are derived
from r and λ). The usage and rationale behind these choices, are given therein.

Protocol name r w we

McEliece-style Encryption [34] 32, 771 137 264
CAKE [9] 32, 771 137 264
Ouroboros [13] 40, 013 147 294
Ouroboros (optimized) [13] 33, 997 131 393

Table 1: Some QC-MDPC parameter choices that correspond to λ = 128-bit
quantum security. Here, r defines an (2r, r)-code with 2 circulant blocks, w is
the weight of a sparse vector, and we is the weight of the error vector.

In general, there are conflicting considerations in choosing r (for a given n0):
increasing r makes the associated public keys larger, and lowers the efficiency of
the computations; reducing r can lead to a higher DFR.
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We also note that r needs to be a prime, and that it is convenient to also
impose the following condition [9,34]: (xr+1)/(x+1) is an irreducible polynomial
(of degree r − 1). This allows for efficient selection of an invertible element of
F2[x]/(xr + 1), by simply taking any polynomial with odd weight.

2.3 Definitions and notation

QC-MDPC cryptosystems operate on polynomials in Fr2
/

(xr+1). We view poly-
nomials and strings of bits, interchangeably, as follows.

Definition 1 (Bit strings, polynomials.). A string is a finite sequence of
bits (symbols in {0, 1}). Let r > 0 be an integer, and let A be a string of length
r, A = ar−1ar−2 . . . a0, where, for 0 ≤ j ≤ r − 1, aj is the bit in position j of
A. We call ar−1 the most significant bit (of A) and a0 the least significant bit
(of A). By convention, the most significant bit is the bit in the leftmost position
(in A), and the least significant bit is the bit in the rightmost position. Let A =
ar−1ar−2 . . . a0 be a string of r bits, and let a(x) = ar−1x

r−1 + . . . a1x + a0 be
a (formal) polynomial of degree r − 1. We view A and a(x), interchangeably, as
the same entity, depending on the context.

Example 1. The length of the string A = 10010100 is r = 8 (bits), a7 = 1,
a6 = 0, a4 = 1, a2 = 1, a0 = 0. The polynomial a(x) = x7 + x4 + x2 can be
viewed (identified), interchangeably, as the string A = 10010100.

For designing concrete QC-MDPC implementations, where the polynomials have
degree r−1 and 8 6 |r, it is useful to embed the associated strings in arrays of bytes.
This allows for conveniently carrying out some operations on the embedding
arrays. If B is an array of s bytes, then its jth byte (0 ≤ j ≤ s − 1) is denoted
by B[j]. By convention, values of bytes are hereafter written as (exactly) two
hexadecimal digits.

Definition 2 (Embedding in an array of bytes.). Let A = ar−1ar−2 . . . a0
be a string, where 86 |r. The following procedure embeds A in an array of NB =⌈
r/8
⌉

bytes, Ā = āNB−1āNB−2 . . . ā0. Write r = 8u+ δ with u ≥ 0 and 0 < δ < 8.
Pad A, from the left, with 8 − δ zero bits, so that it has 8(u + 1) bits. Let A′

denote the result, i. e.,

A′ = a′8u+7 . . . a
′
0 = 00 . . . 0︸ ︷︷ ︸

8− δ bits

ar−1ar−2 . . . a0

The bytes of A are defined, bitwise, as āj = A[k] = a′8k+7 . . . a
′
8k, k = 0, . . . , u.

We say that (the bits string) A is embedded in (the array of bytes) Ā.

Example 2. The polynomial x20 +x16 +x2 +x+ 1 corresponds to the bits string
100010000000000000111 of length r = 21 bits. Write r = 21 = 8 × 2 + 5, pad
A with δ = 8 − 5 = 3 zero bits, to 000100010000000000000111 (of 21 + 3 = 24
bits). Then, A is embedded in the array of NB =

⌈
21/8

⌉
= 3 bytes Ā = 110007,

whose byte are A[2] = 11, A[1] = 00, A[0] = 07.
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Definition 3 (Redundant representation of strings of bits.). Let A =
ar−1ar−2 . . . a0 be a string of bits. The redundant representation of A is the array
Ã, of r bytes, where Ã[i] = 01 if ai = 1 and Ã[i] = 00 otherwise, 0 ≤ i ≤ r − 1.

Example 3. Let A be the string of bits 1011 (i. e., the polynomial A = x3+x+1).
Its redundant bytes representation is Ã = 01000101

Definition 4 (Blocks.). An array of 16 bytes (a string of 128 bits) is called a
block. Every integer 0 ≤ j ≤ 2128− 1 can be encoded as a block, which is denoted
by encode128(j).

Example 4. encode128(256) = 00000000000000000000000000000100.
encode128(2128 − 5) = fffffffffffffffffffffffffffffffb.

Definition 5 (Leftwise cyclic rotation.). Let B be an array of s bytes and
let 0 ≤ i ≤ s−1 be an integer. The (leftwise) cyclic rotation of B, by i positions,
is the array rotl(B,i) of s bytes, where rotl(B,i)[j] = B[(i + j) (mod s)], j =
0, . . . , s− 1.

Example 5. Let A be the bytes array 11100100 of size 4. Then rotl(A,3) =
00111001

Finally, for two integers x1, x2, we define the function compare(x1, x2) to
return a single bit: 1 if x1 = x2, and 0 otherwise, denote concatenation by ‖,
and denote the j’s column of H by hj↓.

3 The QC-MDPC based cryptographic primitives and
their optimizations

3.1 The cryptographic primitives

QC-MDPC code-based cryptosystems can be implemented with (combinations
of) the following primitives.

1. A constrained pseudorandom bits stream generator: A PRF that uses a seed
and generates a stream of bits that satisfies some constraints.

2. A hash function: used for compressing a sampled value of a random variable
into a (short) seed/key.

3. Polynomial multiplication in F2, and reduction modulo xr + 1.
4. Decoding: an algorithm used for computing an unknown error from a given

syndrome.

Example 6. CAKE’s [9] key generation generates a pseudorandom string of r bits
with a prescribed weight. It also involves two polynomial multiplications (modulo
xr + 1). Step 4 of CAKE’s encapsulation is K ← K(c, e), i. e., compressing
(hashing) a 4r bits into a (short) shared key. Ouroboros’ [13] encapsulation
calculates er ← fcw(Hash(r1, r2)). It can be implemented by combining two
primitives: a) Hashing |r1|+ |r2| = 2r bits into a seed; b) Using the seed with a
constrained pseudorandom bits stream generator.
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Note that some primitives (e. g., decoding) can be optimized ”unilaterally” by
one of the protocol’s participants, and other optimizations (e. g., deriving a
shared secret) need to be agreed at the protocol level, for interoperability. In
addition, the cryptographic components themselves should the quantum safe
(we use AES256, and SHA384)

3.2 Side channel considerations

We consider here two types of side channel adversaries that collect information
on code that is executing on a given platform.

– Traffic analysis eavesdropper: this adversary has (passive) access to the net-
work that the platform is using, and can collect timing information of dif-
ferent steps of the protocol, based on the observed traffic.

– A spy program adversary: this adversary is running on the same platform,
in parallel to the execution of the victim code, and at the same (or lower)
privilege level. It can collect micro-architectural information such as memory
access patterns and code and taken (not taken) branches.

