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Abstract. Pattern matching is essential in applications such as deep-packet inspection (DPI),
searching on genomic data, or analyzing medical data. A simple task to do on plaintext data,
pattern matching is much harder to do when the privacy of the data must be preserved. Existent
solutions involve searchable encryption mechanisms with at least one of these three drawbacks:
requiring an exhaustive (and static) list of keywords to be prepared before the data is encrypted
(like in symmetric searchable encryption); requiring tokenization, i.e., breaking up the data to
search into substrings and encrypting them separately (e.g., like BlindBox); relying on symmetric-
key cryptography, thus implying a token-regeneration step for each encrypted-data source (e.g.,
user). Such approaches are ill-suited for pattern-matching with evolving patterns (e.g., updating
virus signatures), variable searchword lengths, or when a single entity must filter ciphertexts from
multiple parties.
In this work, we introduce Searchable Encryption with Shiftable Trapdoors (SEST): a new primitive
that allows for pattern matching with universal tokens (usable by all entities), in which keywords of
arbitrary lengths can be matched to arbitrary ciphertexts. Our solution uses public-key encryption
and bilinear pairings.
In addition, very minor modifications to our solution enable it to take into account regular ex-
pressions, such as fully- or partly-unknown characters in a keyword (wildcards and interval/subset
searches). Our trapdoor size is at most linear in the keyword length (and independent of the plain-
text size), and we prove that the leakage to the searcher is only the trivial one: since the searcher
learns whether the pattern occurs and where, it can distinguish based on different search results of
a single trapdoor on two different plaintexts.
To better show the usability of our scheme, we implemented it to run DPI on all the SNORT rules.
We show that even for very large plaintexts, our encryption algorithm scales well. The pattern-
matching algorithm is slower, but extremely parallelizable, and it can thus be run even on very
large data. Although our proofs use a (marginally) interactive assumption, we argue that this is a
relatively small price to pay for the flexibility and privacy that we are able to attain.

1 Introduction

Learning whether a given pattern occurs in a larger input string (and where exactly that hap-
pens) has many applications, such as when searching on genomic data, in deep-packet inspection
(DPI), or when delegating searches in databases. In such cases, the entity performing the search,
usually called the gateway, is only semi-trusted by the owner of the input data. Indeed, in all
the three scenarios above, it is of paramount importance to preserve the privacy of the input
data1.

Consider the case of a middlebox, such as a virus scan or a firewall. A user who may trust the
middlebox to scan its data for viruses might not, in fact, be comfortable revealing the full contents
of its data to that middlebox. Similarly, a person might trust a laboratory to check whether their
genome contains a particular substring (indicating, e.g., a genetic predisposition to a disease);
however, the laboratory should not, in this way, come into possession of that person’s full
genome. Such concerns have been exacerbated lately by threats of mass-surveillance, following
the revelations of Edward Snowden. As a consequence, data encryption is slowly becoming an
a priori pre-requisite for pattern matching.

In cryptography, pattern matching on encrypted data is closely related to Searchable En-
cryption, either Symmetric [SWP00, CGKO06, CK10, CS15] or Public-Key [BDOP04]. Many
Searchable Encryption solutions, however, only allow to search for pre-chosen keywords, which
are hard-coded in the encrypted input. Searching for a new keyword – not indicated a priori –

1 By contrast, in many cases, the patterns themselves may be publicly known.



in that same (already encrypted) data would yield a false negative, even if that keyword is, in
fact contained in the input data. Correctly matching the new pattern to the data requires that
the latter be re-encrypted. Therefore this solution is ill-suited to more dynamic environments,
like DPI. We provide a full comparison with related literature, including searchable encryption,
in Section 1.2.

Pattern matching with non-static patterns can be achieved through symmetric-key tech-
niques and so-called tokenization [SLPR15]. In this approach, a sliding-window technique is
used to encode keywords of a given, fixed length, which can then be matched by the searcher.
This allows searches to be performed for arbitrarily-chosen keywords; however, a disadvantage
is that each instantiation requires a new generation of tokens. Moreover, this only works for
a fixed keyword length and different ciphertexts are required to handle different pattern sizes.
This is less than ideal for many use-cases such as DPI, since for instance SNORT rules [SNO]
include patterns of many different lengths. In this paper, our goal is to improve on this solution,
specifically by allowing to search on encrypted data, with patterns that are non-static (flexi-
ble), of variable length, and universal (no need to re-tokenize). In particular, we achieve secure
pattern-matching on encrypted data with universal tokens.

