
Composable and Robust Outsourced Storage

Christian Badertscher and Ueli Maurer

Department of Computer Science, ETH Zurich, Switzerland
{badi, maurer}@inf.ethz.ch

Abstract. The security of data outsourcing mechanisms has become a crucial aspect
of today’s IT infrastructures. Security goals range from ensuring storage integrity, con-
fidentiality, and access pattern hiding, to proofs of storage, proofs of ownership, and
secure deduplication techniques. Despite sharing a common setting, previous security
analyses of these tasks are often performed in different models and in a stand-alone
fashion, which makes it hard to assess the overall security of a protocol or application
involving several security schemes. In this work, we fill this gap and provide a compos-
able model to capture the above security goals. We instantiate the basic client-server
setting in this model, where the goal of the honest client is to retain security in the
presence of a malicious server. Three specific contributions of the paper, which may be
of independent interest, are:
– We present a novel and composable definition for secure and robust outsourcing

schemes. Our definition is stronger than previous definitions for oblivious RAM or
software protection, and assures strong security guarantees against active attacks.
It not only assures that an attacker cannot learn the access pattern, but more-
over assures resilience to errors and the prevention of targeted attacks to specific
locations. We provide a protocol based on the well-known Path ORAM scheme
achieving this strong security goal. We justify the need for such a strong notion
in practice and show that several existing schemes cannot achieve this level of
security.

– We present a novel and composable definition for proofs of retrievability capturing
the guarantee that a successful audit implies that the current server state allows
the client to retrieve his data. As part of our study, we develop an audit mechanism,
based on secure and robust outsourcing schemes, that is similar to the construction
by Cash et al. (Eurocrpyt 2013), but is universally composable and fault-tolerant.

– We assess the security of the standard challenge-response audit mechanism, in
which the server has to compute a hash H(F ||c) on the file F concatenated with a
uniformly random challenge c chosen by the client. Being concerned with compos-
able security, we prove that this audit mechanism is not secure, even in the random
oracle model, without assuming additional restrictions on the server behavior. The
security of this basic audit scheme was implicitly assumed in Ristenpart et al. (Eu-
rocrypt 2011). To complete the picture, we state the additional assumptions for
this audit mechanism to be provably secure and investigate the (in)applicability of
hash-function constructions in this setting.

mailto:badi@inf.ethz.ch
mailto:maurer@inf.ethz.ch

Table of Contents

1 Introduction . 3
1.1 Summary of our Results and Contributions of this Work 3
1.2 On the Importance of Composition and Robustness of Outsourced Storage . . . 6
1.3 Further Related Work . 7

2 Preliminaries . 9
2.1 Notation for Systems and Algorithms . 9
2.2 Discrete Systems . 9
2.3 Constructive Cryptography . 10
2.4 Definitions of Cryptographic Primitives . 11

3 Basic Server-Memory Resource . 12
4 Security Guarantees for Server-Memory Resources . 13
5 Constructions among Server-Memory Resources . 16

5.1 Authentic Server-Memory Resources from Basic Server-Memory Resources . . . 16
5.2 Confidential from Authentic Server-Memory Resources . 22
5.3 Secure from Confidential Server-Memory Resources . 24
5.4 Do all ORAM Schemes realize a Secure Server-Memory Resource? 31

6 Auditable Server-Memory Resources . 33
7 Constructing Auditable Server-Memory Resources . 34

7.1 Making Authentic Server-Memory Resources Auditable 34
7.2 Making Secure Server-Memory Resources Auditable . 37
7.3 Revisiting the Hash-Based Challenge-Response Approach 39

References . 42
A Further Details of Section 1 . 46

A.1 Traditional PoR Game . 46
B Further Details of Section 2 . 46

B.1 Discrete Resources and the World Interface . 46

Composable and Robust Outsourced Storage 3

1 Introduction

An integral and pervasive part of today’s IT infrastructures are large amounts of outsourced
data ranging from personal data to important enterprise backups on third-party storage
providers. Depending on the various applications and sensitivity of the data, a user paying for
remote storage might not fully trust in the provider’s content management or security. Client-
side countermeasures have to be taken into account, a prominent example of which are the
protection of confidentiality and integrity of the uploaded files, or hiding the access pattern
to files. A client further would like to audit the server storage to ensure that the provider
maintains all his data consistently and is not saving space by deleting a fraction of the content.
That is generally known as proofs of retrievability (PoR) or provable data possession (PDP)
[36,4]. Complementary to protocols for clients to retain security against a possibly malicious
server, another line of research deals with mechanisms for secure deduplication and proofs of
ownership [37,34]. These protocols allow an honest server to reduce its storage requirements
while protecting against malicious clients that try to fool the server by accessing files they do
not possess.

In this work, our focus is on malicious server behavior. Reasons for such dishonest behav-
ior include ordinary failures that lead to data loss or data leakage, an active break-in into
the provider’s infrastructure or intentional malicious server strategies. A client can employ
protection mechanisms to ensure integrity, confidentiality, hide its access pattern to the data,
or run regular audits to ensure that the server maintains the data reliably such that the client
is able to retrieve it. Although service providers advertise availability as an important selling
point, such audits are a key tool to increase the confidence or trust in the service since it is
often not realistic to rely on the provider to inform reliably about an incident, either due to
ignorance or due to the fear of bad reputation.

Despite sharing a common setting, previous security analyses of these tasks are often
performed in different models and in a stand-alone fashion, which makes it hard to assess
the overall security of a protocol (e.g. a cloud application) that involves several security
schemes. In this work, we fill this gap and provide a unified composable model for capturing
the security of outsourced storage. As part of this study, we justify the need for stronger
security requirements from protocols than what is typically assumed in the literature. Our
approach lets us develop an outsourcing scheme in modular steps that provably achieves
stronger security than existing protocols.

We formulate our model in the language of the constructive cryptography framework
(CC) [43,44]. Our results are not specific to the CC framework itself and choosing another
definitional framework like Canetti’s Universal Composition (UC) framework [17] would yield
closely related findings [35]. A central aspect of CC is that the resources available to the
parties, such as communication channels or an untrusted server storage, are made explicit.
The goal of a cryptographic protocol is then to securely construct, from certain existing or
assumed resources (often called “real world”), another, more desirable resource (often called
“ideal world”). A construction is secure if the real world is as useful to an adversary as the ideal
world, the latter world being secure by definition. Formally, one has to construct a simulator
in the ideal world to make the two worlds computationally indistinguishable.

The resources we consider in this work are variations of so-called server-memory resources.
A typical example of a construction would be to construct a server-memory resource providing
integrity from one that does not have this property. A constructed resource can then again be
used by higher-level protocols or applications. This allows for modular protocol design and
to conduct modular security analyses by dividing a complex task into several less complex
construction steps, where each step precisely specifies what is assumed and what is achieved,
and the security follows from a general composition theorem.

1.1 Summary of Results and Contributions of this Work

A model for untrusted storage. The basic functionality we consider is an (insecure)
server-memory resource which we denote by SMR and formally specify in Sect. 3. One

4 C. Badertscher and U. Maurer

(read, i)

(write, x, i)

W

C1

Ck

SH

SI

getHist

(read, i)

(write, x, i)

startWriteMode
stopWriteMode

SMR

...

(write, x, i)

(read, i)

C0
init

S. . .
1 2 n

x

Fig. 1. The basic server-memory resource.

or several clients can write to and read from this resource via interfaces. Clients write to
the memory in units of blocks, and the resource is parameterized by an alphabet Σ and
the size n of blocks. The server can access the entire history of read/write requests made
by the clients. To capture the active server influence on the storage, including malicious
intrusion, the resource can be adaptively set into a special server write mode that lets the
server overwrite existing data. Within the scope of this paper, we understand this write
phase as being malicious and the server is not supposed to change any data. However, we
point out that this server write mode can be used to capture intentional, honest server-side
manipulations of the data storage, as in de-duplication schemes or proofs of ownership. We
consider this line of research in a future work.

The decision in which “mode” the resource resides, is given directly to the environment
(or distinguisher) and not to the adversary. The reason for this is important for technical
and motivational reasons. Assume that the capability is provided at the malicious server
interface both in the “real world” and in the “ideal world,” then the simulator in the ideal
world can always make use of the capability of overwriting the memory content and nothing
would prevent the simulator from doing so all the time and hence trivial protocols could be
simulated. However, in this work, we want to express security guarantees in both cases, when
the resource is “under attack” and when it is not. To achieve this, the “attack mode” is under
the control of the environment and not the adversary. Furthermore, in certain cases we only
want to give explicit security guarantees that hold only until the next attack happens (for
example in the case of audits as explained later). From a motivational point of view, assigning
the capability to the environment and not to attacker yields more general statements, as it
also allows us to capture scenarios where the server does indeed not have the active choice to
do so, but where any external event can provoke the server memory to be corrupted.

We present more secure variants of the basic server memory. In particular, in Sect. 4, we
introduce the following resources:

– The authentic server-memory, providing authenticity of the memory content (meaning
that clients detect adversarial modifications).

– The confidential and authentic server memory, providing secrecy (in addition to authen-
ticity) of the memory content.

– The secure server memory. It provides full secrecy on the entire structure of the memory.
An attacker cannot learn anything beyond the number of accesses and cannot tamper
with specific logical memory cells.

We show how to construct each of these resources in Sect. 5. We then present in Sect. 6
the auditable versions of the above resources. An auditable server memory additionally gives
the client the capability to check whether the memory has been modified or deleted, without
the need to read the entire memory. We again give protocols that achieve auditable server
memories in Sect. 7.

A novel notion for secure and robust outsourcing schemes. Our definition of a secure
server-memory resource can be seen as a novel security goal: The specification demands

Composable and Robust Outsourced Storage 5

secrecy of content and access pattern, resilience to errors, and also that active attacks cannot
be targeted at specific locations. On a more technical level, our secure server-memory resource
is specified as a basic server-memory resource, but where roughly only the number of accesses
leak to the server, and in particular not the content. In addition, the active influence by an
attacker is restricted to being able to set a failure probability α. This parameter defines, with
which probability a client’s read or write operation fails. This failure probability is the same for
all memory locations and each memory location fails independently of other memory locations.
This means that whatever the attacker does to the memory of the server, any modification
will result in clients being more or less successful in reading or updating the data. In case of a
failure, the client cannot read or update the corresponding block anymore. We further demand
that the memory, and thus any protocol achieving it, remains operational for the faultless
part of the memory and hence is robust in the presence of failures. As outlined above, this
is technically enforced by not giving the simulator the power to always block operations and
hence to abort. This makes the functionality stronger than existing models such as [2,19].
We give a protocol that realizes the secure server-memory resource and is an extension of the
well-known Path ORAM protocol [57].

We also show that the existing definitions for access-pattern hiding and software protection
are insufficient for realizing secure server-memory resources. We exemplify this by two concrete
examples that do not realize a secure server memory either because the failure probability is
not the same for all locations (as in [33]), or failures among memory locations are correlated
(as in [56]) and explain why this is problematic in practice.

A novel notion for audit schemes. The auditable server memory resources are server-
memory resources with the additional client-side capability of being able to ask whether the
current memory content is unchanged. This retrievability guarantee is valid if the resource
is not in “adversarial write mode”, as explained above, and holds up to the point when the
server writes or deletes a location of the memory. A new audit has to reveal whether any
change affected the client’s data. Our new definition stipulates that a protocol implements
a proof of retrievability if it realizes an auditiable server-memory resource from an ordinary
one by possibly using additional resources like a random oracle.

To the best of our knowledge, this is the first composable security definition for audit
schemes. We thereby rectify two drawbacks of existing definitions. First, our definition and
protocols guarantee that the client can download the data, if (a) the audit succeeds and
(b) the adversary does not corrupt further locations after the audit. This guarantee is not
required by existing definitions and not fulfilled by certain schemes such as [19]. Second,
existing definitions are based on the concept of knowledge-extractors: The extractor needs
the client secrets and the server strategy to recover the data. As outlined in more detail in
Sect. 1.3, this is not a scenario which is suitable in practice, since the client and the server
would not reveal this information to each other or a third party. Our formulation does not
use extractors.

For each of our server-memory resources, we show how to implement secure audits. In the
particular case of secure server-memory resources, the audit reduces to a statistical estimate
of the failure parameter α in combination with appropriate data replication. Our protocol
resembles the protocol by Cash et al.[19], but is more robust against failures: While their
construction aborts when detecting an error, our scheme keeps operating even in the presence
of arbitrarily many errors. As we outline in Sect. 1.2, this robustness is again needed to ensure
that the data can be retrieved after a successful audit. For example, encountering just a small
number of failures after an audit must not harm this guarantee.

A formal analysis of hash-based challenge-response audits. A composable formal-
ization of storage audits in the spirit of indifferentiability and constructive cryptography [?,
Section 7] has been envisioned in [51] but has not, to the best of our knowledge, been formal-
ized. With our formalization, we are now able to re-assess the security of the main example in

6 C. Badertscher and U. Maurer

[51], which is the standard challenge-response audit mechanism in which the server computes
a hash on the current memory content concatenated with a uniformly random challenge cho-
sen by the client to convince the client that the data is available. We show that this scheme
is not secure even in the random oracle model, contradicting the claimed security in [51].
This further implies that replacing the random oracle by any provably secure iterated hash-
function construction like NMAC [22,8], does not have to yield secure audits. In particular,
there is no contradiction to the composition theorem as claimed in [51]. Note that Demay et
al. [23] provide another way to resolve this contradictory situation of [51].1 We further prove
that the additional assumption needed for the hash-based audit to be secure is to restrict
inputs to the random oracle to bitstrings stored in the server memory itself. This condition
is sufficient for a “monolithic” random oracle with no particular underlying structure, and we
show that it is in general insufficient if the random oracle is replaced by a construction (like
NMAC) from ideal compression functions.

A provably secure and robust outsourcing scheme. We show how to construct an
authentic server-memory resource from a basic (and thus insecure) server-memory resource
in Sect. 5.1. We subsequently show how to get a confidential and authentic server-memory re-
source from an authentic one in Sect. 5.2, and finally achieve a secure server-memory resource
from a confidential and authentic one in Sect. 5.3. Finally, in Sect. 7.2, we realize an audit
mechanism as outlined above on top of the secure server-memory resources. By combining
all of the above steps, the composition theorem guarantees us that the composed protocol
achieves an auditable, secure server-memory resource from a basic server-memory resource
(and local memory). The composed protocol is thus an efficient outsourcing scheme that prov-
ably achieves strictly stronger security than existing protocols in this realm. The protocol is
resilient against any number of errors, hides the content and access pattern, does not allow
targeted attacks under any circumstances, and provides an audit function.

1.2 On the Importance of Composition and Robustness

Our setting has similarities with previous works that devise outsourcing schemes secure
against active tampering adversaries and which build upon the foundational work by Goldre-
ich and Ostrovsky [32] on software protection. There is, however, a subtle and fundamental
difference between the context of outsourced storage and the context of software protection
of [32] that seems to have gone unnoticed. In this paragraph, we show how this difference
necessarily leads to strictly stronger security requirements for outsourcing schemes and even
gives rise to novel security-relevant questions, which we answer in this work.

The context of [32] is software protection, where the goal is to prevent that an experimenter
can analyze the CPU-program and learn something he could not deduce from the program
specification alone. Technically, a simulator must generate an indistinguishable transcript of
any experiment, solely based on the known program specification. If such a simulator exists,
this means that the program effectively defeats experiments that try to figure out secret details
on “how the program internally works”. Following this motivation, as soon as the program
encounters an error when reading a memory location, it should abort, as the error is a sign
that the software is running in a tampering experiment. In the corresponding simulation, the
simulator also aborts. Overall, this behavior makes perfectly sense to defeat experiments since
in any honest execution, no error is expected to occur.

The context in this work is outsourcing schemes and several of the above aspects do
change in this realm. We present outsourcing schemes and the idealization they can achieve,
like the secure server-memory resource, as a low-level primitive that exports the interface of a
consistent storage with certain additional guarantees. We do not allow our primitives to abort

1 They prove that any simulator in the construction of a random oracle from ideal compression
functions needs to maintain an internal state linear to the total size of all queries. This implies
that the server cannot save space due to the simulator’s memory consumption.

Composable and Robust Outsourced Storage 7

in case an access to a location returns an error. It must stay operational for the remaining
part of the memory. The decision to abort is left to the calling protocol or application that
uses the memory abstraction. In our context, we want and should react to errors and not
stop when detecting them. This is the first important point that makes the problem more
difficult and gives rise to the question of what level of security we can achieve in this setting.
Our most secure abstraction, the secure server-memory, answers this question in a strong
way: a protocol that achieves the secure server-memory not only remains operational (and
efficient) when tampering is detected (a simulator cannot “abort on error” in a simulation in
our model), it also makes sure that the subsequent behavior does not reveal which logical
locations the client accesses, and furthermore prevents that tampering can be targeted at
specific logical locations. We give two examples to illustrate the security problems when a
secure outsourcing scheme is used as part of a larger system.

Example 1: Information leakage due to errors. Assume that a client application stores
some control information on an outsourced storage using a secure outsourcing scheme that
achieves a secure server-memory as defined in our work. Clearly, there is no attack by which
the adversary could learn when the client accesses the control information, even if the attacker
knew at which logical location the control information is stored. And since the attacker can
only introduce failures that are equally likely for all logical locations, the occurrence of an
error during an access does not allow to infer which logical memory location was accessed. In
contrast, several existing schemes based on the notion of software protection, do not guarantee
this level of security and allow an attacker to approximately estimate which logical addresses
are targeted by an attack. Turned around, observing an error might be a good indication on
which logical location has been accessed. We show this more concretely later in Sect. 5.4 and
??.

Example 2: Implementing secure audits. Let us focus on the protocol by Cash et
al. [19] that implements a proof of retrievability using a software protection scheme S that
aborts on error. If S aborts, the entire execution aborts. Their protocol invokes S to store
the encoded data redundantly on the server, which should improve the resilience, meaning
that not detecting a few errors should not let the protocol fail. However, since S aborts when
detecting even a single error, this desired resilience practically becomes ineffective and leads
to weak guarantees: consider a very weak tampering adversary that chooses just a single,
physical location on the server-memory and only tampers with this single physical location.
Then, the audit is passed with high probability. However, the client protocol aborts before
the client can actually retrieve all his data, since the error is detected beforehand during a
rebuild phase and the execution is aborted. In contrast, if S did actually realize a secure
server-memory, then this behavior can be avoided. The audit protocol in Sect. 7.2 is of this
type.