We assume that both adversaries obtain their information with absolute accu-
racy. This implies (for a traffic analysis eavesdropper) that the execution time of
protocol steps, of a side channel protected code, should not reveal any secret in-
formation, and for a spy program, that the timing, memory access patterns, and
the branches of a protected code should not reveal secret information. For short,
we call such protected code a ”constant time” implementation. Mitigation meth-
ods against both adversaries are more expensive than mitigation against traffic
analysis eavesdropper alone. Therefore, an implementation needs to choose the
appropriate threat model that it needs to address.

3.3 A constrained pseudorandom bits stream generator

We handle three types of pseudorandom bits stream generation z
$←− {0, 1}α

(for an integer α > 0): a) No constraints on z (Alg. 1); b) z has odd weight (Alg.
2); c) z has weight w, for some a-priori prescribed weight w (Alg. 3).

The common building block used in Algorithms 1, 2, and 3 is AES-CTR-PRF.
It uses the block cipher AES256, in CTR mode (following NIST SP800-90A guide-
lines [8]). Specifically, a 256-bit seed (seed) is used as a cipher key, and CTR mode
is used for populating an array of bytes (of the required length) with (pseudo-
random) values. The typical QC-MDPC protocols need pseudorandom streams
of roughly no more than say, 217 bits, so the number of calls to AES with a given
key is way below the restrictions on using AES in CTR mode. The details and
algorithms (Alg. 9 and 10) are given in Appendix A. The AES-CTR-PRF gener-
ator is very efficient on modern recent processors that nowadays have dedicated
AES instructions (AES-NI). This is especially the case because the computations
can be parallelized and pipelined (see [16,17]): AES256 outputs can be produced
at the rate of ∼ 0.91 cycles per byte (C/B hereafter).
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An example for Algorithm 1 is given in Appendix B. Algorithm 2 is then self
explanatory. We explain some details of Algorithm 3.

Generating a bit stream A with a pre-defined weight w. This is equivalent
to generating a list of weight random positions (wlist) where the bits in the target
string of len bits are set. Each entry in wlist is an integer between 0 and len. When
log2 (len) is not an integer, as in the cases of interest here, we first consume a
sample of b =

⌈
log2 (len)

⌉
bit from the AES-CTR-PRF. Note that reducing it

modulo len does not give a uniform random distribution (small values are more
frequent). Therefore, Alg. 3 uses the rejection method: samples that are smaller
than len are considered, and other samples are rejected (see also [30]). Since the
rejection probability is p = 1− len

2b
< 1

2 , the expected number of samples needed
to collect w valid values is at most 2w. Note that the rejection probability is
larger when len is slightly larger than b. For example, if len = 32, 771 = 215 + 3
then p ≈ 0.5, and if len = 32, 749 = 215 − 19, p ≈ 0.0006. Sampling for cases
where len is not close to a power of two, is optimized in [23], as in the following
example.

Example 7. Let w = 90, len = 9, 602. Then, b =
⌈
log2 (len)

⌉
= 14, p = 0.41, so

the expected number of samples (14 bits) is 90× 1/0.59 ≈ 153 (153× 14 = 2142
bits). However, choosing an upper bound of 3 × len = 28, 806 (a sample may
require reduction modulo len), and consuming b = 15 pseudorandom bits at a
time, gives a rejection rate of p = 0.12, and reduces the expected number of such
samples to 90× 1/0.88 = 103 (103× 15 = 1545 bits).

Side channel considerations for Algorithms 2 and 3. Alg. 2 runs in
constant time, except for step 3. However, the information that step 3 reveals is
not confidential. Alg. 3 generates a wlist (in constant time), with set bit positions
for the target string. However, näıvely starting from a zero string and flipping
the bits in the relevant positions (per wlist) is not secure against a spy program,
because the memory access pattern may leak sensitive information (e. g., the
secret key in CAKE and Ouroboros). To this end, we propose Alg. 4.

Algorithm 1 z=GenPseudoRand(seed, len)

Input: seed (32 bytes)
Output: z (pseudorandom stream of len bits z embedded in an array of bytes).
Exception: SeedOverUseError (seed overused).

1: procedure GenPseudoRand(seed, len)

2: s = AES-CTR-PRF-Init
(

seed, 0, 232 − 1
)

3: z = truncatelen
(
AES-CTR-PRF (s, len)

)
4: return z
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Algorithm 2 z=GenPseudoRandOddWeight(seed, len)

Input: seed (32 bytes), len
Output: z (pseudorandom stream of len bits z with odd weight, embedded in an
array of bytes).
Exception: SeedOverUseError (seed overused).

1: procedure GenPseudoRandOddWeight(seed, len)
2: z = GenPseudoRand(seed, len)
3: if weight(z) is even then
4: z[0] = z[0] ⊕1

5: return z

Algorithm 3 wlist=GenPseudoRandWeightList(s, weight, len)

Input: s (AES-CTR-PRF state), weight (32 bits), len
Output: A list (wlist) of weight bit-positions in [0, . . . , len− 1], updated s.
Exception: SeedOverUseError (seed overused).

1: procedure GenPseudoRandWeightList(s, weight, len)
2: wlist= φ
3: valid ctr = 0
4: while valid ctr < weight do
5: (pos, s) = AES-CTR-PRF(s, 4)
6: if ((pos < len) AND (pos 6∈ wlist)) then
7: wlist = wlist ∪ {pos}
8: valid ctr = valid ctr + 1

9: return wlist, s

Algorithm 4 A=ApplyWlist(wlist, len)

Input: A list (wlist) of weight bit-positions in [0, . . . , len− 1]
Output: A a stream of len bits A with weight w embedded in an array of bytes.

1: procedure ApplyWlist(wlist, len)
2: A[len:0] = 0
3: for i in 0 . . . (len− 1) do
4: for w in wlist do
5: A[i] = A[i] BitWiseOr compare(i, w)

6: return A

3.4 Efficient hashing

A cryptographic hash function is used as a one way function that generates
a seemingly uniform random digest from a sampled random variable that has
sufficient (min-)entropy. For efficiency, we use a parallelization technique that is
designed to convert serial hashing to a parallelizable process (see [18,19,22]).

Let hash be a hash function with digest length of ld bytes. Suppose that it
uses a compression function compress that consumes a block of size hbs bytes.
Its associated ”parallelized hash”, ParallelizedHashhash

s,srem (or ParallelizedHash for
short), with s slices, and pre-padding length srem, is described in Alg. 5.
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Algorithm 5 digest=ParallelizedHashhash
s,srem(array, la)

1: Input: an array of la bytes array[la− 1 : 0], such that la ≥ s > 0
2: Output: digest (ld bytes)
3: Context: hash, srem
4: procedure ComputeSliceLen(la)

5: tmp :=
⌊

la
s

⌋
− srem

6: α :=
⌊

tmp
hbs

⌋
7: return α× hbs + srem

8:
9: procedure ParallelizedHash(array, la)

10: ls := ComputeSliceLen(la)
11: lrem := la - (ls× s)
12: for i := 0 to (s -1) do
13: slice[i] = array[(i+ 1)× ls− 1 : i× ls]
14: X[i] = hash(slice[i])

15: Y = array[la− 1: ls× s]
16: YX= Y ‖ X[s− 1] ‖ X[s− 2] . . . ‖ X[0]
17: return hash(YX)

The input to ParallelizedHash is an array of la bytes, array[la − 1 : 0]. It is
assumed that 0 < s ≤ la. The array is split, logically, to s contiguous disjoint
slices of equal (positive) length ls, and (potentially) a remainder buffer Y of
length la− ls× s bytes (if this value equals 0, it means that Y is ignored). The
length of a slice is ls = α× hbs + srem where

α =


⌊
la
s

⌋
− srem

hbs

 (1)

The slices are denoted slice[s− 1], slice[s− 2], . . . , slice[0]. The s slices are hashed,
independently, and s sub-digests X[s− 1], X[s− 2], . . . , X[0] are computed, by

X[j] = hash(slice[j]) j = 0, . . . , s− 1 (2)

Finally, the output of ParallelizedHash is digest, where

digest = hash(Y ‖ X[s− 1] ‖ X[s− 2] ‖ . . . ‖ X[0]) (3)

A specific instantiation of ParallelizedHash. This paper uses
ParallelizedHashSHA384

8,111 . This implies ld = 48 and hbs = 128. A concrete example
is given in Appendix C.