1.1 Our contributions

We opt for a solution in a public-key setting (which immediately achieves universality for our
patterns). The gateway will be able to search for keywords on encrypted data using trapdoors that
are unforgeable. More specifically, our construction can support pattern matching for keywords
that can be adaptively chosen and which can have variable lengths. Moreover, the size of the
trapdoors corresponding to those keywords does not depend on the length of the input data
(our trapdoors are short, even when we are searching in very large input data). We support
regular expressions, such as the presence of wildcards or matching encrypted input to general
data-subsets. Thus, our solution is well suited to deep packet inspection or delegated searches
on medical data.

Intuitively, in our construction we project each coordinate of the plaintext S (and then
of the keyword W ) on a geometric basis consisting of some values zi, for i = 0, . . . , |S| − 1.
We prevent malleability of trapdoors by embedding the exact order of the bits of W into a
polynomial, which cannot be forged without the secret key. A fundamental part of the searching
algorithm that we propose is the way in which the middlebox will be able to shift from one
part of the ciphertext to another, when searching for a match with W . Thus, our scheme can
be viewed as an anonymous predicate encryption scheme where one could derive the secret keys
for (∗, w1, . . . , w`, ∗, . . . , ∗),. . .,(∗, . . . , ∗, w1, . . . , w`) from the secret key for (w1, . . . , w`, ∗, . . . , ∗).

Such changes require the definition of a new primitive that we call Searchable Encryption with
Shiftable Trapdoors (SEST). We provide a formal security model for the latter, which ensures
that even a malicious gateway knowing trapdoors tdW1 , . . . , tdWq does not learn any information
from an encrypted string S beyond the presence of the keyword Wk in S, for k ∈ [1, q].

Our construction is – to our knowledge – the first SEST scheme, and thus can be taken as
a proof-of-concept construction. We guarantee the desired properties by only using asymmetric
prime order bilinear groups (i.e. a set of 3 groups G1,G2 and GT along with an efficient bilinear
map e : G1 × G2 → GT ) for which very efficient implementations have been proposed (e.g.
[BGM+10]). Encryption of plaintexts S only requires operations in the group G1, while detection
of the keyword W is done by performing pairings. The former operation requires only the public
key while the latter additionally needs the corresponding trapdoor; only the trapdoor-issuing
algorithm requires the corresponding secret key.

We are able to allow for pattern-matching when some of the contents of the keywords are
either fully-unknown, i.e., wildcards, or partially-unknown, i.e., in an interval. Searches for such
regular expressions remain fully-compatible with our original solution. In the first case, the only
difference is that when issuing the trapdoor, instead of fully randomizing it we choose special
randomness – equal to 0 – for the “coefficients” of the polynomial that we project the wildcards
or unknown subsets to. For the scenario of partially-known trapdoors, we require a more complex
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key-generation process since we use different values on which to (uniformly) project the unclear
values to. These will be used in the trapdoor generation step, ensuring that if a partially-known
input is used, that coefficient of the trapdoor will still “vanish”.

In particular, our pattern-matching algorithm is very similar to that of Rabin-Karp and
consequently, we can use it to solve similar problems. In addition to the previous use-cases, our
technique can also be used to perform 2D pattern matching in images, or searching subtrees in
rooted, labelled trees. However, note that due to the privacy-preserving goal of our work, we
cannot benefit from many of the tricks used by Rabin-Karp, thus yielding a scheme with limited
efficiency.

We also analyze how well our scheme performs when applied to DPI. We implemented our
scheme to search for all the SNORT rules in input data of varying sizes. Even for large data,
the encryption algorithm is very efficient. Moreover, while the testing (pattern matching) step
scales less well with increasing input-data size, that particular step is highly parallelizable, and
thus the running time can be much reduced.

Impact and limitations. Our scheme allows for a flexible searchable encryption mechanism,
in which encrypters do not have to embed a list of possible keywords into their ciphertexts.
Moreover, we also provide a great deal of flexibility with respect to searching for keywords of
arbitrary lengths. In this sense, our technique allows for searchable encryption with universal
tokens, which can be used in deep-packet inspection, applications on genomic and medical data,
or matching subtrees in labelled trees.

One limitation of our scheme is the size of our public keys. We require a public key of size
linear in the size of the plaintext to be encrypted (which is potentially very large). This is
mostly due to the need to shift the ciphertext each time in order to detect the presence of the
keyword. We also require a large ciphertext, consisting of a number of elements that is again
linear in the size of the plaintext; however, the same inefficiency is inherent also to solutions
such as BlindBox [SLPR15], in which we must encrypt many “windows” of the data, of same
size. Finally, the search of a keyword of size ` in a plaintext of size n requires at least 2(n−`+1)
pairing computations.

Furthermore, we are only able to prove the security of our construction under an interactive
assumption, unless we severely restrict the size n of the message space. Indeed, we need an
assumption which offers enough flexibility to provide shiftable trapdoors for all possible key-
words except the one that allow trivial distinction of the encrypted string. We modify the GDH
assumption [BBG05] in a minimal way, to allow the adversary to request the values on which
the reduction will break this assumption. We could remove the need for this flexibility, by, for
instance reducing the value of n so that the simulator could guess the strings targeted by the
adversary but this strongly limits the applications of our construction.