1.3 Further Related Work

Models for outsourced storage. The security of services outsourced to untrusted third-
parties has received much attention in the literature and is a prevalent topic in cloud com-
puting. Regarding the special case of untrusted outsourced storage, Mazieres and Shasha [46]
and later works by Androulaki et al. [1] and Cachin et al. [15,15,13,14,11,12] formalize un-
trusted storage as read-write registers, where multiple clients can write to and read from the
(shared) register by issuing read and write requests. Each request and its answer is considered
an event and the view of the client is a sequence of such invocation and response events.
Integrity is then defined in a property-based way as conditions on the view of the client.
This model is appealing as it is expressive and the interface is simple. Our model keeps this
simple structure. At each client interface a read or write request can be input. The response
by the server is defined as the current value of the location (or register) which is susceptible

8 C. Badertscher and U. Maurer

to adversarial write operations which means that the responses may be adaptively chosen by
the attacker. Our model can be seen as an universally composable variant of the above (and
where a set of cooperating clients try to obtain strong security guarantees). The benefits are
stronger security guarantees and that our server-memory functionalities make the adversarial
influence explicit. This allows to compare different functionalities according to their strength.
It is also desirable to have a composable security definition for outsourced storage since they
are naturally part of larger systems, such as distributed file systems [55] or storage systems
[54,40].

Composable notions in the realm of secure outsourced storage are unfortunately still rare.
Recent examples include the works by Atteniese et al. [5], Camenisch et al.[16], Liu et al. [41],
or Apon et al.[2] that illustrate the importance of filling these gaps. For example, in [5] the
authors formalize the security guarantees of entangled storage in the UC framework. In order
for their scheme to be secure, they work in the Fmem-hybrid model, where the functionality
Fmem is a memory functionality that models a server storage, where clients can upload and
retrieve their values. Fmem is a quite strong assumption. For example, the adversary does
not see the values uploaded to the storage. Hence, Fmem can be seen as a special case of
our server memory functionality where the adversarial access is limited. Such a functionality
could be obtained, for example, by defining a “wrapper” functionality along the lines of [28]
that wraps an ordinary memory resource to restrict the adversarial access. This makes the
assumptions on the capabilities of the attacker again explicit in order to compare different
protocols.

In [16], the authors investigate the security of protocols that improve the leakage resilience
of imperfectly erasable memory and use the constructive cryptography framework. Imperfect
erasures leak certain information to a passive adversary even after the client instructed the
memory to delete the contents. This setting is fundamentally different from ours in that we
are interested in security guarantees against active attacks on untrusted server storages and
erasability of (local) memory is not considered. The resources in [16] also make use of a
free interface (also denoted world interface) to assign certain capabilities to the environment
instead of the adversary to achieve general and meaningful security statements.

ORAM. Oblivious RAM is a cryptographic primitive originally introduced by Goldreich and
Ostrovsky [32] and has become a standard approach to hiding the access pattern when ac-
cessing a cloud storage. A sequence of fundamental results have led to important security and
performance improvements such as [33,19,39,24,49,30,21,57,31,47,58,27,56]. Previous works
define the security of ORAM schemes by requiring that different sequences of client read and
write operations lead to indistinguishable sequences of accesses to the server storage. Protec-
tion against active adversaries is typically achieved by detecting malicious behavior, for ex-
ample by using Merkle-Trees or authenticators [56,50,2], and aborting upon detection [32,19].

PoR. The first formal security models for proofs of retrievability (PoR) were given by Juels
and Kaliski [36] and in a similar spirit also in previous works, for example by Naor et al. [48] on
sublinear authentication. The definition in [36] is tailored to the problem of storing static data
on a server, i.e., a large file like a backup that is unlikely to be changed frequently. Roughly,
an important key idea of many PoR schemes is that a redundant encoding of the file makes
sure that any too small data loss is tolerable and thus need not be detected. On the other
hand, by downloading some file locations at random and performing some integrity checks, a
client can detect a significant amount of data loss. Subsequent publications [10,25,53] present
new and more efficient schemes as well as generalized adversarial models. In these works,
the initial definition has been further carried over to the case of dynamic data. One major
obstacle in the case of dynamic data is to force the server not to discard updates to (possibly
a small number of) memory locations. Cash et al. [19] propose a scheme based on ORAM and
showed that hiding the access structure of reads and writes to the server allows for efficient
PoR for dynamic data. Another solution, proposed by Chandra et al. [20], shows that the

Composable and Robust Outsourced Storage 9

problem of constructing locally decodable and locally updatable codes is strongly related to
the construction of PoR schemes. Roughly, being able to update an encoding of a file F to an
encoding of F ′ by only changing a small number of file blocks allows to reduce the problem of
dynamic PoR to static PoR. Using a related guiding idea, Shi et al. [53] recently proposed an
(efficient) PoR scheme for dynamic data as well. Another closely related research branch deals
with models and applications for provable data possession (PDP), proposed by Ateniese et
al. [4,6,3]. PDP and PoR are related in spirit, but PDP is essentially a weaker definition than
PoR. While the goal of proofs of retrievability is to guarantee that a file remains retrievable
in full, the goal of PDP is to test if most of the file is still retrievable. Subsequent models have
been proposed that deal with dynamic data, for which several protocols have been designed
[6,38,26]. The security definitions of PoR (and PDP) schemes are extractor-based and are
usually formalized as a game between a challenger and an adversary. A PoR scheme consists
of four interactive sub-protocols executed between a stateful client and a stateful server:
init(1ν , Σ, n), read(i), write(i, vi) carry their usual intended meaning, where ν is the security
parameter, Σ is the alphabet and n is the size of the memory. The fourth protocol, audit, is
executed to verify if the server possesses all the client’s data, in which case the client returns
accept.

The PoR security definition is threefold and consists of correctness, authenticity and re-
trievability. In this paragraph, we focus on the third security property and on the dynamic
PoR game ExtGame as found in [19,20] which we state in Fig. 18 in Appendix A for complete-
ness. For more details and variations, we refer to [36,52,19,20]. A scheme is said to provide
retrievability, if there exists an efficient probabilistic extractor E ,such that, for every efficient
server S̄, every polynomial p(ν) it holds that Pr

[
ExtGameS̄,E(ν, p(ν)) = 1

]
is negligible in the

security parameter. Intuitively, the game formalizes that from a cheating server strategy that
successfully passes an audit with good probability, it is possible to extract the correct storage
content that the client uploaded. In general, the extractor is provided with the client private
keys and the server strategy. The concept of a knowledge-extractor emerged from proofs of
knowledge: The reasoning in proofs of knowledge is that if a dishonest prover passes the test
with good probability using some arbitrary strategy, then this strategy could be used by the
prover himself to effectively calculate the witness by virtue of the extractor algorithm, which
is an algorithm that extracts the witness by executing and rewinding the prover’s strategy.

Although the extractor-based approach to PoR includes a meaningful thought-experiment,
it has a major drawback concerning client-side security guarantees: If an audit is successful,
the availability of the data, which is of major concern to the client, is only guaranteed through
the execution of the extractor, which needs to access the server strategy and the secret state
of the client. Both parties are unlikely to disclose this sensitive information. No server would
reveal its entire state and no client would reveal its secret keys.

2 Preliminaries

2.1 Notation for Systems and Algorithms

We describe our systems with pseudocode using the following conventions: We write x ← y
for assigning the value y to the variable x. For a distribution D over some set, x� D denotes
sampling x according to D. For a finite set X, x � X denotes assigning to x a uniformly
random value in X. Typically queries to systems consist of a suggestive keyword and a list
of arguments (e.g., (write, i, v) to write the value v at location i of a storage). We ignore
keywords in writing the domains of arguments, e.g., (write, i, v) ∈ [n] × Σ indicates that
i ∈ {1, . . . n} and v ∈ Σ. The systems generate a return value upon each query which is
output at an interface of the system. We omit writing return statements in case the output
is a simple constant whose only purpose is to indicate the completion of an operation.

10 C. Badertscher and U. Maurer

2.2 Discrete Systems

The security statements in this work are statements about reactive discrete systems that can
be queried by their environment: Each interaction consists of an input from the environment
and an output that is given by the system in response. Discrete reactive systems are modeled
formally by random systems [42], and an important similarity measure on those is given by the
distinguishing advantage. More formally, the advantage of a distinguisher D in distinguishing
two discrete systems, say R and S, is defined as

∆D(R,S) = |Pr [DR = 1]− Pr [DS = 1] |,

where Pr [DR = 1] denotes the probability that D outputs 1 when connected to the system
R. More concretely, DR is a random experiment, where the distinguisher repeatedly provides
an input to one of the interfaces and observes the output generated in reaction to that input
before it decides on its output bit.

2.3 Constructive Cryptography

The central object in constructive cryptography is that of a resource available to parties, and
the resources we discuss in this work are modeled by reactive discrete systems. As in general
the same resource may be accessible to multiple parties, such as a communication channel
that allows a sender to input a message and a receiver to read it, we assign inputs to certain
interfaces that correspond to the parties: the sender’s interface allows to input a message to
the channel, and the receiver’s interface allows to read what is in the channel. More generally,
a resource is a discrete system with a finite set of interfaces I via which the resource interacts
with its environment.

Converters model protocols used by parties and can attach to an interface of a resource
to change the inputs and outputs at that interface. This composition, which for a converter
π, interface I, and resource R is denoted by πIR, again yields a resource. In this work, a
converter π is modeled as a systems with two interfaces: the inner interface in and the outer
interface out. The inner interface can be connected to an interface I of a resource R and the
outer interface then becomes the new interface I of resource πIR. For a vector of converters
π = (πI1 , . . . , πIn) with Ii ∈ I, and a subset of interfaces P ⊆ {I1, . . . , In}, πPR denotes the
resource where πI is connected to interface I of R for every I ∈ P. For I-resources R1, . . .Rm

the parallel composition [R1, . . . ,Rm] is again an I-resource that provides at each interface
access to the corresponding interfaces of all subsystems.

In this paper, we make statements about resources with interface sets of the form I =
P ∪ {S,W}, where P := {C0, . . . ,Ck}. P is the set of honest (client) interfaces. A protocol is
a vector π = (πI1 , . . . , πI|P|) that specifies one converter for each interface I ∈ P. Intuitively,
P can be thought of as the interfaces that honestly apply the specified protocol π. On the
other hand, S is the potentially dishonest (server) interface and is assigned a converter that
describes the default behavior at that interface in case it is honest. Intuitively, interface S is
the interface where the prescribed behavior is not necessarily applied. Dishonest behavior is
thus captured by replacing the protocol by an arbitrary, adversarial strategy. The interface W
is the free interface, also denoted to as the world interface, and models the direct influence of
a distinguisher on a resource. This interface is particularly useful to model capabilities which
are not a priori assigned to a party or the attacker and hence allows more general statements.
We refer the interested reader to Appendix B.1 for a more detailed exposition.

A constructive security definition then specifies the goal of a protocol in terms of assumed
and constructed resources. We directly state the central definition of a construction of [43]
and briefly explain the relevant conditions.

Definition 1. Let R and S be resources with interface set I = P ∪ {S,W} with P :=
{C0, . . . ,Ck}. Let ε be a function that maps distinguishers to a value in [0, 1] and let sim
be a converter (the simulator). Let π = (πC0

, . . . , πCk) be a protocol and let srvR and srvS be

Composable and Robust Outsourced Storage 11

converters that describe the default behavior at interface S when it is honest. The protocol π
constructs resource S from resource R (with potentially dishonest S) within ε and with respect
to the simulator sim and the pair (srvR, srvS), if for all distinguishers D,

∆D(srvR
SπPR, srvS

S S) ≤ ε(D) (Correctness)

∆D(πPR, simS S) ≤ ε(D). (Security)

The first condition ensures that the protocol implements the required functionality if the
server is honest. For example, for outsourced server-memory resources, all values written to
the storage have to be retrievable unmodified when no attacker is present. This honest server
behavior is modeled by a “dummy” converter that does not interfere with the client protocol
and does not generate any output at its outer interface. The second condition ensures that
whatever a dishonest server can do with the assumed resource, he could do as well with the
constructed resource by using the simulator sim. Turned around, if the constructed resource is
secure by definition, there is no successful attack on the protocol. The notion of construction
is composable, which intuitively means that the constructed resource can be replaced in any
context by the assumed resource with the protocol attached without affecting the security.
We refer to [43] for a proof. For readers more familiar with Canetti’s UC Framework [17], we
refer to [35] for explanations of how the above concepts relate to similar concepts in UC.

2.4 Definitions of Cryptographic Primitives

IND-CPA secure encryption schemes. A private key cryptosystem (G, E ,D) for message
space M, key space K, and ciphertext space C consists of a (probabilistic) key generation
algorithm G that returns a key κ, a (probabilistic) encryption algorithm E that given a
message m ∈ M and the private key κ returns a ciphertext c ← Eκ(m), and a (possibly
probabilistic) decryption algorithm D, that given a ciphertext c ∈ C and the private key κ
returns a bit a message m ∈M. The correctness condition demands that Dκ(Eκ(m)) = m for
all keys κ in the support of G.

A private key cryptosystem has indistinguishable ciphertexts under a chosen plaintext
attack if the following two systems GCPA

0 and GCPA
1 are indistinguishable for efficient distin-

guishers D: Both systems start by choosing a key κ ∈ K according to algorithm G. Next,
they act as encryption oracle by accepting messages m ∈ M and providing the correspond-
ing ciphertexts Eκ(m) ∈ C. At any point, a distinguisher D can submit a challenge query
that consists of two messages m̃0 and m̃1 (with |m̃0| = m̃1|) where the system GCPA

i returns
the encryption of m̃i. The security condition requires that no efficient distinguisher D can
distinguish the two systems better than with negligible advantage.

Message authentication codes. We consider a MAC function f with message space M,
tag space T , and key space K (with an associated distribution). The security condition for a
MAC function f states that no efficient adversary A can win the following game GMAC

f better
than with negligible probability. GMAC

f first chooses a key κ � K. Then it acts as a signing
oracle, receiving messages m ∈ M at its interface and responding with fk(m). At any point,
A can undertake a forging attempt by providing a message m′ and a tag t′ to GMAC

f . The
game is won if and only if fk(m′) = t′ and m′ was never queried before by A. The probability
of adversary A in winning the game is succinctly written as ΓA(GMAC

f).

Digital signature schemes. A digital signature scheme (K,S, V) for a message space M
and signature space Ω consists of a (probabilistic) key generation algorithm K that returns a
key pair (sk , vk), a (possibly probabilistic) signing algorithm S, that given a message m ∈M
and the signing key sk returns a signature s ← Ssk (m), and a (possibly probabilistic, but
usually deterministic) verification algorithm V , that given a message m ∈ M, a candidate
signature s′ ∈ Ω, and the verification key vk returns a bit Vvk (m, s′). The bit 1 is interpreted as

12 C. Badertscher and U. Maurer

Initialization
init, active, intrusion← false
Hist← []

Interface C0

Input: init
if not init then

for i = 1 to n do
M[i]← λ

Hist← Hist||(0, init)
init← true

Input: (read, i) ∈ [n]
if init and not active then

Hist← Hist||(0, R, i)
return M[i]

Input: (write, i, x) ∈ [n]×Σ
if init and not active then

Hist← Hist||(0, W, i, x)
M[i]← x

Input: initComplete
active← true

Interface SH

Input: getHist
return Hist

Input: (read, i) ∈ [n]
return M[i]

Interface SI

Input: (write, i, x) ∈ [n]×Σ
if intrusion then

M[i]← x

Interface W

Input: startWriteMode
if active then

intrusion← true

Input: stopWriteMode
if active then

intrusion← false

Interfaces Ct, t ∈ {1, . . . , k}
Input: (read, i) ∈ [n]

if active and not intrusion then
Hist← Hist||(t, R, i)
return M[i]

Input: (write, i, x) ∈ [n]×Σ
if active and not intrusion then

Hist← Hist||(t, W, i, x)
M[i]← x

Resource SMRk
Σ,n

Fig. 2. Description of the insecure server-memory resource.

a successful verification and 0 as a failed verification. It is required that Vvk (m,Ssk (m)) = 1
for all m and all (vk , sk) in the support of K. A digital signatures scheme is existentially
unforgeable under chosen message attacks if no efficient adversary A can win the following
game GEU–CMA better than with negligible probability. GEU–CMA first chooses a key pair
(sk , vk) � K. Then it acts as a signing oracle, receiving messages m ∈ M at its interface
and responding with Ssk (m). At any point, A can undertake a forging attempt by providing
a message m′ and a candidate signature s′ to GEU–CMA. The game is won if and only if
Vvk (m′, s′) = 1 and m′ was never queried before by A. The probability of adversary A in
winning the game is succinctly written as ΓA(GEU–CMA).

Erasure codes. An (n, k, d) erasure code over the alphabet Σ with error symbol ⊥ 6∈ Σ, is a
pair of (efficient) algorithms (enc, dec) that satisfy the following requirement: For all F ∈ Σk,
let F̄ := enc(F) ∈ Σn and define the set

CF̄ := {F̄ ′ ∈ (Σ∪{⊥})n | ∀i : F̄ ′i ∈ {F̄i,⊥} ∧ at most d−1 positions of F̄ ′ are equal to ⊥}.

Then, for all F̄ ′ ∈ CF̄ , it holds that dec(F̄ ′) = F .

3 Basic Server-Memory Resource

Our basic server-memory resource allows clients to read and write data blocks, where each
block is encoded as an element v of some alphabet Σ (a finite non-empty set). An element
of Σ is considered a data block. At the server interface, denoted S, the resource provides the
entire history of accesses made by the clients (modeling the information leakage via a server
log file in practice), and allows the server to overwrite existing data blocks. To syntactically
separate the former capability (modeling data leakage), from the latter, capability (modeling
active influence), we formally divide interface S into two sub-interfaces which we denote by
SH (for honest but curious) and SI (for intrusion). The server can only overwrite data blocks

Composable and Robust Outsourced Storage 13

The definition of aSMR is identical to SMR except for the adversarial influence at interface SI and the
reaction on writing to a corrupted memory location:

Interfaces Ct, t ∈ {1, . . . , k}
Input: (read, i) ∈ [n]

if active and not intrusion then
Hist← Hist||(t, R, i)
return M[i]

Input: (write, i, x) ∈ [n]×Σ
if active and not intrusion then

if M[i] 6= ε then
Hist← Hist||(t, W, i, x)
M[i]← x

else
Hist← Hist||(t, Fail, i, x)
return ε

Interface SI

Input: (delete, i) ∈ [n]
if intrusion then

M[i]← ε

Input: (restore, i) ∈ [n]
if intrusion then

if ∃k, x, t : Hist[k] = (t, W, i, x) then
k0 ← max{k | ∃t, x : Hist[k]

= (t, W, i, x)}
Parse Hist[k0] as (t, W, i, x0)
M[i]← x0

else
M[i]← λ

Resource aSMRk
Σ,n

Fig. 3. The authentic server-memory resource (only differences to SMR shown).

if the resource is set into a special write mode. The distinguisher (or environment) is given
the capability to adaptively enable and disable this write mode at the free interface W. The
combination of capabilities at interfaces W and SI allows our model to capture different types
of adversarial influence, including adaptively setting return values of client read operations,
or to model phases in which no server write access is possible at all. We present the basic
server-memory resource, called SMRk

Σ,n, in detail in Fig. 2.
Our formalization is more general than the simple client-server setting in that it takes into

account several clients that access the resource, each via their interface Ci. The parameters
of the resource are the number of clients k, the alphabet Σ, and the number of blocks. The
interface C0 is the initialization interface and is used to set up the initial state of the resource
(for example as a first step in the protocol). Only after the resource is initialized, indicated by
the input initComplete at C0, the client interfaces become active and can update the state.
We assume that (adversarial) server write operations only happen after the initialization is
complete. Interface C0 can be thought of as being assigned to a special party or simply to a
dedicated client whose first actions are to initialize the resource.