Example 8. Let the length of the array array be la = 2, 000 bytes. Choose s = 8,
and srem = 111. Each slice has 128 + 111 = 239 bytes. Denote the SHA384
compression function by SHA384Update. Hashing a slice (of 239 bytes) requires
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2 invocations of SHA384Update. The 8 (independent) slices can be hashed in
parallel. This requires 2 × 8 = 16 parallelizable invocations of SHA384Update,
generating 8 digests of 48 bytes, each. The remainder block has 2, 000−239×8 =
88 bytes. Together with the 8 digests of the slices, the final step is hashing an
array of bytes with 384 + 88 = 472 bytes. This requires 3 + 1 = 4 invocations of
SHA384Update. The total number of SHA384Update invocations of is 16+4 = 20.
For comparison, note that the serial SHA384 of 2, 000 bytes, requires 16 serialized
invocations of SHA384Update. However, on modern platforms, computing 20
calls to SHA384Update, of which 16 can be parallelized, can be optimized (using
SIMD architectures), and be faster than 16 serial invocations of SHA384Update.

Remark 1 (The choice of srem = 111). To motivate the choice srem = 111,
compare it to the choice s = 8 and srem = 0, applied to an array of la = 2, 000
bytes. Here, ls = 128, lrem = 2, 000 − 8 × 128 = 976. Therefore, the number of
SHA384Update invocations is 8 × 2 + 8 = 24 (of which 16 can be parallelized).
The number of SHA384Update invocations with srem = 111, is only 20.

3.5 Polynomial multiplication

Modern general-purpose processors are equipped with the ”carry-less multipli-
cation” instruction PCLMULQDQ [20, 21]: it computes the product of two bi-
nary polynomials of degree 63. The operands of PCLMULQDQ are two xmm
registers, an ”immediate” byte, and a destination register. The value of the im-
mediate byte specifies which 64-bit halves (low/high) of the input registers are
the multiplicands. The result, which is a polynomial of degree 126, is placed in
the destination register. An appropriate software flow can use PCLMULQDQ in
order to multiply polynomials with any degree.

For sufficiently high degrees, in particular those used for QC-MDPC cryp-
tosystems, applying a Carry-less Karatsuba algorithm ( [20, 21]) improves the
performance, compared to the standard ”Schoolbook” multiplication. We note
that other multiplication algorithms (e. g., Toom-Cook) can also contribute some
incremental speedups, but we settled here with a ”recursive” Karatsuba multi-
plication. WLOG, the inputs are two polynomials of degree µ−1. When µ−1 is
even, the inputs are split into two halves, where the Karatsuba multiplication is
applied on the corresponding pieces. This procedure can be invoked recursively.
The case where µ− 1 is odd needs to be handled differently (and involves some
overheads). This implies that the cases where µ− 1 = 2α(2p+ 1) for some α > 0
and p > 0, leads to an implementation where the first α iterations require no
special handling, and this optimizes the code. Obviously, the case where p = 0
is of special interest. In our context, given polynomials of degree r − 1 (where
r is a relatively large prime), it may be useful to ”pad” the input into an array

of 2dlog2 re bytes, i. e., artificially increase the number of polynomial coefficients
(adding zero coefficients) up to the next power-of-two boundary. The efficiency

of this method depends on how small 2dlog2 re − r is. After sufficient Karatsuba
iterations, when the involved polynomial degrees are sufficiently small, it pays
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to revert to the schoolbook multiplication for the final step, as shown in the
following example.

Example 9. For r = 4 × 64 a näıve schoolbook algorithm uses 4 × 4 = 16
PCLMULQDQ instructions and 3×4 = 12 additions (XORs), and requires 8×64
bits of storage. A recursive Karatsuba calls itself three times with polynomials
of degree 2 × 64 − 1 each call uses 3 PCLMULQDQ instructions and 5 XORs.
This totals 9 PCLMULQDQ and 15 XORs, plus 10 extra XORs for the parent
Karatsuba. The required memory is (8 + 2 + 4)× 64 bits. On modern processors
PCLMULQDQ has throughput 1 cycle and latency 7 cycles. When the school-
book multiplication is pipelines (PCLMULQDQs invoked in parallel to XORs),
it can theoretically end within 16 + 7 + 1 = 24 cycles (ignoring memory access
overhead). On the other hand, a recursive Karatsuba would complete within
9 + 7 + 10 = 27 cycles (with more memory access overhead).

The final Schoolbook multiplication. We compare two methods, ”Horizon-
tal” and ”Vertical”, for schoolbook multiplication of two polynomials p1, p2 of
degree r− 1, each one padded into a q = ceil((r− 1)/64) 64-bit container. They
are illustrated in Fig. 1.

1. Horizontal multiplication (a variant of this method is used in the gf2x library
[37] that NTL library [38] users can choose to link): calculate p3[q : 0] =
p1[0]×p2[q : 0]. Then, perform p3[i+q : i] = p3[i+q : i]+

(
p1 [: i]× p2 [q : 0]

)
,

for i = 1, . . . , q − 1.
2. Vertical multiplication (our proposal): for 0 ≤ i, j, k ≤ q − 1, calculate (in

parallel):

p3[2k + 1 : 2k] =
∑

i+j=2k

p1[i]× p2[j]

Then, for k = 0, . . . , q − 2, perform:

p3[2k + 2 : 2k + 1] = p3[2k + 2 : 2k + 1] +
∑

i+j=2k+1

p1[i]× p2[j]

Polynomial reduction modulo xr+1 in F2. Reducing a polynomial p ∈ F2[x]
of degree r′, r ≤ r′ ≤ 2r modulo xr+1 can be efficiently carried out by calculating
p[r − 1 : 0] = p[r − 1 : 0] ⊕ p[r′ : r]. Software implementations on modern-
processors can be vectorized by using AVX2/AVX512 extensions [26].

3.6 Decoding

We use here the BitFlip algorithm for decoding a QC-MDPC syndrome, proposed
by [15] as the baseline for building our optimizations (per [30], other decoding
algorithms are more complex). Alg. 6 illustrates a most general variant: it re-
ceives the parity check matrix H and a vector x as inputs, and extracts the error
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(a) Horizontal multiplication (b) Vertical multiplication

Fig. 1: Schoolbook multiplication (2× 2): Horizontal and Vertical. See details in
the text.

vector e from x, as the output. Note that other variants (e. g., in [13]) inherit the
same general structure. Excluding the first syndrome calculation, Alg. 6 is built
upon three repeated main steps: I) For i = 0, . . . , r − 1, calculate the number
of unsatisfied parity-checks upci (step 7); II) Find and compare the thresholds -
for i = 0, . . . , r − 1, flip the bit in position i of e if upci ≥ τ for some threshold
τ (steps 8-9); III) Add e to x and recalculate the syndrome s (step 11). Steps I,
II, III are repeated until s = 0 or until a maximal allowed number of iteration
is attained, in which case the algorithm returns a ”decoding failure” flag.