We argue that despite this interactive assumption, the intrinsic value of our construction
lies in its flexibility, namely in the fact that we are able to search for arbitrary keywords.
This significantly improves existing solutions of, e.g., detecting viruses on encrypted traffic over
HTTPS [Jar12,HREJ14,SLPR15].

Moreover, we emphasize that we achieve this high level of flexibility without using complex
(and costly) cryptographic tools such as fully homomorphic encryption. We simply need pairings
which have become quite standard in cryptography and which can be implemented very effi-
ciently [BGM+10]. We therefore argue that our scheme, when compared to solutions providing
the same features (see Section 1.3 for more details), offers a practical improvement over the state
of the art.

1.2 Related work

How searchable encryption works. In searchable encryption (SE) [SWP00,BDOP04,CGKO06,
CK10, CS15], any party that is given a trapdoor tdW associated with a keyword W is able to
search for that keyword within a given ciphertext. The ideal privacy guarantee required is that
searching reveals nothing else on the underlying plaintext (other than the presence or absence of
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the keyword). Routing encrypted emails, querying encrypted database or running an antivirus
on encrypted traffic are typical applications which require such a functionality.

In general, SE searches are usually performed by the middlebox on keywords that have
been pre-chosen by the party encrypting the ciphertexts (i.e., the encrypter). In particular,
an encrypted string containing W can be detected by the middlebox knowing tdW only if the
sender has selected W as a keyword and has encrypted it using the SE scheme. Such approaches
are still suitable for some types of database searches (in which documents are already indexed
by keywords), or in the case of emailing applications – for which natural keywords can be the
sender’s identity, the subject line, or flags such as “urgent”. Unfortunately, in cases such as
messaging applications, or just for common Internet browsing, the keywords are much harder to
find, and can include expressions that are not sequences of words per se, but rather something
of the kind “http://www.example.com/index.php?username=1”.

Our solution allows for better flexibility in terms of searching for arbitrarily-chosen keywords,
even after the plaintext has been encrypted and sent. In fact, it is not even necessary that the
encrypter be the same person as the party which issues the trapdoors. This makes our solution
much better suited to DPI scenarios, whereas SE is typically better suited to database searches.

Tokenization. The solution proposed in [SLPR15] to search keywords of length ` is to split the
string S = s0 . . . sn−1 into [s0 . . . s`−1], [s1 . . . s`], . . ., [sn−` . . . sn−1] and then to encrypt each
of these substrings using a searchable encryption scheme (the substrings are thus the keywords
associated with S). However, this solution has a drawback: it works well if all the searchable
keywords W1, . . . ,Wq have the same length but this is usually not the case. In the worst case,
if all searchable keyword Wk are of different length `k, the sender will have, for each k ∈ [1, q],
to split S in substrings of size `k and encrypt them, which quickly becomes cumbersome. One
solution could be to split the searchable keywords Wk into smaller keywords of the same length
`min = mink(`k). For example, if `min = 3 the searchable keyword “execute” could be split
into “exe”, “cut” and “ute” for which specific trapdoors would be issued. Unfortunately, this
severely harms privacy since these smaller keywords will match many more strings S. Moreover,
repeating this procedure for every keyword Wk will allow the gateway to receive trapdoors for a
large fraction of the set of strings of length `min and so to recover large parts of S with significant
probability.

We note that Canard et al. [CDK+17] recently proposed a public key variant of the Blind-
box [SLPR15] approach which therefore suffers from the same limitations. Moreover, their per-
formance corresponds to the “delimiter-based” version of their protocol that consists in splitting
a string s = s0 . . . sn−1 into t substrings [s0 . . . sn1−1], [sn1 . . . sn2−1], ..., [snt−1 . . . sn−1] which
are then independently encrypted using searchable encryption. While this dramatically reduces
complexity, we stress that this only allows to detect patterns that perfectly match one of the
substrings. In particular, a pattern cannot be detected if it straddles two substrings.

By contrast, our scheme addresses the main drawback of this tokenization technique: we
allow for universal trapdoors of arbitrary length to be matched against the encrypted data,
without false negatives or positives. This comes at a cost in performance; however, we show in
our implementation that our scheme remains practical.

Generic evaluation of functions on ciphertexts. Evaluation of functions over encrypted
data is a major topic in cryptography, which has known very important results over the past
decade. Generic solutions (e.g., fully homomorphic encryption [Gen09], functional encryption
[AGVW13, ABDP15],etc.), supporting a wide class of functions, have been proposed; however,
their very high complexity makes such solutions impractical. In practice, it is then better to use
a scheme specifically designed for the function(s) that one wants to evaluate.