The basic server-memory resource constitutes the core element of our model and serves
as the fundamental building block for numerous applications in the realm of cloud storage as
discussed in the previous sections. In this work, we elaborate along the lines of securing the
memory resource against a malicious server. Other possible directions include the formaliza-
tion of distributed file-systems, proof of ownership, access control mechanisms, or entangled
storage that are part of future and ongoing work and not covered in this paper.

4 Security Guarantees for Server-Memory Resources

In this section, we present server-memory resources that offer more security guarantees for
the clients in that they restrict the capabilities of the server.

Authentic server-memory resource. An authentic server-memory resource enhances the
basic server-memory resource by restricting the capabilities at the active interface SI . Instead
of being capable to modify existing data blocks, the server can either delete data blocks, via
input (delete, i) at SI , or restore previously deleted data blocks, via input (restore, i) at
SI . A deleted data block is indicated by the special symbol ε. A client accessing the location

14 C. Badertscher and U. Maurer

The definition of cSMR is identical to SMR except for the information the server and the adversary
learn about the stored data:

Interface SH

Input: getHist
Hist’← []
for j = 1 to |Hist| do

q ← Hist[j]
if q = (t, W, i, x) for some t, x, i then

Hist’← Hist’||(t, W, i)
if q = (t, Fail, i, x) for some t, x, i then

Hist’← Hist’||(t, Fail, i)
if q = (t, R, i) for some t, i then

Hist’← Hist’||(t, R, i)
return Hist’

Input: (read, i) ∈ [n]
return λ

Interface SI

Input: (delete, i) ∈ [n]
if intrusion then

M[i]← ε

Input: (restore, i) ∈ [n]
if intrusion then

if ∃k, x, t : Hist[k] = (t, W, i, x) then
k0 ← max{k | ∃t, x : Hist[k]

= (t, W, i, x)}
Parse Hist[k0] as (t, W, i, x0)
M[i]← x0

else
M[i]← λ

Resource cSMRk
Σ,n

Fig. 4. The authentic and confidential server-memory resource (only differences to SMR shown).

of a deleted data block simply receives ε as an answer. We formally describe the authentic
server-memory resource aSMRk

Σ,n in Fig. 3.

Confidential server-memory resource. The confidential and authentic server-memory
resource, denoted cSMRk

Σ,n, is formally specified in Fig. 4. It enhances the authentic server-
memory resource by restricting the access at the server interface SH in that each server read
operation simply returns λ ∈ Σ. Furthermore, the history of client accesses only reveal the
location, but not the value that was read or written.

Secure (oblivious) server-memory resource We present the secure (and oblivious)
server-memory resource in Fig. 5. This resource offers the strongest guarantees for the clients.
First, the access pattern does not leak to the server apart from the number of accesses made.
Second, the adversarial influence is now limited to setting a corruption or “pollution” parame-
ter α. On each client read or write operation (read, i) or (write, i, x) the operation fails with
probability α and the cell i is considered deleted. This expresses the inability of an intruder
to mount a targeted attack on chosen blocks. His influence pollutes the entire memory in
the specific way of increasing (or decreasing) the probability of a failure. In particular, our
ideal functionality demands that each cell or block fails independently and with the same
probability (if it had not failed before). Our formulation of this resource, which we denote by
sSMR

k,trep
Σ,n and describe in Fig. 5, is slightly more general than just described: it is param-

eterized as before by the number of clients k, the alphabet Σ, the size n, and additionally
by a tolerance trep (considered as the replication factor) that formalizes the resilience against
failures. Intuitively, only after trep read or write operations for location i have failed, i is
considered as deleted, which of course includes the standard case trep = 1. This guarantee,
although quite strong, seems appealing in practice and is realizable as we prove in the next
section.2 It further seems to be a desriable abstraction on its own, for example in the context
of data replication where the assumption that blocks fail independently is crucial. It further
allows for straightforward statistical predictions of this error parameter. One could imagine
to weaken this resource by considering correlations among failures, or to allow different cells

2 In the specification of Fig. 5, we focus on client requests that do not occur during an active
intrusion phase. It is straightforward to specify the continuation for the complementary case along
the lines of [2]: In case of a currently active intrusion, we let the adversary decide on the success
(the currently stored value of the requested memory location is returned) or failure (ε is returned)
of a client request directly. Our protocols are easily seen to be secure also in this case.

Composable and Robust Outsourced Storage 15

Initialization
init, active, intrusion← false
α← 0; Hist← []
ci ← 1 for all i ∈ [`]

Interface C0

Input: init
if not init then

for i = 1 to n do
for j = 1 to trep do

M[i, j]← λ

Hist← Hist||(0, init)
init← true

Input: (read, i) ∈ [n]
if init and not active then

Hist← Hist||(0, R, i)
return M[i, 1]

Input: (write, i, x) ∈ [n]×Σ
if init and not active then

for j = 1 to trep do
Hist← Hist||(0, W, i, x)
M[i, j]← x

Input: initComplete
active← true

Interface SH

Input: getHist
Hist’← []
for j = 1 to |Hist| do

q ← Hist[j]
if q ∈ {(t, W, i, x), (t, R, i)} then

Hist’← Hist’||(t, Access)
else

Hist’← Hist’||q
return Hist’

Input: (read, i) ∈ [n]
return λ

Interface SI

Input: (pollute, ρ) ∈ [0, 1]
if intrusion then

α← ρ

Input: (reducePollution, δ) ∈ [0, α]
if intrusion then

α← α− δ

Interface W

Input: startWriteMode
if active then

intrusion← true

Input: stopWriteMode
if active then

intrusion← false

Interfaces Ct, t ∈ {1, . . . , k}
Input: (read, i) ∈ [n]

if active and not intrusion then
if M[i, ci] 6= ε then

Z � Bernulli(α)
if Z = 0 then

Hist← Hist||(t, R, i)
return M[i, ci]

else
Hist← Hist||(t, Failed)
M[i, ci]← ε
if ci < trep then

ci ← ci + 1

return ε
else

Z � Bernulli(α)
if Z = 0 then

Hist← Hist||(t, Access)
else

Hist← Hist||(t, Failed)
if ci < trep then

ci ← ci + 1

return ε

Input: (write, i, x) ∈ [n]×Σ
if active and not intrusion then

retj ← ok for j = 1 . . . trep

for j = 1 to trep do
if M[i, j] 6= ε then

Z � Bernulli(α)
if Z = 0 then

Hist← Hist||(t, W, i, x)
M[i, j]← x

else
Hist← Hist||(t, Failed)
M[i, j]← ε
retj ← ε

else
retj ← ε
Z � Bernulli(α)
if Z = 0 then

Hist← Hist||(t, Access)
else

Hist← Hist||(t, Failed)
return (ret1, . . . , rettrep)

Resource sSMR
k,trep
Σ,n

Fig. 5. Description of the secure server-memory resource.

16 C. Badertscher and U. Maurer

W

SMR

init

prot

prot

...
≈

W

SMR sim
...

Weaker Stronger
C0

C1

Ck

S

C0

C1

Ck

S

L

Fig. 6. Illustration of the security condition of constructions among server-memory resources.

to fail with different probabilities. We only consider the strongest variant in this paper and
show how to achieve it.

5 Constructions among Server-Memory Resources

In this section, we show how to construct stronger server-memory resources from weaker ones.
For each construction, we need to specify the protocol for the clients by means of a converter
which every client attaches to its interface. We further have to provide a converter that
describes the initialization step (generating cryptographic keys etc.) and which is attached
at interface C0. To show that a protocol achieves a construction, we have to prove both
conditions of Definition 1. In this section, the default behavior of the potentially dishonest
server is specified by the dummy converter honSrv that does not answer any query at its outer
interface and does not give any input to the server-memory resource.

The protocols we present make use of a local memory L shared among all clients. At each
interface Ci of L, the usual read and write capabilities are available. The server does not have
access to this resource. An illustration is shown in Fig. 6. We assume that client accesses to
the resources are sequential (which is trivially true in the single client setting). If this is not
guaranteed, the clients could establish mutual exclusion by running Dekker’s or Peterson’s
algorithm using the shared memory L.

5.1 Authentic Server-Memory Resources from Basic Server-Memory Resources

Following Blum et al. [9], we build a tree structure on top of the outsourced data blocks to
protect their authenticity (and freshness). Assume the size of the memory is `, then the tree is
a binary search tree with ` leaves, where each leaf corresponds to a data block. For simplicity,
and without loss of generality, we assume that ` is a power of 2. In [9], each leaf is associated
with a timestamp indicating the number of times the block was updated. The timestamp of
an internal node is defined as the sum of the timestamps of its two children. We refer to
this condition on the timestamps as the tree invariant. The timestamp of the root of the tree
corresponds to total number of times the client has accessed the server-memory resource and
is stored in a reliable local memory.

Protocol and notation. We denote the full binary tree for a memory of size ` as T (`). The
tree has 2`− 1 nodes which are mapped to the linear storage of SMR (of size 2`− 1) and a
local reliable memory L as follows3: The leaf node at location `+i−1 of SMR stores the value
xi of the (logical) memory. Internal nodes only contain a timestamp (and an authentication
tag) and are stored in SMR. We denote the node at location r of SMR by Nr (for r > 0)
and denote the root as N0. For a node Nr, we denote by tr its timestamp, and for a leaf
3 Note that the number of storage locations of SMR is about two times as large as the logical
locations we want to protect. This, however, does not imply a storage overhead of a factor of two
in practice, since the information stored in internal nodes is only a timestamp and not an entire
data block.

Composable and Robust Outsourced Storage 17

Interface out

Input: init :
sk � K; N0 ← 0;
output (write, 1, N0) at in to L
output (write, 2, sk) at in to L
output init at in to SMR
for i = 2 to `− 1 do

Ni ← (0, fsk(i, 0))
output (write, i, Ni) at in to SMR

for i = ` to 2`− 1 do
Ni ← (λ, 0, fsk(i, λ, 0))
output (write, i, Ni) at in to SMR

Input: (read, i) or (write, i, x):
Defined the same as for authRW in Fig. 8

Input: initComplete :
output initComplete at in to SMR

Converter initauth

Fig. 7. The initialization protocol for the realization of an authentic server memory.

node we additionally denote by xi ∈ Σ its associated data block (i = r − `+ 1). To bind the
contents of a node to its actual location on the server, we make use of a MAC function fsk(·).
The root node N0 is not stored in SMR but on a reliable, local memory L. In summary, the
format of the nodes are as follows:

Nr =


(xi, tr, fsk(r, xi, tr)) if r ≥ ` (i = r − `+ 1)

(tr, fsk(r, tr)) if r < `

t0 if r = 0.

To read a value xi of the (logical) memory, the client retrieves all nodes on the path from
the root to the leaf node N`+i−1 and all their children. This is sometimes denoted to as the
siblings path from the root to that leaf. We denote this sub-tree (consisting of 2 log `) nodes
by T`+i−1 to make the index i appear explicitly. On each access to the logical data block i,
the client verifies all authentication tags and checks the invariant in T`+i−1, i.e., that for each
node Nr, the timestamp is the sum of its children’s timestamps, i.e., that tr = t2r+1 + t2r+2.
If all checks succeed the tree T`+i−1 is said to be valid. To write a new value to a leaf node
N`+i−1, one first retrieves T`+i−1 and verifies that it is valid. Then, one updates the value of
the leaf, its timestamp and the authentication tag and subsequently updates the timestamps
and the authentication tags of all nodes on the path to the root to restore the invariant of
tree T`+i−1. Finally, all nodes are written back to their original location. It is straightforward
to cast this protocol as a converter for the clients, denoted by authRW and specified in Fig. 8.
The generation of cryptographic keys and the initial setup of the tree are formally specified
in the initialization converter initauth found in Fig. 7.

Intuitively, this protocol is secure since no adversary can inject a new value at any memory
location, as each node is bound to a memory location on the server. Additionally, replaying an
older value is not possible as an older value has a smaller timestamp and if the client verifies
the tree’s invariant, its reliably stored value N0 is too large. Formally, we prove the following
theorem.

Theorem 1. Let k, ` ∈ N and let Σ1 = Σ × Zq × T for some alphabet Σ. The protocol
auth := (initauth, authRW, . . . , authRW) (with k copies of authRW) described above based on a
MAC function f with tag space T constructs the authentic server memory aSMRk

Σ,` from
the basic server memory SMRk

Σ1,2` and a local memory L (of constant size), with respect to
the simulator simauth as defined in Fig. 9 and the pair (honSrv, honSrv). More specifically, we

18 C. Badertscher and U. Maurer

Interface out

Input: (read, i)
T ← GetValidSubtree(`+ i− 1)
if T 6= ∅ then

Parse node N`+i−1 (of tree T) as (x, t, fsk(`+ i− 1, x, t))
return x

else
return ε

Input: (write, i, x)
T ← GetValidSubtree(`+ i− 1)
if T 6= ∅ then

N`+i−1 ← (x, t`+i−1 + 1, fsk(`+ i− 1, x, t`+i−1 + 1))
for each internal node Ni ∈ T do

Ni ← (ti + 1, fsk(i, ti + 1))

for each node Ni ∈ T with i > 0 do
output (write, i, Ni) at in to SMR

N0 ← N0 + 1
output (write, 1, N0) at in to L

else
return ε

function GetValidSubtree(i)
Retrieve T`+i−1, i.e., all nodes Nr on the path from leaf node N`+i−1

to the root N0 (and their siblings) in descending order of index via:
-output (read, 1) at in to L to read N0

-output (read, r) at in to SMR to read Nr
for each node Nr ∈ T`+i−1 with r > 0 do
Case Nr = (tr, tag):

if fsk(r, tr) 6= tag then
return ∅

Case Nr = (x, tr, tag):
if fsk(r, x, tr) 6= tag then

return ∅
for each node Nr ∈ T`+i−1 with r > 0 do

par←
⌈
i
2

⌉
− 1 . index of parent

ch1 ← 2 · par + 1 . index of 1st child
ch2 ← 2 · par + 2 . index of 2nd child
if tpar 6= tch1 + tch2 then

return ∅
return T`+i−1

Converter authRW

Fig. 8. The converter for the clients to realize an authentic server memory from a basic server memory.

construct a reduction C such that for all distinguishers D,

∆D(honSrvS authP [L,SMRk
Σ1,2`], honSrv

SaSMRk
Σ,`) = 0

and ∆D(authP [L,SMRk
Σ1,2`], sim

S
authaSMRk

Σ,`) ≤ ΓDC(GMAC
f).

Proof. The correctness condition is obvious and we only give a proof of the security condition.
We analyze the input-output behavior of both systems involved. To this end, we consider the
possible inputs at each interface.

On input init, initComplete at interface C0: Upon the init-query, the protocol initauth

of the real system authP [L,SMRk
Σ1,2`] generates a secret MAC key sk and initializes the

basic memory resource. Subsequently, the protocol writes the nodes of T (`) to the server
memory, except for the root N0 which is stored in the local memory. This initialization
adds 2`−2 entries to the history Hist of SMR. After this initialization phase, Hist reads
(0, init)||(0, W, 1, N1)|| . . . ||(0, W, 2`−1, N2`−1). Any subsequent read query will return the
fixed value λ ∈ Σ.
In the ideal system simS

authaSMRk
Σ,`, the query initializes the memory to the fixed value

λ ∈ Σ and adds the entry (0, init) to Hist. Since this is the first entry of Hist, the
simulator will replace this entry by its locally simulated list Linit that consists of the
2`− 2 entries as above (where the key MAC key sk is chosen locally by the simulator).

Composable and Robust Outsourced Storage 19

Initialization
sk � K
Initialize 2`− 1 nodes Ni as in Fig. 7
Linit ← (0, init)||(0, W, 1, N1)|| . . . ||(0, W, 2`− 1, N2`−1)
pos← 1

Interface SH

Input: getHist :
UpdateLog
return L

Input: (read, r) ∈ [2`− 1] :
UpdateLog
return Nr

Interface SI (intrusion = true)

Input: (write, r, x) ∈ [2`− 1]× (Σ × Zn × T)
UpdateLog
Determine the last entry in L that wrote value N in to location i
if N 6= x then

Nr ← x
for each leaf node N`+i−1 whose sub-tree T`+i−1 is not valid do

output (delete, i) at in to aSMR

else
for each leaf node N`+i−1 whose sub-tree T`+i−1 is valid do

output (restore, i) at in to aSMR

Nr ← N

procedure UpdateLog
output getHist at in to aSMR
Let Hist be the returned value
for j = pos to |Hist| do

if Hist[j] = (0, init) then
L← Linit

else if Hist[j] = (k, R, i) then
Let T`+i−1 be the sub-tree of simulated leaf node N`+i−1

for each node Nr ∈ T`+i−1 in decreasing order of index do
L← L||(k, R, r)

else if Hist[j] = (k, W, i, x) then . Successful write operation
Let T`+i−1 be the (valid) sub-tree of simulated leaf node N`+i−1

for each node Nr ∈ T`+i−1 in decreasing order of index do
L← L||(k, R, r)

for each node Nr ∈ T`+i−1 in decreasing order of index do
Update Nr according to Fig. 8
L← L||(k, W, r, Nr)

else if Hist[j] = (k, Fail, i, x) then . Failed write operation
Let T`+i−1 be the sub-tree of simulated leaf node N`+i−1

for each node Nr ∈ T`+i−1 in decreasing order of index do
L← L||(k, R, r)

pos← |Hist|+ 1

Converter simauth

Fig. 9. The simulator for the construction of an authenticated memory.

20 C. Badertscher and U. Maurer

Finally, on input initComplete, both systems deactivate interface C0 and the other client
interfaces are operational from this point onwards.

On input (read, i) at interface Ck: On this query, both protocols initauth (in case k = 0)
and authRW (in case k > 0) retrieve all the nodes of the sub-tree T`+i−1. This sub-
tree contains the leaf node N`+i−1 = (xi, t, fsk((` + i − 1, t, xi))) of T (`) which stores
the value of memory location i. Furthermore, T`+i−1 consists of all nodes on the path
from that leaf to the root together with their children. To retrieve this sub-tree, the
protocol issues 2 log `− 1 read-queries. The history Hist hence is increased by the list of
2 log ` − 1 value (k, R, r1)||...||(k, R, r2`−1), where the indices rj are ordered in decreasing
order according to their location in SMR. Afterwards, the protocol checks the validity of
each authentication tag and checks the tree’s invariant (i.e., that the sum of the children’s
timestamps is equal to the parent’s timestamp). If all checks succeed, xi is output (which
is the last value written to this location), and otherwise ε is output.
In system simS

authaSMRk
Σ,`, system aSMR answers the query with the current memory

content of cell i. If the cell is not corrupted, the last value written is output at interface
Ck. If the cell is corrupted, ε is output. In order for the simulator simauth to emulate this
view, it internally simulates the tree T ` and, after each adversarial query at interfaces SI
and SH keeps track of which sub-trees T`+r−1 are valid, and if not, corrupts the cell r of
aSMR (cf. behavior at interface SH and SI below). This enforces the consistency between
successful reads and valid subtrees exactly as in the real system. Additionally, the next
time the simulator is activated, it will update its simulated history L accordingly: if this
read-request (k, R, i) is the qth entry in Hist of aSMR, then, in procedure UpdateLog,
this qth entry will lead to the increase of 2 log ` − 1 read-query entries in L. Hence, the
history L is increased by the list of 2 log ` − 1 value (k, R, r1)||...||(k, R, r2`−1), where the
indices rj are ordered in decreasing order according to their location in the simulator’s
emulated tree. This perfectly mimics the real world behavior.