Note that there are multiple options to choose τ (the threshold that is used
in Alg. 6), and they lead to different DFR and a different number of iterations
(i. e., overall performance). Three examples are: 1) a predefined value as in [15];
2) max

i
upci as in [25]; 3) a small value below max

i
upci as in [34].

In general, the decoding DFR and performance depend on multiple factors.
This has led to various decoding algorithms, and new improved algorithms/-
choices are still expected to emerge. We propose below separate optimizations
for Steps I and III. Vectorization of Step II is straightforward. Consequently, our
optimizations can be used by many variants of the BitFlip decoding algorithm.

BitFlip optimization. Maurich et al. [30] compare several decoders that do not
require polynomial multiplications for updating the syndrome (Step III). They
all take one of two approaches: a) When finding a bit j for which upcj > τ ,
flip e[j], update the syndrome to s = s + hj↓, and continue to the next bit. b)
Find and correct all the potential error bits in e, and update the syndrome to
s = s+ hj↓ for all the affected bits. The performance of a decoder that utilizes
the first approach, on an x86 platform, was reported in [30]. This implementation
keeps a copy of hj↓ in memory, and rotates and adds it (sometime masked) to s,
for each iteration. In this paper, we study decoders that use the second approach.

Optimizing Step I.: Alg. 7 shows our implementation of Step I. The inputs
are wlist - a compact representation of hj↓ with w indices, and s̃ - a redundant
representation of s. The redundant representation allows us to accumulate the
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Algorithm 6 e=BitFlip(x, H)

Input: Parity-check matrix H ∈ Frxn
2 , x ∈ Fn

2 , maxIter (maximal # of iterations).
Output: The error e ∈ Fn

2 .
Assumption: A threshold τ is either input or calculated dynamically.
Exception: ”decoding failure”

1: procedure BitFlip(x, H)
2: s = HxT ;
3: e = 0;
4: itr = 0;
5: while (s 6= 0) and (itr < maxIter) do
6: for i in 0 . . . n− 1 do
7: Compute upci . Step I
8: if upci > τ then
9: e[i] = e[i]⊕ 1 . Step II

10: itr = itr + 1

11: s = H(xT + eT ) . Step III

12: if itr = maxIter then
13: return ”decoding failure”

14: return e

result of (up to 254) additions in each of the s̃ bytes. Note that in practice,
w < 254 for QC-MDPC cryptosystems. The output of Alg. 7 is an array of
bytes, U , where U [i] = upci. To speed up rotl(s̃,i), we duplicate s̃ in memory,
into the duplicated syndrome s̃×2 = s̃‖s̃. The rotation rotl(̃s,i) is the memory
contents of the r bytes starting from the address of the i-th position, as shown
in Fig. 2.

An implementation of Step I can choose two ways to compute the sum of
upci, i = 0, . . . , r − 1: a) Sum for each i separately (”Vertical”; b) sum for all
i’s in parallel (”Horizontal”). Alg. 7) uses the Vertical summation. To explain
why this approach is efficient on modern architectures, let M denote the overall
number of bytes that can be stored in the processor’s wide-registers. Specifically,
M = 29 bytes for AVX2, and M = 211 bytes for AVX512 architectures. When
r > M , the array s̃ is too large to fit in these registers. In this case, Horizontal
summation needs to read, accumulate, and store intermediate results in some
memory location (for each of the w iterations). This involves 2r memory reads
plus r memory writes for each iteration - a total of 3wr memory operations.
By comparison, Vertical summation accumulates the intermediate results in the
wide registers, and stores them only in the end of each of the

⌈
r/M

⌉
iterations.

This involves w×M memory reads and M memory writes (for each iteration) -
a total of only 2w + M ×

⌈
r/M

⌉
≈ 2wr/M memory operations. The difference

becomes even more noticeable when 2r + M bytes do not fit in the last level
cache of the processor, which is indeed the case for the typical QC-MDPC r
values.

Alignment optimization. An algorithm for CountUPC outputs the array U of
r bytes. A Vertical implementation can be optimized to leverage the power of
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Fig. 2: rotl(̃s,i) example: s̃ = s̃[3]‖s̃[2]‖s̃[1]‖s̃[0]. Duplicating s̃ in memory helps
fast rotation (see explanation in the text)

.

Algorithm 7 U=CountUPC(s̃, wlist)

Input: s̃ - a redundant representation of r bits syndrome s, wlist - a w elements of
the compact representation of h0↓.
Output: U an array of r bytes.

1: procedure CountUPC(̃s, wlist)
2: U=0
3: for i = 0, . . . , r − 1 do
4: for j = 0, . . . , w − 1 do
5: U[i] = U[i] + rotl(̃s,wlist[j])[i]

6: return U

SIMD (AVX2 / AVX512) architectures, and parallelize part of the computations.
To this end, it needs to operate on

⌊
r/M

⌋
chunks of M bytes, and then handle

the remainder ”tail” of tail = r − (
⌊
r/M

⌋
×M) bytes separately. We propose to

avoid the cumbersome special handling by padding the duplicated syndrome s̃×2

(from the left) with M−tail additional zero bytes, and working on the artificially
longer array. Obviously, shorter padding leads to smaller overheads, and this
makes some values of r preferable over other close values. For example, consider
r = 32, 771 = 215 + 3 (see Table 1), which is slightly above a multiple of M .
Padding s̃×2 to the next boundary of M = 29 bytes (for AVX2), or to M = 211

bytes (for AVX512) adds, respectively, 29 − 3 = 509 or 211 − 3 = 2, 045 bytes.
By comparison, consider the close value r′ = 32, 749 = 215 − 19 (smaller than
r by only 22), which is slightly below a multiple of M . Here, the padding adds
only 19 bytes. This is not saving only memory and memory accesses, but also
saves one iteration of the algorithm. It can theoretically improve the performance
by (32, 771 + 2, 045)/(32, 749 + 19) = 1.06x. Similarly, r′′ = 32, 719 = 215 − 49
(smaller than r by only 52), requires padding of only 49 bytes, leading to savings
in memory and computations. Remarkably, it turns out that r′ and r′′, which
are the two largest primes smaller than 215, also satisfy the requirement that
(xr + 1)/(x + 1) is irreducible (The suggested value r′ is due to P. S. L. M.
Barreto).

When this approach is applied to smaller values of r, the effect is even greater.
For example, compare r1 = 22, 531 = 214 + 3 (suggested in [34] for n0 = 3) to
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r
′

1 = 22, 511 = 214−17, which also satisfies the requirements. Here, the potential
speedup in the computations is (22, 531 + 2, 045)/(22, 511 + 17) = 1.09x.

We point out that the performance gains from using r′ or r′′ instead of using
r, for QC −MDPC, should be weighed against the resulting DFR with these
values. This DFR is reported in Section 4 (Table 3).