Several recent publications study secure substring search and text processing [BEM+12,
MNSS12,HL10,GHS16,KM10,TPKC07,LLN14], specifically in two-party settings. Some of these
papers provide applications to genomic data, specifically matching substrings of DNA to en-
crypted genomes. This was done by using secure multi-party computation or fully-homomorphic
encryption. However, the former solution requires interaction between the searcher and the en-
crypter, whereas the use of FHE induces a relatively high complexity. Of particular interest
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Primitives Issue Public Parameters Ciphertext Trapdoors

SSE O(s · q) O(1) O(n · L) O(s · q)
ASE O(q) O(1) O(n · L) O(q)

PE/HVE O(n · q) O(n) O(n) O(n · q)
SEST (this work) O(q) O(n) O(n) O(q)

Fig. 1. Complexity comparison between related work and our primitive. The Issue process refers to the generation
of trapdoors. The complexity indicated in the last three columns is the size complexity. The integers n, q, L, s
denote respectively the length of the message to encrypt, the number of issued trapdoors, the number of different
lengths among the q trapdoors and the number of users communicating with the receiver.

here is the approach by Lauter et al. [LLN14], which presents an application to genomic data.
The authors here go much further than just matching patterns with some regular expressions,
however, they require fully-homomorphic encryption (FHE) for their applications. We leave it as
future work to investigate in how far we can modify our technique with universal tokens in order
to provide some support to the algorithms presented by Lauter et al. for genomic matching.

At first sight, anonymous predicate encryption (e.g. [KSW13]) or hidden vector encryption
[BW07] provide an elegant solution to the problem of searching on encrypted streams. Indeed,
the sender could use one of these schemes to produce a ciphertext for some attributes s0, . . . , sn−1
which together make up a word S, while the middlebox, knowing the suitable secret keys, could
detect whether S contains a substring W . The encryption process would then not depend on
the searchable keywords and the anonymity property of these schemes would ensure that the
ciphertext does not leak more information on S.

However, another issue arises with this solution. Indeed, W = w1 . . . w` can be contained at
any position in S. Therefore, the gateway should receive the secret keys for (w1, . . . , w`, ∗, . . . , ∗),
(∗, w1, . . . , w`, ∗, . . . , ∗),. . .,(∗, . . . , ∗, w1, . . . , w`), where “∗” plays the role of a wildcard, to take
into account all the possible offsets. So, for each searchable keyword of size `, the gateway would
have to store n− `+ 1 keys, which is obviously a problem for large strings S.

DPI with multi-context key-distribution. Naylor et al. [NSV+15] recently presented a
multi-context key-exchange over the TLS protocol, which aims to allow middleboxes (read,
write, or no) access to specific ciphertext fragments that they are entitled to see. This type of
solution has some important merits, such as the fact that it is relatively easy to put into practice
and allows the middlebox to perform its task with a very low overhead (the cost of a simple
decryption). In addition, the parties sending and receiving messages need not deviate from the
protocols they employ (such as TLS/SSL).

However, such solutions also have important disadvantages. The first of these is that the
privacy they offer is not ideal. Instead of simply learning whether a specific content is contained
within a given message or not, the middlebox learns entire chunks of messages. Moreover, the
access-control scheme associated to the key-exchange scheme is relatively inflexible. The mid-
dlebox is given read or write access to a number of message fragments, and this is not easily
modifiable (except by running the key-distribution algorithm once more). Finally, despite the
efficiency of the search step (once the key-repartition is done), the finer-grained the access con-
trol is – thus offering more privacy – the more keys will have to be generated and stored by the
various participating entities.

1.3 Benefits of SEST

Pattern matching on encrypted data is a very frequently-encountered problem, which can be ad-
dressed by many different primitives. In this context, the benefits of our new primitive (SEST)
might not seem obvious. To better understand the intrinsic differences between all these ap-
proaches, we provide in Figure 1 a comparison of their asymptotic complexities. We choose to
only consider the most relevant alternatives, namely Searchable Encryption (both Symmetric
and Public-Key) and Predicate Encryption/Hidden Vector Encryption. Other solutions do exist,
as explained above; however, they induce high complexity, interactivity or weaker privacy.

As we explained, searching substrings at any position using SSE or ASE requires a tokeniza-
tion process which must be repeated for each possible length of keyword, hence the O(n ·L) size
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of the ciphertext. ASE performance is an adaptation of the tokenization idea of BlindBox to the
Public Key Encryption with Keyword Search of Boneh et al [BDOP04].

Conversely, PE and HVE offer a O(n) complexity for the ciphertext but at the cost of
generating and storing n · q trapdoors (to handle any possible offset).

We therefore argue that SEST is an interesting middle way which almost provides the best of
the previous two types. Its only drawback compared to SSE and to ASE is the size of the public
parameters but we believe this is a reasonable price to pay to achieve all the other features.