On input (write, i, x) at interface Ck: Each write request can be divided into two two
phases: (1) the retrieval of sub-tree T`+i−1 and its validity check and (2) writing the
updated sub-tree T`+i−1 back to the server memory (except for the root N0) in case the
validity check was passed. Phase (1) is simulated as before by simauth and thus we focus
on the second phase.
In the real system authP [L,SMRk

Σ1,2`], the tree T`+i−1 is updated locally and each node
is subsequently written back to SMR. The history Hist of the resource is thus increased
by the following list of 2 log `− 1 values, namely (k, W, r1, Nr1)||...||(k, W, r2`−1, N2`−1).
In the ideal system, the procedure UpdateLog will replace this entry in the history
by the appropriate sequence of write-requests only if the write-request was successful.
Note that the simulator simauth is informed whether a client write resulted in a successful
update (in which case Hist[q] = (k, W, i, x)) or whether the update failed (in which case
Hist[q] = (k, Fail, i, x)).

On input getHist at interface SH : In the real system, the output is the entire history of
SMR. By the above analysis, a straightforward inductive argument shows that in system
simS

authaSMRk
Σ,`, the simulator’s simulated history L, which is output upon this query,

emulates the real-world view perfectly.
On input (write, r, x) at interface SI : An adversarial write request in the real world is

a simple replacement of the memory cell r of SMR. If the value x corresponds to the
last honest value written to this cell, then this operation might provoke that now certain
sub-trees T`+i−1 become valid again (and hence be involved in successful read and write
requests).
This is simulated in the ideal world in that simulator simauth checks, for i = 0 to ` − 1,
whether any sub-tree T`+i−1 in its simulated server memory became valid again and issues
(restore, i) to aSMR in this case.
In the other case, if the value x is unequal to the value Nr being replaced, this might lead
to a couple of corrupted (logical) memory cells since certain sub-trees become invalid in
the real system authP [L,SMRk

Σ1,2`].

Composable and Robust Outsourced Storage 21

In the ideal world simS
authaSMRk

Σ,`, the simulator simauth first updates its internal storage
up to the current point by invoking UpdateLog to get the actual value of Nr. If Nr 6= x,
simauth issues a (delete, i)-query to aSMR for each location i whose tree T`+i−1 got
invalid due to this update.
This update, however, only simulates the real world perfectly if the change Nr ← x led
to an invalid sub-tree for the case Nr 6= x. This is the case, if the authentication of x
is invalid or if timestamps do not satisfy the invariant. The bad event, denoted by BAD
occurs if the adversary manages to write a value x, that has never been written to location
r and which nevertheless results in a valid sub-tree. We different two cases:
1. If location r stores a leaf node, this implies that x has the format (v′, t′r, tag

′) for
which t′r > tr or (v′ 6= v and t′r ≥ tr) holds, since for t′r < t′r a valid sub-tree gets
invalid since the overall invariant cannot longer hold (since the root value N0 would
be too large.) Hence, tag′ corresponds to a valid forgery for the message (r, v′, tr) of
fsk(.).

2. If location r stores an internal node, this implies that x has the format (t′r, tag) with
t′r > tr (as otherwise it would constitute a reduction of the sum of the timestamps
which will then eventually be smaller than N0). In this case, tag corresponds to a
forgery for the message (r, t′r) of fsk(.).

Hence, we conclude that the real and ideal system are identical until event BAD occurs.
On input (read, r) at interface SH : In the real system, this query returns the current

value at location r of SMR. This is either the last value written by any client inter-
face or the last value written by the adversary. In the ideal system, the simulator updates
its internal simulation of the server memory on each activation and hence, returns either
the last value written to r according to its simulated history L or the value that was
written by an adversarial write.

On inputs startWriteMode and stopWriteMode at interface W: First, in the real sys-
tem authP [L,SMRk

Σ1,2`], the first input allows the adversary to access and modify the
server storage until the input stopWriteMode is input. The same holds for the the ideal
system simS

authaSMRk
Σ,`, since the simulator does not react on adversarial queries at

interface SI in case intrusion = false and is allowed to access interface SI of resource
aSMR if and only if intrusion is set.

This concludes the analysis of the behavior. We see that the real system system and the ideal
system are identical until event BAD occurs. In particular, the occurrence of BAD implies
a successful forgery against the MAC function fsk(.). We now design the straightforward
reduction from a distinguisher D to an adversary A := DC against GMAC

f . C simulates the
real system, but evaluates the MAC-function using oracle queries to the game GMAC

f . If D
issues a write-query at interface SI that provokes event BAD, C issues this value as a forgery
to GMAC

f . Hence, we can conclude the proof by noting that

∆D(authP [L,SMRk
Σ1,2`],sim

S
authaSMRk

Σ,`)

≤ PrD(authP [L,SMRk
Σ1,2`

])[BAD] ≤ ΓDC(GMAC
f).

ut

Replacing the MAC by a digital signature scheme

An alternative way to message authentication codes are digital signatures. They offer a way
to relax the security requirements on the local storage, as the public key does not have to
remain private. Furthermore, using a digital signature scheme allows to technically separate
write access from read access. A party can write to the memory if and only if it possesses
the secret key. Everyone possessing the public key can read the values authentically. Looking
ahead, this further implies that the audit scheme of Sect. 7.1, if based on digital signatures,
is an audit scheme that an external party can execute. Such schemes are known as publicly
verifiable proofs of storage.

22 C. Badertscher and U. Maurer

The protocol. We replace the MAC function fsk in the protocol converters initauth and
authRW by a digital signature scheme (K,S, V) and denote the new protocol converters as
initsigauth and authsigRW, respectively. These protocols are essentially identical to the protocols
in Fig. 7 and Fig. 8 except for the obvious changes: In particular, the initialization protocol
initsigauth is defined as initauth except that the instructions sk ← K and (write, 1, sk) to generate
and store the secret key for the MAC function are replaced by the generation of a key pair
(sk , vk)← K and storing the secret key sk in L and storing the public key in L′, where L′ is
a local memory which has an additional for the server to read the contents. Furthermore, for
both converters initsigauth and authsigRW, the format of the nodes takes the following form:

Nr =


(xi, tr, Ssk ((r, xi, tr))) if r ≥ ` (i = r − `+ 1)

(tr, Ssk ((r, tr))) if r < `

t0 if r = 0.

Similarly, verification of an authentication tag tag of a node is accomplished by evaluating
Vvk ((r, xi, tr), tag) (for a leaf) and Vvk ((r, tr), tag) (for an internal node), respectively.

Theorem 2. Let k, ` ∈ N and let Σ1 = Σ × Zq × T for some finite (alphabet) set Σ. The
protocol authsig := (initsigauth, auth

sig
RW, . . . , auth

sig
RW) described above based on a digital signature

scheme (K,S, V) with signature space T constructs the authentic server-memory resource
aSMRk

Σ,` from the basic server-memory resource SMRk
Σ1,2` and a local private memory L

(of constant size) and a local non-private memory L′ (where the verification key is stored).
More specifically, there is a simulator sim and a reduction C such that for all distinguishers D,

∆D(honSrvS authsigP [L,L′,SMRk
Σ1,2`], honSrv

SaSMRk
Σ,`) = 0

and ∆D(authsigP [L,L′,SMRk
Σ1,2`], sim

SaSMRk
Σ,`) ≤ ΓDC(GEU–CMA).

Proof. The simulator, the reduction, and the proof are analogous to Theorem 1 and hence
omitted. ut

5.2 Confidential from Authentic Server-Memory Resources

The protocol. We again specify two converters, which we call initpriv (for initialization)
and privRW (for the clients). Let ENC = (G, E ,D) be a (CPA-secure) private-key encryption
scheme with message space Σ, ciphertext space C, and key space K: To initialize, initpriv

executes G to get a key κ and stores the key in the local memory L. To read and write to the
authentic server-memory resource, the converters behave as follows: On input (write, i, x) at
the outer interface, encrypt x and output (write, i, Eκ(x)) to aSMR. If the write-operation
returns ε (indicating an error), output ε at the outer interface. On input (read, i) at the outer
interface, output (read, i) to aSMR. If the received ciphertext is c 6= ε, output Dκ(c) at the
outer interface and ε otherwise. The protocol is described in detail in Fig. 10.

Theorem 3. Let k, ` ∈ N and let Σ be an alphabet. The described protocol, i.e., the tuple of
converters priv := (initpriv, privRW , . . . , privRW) (with a private-key encryption scheme ENC
with ciphertext space C) constructs the confidential (and authentic) server-memory resource
cSMRk

Σ,` from the authentic server-memory resource aSMRk
C,` and a local private memory

L (of constant size), with respect to the simulator simpriv as defined in Fig. 11 and the pair
(honSrv, honSrv). More specifically, we construct a reduction CI such that for all distinguish-
ers D,

∆D(honSrvS privP [L,aSMRk
C,`], honSrv

ScSMRk
Σ,`) = 0

and ∆D(privP [L,aSMRk
C,`], sim

S
privcSMRk

Σ,`) = q ·∆DCI (GCPA
0 ,GCPA

1),

where q is the total number of write operations at the client interfaces.

Composable and Robust Outsourced Storage 23

Interface out

Input: init :
κ← G
output (write, 1, κ) at in to L
output init at in to aSMR
for i = 1 to ` do

(write, i, Eκ(λ))

Input: (read, i)
Defined the same as for privRW in Fig. 10

Input: (write, i, x) :
Defined the same as for privRW in Fig. 10

Input: initComplete :
output initComplete at in to aSMR

Converter initpriv

Interface out

Input: (read, i)
output (read, 1) at in to L
Let κ be the returned value
output (read, i) at in to aSMR
Let c be the returned value
if c 6= ε then

return Dκ(c)
else

return ε

Input: (write, i, x)
output (read, 1) at in to L
Let κ be the returned value
output (write, i, Eκ(x)) at in to aSMR
if the write operation returns ε then

return ε at out

Converter privRW

Fig. 10. The initialization protocol (left) and the converter for the clients (right) to realize a confi-
dential server memory from an authentic server memory.

Proof (Sketch.). The correctness condition is again easy to verify. For the security condition,
consider the simulator simpriv in Fig. 11 that generates an encryption key by its own and
simulates the content for each write operation to be the encryption of the fixed value λ ∈
Σ. Furthermore, simpriv simply forwards deletion-operations to aSMR. To argue about the
security, a simple hybrid argument follows.

Let q be an upper bound on the number of write-queries at the client interfaces. For
i ∈ {1, . . . , q}, we define the system Hi that behaves as privP [L,aSMRk

Σ,`] for the first i
write-queries. However, for subsequent write-queries, not the real encrypted value is written
to aSMR, but the encryption of λ. Hence, Hq is equivalent to privP [L,aSMRk

Σ,`] and H0 is
equivalent to simS

privcSMRk
Σ,`. Intuitively, since two adjacent hybrid systems Hi−1 and Hi

only differ in the way the ith write-query is encrypted (either the real value or λ), the overall
security follows from the indistinguishability of ciphertexts.

To complete this last step, we define the reduction system Ci that behaves like Hi, but
instead of computing the encryptions and decryptions by itself, it queries the encryption and
decryption oracles of game GCPA

b . In particular, on the jth write-query input (write, i, x),
ask GCPA

b for the encryption of x if j < i, ask GCPA
b for the encryption of λ if j > i, and, in

case j = i, challenge game Gb with input (x, λ) to receive the ciphertext. We immediately see
that

Hi = CiG
CPA
0 = Ci+1G

CPA
1 . (1)

Let CI be the system that first chooses i ∈ {1, . . . , q} uniformly at random and then behaves
as Ci and let us define the distinguisher D′ := DCI . We have that

Pr[D′(GCPA
0) = 1] =

1

q
·
q∑
i=1

Pr[D(CiG
CPA
0) = 1]

and

Pr[D′(GCPA
1) = 1] =

1

q
·
q∑
i=1

Pr[D(CiG
CPA
1) = 1] =

1

q
·
q−1∑
i=0

Pr[D(CiG
CPA
0) = 1],

where the last equality follows from Equation 1.

24 C. Badertscher and U. Maurer

Initialization
κ� G
Linit ← (0, W, 1, Eκ(λ))|| . . . ||(0, W, `, Eκ(λ))
pos← 1

Interface SH

Input: getHist :
UpdateLog
return L

Input: (read, i), i ∈ [`] :
UpdateLog
if S[i] = ε then

return S[i]
else

Determine the last entry in L that wrote a value ci at location i
return ci

Interface SI (intrusion = true)

Input: (delete, i) ∈ [`]
UpdateLog
S[i]← ε
output (delete, i) at in to cSMR

Input: (restore, i) :
S[i]← ⊥
output (restore, i) at in to cSMR

procedure UpdateLog
output getHist at in to cSMR
Let Hist be the returned value
for j = pos to |Hist| do

if Hist[j] = (0, init) then
L← Linit

else if Hist[j] = (k, R, i) then
L← L||(k, R, i)

else if Hist[j] = (k, W, i) then
L← L||(k, W, i, Eκ(λ))

else if Hist[j] = (k, Fail, i) then
L← L||(k, Fail, i, Eκ(λ))

pos← |Hist|+ 1

Converter simpriv

Fig. 11. The simulator for the construction of a confidential memory.

Finally, we compute the distinguishing advantage by

∆D(privP [L,aSMRk
Σ,`]︸ ︷︷ ︸

Hq=CqGCPA
0

, simS
privcSMRk

Σ,`︸ ︷︷ ︸
H0=C0GCPA

0

)

= |Pr[D(CqG
CPA
0) = 1]− Pr[D(C0G

CPA
0) = 1]|

= |
q∑
i=1

Pr[D(CiG
CPA
0) = 1]−

q−1∑
i=0

Pr[D(CiG
CPA
0) = 1]|

= q · |Pr[D′(GCPA
0) = 1]− Pr[D′(GCPA

1) = 1]| = q ·∆D′(GCPA
0 ,GCPA

1).

This concludes the proof. ut

5.3 Secure from Confidential Server-Memory Resources

We present an enhanced version of the Path ORAM protocol. The original Path ORAM
protocol is due to Stefanov et al. [57]. In particular, we complement the original protocol with
a proper error handling such that the protocol realizes the secure server-memory resource
from an authentic and confidential server-memory resource.

Composable and Robust Outsourced Storage 25

Interface out

Input: init :
Prepare 2`− 1 nodes Nr ← (0, λ)Z

S ← ∅
position← empty list with a capacity of ` items
for i = 1 to ` do

S ← S ∪ {(i, λ)}
position[i]� {1, . . . `}

for x = 1 to ` do
for lv = L,L− 1, . . . , 0 do

Let r be the memory address of node P(x, lv)
Let d be the number of dummy blocks in node Nr
S′ ← {(i′, v′) ∈ S | P(x, lv) = P(position[i′], lv)}
m← min{|S′|, Z, d}
Truncate S′ to m blocks
S ← S \ S′
Denote the blocks in S′ by bi, i = 1 . . .m
for k = 1 to Z do

if Nr[k] = (0, λ) then
Nr[k]← bk

for all nodes Nr in decreasing order of index do
output (write, r, Nr) at in to cSMR

Input: (read, i) or (write, i, x):
Defined the same as for secRW in Fig. 13

Input: initComplete :
output initComplete at in to cSMR

Converter initsec

Fig. 12. The initialization protocol for the realization of a secure server memory.

Overview and notation. The protocol maintains a tree structure on the server-memory
resource. For a logical memory with ` positions (assume ` is a power of two), the binary tree
has height L = log(`) (and thus ` leaves). Each node Nr of the tree can hold Z memory
blocks (where Z is a small constant greater or equal to 4 [57]). As usual, the tree is stored in
the server memory in linear ordering from 1 to 2`− 1, where in location 1 the root node N1

is stored and where the leaves are located at addresses ` to 2`− 1. We refer to the leaf node
at address ` + i − 1 as the ith leaf node. For such a leaf node, the unique path to the root
of the tree is denoted P(i) and by P(i, lv) we denote the node at level lv on this path. The
total number of blocks stored on the server is thus Z · (2`− 1).

The clients stores a position map position, which is a table of size L · ` bits and maps all
logical addresses to the index of its associate leaf node. At any time during protocol execution,
the invariant holds that for any logical address i ∈ [`], if position[i] = x, then the correct data
block (i, v) is contained in a node on the path P(x) or in the stash S. The stash is a local buffer
maintained by the client that stores data blocks that overflow during the protocol execution.
A data block overflows if all suitable nodes in the tree are already occupied by real memory
blocks. The number of overflowing blocks is proven to be small in [57].

Protocol. Initially, the tree is initialized to contain ` empty blocks of the form (i, λ) for
each address i ∈ [`]. Upon initialization, the tree is built to contain these empty blocks. In
addition, the position table and the stash are stored in the shared memory L and to each
address i, a uniformly random leaf node is assigned, i.e., position[i] � {1, . . . `}. Since each
node of the tree should be a list of exactly Z elements, each node is complemented with the
necessary amount of dummy elements which we encode as (0, λ) (as opposed to real elements
that contain the normal addresses and the associated data block). The entire tree is then
written to the server storage. We give the formal description of converter initsec in Fig. 12.
To access a logical address i to either read or update the corresponding value v, the client
reads the associated index of the leaf node x ← position[i] and reassigns position[i] to a new
uniformly random leaf. Next, the client retrieves all nodes on the path P(x) from the server
memory (from leaf to root) and all found real elements (j, v) (j > 0) are added to the stash.

26 C. Badertscher and U. Maurer

In case the value at position i is to be updated, it is assigned a new value at this point.
Finally, the nodes of P(x) are newly built and written back to the server. In this write-back
phase, as many blocks as possible from the local stash are “pushed” onto this path. To deal
with failures on a read or write-access to a logical address i, the protocol behaves as follows:
if during the above execution, a read request to the server is answered by ε, indicating that
a node is deleted, then the logical address i is marked as invalid in the local position table
position[i] ← ε. To remain oblivious in this case, the protocol subsequently writes back all
previously retrieved nodes without any modifications (yielding a sequence of dummy accesses).
In a subsequent request to retrieve logical block i, the protocol will detect the invalid entry
in the position table and just return ε. To remain oblivious, the protocol additionally reads
a uniformly random path from the outsourced binary tree and subsequently re-writes the
very same elements without modifications (again yielding a sequence of dummy accesses). If
during these dummy accesses an error occurs, i.e., the server-memory resource returns ε upon
a request, this is simply ignored. This concludes the description of the protocol. A more precise
specification can be found Fig. 13. We denote this client converter by secRW. The security of
the protocol is assured by the following theorem. It implies that the above error-handling for
Path ORAM is sufficient to realize the secure server-memory resource and to ensure strong
security guarantees.