Reduced Weight optimization. We explore the following optimization, called
hereafter ”Reduced Weight”, as an interesting tradeoff between performance and
DFR: replace Step 4 of Alg. 7 from for j = 0, . . . , w do to for j = 0, . . . , w−α
do, for some nonnegative integer α. To not skip the same unsatisifed parity
checks in each invocation of the algorithm, we rotate h0↓ (by a random index)
before using it. This reduces the number of iterations by α, and speeds up the
CountUPCalgorithm by a factor of w/(w − α). For example, with w = 137
and α = 5, the speedup is 137/132 = 1.037x. This comes at the expense of
a higher DFR because some parity checks are ignored. This is different from
the optimization of [34], where all the unsatisfied parity checks are taken into
account, and the threshold is max

i
upci − δ. We note that the two optimizations

can be applied simultaneously.

3.7 Constant time decoding

Constant time BitFlip. The BitFlip algorithm 6 handles the secret values H
(input) and e, s (intermediate results). As a result, memory accesses, conditional
execution, and latencies of operations can inadvertently leak information on the
weights of e, s. and on the positions of the set bits in H, e, s (e. g., through the
number of errors fixed in a specific iteration and the number of iterations). A
secure (”constant time”) implementation needs to prevent such potential leaks.
Note that the number of iterations (either fixed of or variable) is implementation-
dependent (e. g., [11]), and we keep it out of our scope.

CountUPC in constant time. The inputs of the CountUPC algorithm (Alg.
7) are H and s. A näıve constant time implementation holds H in memory
(entirely), and accesses it accordingly. Here, the required memory can be large:
with n0 = 2 and 215 < r < 216 H occupies n0r

2/23 > (228) ≈ 268 million
bytes. The memory requirement can be reduced by storing only h0↓ in memory,
at the expense of some performance penalty (h0↓ needs to be rotated during
each of the r iterations). A different memory-performance trade off is obtained
by duplicating h0↓ in memory, which speeds up the rotation (similarly to the
way s is treated, above). We pursue a faster solution for large values of r. Alg.
8 introduces a new optimization for a constant time implementation of Alg.
7. A parameter w′ < r − w is determined (an appropriate choice is proposed
below). Then, we choose, uniformly at random, w′ positions in h0↓, where the
bits are not set, call them ”fake” bits. We set the bits of h0↓ in these positions,
which defines a new vector h′0↓ with weight w + w′. Let wlist′ be the compact
representation of h′0↓, and let b be the ”indicator array” of w + w′ bits, where

b[i] = h0↓[wlist′[i]], i = 0, . . . , w + w′ − 1 (i. e., marking the non-fake positions).
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Unlike the list wlist, which is secret, we can choose w′ in a way that the list
wlist′ is not secret (provided that b remains confidential). This can be achieved

if
(
w′+w
w

)
> 22λ. Such a selection is shown in Table 2, for λ = 128. With this

approach, a secure implementation needs to protect only operations that involve
b, which is hopefully efficient because |b| << r. Indeed, this allows us to keep
only the compact representation of h′0↓ in memory, and perform (in Alg. 8) only
|b| iterations. This costs |b| × r memory accesses (to bytes), instead of r × r as
with the alternative.

λ w w′

128 137 124
128 155 111
128 161 108

96 99 98

64 67 65

Table 2: Examples for w′ such that
(
w′+w
w

)
> 22λ.

Remark 2. Our method needs to make a uniform random selection from the set
of size

(
w′+w
w

)
, of all w +w′ indices (positions between 0 and r − 1) from which

which w′ positions are labeled as ”fake”. In practice, we use Alg. 3 to choose (in
constant time) the positions of the w + w′ bits. Subsequently, we use Alg. 3 to
determine the w′ positions (in b) that are labeled as ”fake”.

Algorithm 8 U=CountUPCConstantTime(s̃, wlist, b)

Input: s̃ - a redundant representation of r bits syndrome s, wlist′ - a w′ elements
of the compact representation of h′0↓. b a flags list of length w + w′.
Output: U an array of r bytes.

1: procedure CountUPCConstantTime(̃s, wlist′, b)
2: U=0
3: for i = 0, . . . , r − 1 do
4: for j = 0, . . . , w′ − 1 do
5: U[i] = U[i] + (rotl(̃s,wlist′[j])[i] & b[wlist′[j]])

6: return U

Step III. (Recalculate the syndrome) in constant time. The straightforward im-
plementation recalculates the syndrome (in a (n0r, r)-code) by means of n0 poly-
nomial multiplications (modulo xr + 1) plus n0 − 1 additions in Fn2 . Two alter-
native implementations (due to [30]) were discussed above. We found that in
most cases, the straightforward implementation is faster. Indeed, implementa-
tion must either add all the columns (hj↓) of H that correspond to error bits, or
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add all the columns while masking out the ”unnecessary” ones, to execute in con-
stant time. We point out that applying the fake bits technique to e, introduces
additional overheads that, by our experiments, make it non competitive.

4 Results

This section provides the performance results of our study. For this study, we
wrote new optimized code for all the algorithms discussed above.

The core functionality was written in x86 assembly, and wrapped by assisting
C code. The implementations use the PCLMULQDQ, AES−NI and the AVX2 and
AVX512 architecture extensions. The code was compiled with gcc (version 5.4.0)
in 64-bit mode, using the ”O3” Optimization level, and run on a Linux (Ubuntu
16.04.3 LTS) OS.

The experiments were carried out on a platform equipped with the latest 8th

Generation Intel R© CoreY TM processor (”Kaby Lake”) - Intel R© Xeon R© Plat-
inum 8124M CPU at 3.00 GHz Core R© i5− 750. The platform has 70 GB RAM,
32K L1d and L1i cache, 1, 024K L2 cache, and 25, 344K L3 cache. It was con-
figured to disable the Intel R© Turbo Boost Technology, and the Enhanced Intel
Speedstep R© Technology.

The performance is reported in processor cycles counts or in cycles per byte
(C/B), where lower is better, reflecting the performance per a single core. The
results were obtained with the same measurement methodology, as follows. Each
measured function was isolated, run 25 times (warm-up), followed by 100 itera-
tions that were clocked (using the RDTSC instruction) and averaged. To mini-
mize the effect of background tasks running on the system, each such experiment
was repeated 10 times, and the minimum result was recorded.

Estimating the DFR To estimate the DFR, we generated (ephemeral) CAKE
keys, encrypted a pseudorandom message, and rand the decoder code. This was
done for the three values of interest r = 215 − 49, 215 − 19, 215 + 3. For each
r, the experiments were repeated N times, and recorded the number (nfail) of
decoding failures. Aiming for 95% confidence interval, our estimated DFR upper
bound is 3/N when nfail/N = 0, and χ2

2nfail,0.025
/(2N) when 0 < nfail/N < 20.

Detailed explanations are given in Appendix D.
Obviously, the DFR depends on the actual decoding algorithm. We used here

the decoding algorithm of [34], and also a version optimized by incorporating the
Reduced Weight optimization. The results are summarized in Table 3. The DFR
upper bounds are roughly the same (around 10−7), with both decoders, for the
close r values. This implies that, given the specific decoder(s), it is reasonable
to prefer the value of r which also leads to the best decoding performance. This
aspect is discussed below.