1.4 Pattern Matching and Privacy

At first sight, the ability to search patterns within a ciphertext may seem harmful to users’
privacy, compared to standard end-to-end encryption. However, we stress that it is a lesser evil
in many use-cases.

For example, in current solutions for DPI [Jar12], the middlebox acts as a man in the middle
to decrypt all traffic, which means that end-to-end encryption is gone anyway. Using SEST, the
users can at least control which information can be leaked from their traffic since they are the
only ones who can issue trapdoors. In particular, they can check that the keywords submitted
by the middlebox are legitimate. For example, as we describe in Section 7.2, they could agree
to issue trapdoors only for patterns associated to malwares, using public rules such as the ones
provided by SNORT [SNO].

More generally, the incompatibility of standard encryption with any data processing often
jeopardizes users’ privacy since it gives no other choice than complete decryption of the traffic.
We therefore argue that SEST is far from being a threat to privacy and can actually be used to
improve it.

Outline. Our paper has the following structure. We begin in Section 2 by formally defining
our new primitive, Searchable Encryption with Shiftable Trapdoors (SEST). Then, in Section
3, we describe an instantiation of this primitive, which relies on public-key encryption and
bilinear pairings. In Section 4, we describe under which assumptions our scheme achieves provable
security, and provide a security proof. We then describe how our construction can be used
to handle regular expressions (wildcards and value intervals) in Section 6. Handling regular
expressions is important in real-world applications, including DPI. In Section 7 we discuss the
efficiency of our protocol and provide implementation results for pattern matching of all the
SNORT rules on encrypted data of various sizes. Finally, we discuss our results and make some
concluding remarks in Section 8.

2 Searchable Encryption with Shiftable Trapdoors (SEST)

We begin by presenting the syntax of our SEST primitive. Note that in addition to indicating
whether the keyword was found in the (encrypted) plaintext, this scheme also outputs the
position(s) at which the keyword is found. This is one advantage of shiftable trapdoors2, namely
yielding the exact position, within the target plaintext, of the search word. Such a knowledge is
indeed necessary for some use-cases (see Section 7.2).

To keep our model as general as possible we consider strings S = s0 . . . sm−1 whose characters
si belong to a finite set S. Since S is finite, we may assume that each of its elements s can be
simply indexed by a unique integer f(s) between 0 and |S| − 1. For sake of simplicity, we will
omit in the following the function f and will then directly use s as an index (for example T [f(s)]
will be denoted by T [s]).

2.1 Syntax

A searchable encryption scheme with shiftable trapdoors is defined by 5 algorithms that we call
Setup, Keygen, Issue, Encrypt and Test. The first three of these are run by an entity called
the receiver, while Encrypt is run by a sender and Test by a gateway.

2 Solutions using tokenization, such as Blindbox, also output the position. Here we compare with standard
searchable encryption that usually does not reveal this information.
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– Setup(1k, n): This probabilistic algorithm takes as input a security parameter k and an
integer n defining the maximum size of the strings that one can encrypt. It returns the public
parameters pp that will be taken in input by all the other algorithms. In the following, pp
will be considered as an implicit input to all algorithms and so will be omitted.

– Keygen(S): This probabilistic algorithm run by the receiver takes as input a finite set S and
returns a key pair (sk, pk). The former value is secret and only known to the receiver, while
the latter is public.

– Issue(W, sk): This probabilistic algorithm takes as input a string W of any size 0 < ` ≤ n,
along with the receiver’s secret key, and returns a trapdoor tdW .

– Encrypt(S, pk): This probabilistic algorithm takes as input the receiver’s public key along
with a string S = s0 . . . sm−1 of size 0 < m ≤ n such that si ∈ S for all i ∈ [0,m − 1] and
returns a ciphertext C.

– Test(C, tdW ): This deterministic algorithm takes as input a ciphertext C encrypting a string
S = s0 . . . sm−1 of size m along with a trapdoor tdW for a string W = w0 . . . w`−1 of size `. If
m > n or ` > m, then the algorithm returns ⊥. Else, the algorithm returns a set (potentially
empty) J ⊂ {0,m− `} of indexes j s.t. sj . . . sj+`−1 = w0 . . . w`−1.

Remark 1: Notice that searchable encryption, e.g., [ABC+05,BW07], usually does not consider
a decryption algorithm which takes as input sk and a ciphertext C encrypting S and which re-
turns S. Indeed, this functionality can easily be added by also encrypting S under a conventional
encryption scheme. Nevertheless, one can note that decryption can be performed by issuing a
trapdoor for all characters s ∈ S and running the Test algorithm on C for each of them.