Theorem 4. Let k, `, Z ∈ N and Σ1 := (({0} ∪ [`]) × Σ)Z for some finite non-empty set
Σ. The above described protocol sec := (initsec, secRW, . . . , secRW) (with k copies of secRW)
constructs the secure server-memory resource sSMRk,1

Σ,` from the confidential (and authentic)
server-memory resource cSMRk

Σ1,2` and a local memory, with respect to the simulator simsec

described in Fig. 14 and the pair (honSrv, honSrv). More specifically, for all distinguishers D

∆D(honSrvS secP [L, cSMRk
Σ1,2`], honSrv

SsSMRk,1
Σ,`) = 0

and ∆D(secP [L, cSMRk
Σ1,2`], sim

S
secsSMRk,1

Σ,`) = 0.

Proof. We prove the security condition and again analyze the input-output behavior of both
systems involved. To this end, we consider the possible inputs at each interface.

On input init, initComplete at interface C0: On input init to the real system, i.e., to
secP [L, cSMRk

Σ1,2`], the converter initsec first initializes the position map position by
assigning to each logical address i the corresponding leaf number uniformly at random.
Then, the converter stores all initial blocks (i, λ) for i = 1 . . . ` in the stash S. Subsequently,
the binary tree T consisting of nodes N0 to N2`−1 (in the usual linear ordering) is locally
built: each path from any leaf to the root is examined and as many blocks as possible are
pushed from the stash S to a node in the tree. After this step, a block (i, λ) is either found
in the stash S (stored in the local memory) or within the tree in any of the nodes of the
path P(i). Finally, the whole tree is written to the server-memory resource (in decreasing
order of the linear index), which adds 2`− 1 entries (0, W, r) for r = 2`− 1 . . . 1 to the
In the ideal system simS

secsSMRk,1
Σ,`, the command sets the value of any storage location

to λ and adds the initial entry (0, init) to the history. The simulator will replace this
first entry by the list Linit that contains the simulated accesses that would happen in the
real world. This perfectly emulates the real-world view.
Finally, on input initComplete, both systems deactivate interface C0 and the other client
interfaces are operational from this point onwards.

On input (read, i) at interface Ck: Upon this input at a client interface of the real system
secP [L, cSMRk

Σ1,2`], the protocol executes a write access to the memory resource. Inspect-
ing the program code in Fig. 13, the function updatePath is executed in read-mode, i.e.,
where the operation op = R (and hence no other arguments need to be specified). First,
the current leaf node of address i is read from the position table (line 2). The program
now branches into two tracks: if a valid leaf index x is returned, then the instructions on
lines 5 to 41 are executed. The other case corresponds to the event that a previous access

Composable and Robust Outsourced Storage 27

Interface out

Input: (read, i)
v ← UpdatePath(R, i,⊥)
return v

Input: (write, i, v)
v′ ← UpdatePath(W, i, v)
if v′ = ⊥ then

return ε
else

return ok

1: function Update path(op, i, v′)
2: Res← ⊥
3: Retrieve the stash S and the position table position from L
4: x← position[i]
5: if x 6= ε then
6: position[i]� {1, . . . , `}
7: for lv = L,L− 1, . . . , 0 do
8: Let r be the memory address of node P(x, lv)
9: output (read, r) at in to cSMR

10: Store the returned value as Nr
11: if all fetched nodes Nr 6= ε and P(x) is not marked as invalid then
12: for each node Nr do
13: Parse Nr as a list of Z blocks bi ∈ {(i, v) | i ∈ N} ∪ {λ}
14: for i = 1 to Z do
15: if bi 6= (0, λ) then
16: S ← S ∪ {bi}
17: Retrieve block b from S such that b = (i, v) for some v ∈ Σ
18: Res← v
19: if op = W then
20: Replace (i, v) in S by (i, v′)

21: for lv = L,L− 1, . . . , 0 do
22: Let r be the memory address of node P(x, lv)
23: N ← []
24: S′ ← {(i′, v′) ∈ S | P(x, lv) = P(position[i′], lv)}
25: m← min{|S′|, Z}
26: Truncate S′ to m blocks
27: S ← S \ S′
28: Denote the blocks in S′ by bi, i = 1 . . .m
29: for k = 1 to Z do
30: if k ≤ m then
31: N ← N ||bk
32: else
33: N ← N ||(0, λ)

34: output (write, N, r) at in to cSMR
35: if the write query returns ε then
36: Mark all paths containing node P(x, lv) as invalida

37: else
38: position[i]← ε
39: for lv = L,L− 1, . . . , 0 do
40: Let r be the memory address of node P(x, lv)
41: output (write, r, Nr) at in to cSMR

42: else . Simulate dummy accesses if logical address i is marked invalid.
43: x� {1, . . . , `}
44: for lv = L,L− 1, . . . , 0 do
45: Let r be the memory address of node P(x, lv)
46: output (read, r) at in to cSMR
47: Store the returned value as Nr
48: for lv = L,L− 1, . . . , 0 do
49: Let r be the memory address of node P(x, lv)
50: output (write, r, Nr) at in to cSMR

51: Store the stash S and the position table position in L
52: return Res

a
Encoded in the position table

Converter secRW

Fig. 13. The converter for the clients to realize a secure server memory from a confidential and
authentic server memory.

28 C. Badertscher and U. Maurer

Initialization
for i = 1 to 2`− 1 do

Ni ← valid

Let T be the binary tree consisting of nodes N0, . . . , N2`−1 in linear ordering
Linit ← (0, init)||(0, W, 2`− 1)|| . . . ||(0, W, 1)
pos← 1
L← []

Interface SH

Input: getHist :
UpdateLog
return L

Input: (read, r), r ∈ [2`− 1] :
UpdateLog
return λ

Interface SI (intrusion = true)

Input: (delete, r) ∈ [2`− 1]
UpdateLog
Nr ← invalid
I ← {i ∈ [`] | Path PT (i) contains at least one invalid node}
α← |I|

`
output (pollute, α) at in to sSMR

Input: (restore, r) :
UpdateLog
Iold ← {i ∈ [`] | Path PT (i) contains at least one invalid node}
Ni ← valid
Inew ← {i ∈ [`] | Path PT (i) contains at least one invalid node}
δ ← |Iold|−|Inew|

` . Inew ⊆ Iold
output (reducePollution, δ) at in to sSMR

procedure UpdateLog
output getHist at in to sSMR
Let Hist be the returned value
for j = pos to |Hist| do

if Hist[j] = (0, init) then
L← Linit
I ← ∅

else if Hist[j] = (k, Access) then
I ← {i ∈ [`] | Path PT (i) contains only valid nodes}

else if Hist[j] = (k, Failed) then
I ← {i ∈ [`] | Path PT (i) contains at least one invalid node}

if I 6= ∅ then
x� I
for lv = L,L− 1, . . . , 0 do . Simulate read access.

Let r be the address of simulated node Nr = PT (x, lv)
L← L||(k, R, r)

for lv = L,L− 1, . . . , 0 do . Simulate write access.
Let r be the address of simulated node Nr = PT (x, lv)
if Nr = valid then

L← L||(k, W, r)
else

L← L||(k, Fail, r)
pos← |Hist|+ 1

Converter simsec

Fig. 14. The simulator for the construction of a secure memory.

Composable and Robust Outsourced Storage 29

to logical address i was invalid and lines 42 to 50 are executed instead. Let us focus on
the successful branch first: the client downloads all nodes corresponding to the path from
the xth leaf node to the root. The accessed path is determined in a uniformly random
way, since each time a path for logical address i is successfully accessed, a new uniformly
random value is written to the position and determines to be accessed the next time when
address i is to be read (line 6). If all retrieved nodes are valid, i.e., if the test on line 11
is passed, all the blocks contained in the nodes are added to the local stash S (lines 12 to
16) and finally the retrieved value is read from the stash (lines 17 and 18). To conclude
this operation, the updated path is written back to the confidential server memory (lines
21 to 34). The update step tries to push as many blocks as possible from the stash into
the tree nodes. Only the blocks (j, v) can be inserted into a node in the intersection of
P(x) and P(j) (condition on line 24). However, if the test on line 11 is not passed, i.e., if
an invalid node is retrieved, then the currently read logical block is declared as invalid by
setting the position table position[i]← ε on line 38. Furthermore, the client simply writes
back the nodes it just retrieved without modification. Some of these writes might not be
successful but this can safely be ignored (as nothing is changed). Overall, we conclude
that this branch adds in any case log(`) read-requests and log(`) write-requests to the
history of cSMR.
The second branch is taken if the position i is known to have failed in the past (lines
42 to 50). Then, the protocol simply sends log(`) read-requests to the server to retrieve
a randomly chosen path and then rewrites the path unaltered. This adds another log(`)
write-request to the history.
Overall, the probability that an access to logical address i is successful given there has
not been an invalid access4 since initialization, is exactly the ratio of the number of valid
paths and all ` paths. Similarly, the probability that an access to logical address i is invalid
given there has not been an invalid access since initialization, is exactly the ratio of the
number of invalid paths and all ` paths. In any other case, an access to logical address i
will return ε with probability one. Finally, we observe that on input (read, i) each of the
` paths of the tree has equal probability to be accessed.
Let us now consider the ideal system simS

secsSMRk,1
Σ,`. Upon a read-query, we again have

two possible branches. This is seen by inspecting the program code of sSMR on a client-
read request at interface Ck for k > 0.5 Given that there has never been an invalid access
to address i, the probability of a successful access is exactly 1− α, and that of an invalid
access is exactly α, where α is the pollution factor that can be set by the simulator. In
each step of the execution, the simulator simsec maintains the invariant that α equals the
ratio of invalid paths and all ` possible paths. In particular, as explained below, on each
deletion-query by the distinguisher, the simulator updates the parameter α accordingly.
We now look at how the simulator simulates the real-world memory access and maintains
the simulated history. The simulator is informed, whether an operation was evaluated to
be successful (entry (k, Access) in the history), or whether it was evaluated to be a fail
(entry (k, Failed) in the history). In the first case, the simulator chooses a random path
from all the paths that only contain valid nodes. (The statistics which nodes are valid and
which are not is maintained as explained below for input (delete, r) to interface SI). In
the second case, the simulator simulates the accesses to a random path from the set of all
paths that contain at least one invalid node. Overall, this means that on input (read, i) to
resource sSMR, the probability for any fixed path to be added to the history is 1

` . This
is easily seen by a case distinction: the probability that a particular valid path is added
to the history is (1− α) · #valid paths

` . For α = #invalid paths
` this gives us a probability of

1
` for all valid paths. The other case is analogous and we see that on each read-request, a
uniformly random path is added to the history.

4 We mean an access that returned ε.
5 Recall that for the sake of simplicity (and without loss of generality), we do not assume any failure
during the initialization phase.

30 C. Badertscher and U. Maurer

We can conclude that the behavior of the simulator mimics the real world behavior. In
particular, the simulated history is updated accordingly such that the failure probabilities
are identical, as well as the distribution of the access pattern in the simulated history.

On input (write, i, x) at interface Ck: On a write-instruction to the systems, the same
function updatePath is executed, but with arguments op = W, i and v′, where v′ is the
new value for address i. The code for this case is identical to the read case except for
the instructions on lines 19 and 20. Since these two lines do not affect the observable
behavior, the analysis of this case follows from the analysis of the previous analysis of the
read-instructions.

On input getHist at interface SH : In the real system, the output is the history of cSMR.
By the above analysis, a straightforward inductive argument shows that in case of system
simS

secsSMRk,1
Σ,`, the simulator’s internally maintained history L, which is output upon

this query, emulates the real-world view perfectly.
On input (restore, r) at interface SI : In the real system, the restore operation makes a

node, which was invalid before, become valid again. This means that the number of valid
paths might increase. In fact, for all logical address i, that have not failed on any access
so far, the probability thus increases that the next read or write request is successful. The
already failed addresses are not affected by this change since the local position table is
not affected by a restore command.
In the ideal system, the simulator updates the pollution factor α of the server memory
sSMR accordingly by recomputing the ratio of invalid paths after the node Nr becomes
valid again (note that this ratio will not increase). Hence, in both worlds, the effects of a
restore command are identical.

On input (delete, r) at interface SI : In the real system, the delete operation makes a
node, which was valid before, become invalid. This means that the number of invalid
paths increases. In fact, for all logical address i, that have not failed on any access so far,
the probability thus increases that the next read or write request fails. The already failed
addresses are not affected by this change since the local position table is not affected by
a deletion command.
In the ideal system, the simulator updates the pollution factor α of the server memory
sSMR by recomputing the ratio of invalid paths after the node Nr becomes invalid again.
Hence, in both worlds, the effects of a deletion command are identical.

On input (read, r) at interface SH : On any command (read, r) both systems simply re-
turn the dummy symbol λ. This holds by definition of system cSMR in the real world
and by definition of the simulator simsec in the ideal world.

On inputs startWriteMode and stopWriteMode at interface W: In case of the real sys-
tem secP [L, cSMRk

Σ1,2`], the first input allows the adversary to access and modify the
server storage until the input stopWriteMode is input. The same holds for the the ideal
system simS

secsSMRk,1
Σ,`, since the simulator does not react on adversarial queries at inter-

face SI in case intrusion = false and is allowed to access interface SI of resource sSMR
if and only if intrusion is set.

This ends our analysis of the behavior. We conclude that on each input, the observable effects
are identical for the real system and the ideal system. The statement follows. ut

Client-side storage reduction. At first sight, the client storage overhead seems unpractical
since the size of the position map is ` log(`) bits, which corresponds roughly to ` data blocks
if we assume that each data block has a size B of (at least) log(`) bits. There are a couple
of techniques suggested to reduce this storage overhead. Stefanov et al. [56] show that under
realistic workloads, the table can be described using only 0.255` bytes. Hence, even for an
outsourced storage in the order of a couple of terabytes, the position table would not exceed
one gigabyte. A second technique to reduce the client storage overhead is by outsourcing
the position itself in a clever way. However, not all schemes are equally suitable as will be
discussed in the next section.

Composable and Robust Outsourced Storage 31

Improving the resilience by replication. There is a simple protocol that improves the
resilience to losing data blocks. The protocol stores each data block t times within the secure
server memory. Formally, this protocol constructs resource sSMRk,t

Σ,` from sSMRk,1
Σ,t·`. Recall

that in the former resource, only failing to read (or write) a logical memory cell more than
t times implies that the data block is not accessible any more. We sketch the converter for
initialization, denoted initrep,t and the client converter rept.

On input init at the outer interface of initrep,t, output init to sSMRk,1
Σ,t·` and additionally

store for each i ∈ ` the value ci (initially zero) in the local storage L. The value ci denotes the
number of failed accesses to logical address i. On input (read, i) to converter initrep,t or rept,
output (read, i+ min{ci, t− 1}) and return whatever is returned by resource sSMRk,1

Σ,t·`. In
case ε is returned, the converter sets ci ← ci + 1. On input (write, i, x) to converter initrep,t
or rept output (write, i+ r, x) to sSMRk,1

Σ,t·` for all r = 0 . . . t− 1 and output ε at the outer
interface for each failed write access to the resource (and ok for the others). For this protocol,
one can show the following lemma:

Lemma 1. Let k, `, t ∈ N. be a secure server-memory resource with the usual parameters. The
above described replication protocol rep := (initrep,t, rept, . . . , rept) (with k copies of rept) con-
structs the secure server-memory resource sSMRk,t

Σ,` from the secure server-memory resource
sSMRk,1

Σ,t·`. More specifically, there is a simulator simrep such that for all distinguishers D,

∆D(honSrvS repP [L, sSMRk,1
Σ,t·`], honSrv

SsSMRk,t
Σ,`) = 0

and ∆D(repP [L, sSMRk,1
Σ,t·`], sim

S
repsSMRk,t

Σ,`) = 0.

5.4 Do all ORAM Schemes realize a Secure Server-Memory Resource?

Our formalization provides strong security guarantees. Especially, the failure probabilities
are required to be independent and the same for each memory location. However, not all
existing ORAM schemes satisfy this level of security. We elaborate on two popular ORAM
schemes. We show that in the recursive Path ORAM scheme by Stefanov et al. [56], failures
among memory locations are correlated. In the case of the Goodrich-Mitzenmacher ORAM
scheme [33], we show that the failure probabilities are not the same for all (logical) memory
locations.

The recursive Path ORAM scheme. A beautiful technique to reduce the client storage
overhead is by using the Path ORAM scheme recursively as suggested by Stefanov et al. [56].
In recursive Path ORAM, the position table itself is outsourced using another (and smaller)
instance of a Path ORAM scheme. This smaller instance could itself outsource its position
table to an even smaller ORAM scheme etc. The final instance (i.e., the base case), stores its
position table in the local memory. Assuming a constant block size B > log(n), each recursive
instance reduces the number of positions by a factor f := B

log(n) > 1, where each block is used
to store (roughly) f entries of the position table. Hence, after recursion depth in the order of
O(log(`)), the position table stored in the client storage is of size roughly log(`) data blocks.
A formal proof of this is given in [56].

Let us first describe one (recursion) step of this procedure in our formalism: We consider
the similar scenario as before, but we replace the local memory L by an instance of a secure
server-memory resource sSMR. This additional secure server storage memory has `′ < `
storage locations, each of which holds a tuple of f values of the position table position. The
protocols need to be adapted only slightly: let the converter init′sec be defined as initsec except
that the position table is written to secure server-memory resource instead of the private
memory L. Let further sec′RW be defined as converter secRW but instead of the instruction x←
position[i], the converter computes q ← (i−1) div f and sends a read instruction (read, q+1)
to the secure memory to obtain the tuple (position[fq + 1], . . . , position[f(q + 1)− 1]), where
the desired value x is at position i − qf in the tuple. Similarly, the subsequent update step

32 C. Badertscher and U. Maurer

position[i] ← x now consists of first updating the tuple at the respective location and then
sending a write instruction to the secure memory resource to write the entire tuple back to
location q + 1.

The question now is: does the protocol still realize a secure server-memory resource?
Unfortunately, the answer to this question is negative. On an intuitive level, the reason is that
logical memory addresses are grouped in blocks. For example, the logical memory locations
i = 1 . . . f , i.e., their mappings position[1] . . . position[f], are an atomic block in the recursive
Path ORAM scheme. This, however, implies that if the lookup fails for one logical address
in sec′RW, then it fails for all the others in that block as well. For the overall scheme, this
means that failing to access the value at location i = 1 is not independent of failing to
access the value at location i = 2 etc. In contrast, failing to access the value at location
f + 1 is again independent, as it resides in a different block of the smaller ORAM scheme.
It is easy to exploit this observation to design a distinguisher that distinguishes the system6

sec′P [sSMR, cSMR] and its ideal goal, the desired secure memory resource, with noticeable
advantage. This scheme thus only constructs a weaker variant of the resource, where failures
among data blocks are correlated.