Efficient hashing Fig. 3 compares OpenSSL’s [2] performance for serial SHA384
(and SHA256), to our ParallelizedHashSHA384

111,8 (and ParallelizedHashSHA256
55,16 ), for dif-

ferent message lengths. It includes results from both AVX2 and AVX512 versions
for the algorithms. The choice s = 8 yields the best ParallelizedHashSHA384

111,8 perfor-
mance on AVX512 enabled platforms: since SHA384 operates on 64-bit operands,
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Decoder r nfail DFR bound
(N = 108)

[34]
32, 719 0 3× 10−8

32, 749 1 3.369× 10−8

32, 771 2 5.57× 10−8

[34] with
Reduced Weight optimization

32, 719 7 1.3× 10−7

32, 749 4 8.76× 10−8

32, 771 2 5.57× 10−8

Table 3: DFR estimations (95% confidence interval) for r = 215 − 49, 215 −
19, 215 + 3. The first three rows result from implementing the decoder of [34].
The last three rows result from the same decoder, combined with the Reduced
Weight optimization.

and a zmm register can accommodate 8 lanes, the full capabilities of AVX512
can be realized with s = 8. Similarly, s = 16 yields the best AVX2 performance
for ParallelizedHashSHA256

55,16 . The graphs show that parallelizing SHA384 (SHA256)
contributes significant speedups for sufficiently long messages, e. g., 3.5x for a
8KB message (with SHA384). In our context, with r ≈ 215, the QC-MDPC pro-
tocols indeed hash messages of such lengths (or more), and the savings can be
of ∼ 20, 000 cycles.

AES-CTR-PRF Alg. 1 uses AES256. An optimized AES256code, that pipelines
AES−NI instructions efficiently, can produce output at 0.91 C/B. Thus, the task
of generating roughly 4KB of pseudorandom data (for the relevant r values in
our context) consumes approximately ≈ 3, 700 cycles. This is much faster than
invoking the RDRAND instruction, as proposed in [30], as this instruction has
guarantee throughput of 200 cycles [27]. It is also faster than hashing, repeatedly,
a 256-bit seed concatenated with a (short) counter (even if this computation is
parallelized).

Polynomial multiplication Fig. 4 shows the performance results of our op-
timized polynomial multiplication (modulo xr + 1), compared to OpenSSL [2]
(latest development version), and to NTL [38] (latest version) compiled with the
GF2X library [37]. Panel (a) shows all the tested implementations and Panel (b)
zooms into the two fastest ones.

NTL and our implementation are ∼ 7.5x faster than OpenSSL, because they
use Karatsuba multiplication with special tuning for small multiplicand (see Sec-
tion 3.5). Note that for r = 214 and r = 215 (marked with dashed red lines in Fig.
4) our implementation is, respectively, 1.34x and 1.2x faster than NTL. These
are the cases where vertical schoolbook is advantageous. As expected, the per-
formance for r that is slightly below 2α is better than for r that is slightly above
2α. Indeed, this can be seen in the figure, where the performance with r=32, 719
is ∼ 1.2x faster than with r=32, 771. We also found performance differences in
the reduction (modulo x1 + 1) step. For example, with r = 32, 771, NTL’s re-
duction consumes ∼ 3, 000, whereas our implementation consumes only 400. We
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(a) SHA256

(b) SHA384

Fig. 3: The performance (in C/B) of OpenSSL’s [2] serial hashing com-
pared to ParallelizedHash AVX512 and AVX2 implementations. Top panel:
serial SHA256 vs. ParallelizedHashSHA256

55,16 . Bottom panel: serial SHA384 vs.

ParallelizedHashSHA384
111,8 .

suspect that the reason is that NTL has special optimization for Trinomials and
Pentanomials reductions, but not for polynomials of the form xr + 1.
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Finally, we comment the following. We tested our optimized multiplications
for r = 2α(2p+1)×64 and 2p+1 ≤ 11. These use recursive Karatsuba up to the
point where the degree of the polynomials is (2p+ 1)× 64− 1, and then switch
to the schoolbook multiplication (see Section 3.5). We tried both horizontal and
vertical methods. The horizontal schoolbook is faster in all cases, except for the
case p = 0. Here, we found that the vertical schoolbook is faster for polynomials
of degree 4× 64− 1.

Decoding The two time consuming steps of the BitFlip algorithm are ”Cal-
culate the unsatisfied bits” and ”Recalculate the syndrome”. Table 4 shows the
performance of our AVX2 and AVX512 implementations of the first one. For
each of these two architectures, we wrote an optimized code (CountUPC) and
an optimized constant time implementation (CountUPCConstantTime). Two
conclusion can be deduced: 1) AVX512 implementations are consistently ∼ 1.5x
faster than the AVX2 implementations; 2) The added overheads of incorporating
side channel protection are 100 − 120% (AVX2) and 76 − 98% (AVX512), and
increase with r.

Table 4 also shows that close values of r may lead to different performance.
Consider the case where r1 = 211 × p1, and r2 = 211 × p2, where p1 < 211 <
p2 < 212. The AVX512 implementation with r1 performs better than with r2. A
similar phenomenon occurs with the AVX2 implementations, for r1 = 29×p1, and
r2 = 29×p2, and p1 < 29 < p2 < 210. For example, the AVX512 implementation
with r1 = 22, 511, is 1.09x faster than with r2 = 22, 531 (q = 43, p1 = 211 − 17
and p2 = 211 + 3).

Section 3.6 proposed the Reduced Weight heuristic optimization. The results
of this optimization, for an AVX512 implementation, are reported in Table 5,
showing both CountUPC and CountUPCConstantTime with Reduced Weigh-
tapplied. We choose α = 5 as a good balance point between performance and
DFR.

CountUPC CountUPCConstantTime

r AVX2 AVX512 AVX2 AVX512
(105 cycles) (105 cycles) (105 cycles) (105 cycles)

20, 483 2.04 1.38 3.53 2.42
22, 511 2.12 1.33 3.76 2.4
22, 531 2.18 1.45 3.86 2.61

32, 719 2.98 1.91 5.88 3.75
32, 749 2.98 1.91 5.88 3.75
32, 771 3.04 2.03 5.91 3.91

36, 821 3.48 2.32 6.92 4.6

Table 4: Cycle count comparison of AVX2/AVX512 implementations for the
CountUPC and CountUPCConstantTime algorithms, lower is better.
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(a) All methods

(b) Optimized methods

Fig. 4: Polynomial multiplication reduced modulo xr + 1. Panel (a) shows the
cycles count to our optimized implementation. OpenSSL [2] and NTL (compiled
with gf2x) [37, 38]. Panel (b) shows only the two fastest implementations. Note
the values r = 214 and r = 215 (marked with red dashed vertical lines), where
our implementations are, respectively 1.34x and 1.2x faster. See explanation in
the text.
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Reduced Weight Reduced Weight
CountUPC CountUPCConstantTime

r AVX512 SpeedUp vs. AVX512 SpeedUp vs.
(105 cycles) Table 4 (105 cycles) Table 4

22, 511 1.16 1.15x 2.37 1.02x
22, 531 1.24 1.17x 2.57 1.01x

32, 719 1.81 1.06x 3.6 1.04x
32, 749 1.81 1.06x 3.63 1.03x
32, 771 1.98 1.03x 3.85 1.01x

Table 5: Cycles comparison of CountUPC and CountUPCConstantTime imple-
mented with the Reduced Weight optimization measured for different r values.
We compare it to the ”normal” implementation in AVX512 (reported in Table
4) for calculating the speedup.