2.2 Security Model

Correctness. As in [ABC+05], we divide correctness into two parts. The first one stipulates
that the Test algorithm run on (C, tdW ) will always return j if S contains the substring W at
index j (no false negatives). More formally, this means that, for any string S of size m ≤ n and
any W of length ` ≤ m: whenever sj . . . sj+`−1 = w0 . . . w`−1,

Pr[j ∈ Test(Encrypt(S, pk), Issue(W, sk))] = 1,

where the probability is taken over the choice of the pair (sk, pk).
The second part of the correctness property requires that false positives (i.e., when the

Test algorithm returns j despite the fact sj . . . sj+`−1 6= w0 . . . w`−1) only occur with negligible
probability. More formally, this means that, for any string S of size m ≤ n and any string W of
length ` ≤ m:

Pr

[
j ∈ Test(Encrypt(S, pk), Issue(W, sk))

& sj . . . sj+`−1 6= w0 . . . w`−1

]
≤ µ(k)

where µ is a negligible function.

Indistinguishability (SEST-IND-CPA). For the security requirement of Searchable Encryp-
tion with Shiftable Trapdoors (SEST), we adapt the standard notion of IND-CPA to this case
(hence the name SEST-IND-CPA). Informally, this notion requires that no adversary A, even
with access to an oracle OIssue which returns a trapdoor tdW for any queried string W , can
decide whether a ciphertext C encrypts S0 or S1 as long as the trapdoors issued by the oracle
do not allow trivial distinction of these two strings. This is formally defined by the experiment
Exp

ind−cpa−β
A (1k, n), where β ∈ {0, 1} as described in Figure 2. The set W is the set of all the

strings W submitted to OIssue.
We define the advantage of such an adversary as Advind−cpaA (1k, n) = |Pr[Expind−cpa−1A (1k, n)]−

Pr[Expind−cpa−0A (1k, n)]|. A searchable encryption scheme with shiftable trapdoors is SEST-IND-
CPA secure if this advantage is negligible for any polynomial-time adversary.
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Exp
ind−cpa−β
A (1k, n)

1. pp← Setup(1k, n)
2. pk← Keygen(S)

3. (S0, S1)← AOIssue(pk), with Si = s
(i)
0 . . . s

(i)
m−1 for some m ≤ n

4. C ← Encrypt(Sβ , pk)
5. β′ ← AOIssue(C, pk)
6. If ∃W = w0 . . . w`W−1 ∈ W and j such that:

s
(i)
j . . . s

(i)
j+`W−1 = w0 . . . w`W−1 6= s

(1−i)
j . . . s

(1−i)
j+`W−1

then return 0
7. Return (β = β′)

Fig. 2. SEST-IND-CPA Security Game

We note that this security notion is very similar to the attribute hiding property of predicate
encryption [KSW13]. However, we cannot directly use this latter property because of the differ-
ences between predicate encryption and our primitive (e.g., the lack of decryption algorithm),
hence the need for a new security game.

The restriction in step 6 simply ensures that if Si contains W ∈ W at offset j, then this is
also the case for S1−i. Otherwise, running the Test algorithm on (C, tdW ) would enable A to
trivially win this experiment.

Although this kind of restriction is very common in predicate/functionnal encryption schemes
(e.g. [KSW13]), we stress that, in practice, one must take care that it does not lead to situations
where security becomes meaningless. For example, if the adversary gets a trapdoor for every
character s ∈ S, then it will always fail the experiment (it will not be able to output two strings
S0 and S1 complying with the requirement of step 6) while being able to decrypt any ciphertext
(see Remark 1).

This example highlights the implicit restrictions placed on the set of trapdoors. This is
obviously a limitation of the security model (that also applies to all predicate or searchable
encryption schemes) but we believe that these restrictions are very hard to formalize and should
rather be considered on a case-by-case basis. For example, in the context of DPI, the receiver
could assess once and for all the set of rules to check that the leakage remains reasonable.

Selective-Indistinguishability (SEST-sIND-CPA). We also need a weaker security no-
tion in which the adversary commits to S0 and S1 at the beginning of the experiment, before
seeing pp and pk. Such a restriction is quite standard and is usually referred to as selective
security [CHK03].

Remark 2. We recall that in a public-key setting, it is always possible to recover W from
tdW : one simply has to encrypt the 2|W | strings of size |W | and then run Test(., tdW ) on each
resulting ciphertext. The correctness property ensures (with overwhelming probability) that one
will always get an empty set, except for the encryption of W .

Therefore, unless we place restrictions on the set of keywords that one can query (in particular
on its min-entropy, as in [BRS13]), we cannot achieve relevant privacy notions for the trapdoor
tdW itself. However, this is not a problem for, say, deep-packet inspection, in which many of the
keywords can even be public [SNO].

Finally, we note that one can achieve interesting privacy notions for the trapdoors in the
private-key setting (e.g. [BS15]).