ORAM schemes based on a hierarchical structure of hash-tables. A prominent
ORAM scheme in this category is due to Goodrich and Mitzenmacher [33] which is based
on cuckoo-hashing and follows the hierarchical approach envisioned by Goldreich and Ostro-
vsky [32]. The hierarchical approach organizes the data in levels, where each level is capable
of storing two times as many elements as the level above. The first level can be thought of as
an array of small size. The lowest level is capable of storing ` elements (and hence the number
of levels is in O(log(`)). Each level except the first is either a standard hash-table or a cuckoo
hash-table7 An element is encoded in the familiar form (i, v), where v denotes the value at
logical address i. On a given level lv, if the pair resides in the table of that level, then it is
foudn at location H lv(i), where H is a hash function.8 To perform a search for an address i,
each level lv is accessed (starting from the top level) and the location H lv(i) is read until a
pair (i, v) is found. After the element has been found, the remaining tables are accessed at
uniformly random locations. After all accesses have been performed, the pair is inserted into
the top level array. We denote this random walk through the tables succinctly by RW (i) and
understand the above procedure. Inserting the element into the top level is a crucial step:
intuitively, the access pattern does not reveal any information, since after each successful
search (to random locations from the servers point of view), the element will be found in the
top level in a subsequent search and the accesses to lower tables still look random. Overall, no
lookup for an address i (accessing position H lv(i) on level lv) is performed twice for the same
table. To maintain this invariant, and to prevent tables from overflowing, periodic rebuild
phases occur. Such a rebuild phase servers two purposes: first, it moves data from one level to
the next lower level in an oblivious way. This has the effect that infrequently accessed items
are more likely to be found in lower tables. Second, new hash functions H lv(.) are chosen for
the levels to keep the access pattern random looking. Both of these steps (regular re-hashing
and moving elements downwards in the hierarchy) are crucial to prove its security in a passive
setting [39,33] or in an active setting where the protocol aborts upon detecting an error.

Similar to the construction presented in Sect. 5.3, it seems that each access is essentially
a random walk from the top-level to the bottom level and one would probably expect that
we have equal failure probability on any search for the item with logical address i. More
precisely, we say that an access to address i is successful if it has never failed in the past and
the current random walk RW (i) does not access any deleted cell. Thus, one could suspect that
a similar adaption of the GM scheme would realize sSMR from a confidential and authentic

6 We omit here the parameters of the systems for brevity.
7 Usually the smaller levels are implemented using standard hash tables and larger levels are imple-
mented using cuckoo hash-tables.

8 H is usually modeled as a uniform random function.

Composable and Robust Outsourced Storage 33

memory. However, this is not the case as one can see using the following thought experiment
which lets us conclude that there is a strategy that makes elements of tables higher in the
hierarchy fail with significantly smaller probability than elements residing towards the bottom
of the hierarchy. Imagine a hierarchy of tables and assume that the address-value pair (1, v)
is currently stored at some level lv and that no failure has occurred so far. We assume v
to be a uniform random value of some alphabet. Consider an attacker that now deletes a
uniform random location of the hash-table at level lv: with noticeable probability, this will
hit exactly the pair (1, v) and thus delete the information which value is associated to logical
address 1. If this event happens, no search will ever be able to output v (except with negligible
probability). Now, imagine that (roughly) 2lv read operations for a different logical address,
say 2, are performed. This number of accesses is sufficient to provoke a rebuild phase that
moves all elements contained in level lv to the table at the lower lever. However, if the pair
(1, v) was deleted before, the lower level tables cannot contain the correct value for address
1 and hence any subsequent access to this address cannot return a consistent value. We can
thus conclude: the probability that at this point in time, accessing logical address 1 returns
the correct (and valid) value v is equal to the sum of the two probabilities that the actual
random walk through the tables is valid and the probability that it has not been deleted
before this last rebuild phase.

Pr[Access to address 1 returns correct result] =

Pr[RW(1) is valid] + Pr[Pair (1, v) was not deleted before at level lv].

Hence, the probability is not uniform for all data blocks: in fact, items stored at levels lower
than lv have a significant lower probability of failing than items stored at levels greater than
lv, since they do not have this additional error term on the right hand side. For example, the
probability of a read operation returning an invalid value is not the same for locations 1 and
2 for the above attacker strategy.

The above observation is likely to have an impact in practical settings, where the ORAM
scheme is used as part of a larger application. Assume that the application stores some control
information in the memory at a known locations (e.g., address 1) and does not frequently
update this location such that the above considerations apply. Then, an attacker following
the above strategy can conclude, that if the application signals an error (or any other special
behavior) on any future access, then it is more likely that this access pattern corresponds to
an access to logical location 1 than to any other location.

In comparison, this error signaling is not problematic if the underlying protocol fulfills our
stronger security goal. The reason is that the attacker can then only introduce failures that
are equally likely for all logical locations and thus there is no bias in the correlation of the
error signal and the access pattern.

6 Auditable Server-Memory Resources

In this section, we introduce the ideal abstraction of auditing mechanisms.

Basic, authenticated, and confidential auditable server memory. The ideal audit is
described in Fig. 15. It provides security guarantees only in a phase where an intruder is not
active.9 In this case, the check reveals whether the current memory blocks are indeed the
newest version that the client wrote to the storage. If a single data block has changed, the
ideal audit will detect this and output an error to the client. It is obvious that in case of a
successful audit, this guarantee only holds up to the point where the server gains write-access
to the storage again, in which case a new audit has to reveal whether modifications have been
9 In fact, this is the only interesting case to consider, since if an intruder is active at the time of an
audit, he can freely decide on the success or failure of the audit. We omit this second case in our
specifications for simplicity.

34 C. Badertscher and U. Maurer

Server-memory resources are augmented with a new client capability as follows:

Interfaces Cr, r ∈ {1, . . . , k}
Input: (read, i) ∈ [n]

Defined as in the respective resources SMR, aSMR, cSMR

Input: (write, i, x) ∈ [n]×Σ
Defined as in the respective resources SMR, aSMR, cSMR

Input: audit :
if active and not intrusion then

output auditReq at SH
Let d ∈ {allow, abort} be the returned value from SH
if d = allow then

M′ ← empty table
for i = 1 to n do

if ∃k, x, t : Hist[k] = (t, W, i, x) then
k0 ← max{k | ∃t, x : Hist[k] = (t, W, i, x)}
Parse Hist[k0] as (t, W, i, x0)
M′[i]← x0

else
M′[i]← λ

if M′ = M then
return accept

else
return reject

else
return reject

Resource {a, c}SMRk,audit
Σ,n

Fig. 15. Description of the auditable server-memory resources (only difference to ordinary server
memory shown.

made. The goal of a scheme providing a proof of storage is to realize SMRk,audit
Σ,n , aSMRk,audit

Σ,n ,
or cSMRk,audit

Σ,n from an ordinary server-memory resource.

Secure and auditable server memory. We present the ideal audit for secure memory
resources in Fig. 16. Due to the probabilistic nature of resource sSMR, the ideal retrievability
guarantee for secure memory resources is a probabilistic one. Based on an additional parameter
τ , the ideal audit of resource sSMR

k,trep,τ,audit
Σ,n is successful if the probability that the entire

memory cannot be retrieved is smaller than τ . The smaller τ , the stronger the retrievability
guarantee.

7 Constructing Auditable Server-Memory Resources

In this section, we provide constructions of auditable server-memory resources from ordinary
server-memory resources. In order to show that a protocol achieves a construction, we again
have to prove both conditions of Definition 1. In this section, the default behavior at interface
S is possibly more complicated, especially if interaction between the server and the client is
required, for example if the client requests the server to compute a hash during an audit.
Still, in the simpler case, the default behavior at interface S can be described by the usual
dummy converter honSrv with the addition that it always inputs “allow” to the resource upon
an audit request. We do not assign it a new name as it is clear from the context.

7.1 Making Authentic Server-Memory Resources Auditable

We now describe a straightforward way to achieve an auditable and authentic (or confidential)
server-memory resource from an authentic (or confidential) server-memory resource. We again
denote the storage content as F = (F1, . . . , F`), with Fi ∈ Σ. The main idea is to encode the
entire storage F (for example an entire backup file) using an erasure code to tolerate a certain

Composable and Robust Outsourced Storage 35

Secure server-memory resources are augmented with a new client capability as follows:

Interfaces Cr, r ∈ {1, . . . , k}
Input: (read, i) ∈ [n]

Defined as for sSMR

Input: (write, i, x) ∈ [n]×Σ
Defined as for sSMR

Input: audit :
if active and not intrusion then

output auditReq at SH
Let d ∈ {allow, abort} be the returned value from SH
if d = allow then

p← 1−
∏n
i=1(1− αtrep−Ei), where Ei := |{j | j ∈ [trep] and M[i, j] = ε}|

(p is the probability that the value of at least one cell cannot be
obtained based on the current state of the resource.)
if p ≤ τ then

return accept
else

return reject

else
return reject

Resource sSMR
k,trep,τ,audit

Σ,n

Fig. 16. Description of the auditable secure server-memory resources (only the difference to the
secure server memory is shown.

fraction of deleted symbols Fi. The audit consists sampling a sufficient number of random
positions of the encoded version of F and to correctly decide whether the information on the
server is sufficient to decode the file. This straightforward idea has been studied before, for
example in [52,36], and we briefly show how this idea is implemented in our model.

Assumed and constructed resource. The assumed resource is an authenticated server-
memory resource of size `′ (which is used to store a single file consisting of ` blocks) and
alphabet Σ. The system achieved is an auditable and authenticated server-memory resource
with alphabet Σ and ` locations.

The protocol. We now describe the protocol in more detail by specifying the two client
converters ecInit (for initialization) and ecAudit (to implement the audits). We note that the
default server behavior for this section equals the dummy one (that never deletes anything
and allows all audit requests).

In the sequel, let (enc, dec) be an (`′, `, d) erasure code. On input init to ecInit, the
converter calls init of its connected resource and computes the encoding F ′ ← enc(λ`) ∈ Σ`′ ,
sets the counter ctr to 0. ctr can be seen as the version number or identifier of the currently
stored memory content. Finally, the converter stores at each location i ∈ [`′] of aSMRk

Σ,`′

the pair (F ′i , 0).
On (read, i) to either ecInit or ecAudit, the converter retrieves the whole memory content

via (read, i) requests and obtains for each cell either a pair (vi, ctr
′) or the error symbol ε. If

ctr′ 6= ctr (version mismatch) or if ε was returned, set F̄i ← ⊥. Otherwise set F̄i ← vi. If |{i ∈
[`′] | F̄ ′i = ⊥}| ≥ d, then output ε at the outer interface, otherwise, compute F ← dec(F̄ ′),
where F̄ ′ = (F̄ ′1, . . . , F̄

′
`′), and output Fi.

On (write, i, F ′i), where F ′i ∈ Σ, to either ecInit or ecAudit, the converter first executes the
same instructions as on input (read, i) to retrieve the currently (outsourced) storage content
F . If and only if the F is successfully retrieved, the converter increments ctr, updates the
single location Fi ← F ′i and re-encodes the new memory content F ′ as F̄ ′ ← enc(F ′) and
finally outputs (write, i, (F̄ ′i, ctr)) for all i = 1 . . . `′.10

10 If the code would additionally support local updates and local decoding then reading and writing
could be implemented more efficiently.

36 C. Badertscher and U. Maurer

Finally, on a query (audit) to converter ecAudit, the converter chooses a random subset
S ⊆ [`′] of size t and outputs (read, i) to aSMR for each i ∈ S to retrieve the memory
content at that location. If and only if all read instructions for i ∈ S returned a pair (and not
ε) and the counter of all pairs are equal to the locally stored value ctr, then output success.

The security of this scheme follows from the following theorem.

Theorem 5. Let `, `′, d ∈ N. Let (enc, dec) be an (`′, `, d)-erasure-coding scheme for alphabet
Σ and error symbol ⊥ and let ρ be the minimum fraction of blocks needed to recover the file,
i.e., let ρ = 1− d−1

`′ .
11 Then the above protocol ecCheck := (ecInit, ecAudit, . . . , ecAudit) (with

k copies of ecAudit) that chooses a random subset of size t during the audit, constructs the
auditable server-memory resource aSMRk,audit

Σ`,1
from the authentic server-memory resource

aSMRk
Σ,`′ , with respect to the simulator simec (described in the proof of the theorem) and the

pair (honSrv, honSrv). More specifically, for all distinguishers D performing at most q audits,

∆D(honSrvS ecCheckP aSMRk
Σ,`′ , honSrv

SaSMRk,audit
Σ,`) = 0

and ∆D(ecCheckP aSMRk
Σ,`′ , sim

S
ecaSMRk,audit

Σ,`) ≤ q · ρt.

Proof (Sketch). Assume that a fraction α of cells of the real world authentic server memory
have been deleted such that a β := 1 − α fraction is still available. A standard bound for
binomial coefficients assures that the probability of selecting a subset of only good cells during

an audit is (β·m|S|)
(m|S|)

≤ β|S|. In the bad case where decoding would not be possible, i.e., if β < ρ,

we see that for an arbitrary distinguisher D in the real setting, the probability that the audit
succeeds is no larger than ρ|S|.

We only prove the security condition and describe the simulator simec. It internally main-
tains a simulated real-world view on the most recent memory content of size `′ by setting
the memory content of simulated location i to ε on a (delete, i) instruction from the distin-
guisher (and updating the memory content to the last value written in case of a (restore, i)
command. The simulator further maintains a simulated history, which is built based on the
history of the ideal resource aSMR as follows: upon an audit request, the appropriate num-
ber of read-instructions are added to the simulated history (for each read request to deleted
location the entry (t, Fail, i) is added). For each entry (t, R, i) or (t, Fail, i, Fi) in the ideal
world history, the simulator replaces this entry by `′ read instructions in its own simulated
history (for each read request to deleted location the entry (t, Fail, i) is added). An entry
(t, W, i, Fi) (indicating a successful write operation) is replaced by `′ read-instructions (to all
simulated locations) and `′ write instructions where each write instructions writes the pair
(F̄i, ctr) consisting of one symbol of the encoded and updated version of the memory content
F together with the current counter ctr which is increased on each successful write operation.

If, after a deletion command, the number of simulated memory locations, that are equal
to ε or associated with a too small counter, exceeds d − 1, the simulator deletes all memory
locations of the ideal resource. Similarly, after a restore-command (which restores the last
valid value stored by the client at that location), if the number of invalid memory locations
(including wrong counter values) drops below d− 1, the simulator restores the entire memory
content of the ideal resource.

On an audit request, the simulator simulates the random locations that are probed and
evaluates if the test succeeds. If so, it allows the resource to output the right result to the
client, and otherwise it instructs the resource to output reject. The simulation is perfect
up to the point where the following event BAD happens: An audit succeeds when more than
d − 1 locations are invalid. The probability of distinguishing can hence be upper bounded
by the probability that event BAD happens in an execution. To see this, in case ¬BAD, the
whole (logical) memory content is intact as long as there are no more than d − 1 deletions
(or invalid counter values) to the real or simulated memory content. When the client initiates
11 For example, for `′ > ` and alphabet Σ = Fq>`′ the systematic Reed-Solomon code over Σ has
d = `′ − `+ 1 and thus ρ = `

`′ .

Composable and Robust Outsourced Storage 37

an audit, the simulator simulates the execution on its simulated memory which has the same
distribution as in the real world and hence the probability to succeed is the same. In case of
an unsuccessful (real or simulated) audit both, the ideal and the real system output reject.
In case the check succeeds, both resources output success and the whole memory can be
retrieved: either the simulator has not deleted the memory contents in this case, or, in the
real system, less than d−1 locations are invalid such that decoding is successful. The statement
follows. ut

7.2 Making Secure Server-Memory Resources Auditable

We reduce the problem of auditing secure server-memory resources to the problem of esti-
mating the corruption factor α. Each protocol chooses a tolerated threshold ρ and stores the
data with replication factor trep that compensates data loss up to the corruption threshold
ρ. To make sure that all values can be retrieved with a certain probability, the protocol tests
taudit fixed locations to estimate whether the parameter α has already reached the tolerated
threshold ρ. In a first variant, the audit is successful if none of the probed locations return
an error. In a second variant, we obtain similar results if the taudit trials are used to obtain
a sufficiently accurate estimate of α. The constructions are parameterized by the tolerated
threshold ρ and by the desired retrievablity guarantee τ . The values of taudit and trep depend
on both of these parameters. The dependency is roughly as follows: The stronger the desired
retrievability guarantee should be, the higher the value of trep needs to be. However, the
smaller the value of the tolerated threshold ρ is, the smaller the value of trep can be. On the
other hand, a smaller value of the threshold ρ implies a higher value of taudit.

Assumed and constructed resource. The desired resource is an auditable secure server-
memory resource of size ` and with retrievability guarantee τ . Recall that if an audit is
successful, it means that the probability that any memory location is not accessible any more
is smaller than τ . The assumed resource is a secure server-memory resource with replication
trep and size `+ taudit/trep whose values are determined below.

The protocol. As before, the protocol consists of the converters statInit (initialization),
statAudit (client), and honest server behavior statSrvAudit. The server behavior is equal to
the dummy behavior of the last section. So we only describe the protocol for the client. The
protocol is parameterized by taudit. For the sake of presentation, we do not explicitly write
it as it is clear from the context. On input init to statInit, the converter calls init and sets
flag← 0. The variable Flag records whether the protocol has ever detected an error when
writing or reading to the server. If equal to one, it signals that misbehavior has been detected
and will provoke subsequent audits to reject. The flag does not influence ordinary client read
and write requests. On (read, i) to either statInit or statAudit, the converter outputs (read, i)
to retrieve the value at memory location i or the error symbol ε, and outputs this returned
value at its outer interface. In the case of an error, set flag← 1. 12 On (write, i, v) to either
statInit or statAudit, the converter outputs (write, i, v) to write the value v at location i of the
server. Again, if an error is observed, it sets flag← 1. Finally, on input audit to converter
statAudit, the converter immediately returns reject if flag = 1. If Flag = 0 the audit is
executed as follows:13, the converter issues trep read requests to each logical memory location
r = ` + 1, . . . , ` + taudit

trep
. If and only if no read instruction returned the error symbol ε, then

12 One could relax this by introducing a tolerance tol and requiring that flag ← 1 only if more
than tol of the trep copies of a memory location failed. Our results formalize zero tolerance and
where trep is the minimal number required to obtain the desired retrievability guarantee.

13 From a statistical point of view, if flag = 0, we have taudit independent samples to estimate the
parameter α.

38 C. Badertscher and U. Maurer

output success. Otherwise, the output is reject and the flag is updated to flag ← 1. 14

The security of this scheme follows from the following theorem.