A somewhat surprising result was obtained for step III (Recalculate the syn-
drome). The AVX2 optimized non-constant time implementation turned out to
be slightly faster than the optimized AVX512 implementation. This happens
because this step involved many memory accesses. To estimate the latency of
step III, note that the performance of both implementations is proportional to
the number of the corrected error bits. For example, with r=32, 719, correcting
100 error bits consumes ∼ 270 × 100 = 27, 000 cycles, which is almost 10x less
than the latency of the matching constant time implementation. For constant
time implementation of step III, our experiments showed that the fastest method
is simply a direct calculating. For example, in CAKE (with r = 32, 719), step
III requires two polynomial multiplications and two additions. These consume
roughly 2 × 120, 000 = 240, 000 cycles for the multiplication plus some (small)
overhead for the two additions.

5 Conclusion

This paper offers a toolbox of primitives that can be leveraged towards ef-
ficient and constant time implementations of QC-MDPC cryptosystems. The
comparison of our implementations to alternative open source libraries (NTL
and OpenSSL), indicates the functionalities that are improved. For example,
our polynomial multiplication for degrees 214 − 1 and 215 − 1 is 1.34x and 1.2x
faster than that of NTL, respectively, and our ParallelizedHashSHA384

8,111 is almost
3x faster than that of SHA384 in OpenSSL for large enough sizes.

Our implementations try to leverage the potential of vectorized processor ar-
chitectures. For example, the AVX512 implementation of Alg. 4 uses the VPCMPW
instruction. It operates on two zmmthat are populated with 32 words (of 16-bits),
and an ”immediate” that determines the comparison operator (e. g., =,≤,≥).
The output is a vector of 32 words set to 0 or 1 accordingly. This is similarly
done for the AVX2 implementation, using the instruction VPCMPEQW.
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We point out that the implementation described in [30] can also enjoy AVX512
capabilities, by using the instruction VPOPCNTQ for counting the upci (instead
of using POPCNT).

As we notice, a proper choice of parameters can contribute to the resulting
performance. Here are a few examples. With r = 32, 719 = 215 − 49 optimal
memory alignment led to a fast polynomial multiplication and decoding.

To achieve 128-bit quantum pre-image resistance, it is possible to use one of
SHA512, SHA384, SHA256, or their parallelized variant, and the optimal choice
depends on the length of the hashed buffer. Computing ParallelizedHash384

111,8 is

faster than computing ParallelizedHash512
111,8 (due to the length of the final hash).

Furthermore, a sparse buffer (e. g., in the last step of CAKE) can be compressed
prior to hashing, in order to optimize the performance. Of course, in such cases,
the cost of compression (which can be significant, especially if it needs to be
carried out in constant time) needs to be weighed against the potential reduction
in the hashing time.

The paper discusses optimization techniques for different building blocks of
generic decoding algorithms. Our results can be used for enhancing the perfor-
mance of a class of decoding algorithms. Given an algorithm, it is possible to
predict the performance results by analyzing the cost of one decoding iteration,
and multiplying it by the maximum number of iterations, that the algorithm
defines. We provide one example.

Example 10. Consider the case r = 32, 719 = 215− 49 and w = 137. A decoding
iteration consists of the above three steps, and the performance cost of each
iteration is the corresponding sum. We provide the performance of each step, for
a constant time implementation (the numbers in parentheses correspond to non-
constant time implementations), based on our results: ”CountUPC” performs at
375, 000 (191, 000) cycles, ”Find and compare the threshold” at 375, 000 (20, 000)
cycles, and ”Recalculate the syndrome” at 250, 000 (∼ 27, 000) cycles. The sum
is 1, 000, 000 (238, 000) cycles per iteration.

In this example, we use the decoder of [34] and a constant time implementa-
tion. Note that the performance of such implementation depends on the maximal
number of iterations, whereas a non-constant time implementation depends on
the average number of iterations. To estimate the maximum / average number of
iterations (with r = 32719), we set δ = 6 and ran it on 2× 106 encoded random
inputs. The observed maximum and average number of iteration was 20 and 8,
respectively. We can therefore estimate that constant-time decoding with this al-
gorithm, choice of parameters, and 20 iterations which leads toDFR ∼ 1.5×10−6

would perform at ∼ 20, 000, 000 cycles (8 × 238, 000 = 1, 904, 000 cycles with a
non-constant time implementation), on the ”Kaby Lake” platform. Our actual
measurements agree with this estimation.

For a rough comparison, consider the optimized constant time decoding per-
formance of 193, 922, 410 cycles, reported in [30], for 128-bit quantum security,
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when run on an AVX2 platform 3. Our ∼ 9x speedup is due to the optimized
primitives that leverage the capabilities of the AVX512 features.

Our choice of 20 iterations is a property of the algorithm in [34], and our the
experiments. However, other decoding algorithms can optimize for a reduced
maximum number of iteration, and achieve better constant time performance.
One example is the result in [11] that reports an optimization of (9, 602, 4, 801)-
codes with w = 90, where DFR of 0.150 × 10−6 is achieved with maximum
number of iterations set to 7. A different trade off between performance and
DFR is proposed by our Reduced Weightoptimization (see Table 3)).
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Algorithm 9 s=AES-CTR-PRF-Init(seed, maxInvokation)

Input: seed (32 bytes), maxInvokation (4 bytes)
Output: s (AES-CTR-PRF state)

1: procedure AES-CTR-PRF-Init(seed, maxInvokation)
2: s.seed = seed
3: s.pos = 16
4: s.buffer = NULL
5: s.= encode128(0)
6: s.remInvokations = maxInvokation
7: return s

Algorithm 10 A=AES-CTR-PRF(s, len)

Input: s (AES-CTR-PRFstate), len
Output: A (len bytes), the updated AES-CTR-PRFstate s
Exception: SeedOverUseError (seed overused).

1: procedure tmp=PerformAES(s)
2: if s.remInvokations = 0 then
3: raise SeedOverUseError exception

4: tmp[15 : 0] = AES256s.seed(encode128(s.j))
5: s.j = s.j + 1
6: s.remInvokations = s.remInvokations− 1
7: return tmp

8: procedure AES-CTR-PRF(s, NB)
9: if len + s.pos <= 16 then . Buffer has enough data.

10: A[len− 1 : 0] = s.buffer[s.pos + len− 1 : s.pos]
11: s.pos = s.pos + len
12: else
13: idx = 16− s.pos . calculate the buffer content length.
14: if idx > 0 then
15: A[idx− 1 : 0] = s.buffer[15 : s.pos]

16: s.pos = 0
17: while len− idx >= 16 do . Copy full AES256 blocks
18: A[idx + 15 : idx] = PerformAES(s)
19: idx = idx + 16

20: s.buffer = PerformAES(s) . Handle the tail.
21: s.pos = len− idx
22: A[len− 1 : idx] = s.buffer[s.pos− 1 : 0]

23: return A[len− 1 : 0], s

B GenPseudoRand example

Running Alg. 1 to populate a string A of len = 17 × 8 + 5 = 141 bits, embed-
ded in A[18 : 0], with pseudorandom values that stem from using an initialized
AES-CTR-PRFwith the input seed seed = encode128(0)||encode128(0).
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Inputs:

len = 141

s.seed = 00000000000000000000000000000000

00000000000000000000000000000000

s.j = 1

s.pos = 0

CTR0 = encode128 (0)

= 00000000000000000000000000000000

s.buffer = AES256(s.seed , CTR0)