3 Our Construction

We are able to construct our SEST scheme by “projecting” both the keyword and the plaintext
onto a multiplicative basis of the type zi for some secret integer z. We encrypt the plaintext
character-by-character, using secret encodings αs for each s ∈ S. The latter are also used to
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generate the trapdoors associated with the keyword. By using a bilinear mapping we are able
to shift into the ciphertext and compare a given fragment of suitable length to the trapdoor.

Note that in order to achieve the security notion of SEST-(s)IND-CPA, we need to at least
guarantee that, given some trapdoors tdWi for words Wi, the adversary is not able to forge a
trapdoor for some fresh word W ∗. By projecting keywords on a polynomial in a secret value z,
we ensure that trapdoors on keywords W are essentially un-malleable.

We describe our construction in detail in what follows, prefacing our scheme by a brief
introduction to bilinear groups and pairings.

3.1 Bilinear Groups

Bilinear groups are a set of three cyclic groups, G1, G2, and GT , of prime order p, along with a
bilinear map e : G1 ×G2 → GT with the following properties:

1. for all g ∈ G1, g̃ ∈ G2 and a, b ∈ Zp, e(ga, g̃b) = e(g, g̃)a·b;
2. for any g 6= 1G1 and g̃ 6= 1G2 , e(g, g̃) 6= 1GT ;
3. the map e is efficiently computable.

Galbraith, Paterson, and Smart [GPS08] defined three types of pairings: in type 1, G1 = G2; in
type 2, G1 6= G2 but there exists an efficient homomorphism φ : G2 → G1, while no efficient one
exists in the other direction; in type 3, G1 6= G2 and no efficiently computable homomorphism
exists between G1 and G2, in either direction.

The security of our construction holds as long as no efficient homomorphism exists from G1

to G2. Our system must therefore be instantiated with pairings of type 2 or 3. However, in the
following, we will only consider the latter type since it allows simpler security proofs thanks
to the separation between the two groups G1 and G2. We stress that this is not a significant
restriction since type 3 pairings offer the best performances among the three types.

3.2 Intuition

Intuitively, our scheme associates each element s of S with a secret encoding αs. A trapdoor for
a string w0 . . . w`−1 is associated with a polynomial V =

∑`−1
i=0 vi · αwi · zi where vi are random

secret scalars whose purpose is to prevent forgeries of new trapdoors. The trapdoor then consists
in the elements g̃V and g̃vi for i = 0, . . . , `−1. In the meantime, a ciphertext encrypting a string

s0 . . . sn−1 is the sequence of “monomials” C ′j = ga·αsj ·z
j

where a is a random factor (the Keygen
algorithm will ensure that this can be done by only using elements from the public key). By
using the bilinear map e, one can derive from the ciphertext and the trapdoor elements of the
form e(g, g̃)U where U is a polynomial whose coefficients depends on the encodings αsi and on
the scalars vi.

In this encoding, if s0 . . . sn−1 contains the pattern w0 . . . w`−1 at offset j (i.e. if sj+i = wi
for i = 0, . . . , `−1) one can generate e(g, g̃)U =

∏`−1
i=0 e(C

′
j+i, g̃

vi) where U = a ·zj ·V . Therefore,

by extending the ciphertext with the elements Cj = ga·z
j
, one can simply test the presence of

W . By contrast, a difference sj+i 6= wi or the combination of non-successive ciphertext elements
will lead to a random-looking polynomial which would be useless to the adversary.

However, using this solution to search for a pattern of length ` within a string of length m
requires (`+ 1)(m− `+ 1) pairings, which quickly becomes prohibitive. While it seems natural
that the complexity depends on the size m (since we have to search at every position), one could
hope to reduce the factor (`+ 1).

A first attempt could be to set vi = v for all i ∈ [0, ` − 1] for some secret scalar v. Indeed,
thanks to the bilinearity of e, the ` pairings

∏`−1
i=0 e(C

′
j+i, g̃

vi) could be replaced by only one:

e(
∏`−1
i=0 C

′
j+i, g̃

v). Unfortunately, such a solution is insecure as proven by the following example.
Let C be a ciphertext encrypting a string S = s0 . . . sm−1 and let us assume that W is a

keyword such that wi = s for all i ∈ [0, `− 1] (i.e. W is a sequence of identical values, equal to
s). Then, for any 0 < j ≤ `− 1

e(C0 · C−1j , g̃VW ) = e(g, g̃)a(1−z
j)VW = e(g, g̃)aV

′
,
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with

V ′ =

j−1∑
k=0

v · αs · zk −
`+j−1∑
k=`

v · αs · zk.

Therefore, e(g, g̃)aV
′

can be used to check whether

s0 . . . sj−1 =

j times︷ ︸︸ ︷
s . . . s ∧ s` . . . s`+j−1 =

j times︷ ︸︸ ︷
1 . . . 1 .