Theorem 6. Let Σ be an alphabet, let `, κ, trep, taudit, d ∈ N such that d = taudit
trep

, and let
ρ, τ ∈ (0, 1) such that

trep >
log(τ)− log(`)

log(ρ)
, taudit >

−κ
log(1− ρ)

. (2)

The above described protocol statCheck := (statInit, statAudit, . . . , statAudit) (with k copies
of statAudit) parameterized by taudit, constructs the auditable secure server-memory resource
sSMR

k,trep,τ,audit
Σ,` from the secure server-memory resource sSMR

k,trep
Σ,`+d

and a local memory
(which stores the variable flag), with respect to the simulator simstat (described in the proof)
and the pair (honSrv, honSrv). More specifically, for all distinguishers D performing at most
q audits,

∆D(honSrvS statCheckP [L, sSMR
k,trep
Σ,`+d

], honSrvSsSMR
k,trep,τ,audit
Σ,`) = 0

and ∆D(statCheckP [L, sSMR
k,trep
Σ,`+d

], simS
statsSMR

k,trep,τ,audit
Σ,`) ≤ q · 2−κ.

p As a numerical example, let us assume we are given a secure memory that can store one tebibyte
of data, with a certain replication factor trep, and where each element of Σ represents a block of size
16 kibibytes. This yields ` = 226. For a security level κ = 128, τ = 2−32, and ρ = 2−9 we would need
a replication factor of trep ≈ 6 and the total size of retrieved data during an audit is roughly 700

mebibytes. Different applications can adjust these parameters according to their preference in order
to trade security, storage overhead, and access time. y

Proof. We start by describing the simulator. simstat internally maintains a simulated history,
which is identical to the history of the ideal resource but where for each audit request, the
appropriate number of read-requests are added. It further maintains a value flag which is
initially 0.

On input (pollute, α) and (reducePollution, δ) it forwards this query to the ideal re-
source sSMRk,t,τ,audit

Σ,` . On input getHist the simulator reads the history of the ideal resource
and updates its simulated history appropriately and returns it to D. If at any time, the sim-
ulated history contains an entry (k, Failed for some k, then flag is set to 1.

On an audit-request, the simulator first updates its simulated history. Then, it replies
abort to sSMRk,t,τ,audit

Σ,` in case flag = 1. In case flag = 0, simstat simulates taudit read
accesses, such that each access fails with probability α. In case there are failures, simstat

outputs abort to the ideal resource to provoke a reject and internally sets flag ← 1. It
further adds the appropriate entries (k, Failed) and (k, Access) to its simulated history.

The remainder of the proof proceeds in two steps. First, we bound the probability that
a simulated audit succeeds (if flag = 0), although α is larger than the threshold ρ, by
2−κ. A straightforward statistical argument shows that as long as α < ρ (and flag = 0),
the probability that after the audit (and before the next intrusion phase) retrieving any cell
would result in a failure is smaller than τ . Hence, the probability of an imperfect simulation
is negligible in κ.

We first compute the probability that an audit is passed in case α > ρ and flag = 0. let
X =

∑taudit
i=1 Xi, where Xi are independently distributed according to Xi ∼ Bernoulli(α).

Pr[X = 0] = (1− α)taudit ≤ (1− ρ)taudit ≤ 2−κ,

where we used the assumption that taudit > −κ
log(1−ρ) . We conclude that except with negligible

probability, the audit only succeeds if α < ρ.
14 One could again introduce a tolerance tol and require that flag← 1 only if more than tol samples

returned an error. Our results formalize zero tolerance and taudit is the minimal number of samples
required to get a sufficiently accurate estimate of α.

Composable and Robust Outsourced Storage 39

Assuming α < ρ, we prove that the probability that any value is not recoverable (given
that flag = 0) is smaller than τ for the choices in Equation 2. Again, each read request
would fail independently with probability α. Using Bernoulli’s inequality, we get

1− (1− αtrep)` ≤ 1− (1− ρtrep)` ≤ 1− (1− `ρtrep) = ` · ρtrep ,

and by the theorem assumption trep >
log(τ)−log(`)

log(ρ) , we immediately have

` · ρtrep ≤ ` · ρ
log(τ)−log(`)

log(ρ) = ` · ρ
log(τ)
log(ρ) · ρ

log(−`)
log(ρ) = ` · τ · `−1 = τ.

This concludes the proof. ut

Auditing via a direct estimate of α. We can replace the audit of protocol statCheck by
a direct estimation of the parameter α. In case that the estimation ᾱ is sufficiently accurate,
say up to ρ

2 with very high probability, verifying that ᾱ < ρ
2 is sufficient to obtain the desired

retrievability guarantee and the audit returns success. The audit itself consists of obtaining
taudit independent samples via read-requests to the d extra locations of the secure server-
memory resource. In case it is not possible to obtain that many samples, for example because
certain locations failed during the last audit and would therefore output ε with probability 1
instead of α, the audit returns reject. If taudit samples can be obtained, let ne be the number
of errors that occurred and define the estimate ᾱ ← ne

taudit
. From the Chernoff-Hoeffding

bound, we get that for arbitrary θ, δ ∈ (0, 1), if taudit > 2+θ
θ2 · log(2

δ) independent samples of a
Bernoulli distribution with parameter α are obtained, the probability that ᾱ ∈ [α− θ, α+ θ]
is at least 1 − δ. Hence, setting θ < ρ

2 and δ ≤ 2−κ, we get an analogous result to the one
above, but in general with higher values for taudit.

On composing the previous modular steps. It is instructive to wrap up the results until
this point: We have shown how to construct an auditable secure server-memory resource from
a secure server-memory resource by estimating the failure probability α. In Sect. 5.3, we have
shown how to construct a secure server-memory resource from an authentic and confidential
server-memory resource, which itself can be constructed from an insecure server-memory as
shown in Sect. 5.1 and Sect. 5.2. We can invoke the composition theorem of constructive
cryptography to conclude that the composition of all protocols constructs an auditable secure
server-memory resource from an insecure one (and local storage). The composed protocol
has strong security guarantees and is robust against an arbitrary number of failures and is
comparable to existing schemes in terms of access times to read and write single data blocks.
However, the gained security comes at the price of a theoretically larger server-side memory
consumption due to replication, and higher audit times.

7.3 Revisiting the Hash-Based Challenge-Response Approach

Our model allows to formalize the security guarantees of a very simple hash-based challenge-
response protocol that is often given as an introductory example to proofs of retrievability,
but, to the best of our knowledge, lacks a formal security statement in other models. In a
nutshell, the retrievability test asks the server to deliver the correct hash value of the (current)
storage content concatenated with a uniform random challenge provided (and precomputed)
by the client. The intuitive security claim is that the server cannot have modified or deleted the
content before answering the challenge. For the sake of concreteness, we consider the setting
where one client stores a single file F (modeled as a sequence of bits in this paragraph) on an
insecure server memory and would like to audit this file at a later point in time. We assume
an (ideal) hash function, i.e., a random oracle, H : {0, 1}∗ 7→ {0, 1}r following the notation
of [7] and denote by x||y the concatenation of bitstrings x and y.

40 C. Badertscher and U. Maurer

W

SMR

H

W

SMR

H
...

. . .
i j

(eval, xi...xj)

xi xj

H(xi...xj)

(eval, s)

(eval, s)

(eval, s) (eval, i, j)

H(s)

(eval, s)

(eval, s)

W

SMR

h1

. . .
i j

xi xj

h1(xi...xj)

(eval1, i, j)(eval1, s)

(eval2, s)

h2
(eval2, i, j)

h2(xi...xj)

enhanced SMR enhanced SMR

S

S

S

S

S

S

C0

C1

C0

C1

C0

C1

C0

C1

C0

C1

C0

C1

(eval2, s)

(eval1, s)

Fig. 17. Left: Real system with unrestricted server access to the random oracle. The challenge-
response protocol, executed in this setting, is not secure. Center: Real system with restricted server
access. Under this stronger assumption, the challenge-response protocol is secure. Right: Real system
with restricted access to two ideal compression functions. In this setting, the challenge-response
protocol, where the hash is computed using a secure iterated construction like NMAC, is not secure
in general.

Assumed and constructed resource. We assume a random oracle, H : {0, 1}∗ 7→ {0, 1}r,
which is made available to the parties by means of a resource H that has an interface for the
client and one for the server: On input (eval, x) at any of its interfaces H returns H(x) at
the same interface. We further assume a small local storage and a communication channel
between client and server, which we denote by Ch. Formally, Ch is a system with the two
interfaces C1 and S, such that whatever is input at one interface is output at the other
interface. We refer to [43,17] for a possible channel formalization. Last but not least, we
assume an ordinary insecure memory resource SMR1

Σ,`+κ, where Σ = {0, 1} and κ being the
size of the challenge c. The desired functionality we want to achieve is the auditable insecure
memory resource SMR1,audit

Σ,` .

The protocol. We now describe the protocol in more detail: As usual, we specify an initial-
ization converter hashInit, a client converter hashAudit, and the protocol for the honest server
behavior srvHash. On input init to hashInit, the converter simply calls init of its connected
resource. On (write, 1, F) to either hashInit or hashAudit, where F is an `-bitstring, the con-
verter writes F to the server storage. It then chooses a uniform random challenge c ∈ {0, 1}κ
and computes y ← H(F ||c) and stores c and y in the local storage. On (read, 1) to either
hashInit or hashAudit, the converter retrieves the content of the memory and outputs the first
` bits of the received content. Finally, on a query (audit) to converter hashAudit, if there is
a challenge stored in local memory, the protocol writes c to the server memory at locations
`+1 . . . `+κ and sends a notification auditReq to the server via the bidirectional channel. On
receiving a response y′ on that channel from the server, the client protocol outputs success
if and only if y = y′. In any case, the challenge c is deleted from the local storage. The
next audit is only possible after executing a new write-query.15 Finally, the server protocol
srvHash, upon receiving an audit-request, simply evaluates H on the current memory contents
and sends the result to the client via the bidirectional channel.

Insecurity of the approach. Unfortunately, the security of the hash-based challenge-
response protocol above does not follow solely based on the random oracle assumption. The
proof of this follows closely the intuition that in a composable security framework, the envi-
ronment “knows” the content of the server-memory resource. Hence, if the random oracle can
be queried by the distinguisher on an arbitrary input, i.e., not restricted to the actual value
stored in the server memory, it can always be queried on the correct input, irrespective of the
actual content of the server-memory resource. This is formalized in the following lemma.
15 We assume that the client protocol rejects an audit if no challenge is stored in local memory. Note

that one could of course prepare more challenges.

Composable and Robust Outsourced Storage 41

Lemma 2. Let `, `′, κ, r ∈ N, with `′ = `+ κ, let Σ := {0, 1}, and let H be a random oracle
(with one interface for the client and one for the server). Then, the protocol above (specified
by the converters hashInit, hashAudit, srvHash) does not provide a secure proof of storage. More
specifically, there is a distinguishing strategy such that for any simulator sim it holds that

∆D(hashInitC0hashAuditC1 [L,Ch,SMR1
Σ,`′ ,H], simSSMR1,audit

Σ`,1
) = 1.

Proof. To prove the statement, we describe the random experiment between a particular
distinguisher D and the system T, which either corresponds to the real system with the
protocols attached, i.e., hashInitC0hashAuditC1 [L,Ch,SMR1

Σ,`′ ,H] or to the ideal system with
the simulator attached, i.e., simSSMR1,audit

Σ`,1
. First, D inputs init at interface C0 and queries,

for some arbitrary file F 6= 0`, (write, 1, F) and inputs initComplete at interface C0. As the
next step, D inputs startWriteMode at interface W and subsequently instructs the resource
to delete the file by storing the all-zero string via queries (write, i, 0) for all locations i ∈ [`]
at interface SI and finally inputs stopWriteMode at interface W. D then inputs audit at
interface C1 to receive a challenge c.16 D then queries H on input F ||c to receive the value y0

and sends y0 back to the client. As the last step the client retrieves the actual storage content
by querying (read, 1) at interface C1. Let the returned file be F ′. Finally, the distinguisher
outputs 1 if and only if the audit is successful and F ′ is the all-zero bitstring. It is obvious
that if D is querying the real system (with the protocol), then its output is 1 with certainty.
However, in the ideal system, if the server memory content when the audit start is F ′ 6= F ,
then the ideal audit, by definition cannot be successful, irrespective of the simulator’s actions.
The distinguisher outputs 1 with probability zero in that case. The statement follows. ut

Security under stronger assumptions. In this paragraph, we show that the additional
assumption we have to make in order for the scheme to be secure, is to restrict adversarial
random oracle evaluations by allowing inputs from the server storage only. In particular, the
server is only allowed to query the random oracle via calls (eval, i, j), i ≤ j, and to obtain
the hash value H(M[i]|| . . . ||M[j]) as opposed to receiving hash values for arbitrary bitstrings.
See also Fig. 17.

To turn this intuition into a formal statement, we consider the following functionality
SMRk

H,Σ,` which basically behaves like SMRk
Σ,`, but with two additional capabilities: Each

client interface can, aside of ordinary read- and write-request, query (eval, x) upon which
the resource provides H(x) as output. Second, the server gets access to the random oracle
via its interface, and is restricted to submit queries of the form (eval, i, j) with i ≤ j, and
the resource returns the result of H(M[i]|| . . . ||M[j]) to the server. We prove the following
theorem.

Theorem 7. Let `, `′, κ, n ∈ N, with `′ = ` + κ, let Σ := {0, 1}, and let H denote a hash
function modeled as a random oracle. The above described protocol (hashInit, hashAudit) con-
structs the auditable server-memory resource SMR1,audit

Σ`,1
from the server-memory resource

SMR1
H,Σ,`′ , a local memory (of constant size), and a channel, with respect to the simula-

tor simhash (described in the proof) and the pair (srvHash, honSrv). More specifically, for all
distinguishers D asking at most q queries

∆D(hashInitC0hashAuditC1srvHashS[L,Ch,SMR1
H,Σ,`′], honSrv

SSMR1,audit
Σ`,1

) = 0

and ∆D(hashInitC0hashAuditC1 [L,Ch,SMR1
H,Σ,`′], sim

S
hashSMR1,audit

Σ`,1
)

≤ q · 2−κ + 2−r.

Proof (Sketch). Since it is obvious that when the server is honest, the audit succeeds, we
directly proceed to prove the security of the construction. We first describe the straightforward
simulation. On any query by the distinguisher to read or write directly into the storage
16 We assume that in both worlds a challenge is output as otherwise distinguishing is trivial.

42 C. Badertscher and U. Maurer

via server interface SI , the simulator simply forwards this request to SMR1,audit
Σ`,1

. If the
distinguisher inputs the query (eval, i, j) for 1 ≤ i ≤ j ≤ ` + κ, the simulator computes
the string s←M′[i]|| . . . ||M′[j], and if there is no internally stored pair (s, y) for this string,
choose y � {0, 1}r and store (s, y) internally for future reference. Finally, output y as the
(simulated) random oracle output to the distinguisher.

Last but not least, when the client starts the first audit for the most recent uploaded
file (note that by definition such a requests occurs only in a phase where no intruder is
active), the simulator internally chooses a challenge c� {0, 1}κ. Then, the simulator retrieves
the history of the resource to check which file F was written to the storage and defines
s← F ||c1|| . . . ||cκ and checks whether there is a recorded pair (s, y). Only if none is recorded,
chooses y0 � {0, 1}r and store the pair (s, y0). Finally, simhash stores c at locations M′[`+ 1]
to M′[`+ κ] of its simulated memory. After this, it outputs the notification auditReq to the
distingusiher (as coming from the bidirectional channel). If the distinguisher’s response to
this audit request equals y0, then the simulator outputs allow and otherwise output abort to
SMR1,audit

Σ`,1
.

We now consider the an execution of a distinguisher with either the real system or the
ideal system. On an audit-request by the client, which happens only in a phase where the
distinguisher is not allowed to write to the server-memory resource, the client reveals the
challenge c by writing it into the server storage. Let us denote the current server storage at
this point as R. We observe that the server is only capable of evaluating the random oracle
on R||c or on F ||c by restoring the original memory cell. Hence, assume that the distinguisher
does not restore and the memory content is R 6= F . Hence, in both worlds, the distinguisher
does not learn receive the value y0 = H(F ||c) at this point. In particular, the probability
of guessing the correct hash output given that D has never evaluated the random oracle on
s = F ||c is 2−r. Furthermore, the probability that the distinguisher has ever evaluated the
random oracle on F ||c before the audit was initiated, is no larger than q · 2−κ. We observe
that if none of these two events occur, then the real and ideal systems behave identically.
Indeed, a retrievability check is passed in both worlds if and only if the memory content is the
original file F and the distinguisher sends the correct hash value y0 = H(F ||c) to the client.
The statement follows. ut

On replacing the monolithic random oracle. We consider iterated constructions of
random oracles H : {0, 1}∗ 7→ {0, 1}r from ideal compression functions h1 : {0, 1}κ×{0, 1}n 7→
{0, 1}n and h2 : {0, 1}n 7→ {0, 1}r (n, r, κ > 0) from [22]. We formally show that in our setting,
the fact that an iterated construction realizes a random oracle does not imply that the iterated
construction realizes resource SMR1

H,Σ,`′ from resource SMR1
h1,h2,Σ,`. In other words, even if

the server access to the functions is restricted as required above by Theorem 7 and illustrated
in Fig. 17, their applicability is not generally safe in the context of audits. This observation
meets our intuition and has already been observed in [51]. The intuitive reason why it fails
is that certain constructions (like NMAC) allow the server to compute a result in multiple
stages, such that he can store an intermediate result, ignore the original memory, and still
compute the correct hash value.

For simplicity, we focus on the NMAC construction that was shown to securely realize
a random oracle H from two ideal compression functions h1 and h2 [22]. The input is a file
F = (F1||F2|| . . . ||F`) of ` = κ · l bits, let us denote the ith block (having κ bits) as F i. Let
y0 ← 0n be the initial block.17. Compute for each block i from 1 to l, yi ← h1(F i, yi−1).
Finally, compute and return Y ← h2(yl) as H(F). Let nmaccli be the client converter that
simply relays all queries and responses not concerning the random oracle evaluations and
on input (eval, x) at its outer interface, computes the hash value according to the NMAC
construction above. Similarly, the honest server converter nmacsrv simply relays all queries
and responses not concerning the random oracle evaluations and on input (eval, i, j) at the

17 We assume this initial value to be prepended to F such that the computation formally gets F ′ =
0n||F as the only input. This is only a syntactic simplification

Composable and Robust Outsourced Storage 43

outer interface evaluates the NMAC construction using the appropriate instructions to the
resource.

Lemma 3. Let `, n, r, κ > 0 be integers such that ` > n + κ, and let Σ := {0, 1}. Let H
denote a random oracle and h1 and h2 be ideal compression functions as introduced above.
Then, the client protocol (nmaccli, nmaccli) described above does not construct the system
SMR1

H,Σ,` from system SMR1
h1,h2,Σ,` if the server is possibly dishonest. In particular, there

is a distinguishing strategy such that for any simulator sim, making at most q random oracle
queries, it holds that

∆D(nmacC0nmacC1SMR1
h1,h2,Σ,`, sim

SSMR1
H,Σ,`) ≥ 1− q · 2−κ − 2−r.