= 8720849214 a248ad898940a278c095dc

AES -CTR_PRF internal values:

A[15:0] = 8720849214 a248ad898940a278c095dc

CTR1 = encode128 (1)

= 00000000000000000000000000000001

s.buffer = AES256(s.seed , CTR1)

= d33ca5bf3e13934568b84f6bd8f37552

s.j = 2

s.pos = 2

A[17:16] = 7552

Outputs:

A[17:0] = 15528720849214 a248ad898940a278c095dc

C ParallelizedHashSHA384
8,111 example

ParallelizedHashSHA384
8,111 of the array of la = 2, 000 byte array[j] = j (mod 255),

j = 0, . . . , la− 1.

la = 2,000

ls = 239

lrem = 88

m = d6d5d4d3d2d1d0cfcecdcccbcac9c8c7c6c5c4c3c2c1c0bf

bebdbcbbbab9b8b7b6b5b4b3b2b1b0afaeadacabaaa9a8a7

a6a5a4a3a2a1a09f9e9d9c9b9a999897969594939291908f

8e8d8c8b8a898887868584838281807f7e7d7c7b7a797877

767574737271706f6e6d6c6b6a696867666564636261605f

5e5d5c5b5a595857565554535251504f4e4d4c4b4a494847

464544434241403f3e3d3c3b3a393837363534333231302f

2e2d2c2b2a292827262524232221201f1e1d1c1b1a191817

161514131211100f0e0d0c0b0a09080706050403020100fe

fdfcfbfaf9f8f7f6f5f4f3f2f1f0efeeedecebeae9e8e7e6

e5e4e3e2e1e0dfdedddcdbdad9d8d7d6d5d4d3d2d1d0cfce
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cdcccbcac9c8c7c6c5c4c3c2c1c0bfbebdbcbbbab9b8b7b6

b5b4b3b2b1b0afaeadacabaaa9a8a7a6a5a4a3a2a1a09f9e

9d9c9b9a999897969594939291908f8e8d8c8b8a89888786

8584838281807f7e7d7c7b7a797877767574737271706f6e

6d6c6b6a696867666564636261605f5e5d5c5b5a59585756

5554535251504f4e4d4c4b4a494847464544434241403f3e

3d3c3b3a393837363534333231302f2e2d2c2b2a29282726

2524232221201f1e1d1c1b1a191817161514131211100f0e

0d0c0b0a09080706050403020100fefdfcfbfaf9f8f7f6f5

...

5f5e5d5c5b5a595857565554535251504f4e4d4c4b4a4948

47464544434241403f3e3d3c3b3a39383736353433323130

2f2e2d2c2b2a292827262524232221201f1e1d1c1b1a1918

17161514131211100f0e0d0c0b0a09080706050403020100

X[0 = 736aed26a8c4ed0add98f587bcaf349f2b748029eeaf3715

769f162d8343445c63ee3c4a0f606dbb498c787a07cf5625

X[1] = a24f959fd7b64bf4428ca7947133d1ceb2278f12ab37ee6c

29298ba72d48d33d3efd3490d84d22b227f78a1454c055a9

X[2] = 9c6f1f05fd0069788e5e555e1dd1648f61d222728d7c7357

3c4859b2b84b5d443737a883f9afdfbca5d9bc6bd1bd5f95

X[3] = 6ea3e8fd041d49db9b96fa39426637d3493dc889e2d5bd86

faff2ca73e93e57669eccfa46088561529fd3d91d709a240

X[4] = 4e2335af0345f0f6823cd4b569dcfa4b84515919c6afc150

844b904b96b64578ad9c375058d5c5f2d0980ccc021e00f6

X[5] = 0a8736a0be9cc12199207c4ef2df31e12ba32e47fd2ef356

7ca8230694b0c09c93bb5b029fe51475223f021c201f8b28

X[6] = 192f5227698c87d8e6d2f704c501757a902629263e57ead6

958d99aaceccd301019214d0cc6371d9036e76a8b832b5a1

X[7] = 09d013edf0a6f784c6e3b049069788a91030a9fc39de03db

6a748ca48f723614ef82533f3ead5b63764b18a5a29a1488

Y = d6d5d4d3d2d1d0cfcecdcccbcac9c8c7c6c5c4c3c2c1c0bf

bebdbcbbbab9b8b7b6b5b4b3b2b1b0afaeadacabaaa9a8a7

a6a5a4a3a2a1a09f9e9d9c9b9a999897969594939291908f

8e8d8c8b8a898887868584838281807f

YX = d6d5d4d3d2d1d0cfcecdcccbcac9c8c7c6c5c4c3c2c1c0bf
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bebdbcbbbab9b8b7b6b5b4b3b2b1b0afaeadacabaaa9a8a7

a6a5a4a3a2a1a09f9e9d9c9b9a999897969594939291908f

8e8d8c8b8a898887868584838281807f09d013edf0a6f784

c6e3b049069788a91030a9fc39de03db6a748ca48f723614

ef82533f3ead5b63764b18a5a29a1488192f5227698c87d8

e6d2f704c501757a902629263e57ead6958d99aaceccd301

019214d0cc6371d9036e76a8b832b5a10a8736a0be9cc121

99207c4ef2df31e12ba32e47fd2ef3567ca8230694b0c09c

93bb5b029fe51475223f021c201f8b284e2335af0345f0f6

823cd4b569dcfa4b84515919c6afc150844b904b96b64578

ad9c375058d5c5f2d0980ccc021e00f66ea3e8fd041d49db

9b96fa39426637d3493dc889e2d5bd86faff2ca73e93e576

69eccfa46088561529fd3d91d709a2409c6f1f05fd006978

8e5e555e1dd1648f61d222728d7c73573c4859b2b84b5d44

3737a883f9afdfbca5d9bc6bd1bd5f95a24f959fd7b64bf4

428ca7947133d1ceb2278f12ab37ee6c29298ba72d48d33d

3efd3490d84d22b227f78a1454c055a9736aed26a8c4ed0a

dd98f587bcaf349f2b748029eeaf3715769f162d8343445c

63ee3c4a0f606dbb498c787a07cf5625

digest = 449d8e98c4805b8e551d7520466a3ebdebb5d3230009486a

1687da888616305ca6fa1d9c5d890835f512e535e651cbcb

D Estimating the DFR

To estimate the DFR from N experiments that show nfail decoding failures,
with a 95% confidence interval, we use the following methodology.

If nfail = 0, we use the ”Rule of Three” [28] that places the DFR in
the interval [0, 3/N ], which implies the upper bound DFR ≤ 3/N . Let p̂ =
nfail

N denote the maximum-likelihood estimator for the DFR, and let X ∼
Bin(N,DFR) denote the distribution of the failures. This is well approximated
by the Poisson distribution X ∼ Poiss(N×DFR), for sufficiently large N . If
p̂ < 20, we use the χ2 distribution as an approximation of the related Pois-
son distribution X ∼ Poiss(N×DFR), getting the confidence interval 1

2N ×
[χ2

2(nfail+1),1−α/2, χ
2
2nfail,α/2

]. With α = 0.05, this gives the upper bound DFR ≤
1

2N ×χ
2
2nfail,0.025

. In case p̂ ≥ 20, the Poisson distribution can be approximated

by the Gaussian distribution, giving DFR ≤ p̂+ Zα ×
√
p̂(1− p̂)/N .


	 