Proof (Sketch). We describe a distinguisher D that interacts either with the ideal world
simSSMRH or with the real world SMR1

h1,h2,Σ,`. The distinguisher first chooses a uniform
random bitstring s of length ` − 1 and stores F := s||1 in the memory and pre-computes
y := H(F, c) for a uniformly random challenge c (of length κ) via an input (eval, F ||c) at
interface C1. A a second step, D performs the “first stage” of the NMAC computation using
the interface S: having obtained yi−1, D writes this value back to an appropriate location,
say j, of the server storage and queries (eval1, j, j + κ+ n) to receive the intermediate value
yi and proceeds to until obtaining y`. Finally, D sets the server memory to yl||0`−n via a
write-command at the server interface and then issues stopWriteMode at interface W which
disallows adversarial write-access at interface S. Next, D writes the challenge c to the server
storage via the client interface C1 and completes the evaluation of NMAC by computing
y′ ← h2(h1(1, . . . , n||c)) by appropriate evaluation queries at the server interface. To decide
on its output bit, D reads the current content R of the memory at interface C and decides
on 1 if and only if R = yl||c||0`−n−κ and y = y′.

If D is connected to the real system then, by design of the experiment, the probability
that y = y′ and R 6= F is 1. The reason is that the memory content yl||c||0`−n−κ, is sufficient
to compute the correct hash value H(F ||c).

IfD is connected to the ideal system, the probability that y = y′ and R 6= F is significantly
smaller and is based on the observation that the simulator can only compute H(F ||c) with
non-negligible probability if it can evaluate the storage its random oracle on input F ||c which
has to reside in memory. By the time the simulator learns c, he has already lost his write-
access to the resource. Hence, the probability of y = y′ given that the storage content in the
end of the experiment is R 6= F ||c is upper bounded by q · 2−κ + ·2−r. ut

References

1. Androulaki, E., Cachin, C., Dobre, D., Vukolić, M.: Erasure-coded byzantine storage with sep-
arate metadata. In: International Conference on Principles of Distributed Systems. pp. 76–90.
Springer (2014)

2. Apon, D., Katz, J., Shi, E., Thiruvengadam, A.: Verifiable oblivious storage. In: International
Workshop on Public Key Cryptography. pp. 131–148. Springer (2014)

3. Ateniese, G., Burns, R.C., Curtmola, R., Herring, J., Khan, O., Kissner, L., Peterson, Z.N.J.,
Song, D.: Remote data checking using provable data possession. ACM Trans. Inf. Syst. Secur.
14(1), 12 (2011)

4. Ateniese, G., Burns, R.C., Curtmola, R., Herring, J., Kissner, L., Peterson, Z.N.J., Song, D.X.:
Provable data possession at untrusted stores. In: ACM Conference on Computer and Communi-
cations Security. pp. 598–609 (2007)

5. Ateniese, G., Dagdelen, Ö., Damgård, I., Venturi, D.: Entangled cloud storage. Future Generation
Computer Systems 62, 104–118 (2016)

6. Ateniese, G., Pietro, R.D., Mancini, L.V., Tsudik, G.: Scalable and efficient provable data pos-
session. IACR Cryptology ePrint Archive 2008, 114 (2008)

7. Baecher, P., Fischlin, M.: Random oracle reducibility. In: Advances in Cryptology - CRYPTO
2011 - 31st Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Pro-
ceedings. pp. 21–38 (2011)

44 C. Badertscher and U. Maurer

8. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In:
Advances in Cryptology — CRYPTO ’96: 16th Annual International Cryptology Conference
Santa Barbara, California, USA August 18–22, 1996 Proceedings. pp. 1–15 (1996)

9. Blum, M., Evans, W.S., Gemmell, P., Kannan, S., Naor, M.: Checking the correctness of memo-
ries. Algorithmica 12(2/3), 225–244 (1994)

10. Bowers, K.D., Juels, A., Oprea, A.: Proofs of retrievability: theory and implementation. In:
CCSW. pp. 43–54 (2009)

11. Cachin, C.: Integrity and consistency for untrusted services. In: International Conference on
Current Trends in Theory and Practice of Computer Science. pp. 1–14. Springer (2011)

12. Cachin, C., Dobre, D., Vukolić, M.: Separating data and control: Asynchronous bft storage with
2t+ 1 data replicas. In: Symposium on Self-Stabilizing Systems. pp. 1–17. Springer (2014)

13. Cachin, C., Geisler, M.: Integrity protection for revision control. In: International Conference on
Applied Cryptography and Network Security. pp. 382–399. Springer (2009)

14. Cachin, C., Keidar, I., Shraer, A.: Fail-aware untrusted storage. SIAM Journal on Computing
40(2), 493–533 (2011)

15. Cachin, C., Shelat, A., Shraer, A.: Efficient fork-linearizable access to untrusted shared mem-
ory. In: Proceedings of the twenty-sixth annual ACM symposium on Principles of distributed
computing. pp. 129–138. ACM (2007)

16. Camenisch, J., Enderlein, R.R., Maurer, U.: Memory erasability amplification. In: International
Conference on Security and Cryptography for Networks. pp. 104–125. Springer (2016)

17. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In:
Proceedings of the 42nd Symposium on Foundations of Computer Science. pp. 136–145. IEEE
(2001)

18. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with global setup.
In: Theory of Cryptography, 4th Theory of Cryptography Conference, TCC 2007, Amsterdam,
The Netherlands, February 21-24, 2007, Proceedings. pp. 61–85 (2007)

19. Cash, D., Küpçü, A., Wichs, D.: Dynamic proofs of retrievability via oblivious ram. In: Annual
International Conference on the Theory and Applications of Cryptographic Techniques. pp. 279–
295. Springer (2013)

20. Chandran, N., Kanukurthi, B., Ostrovsky, R.: Locally updatable and locally decodable codes.
In: TCC. pp. 489–514 (2014)

21. Chung, K.M., Pass, R.: A simple oram. Tech. rep., DTIC Document (2013)
22. Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-damgård revisited: How to construct a

hash function. In: CRYPTO. pp. 430–448 (2005)
23. Demay, G., Gaži, P., Hirt, M., Maurer, U.: Resource-restricted indifferentiability. In: Advances in

Cryptology — EUROCRYPT 2013. Lecture Notes in Computer Science, vol. 7881, pp. 665–684.
Springer-Verlag (May 2013)

24. Devadas, S., van Dijk, M., Fletcher, C.W., Ren, L., Shi, E., Wichs, D.: Onion oram: A constant
bandwidth blowup oblivious ram. In: Theory of Cryptography Conference. pp. 145–174. Springer
(2016)

25. Dodis, Y., Vadhan, S.P., Wichs, D.: Proofs of retrievability via hardness amplification. In: TCC.
pp. 109–127 (2009)

26. Erway, C.C., Küpçü, A., Papamanthou, C., Tamassia, R.: Dynamic provable data possession. In:
ACM Conference on Computer and Communications Security. pp. 213–222 (2009)

27. Fletcher, C., Naveed, M., Ren, L., Shi, E., Stefanov, E.: Bucket oram: single online roundtrip,
constant bandwidth oblivious ram. Tech. rep., IACR Cryptology ePrint Archive, Report 2015,
1065 (2015)

28. Garay, J.A., MacKenzie, P., Prabhakaran, M., Yang, K.: Resource fairness and composability of
cryptographic protocols. Journal of cryptology 24(4), 615–658 (2011)

29. Gaži, P., Maurer, U., Tackmann, B.: Environment-affected constructions. Manuscript (2016)
30. Gentry, C., Goldman, K.A., Halevi, S., Julta, C., Raykova, M., Wichs, D.: Optimizing oram and

using it efficiently for secure computation. In: International Symposium on Privacy Enhancing
Technologies Symposium. pp. 1–18. Springer (2013)

31. Gentry, C., Halevi, S., Jutla, C., Raykova, M.: Private database access with he-over-oram ar-
chitecture. In: International Conference on Applied Cryptography and Network Security. pp.
172–191. Springer (2015)

32. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams. Journal of
the ACM (JACM) 43(3), 431–473 (1996)

33. Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of outsourced data via oblivious
ram simulation. In: ICALP (2). pp. 576–587 (2011)

Composable and Robust Outsourced Storage 45

34. Halevi, S., Harnik, D., Pinkas, B., Shulman-Peleg, A.: Proofs of ownership in remote storage
systems. In: Proceedings of the 18th ACM conference on Computer and communications security.
pp. 491–500. ACM (2011)

35. Hofheinz, D., Matt, C., Maurer, U.: Idealizing identity-based encryption. In: International Con-
ference on the Theory and Application of Cryptology and Information Security. pp. 495–520.
Springer (2015)

36. Juels, A., Kaliski, B.S.: Pors: proofs of retrievability for large files. In: ACM Conference on
Computer and Communications Security. pp. 584–597 (2007)

37. Keelveedhi, S., Bellare, M., Ristenpart, T.: Dupless: server-aided encryption for deduplicated
storage. In: Presented as part of the 22nd USENIX Security Symposium (USENIX Security 13).
pp. 179–194 (2013)

38. Kupcu, A.: Efficient Cryptography for the Next Generation Secure Cloud. Ph.D. thesis (2010)
39. Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in)security of hash-based oblivious ram and a new

balancing scheme. In: SODA. pp. 143–156 (2012)
40. Li, J., Krohn, M.N., Mazières, D., Shasha, D.: Secure untrusted data repository (sundr). In:

OSDI. vol. 4, pp. 9–9 (2004)
41. Liu, B., Warinschi, B.: Universally composable cryptographic role-based access control. Cryptol-

ogy ePrint Archive, Report 2016/902 (2016)
42. Maurer, U.: Indistinguishability of random systems. In: Knudsen, L. (ed.) Advances in Cryptology

— EUROCRYPT 2002. Lecture Notes in Computer Science, vol. 2332, pp. 110–132. Springer-
Verlag (May 2002)

43. Maurer, U.: Constructive cryptography - a new paradigm for security definitions and proofs. In:
TOSCA. pp. 33–56 (2011)

44. Maurer, U., Renner, R.: Abstract cryptography. In: Innovations in Theoretical Computer Science.
pp. 1–21 (2011)

45. Maurer, U., Renner, R.: From indifferentiability to constructive cryptography (and back). In:
Theory of Cryptography: 14th International Conference, TCC 2016-B (2016)

46. Mazieres, D., Shasha, D.: Building secure file systems out of byzantine storage. In: Proceedings
of the twenty-first annual symposium on Principles of distributed computing. pp. 108–117. ACM
(2002)

47. Moataz, T., Mayberry, T., Blass, E.O.: Constant communication oram with small blocksize. In:
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security.
pp. 862–873. ACM (2015)

48. Naor, M., Rothblum, G.N.: The complexity of online memory checking. J. ACM 56(1) (2009)
49. Ren, L., Fletcher, C.W., Yu, X., Kwon, A., van Dijk, M., Devadas, S.: Unified oblivious-ram:

Improving recursive oram with locality and pseudorandomness. IACR Cryptology ePrint Archive
2014, 205 (2014)

50. Ren, L., Fletcher, C.W., Yu, X., Van Dijk, M., Devadas, S.: Integrity verification for path
oblivious-ram (2013)

51. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: Limitations of the indif-
ferentiability framework. In: EUROCRYPT. pp. 487–506 (2011)

52. Shacham, H., Waters, B.: Compact proofs of retrievability. J. Cryptology 26(3), 442–483 (2013)
53. Shi, E., Stefanov, E., Papamanthou, C.: Practical dynamic proofs of retrievability. In: Proceedings

of the 2013 ACM SIGSAC Conference on Computer and Communications Security. pp. 325–336.
CCS ’13, ACM (2013)

54. Shraer, A., Cachin, C., Cidon, A., Keidar, I., Michalevsky, Y., Shaket, D.: Venus: Verification
for untrusted cloud storage. In: Proceedings of the 2010 ACM workshop on Cloud computing
security workshop. pp. 19–30. ACM (2010)

55. Stefanov, E., van Dijk, M., Juels, A., Oprea, A.: Iris: a scalable cloud file system with efficient
integrity checks. In: ACSAC. pp. 229–238 (2012)

56. Stefanov, E., Shi, E., Song, D.X.: Towards practical oblivious RAM. In: 19th Annual Network
and Distributed System Security Symposium, NDSS 2012, San Diego, California, USA, February
5-8, 2012 (2012)

57. Stefanov, E., Van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.: Path oram: an
extremely simple oblivious ram protocol. In: Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security. pp. 299–310. ACM (2013)

58. Wang, X.S., Huang, Y., Chan, T.H., Shelat, A., Shi, E.: Scoram: oblivious ram for secure compu-
tation. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security. pp. 191–202. ACM (2014)

46 C. Badertscher and U. Maurer

A Further Details of Section 1

This first section of the supplementary material provides more details on the traditional
security definition of Proofs of Retrievability (PoR).

A.1 Traditional PoR Game

Below we sketch the traditional retrievability game. The game involves the (malicious) server
S̄, the extractor E , and the challenger and is defined as follows:

1.) S̄ outputs a valid protocol sequence P := (op0, op1, . . . , opq), i.e., a sequence of
invocations where op0 = init(1ν , Σ, n) and, for j > 0, opj ∈ {read(i),write(i, vi), audit} with
i ∈ [n] and vi ∈ Σ. We denote by M the correct memory content after an ideal execution
of the sequence P .

2.) The challenger creates an instance of an honest client C and executes the whole sequence
P between C and S̄. After the execution, let Cfin and S̄fin denote the state of the client
and server (including its random coins), respectively. We define the following probability
over the random coins of the client during the audit:

Succ
(
S̄fin

)
:= Pr

[
S̄fin

audit←→ Cfin V accept
]

3.) Run M ′ ← ES̄fin (Cfin, 1n, 1p), where the extractor gets black-box rewinding access to the
server strategy and in addition a description of the client strategy.

4.) If Succ
(
S̄fin

)
≥ 1

p but M ′ 6= M , then output 1 (the server wins the game). Otherwise,
output 0.

Retrievability Game ExtGameS̄,E(ν, p)

Fig. 18. One version of the traditional retrievability game.

B Further Details of Section 2

This section contains the details skipped in the preliminaries and provides more information
on the type of resources we use in this work.

B.1 Discrete Resources and the World Interface

This section is to recap and to provide more background regarding resources, constructions
and the roles of the world and attacker interfaces.

Discrete systems and interfaces. We model all resources in these work as reactive discrete
systems that can be queried by their environment: each interaction consists of an input from
the environment and an output that is given by the resource as a response. In general, the
same resource may be accessible to multiple parties, for example a communication channel
that allows a sender to write a message and a receiver to read it. In that case, we assign inputs
to certain interfaces that correspond to the parties: the sender’s interface allows to write a
message to the channel, and the receiver’s interface allows to read what is in the channel.
More generally, an interface does not necessarily correspond to one specific particular role in a
cryptographic protocol: in a security statement, a single party can be given access to multiple
interfaces of a resource. In the construction statements, (protocol) converters are attached to
the parties’ interfaces in the “real world,” whereas the environment is given direct access in the
“ideal world.” This formalizes that the protocol, a tuple of (protocol) converters, is supposed
to implement the same interfaces for the honest parties as the ideal/desired resource.

Composable and Robust Outsourced Storage 47

The attacker interface and the world interface. There are two interfaces that serve
different, specific purposes. The first such interface, usually referred to as the dishonest (or
possibly dishonest) interface, models the capabilities that a resource may allow to a potential
attacker. In the construction statements, a (simulator) converter is attached to this interface
in the “ideal world,” whereas the environment is given direct access in the “real world.” This
formalizes that the constructed resource (together with the simulator) allows the same capa-
bilities to the attacker as the assumed resource with the protocol or, in other words, that the
protocol restricts the attacker as specified by the constructed/desired resource. The second
special interface is referred to as the “world” or “environment” interface, and models that the
resource may be affected by its environment in ways we do not want to make explicit in the
resource description. As such, the environment interface also allows to abstract from certain
technical details by delegating them to the environment. In the construction statements, this
means that the world interface is directly accessible in both the “real world” and the “ideal
world:” The construction is valid independently of what happens at the world interface.

To give one more example, the difference between specifying capabilities at the attacker’s
and the world interface can also be illustrated when modeling communication: If a certain
capability, such as the decision to deliver or drop a message from a sender to a receiver, is
provided at the attacker’s interface both in the “real world” and in the “ideal world,” then the
simulator in the ideal world can always make use of the capability of dropping the message,
even if the distinguisher’s behavior corresponds to delivering the message in the “real world.”
This means that the scheme does not have to guarantee that the receiver output the message;
in particular, both the receiver’s protocol and the simulator may drop messages. In contrast,
if the capability is provided at the world interface, then the message will indeed be delivered
in the “ideal world,” since that is exactly what is specified in the resource. Consequently,
the protocol in the “real world” has to provide the message to the receiver as well, because
otherwise the two settings were distinguishable.

Uses of the world interface. In the context of this work, the world interface is denoted
by W and allows to decide when a server is allowed to overwrite the client’s data. Along
the same lines as the above example, this means that we can enforce that a protocol must
guarantee that detecting certain errors within the server memory does not imply that the
entire memory is considered as “deleted”. This way, we are guaranteed that a protocol stays
operational for the faultless part of the server memory. Furthermore, we can explicitly model
when the resource is “under attack”.

The world interface, which is introduced and described in more detail by Gaži et al. [29],
is a more general concept that applies to more situations than the one described above:
One example is to model global resources that can be used in multiple different protocols
as in Generalized UC [18]. Generally, the world interface is instrumental whenever certain
conditions have to be kept synchronized between the “real world” and the “ideal world,” such
as in security statements involving adaptive corruption or protocol resources that may fail
and are, e.g., made redundant to be more resilient [29].

	Composable-and Robust Outsourced Storage
	Introduction
	Summary of Results and Contributions of this Work
	On the Importance of Composition and Robustness
	Further Related Work

	Preliminaries
	Notation for Systems and Algorithms
	Discrete Systems
	Constructive Cryptography
	Definitions of Cryptographic Primitives

	Basic Server-Memory Resource
	Security Guarantees for Server-Memory Resources
	Constructions among Server-Memory Resources
	Authentic Server-Memory Resources from Basic Server-Memory Resources
	Confidential from Authentic Server-Memory Resources
	Secure from Confidential Server-Memory Resources
	Do all ORAM Schemes realize a Secure Server-Memory Resource?

	Auditable Server-Memory Resources
	Constructing Auditable Server-Memory Resources
	Making Authentic Server-Memory Resources Auditable
	Making Secure Server-Memory Resources Auditable
	Revisiting the Hash-Based Challenge-Response Approach

	Further Details of Section 1
	Traditional PoR Game

	Further Details of Section 2
	Discrete Resources and the World Interface