Using tdW , a gateway is then able to get more information on S than the presence of W as
a substring, which breaks the security of the construction.

However, this attack does not mean that we necessarily have to select different scalars vi
but simply that the generation process needs to be more subtle. We indeed prove that one can
“recycle” the random elements vi within the same trapdoor without jeopardizing security. More
specifically, the issuing process that we describe in the next section is based on the observation
that the secret encodings αs already add some variability to the coefficients of the polynomial V .
This therefore means that this variability need not exclusively rely on the random scalars vi. In
particular when wi 6= wj , the coefficients vi · αwi and vj · αwj will be different even if vi = vj . In
such a case, there is no need to chose distinct scalars, which allows us to batch the corresponding
pairings for the test. Compared to the solution with random scalars vi, this divides the whole
number of pairings by up to |S| (e.g., 256 if we consider bytestrings).

3.3 The Protocol

– Setup(1k, n): Let (G1,G2,GT , e) be the description of type 3 bilinear groups of prime order

p, this algorithm selects g
$← G1 and g̃

$← G2 and returns pp← (G1,G2,GT , e, g, g̃, n).
– Keygen(S): On input a finite set S, this algorithm selects |S|+ 1 random scalars z, {αs}s∈S

and computes gi ← gz
i

along with {gαsi }s∈S for i = 0, . . . , n− 1. The public key pk is set as
{(gi, {gαsi }s∈S)}n−1i=0 whereas sk is set as (z, {αs}s∈S).

– Encrypt(S, pk): To encrypt a string S = s0 . . . sm−1, where m ≤ n the user selects a random
scalar a and returns C = {(Ci, C ′i)}

m−1
i=0 , where Ci ← gai and C ′i ← g

a·αsi
i for i = 0 . . .m− 1.

– Issue(W, sk): To issue a trapdoor tdW for a string W = w0 . . . w`−1 of length ` ≤ n, one
uses the following algorithm.

Ind[s] = 0 for all s ∈ S ;
L[i] = 0 for all i ∈ [0, `− 1];
V = 0, c = 0;
for i = 0, . . . , `− 1 do

if L[Ind[wi]] = 0 then

L[c]
$← Zp, Ic ← {i};

c = c+ 1;

else
IInd[wi] = IInd[wi] ∪ {i};

end

V = V + zi · αwi · L[Ind[wi]];
Ind[wi] = Ind[wi] + 1 ;

end

tdW ← (c, {Ij}c−1
j=0, {g̃

L[j]}c−1
j=0, g̃

V );

Algorithm 1: Issue

Our Issue algorithm formalizes the following principle: the random scalars (stored in L) can
be re-used as long as the coefficients of the polynomial V are all distinct. In particular, if
we write V as

∑`−1
i=0 vi · αwi · zi, then vi 6= vj if wi = wj .
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– Test(C, tdW ): To test whether the string S encrypted by C contains the substring W , the
algorithm parses tdW as (c, {Ij}c−1j=0, {g̃L[j]}

c−1
j=0, g̃

V ) and C as {(Ci, C ′i)}
m−1
i=0 and checks, for

j = 0, . . . ,m− `, if the following equation holds:∏c−1
t=0 e(

∏
i∈It C

′
j+i, g̃

L[t]) = e(Cj , g̃
V ).

It then returns the (potentially empty) set J of indexes j for which there is a match.

Correctness. First note that, if S contains the substring W at index j (i.e., sj+i = wi ∀i =
0, . . . , `− 1), then:

c−1∏
t=0

e(
∏
i∈It

C ′j+i, g̃
L[t]) =

c−1∏
t=0

e(
∏
i∈It

ga·αsj+i ·z
j+i

, g̃L[t])

=
c−1∏
t=0

e(ga, g̃L[t]·
∑
i∈It

αwi ·z
j+i

)

=
c−1∏
t=0

e(ga, g̃
∑
i∈It

L[t]·αwi ·z
j+i

)

= e(g, g̃)a·z
j ·V = e(Cj , g̃

V )

The set J returned by Test contains j.
Now, let us assume that J contains j but that sj . . . sj+`−1 6= w0 . . . w`−1, i.e., the algorithm

returns a false positive. Let I6= be the (non-empty) set of indexes i such that sj+i 6= wi. For all
i ∈ [0, ` − 1], we define vi = L[ti] where ti is such that i ∈ Iti . Since j has been returned by
Test, we have,

c−1∏
t=0

e(
∏
i∈It

C ′j+i, g̃
L[t]) = e(Cj , g̃

V )

⇔
`−1∏
i=0

e(C ′j+i, g̃
vi) = e(Cj , g̃

V )

⇔
∏
i∈I 6=

e(C ′j+i, g̃
vi) = e(Cj , g̃

∑
i∈I6=

vi·αwi ·z
i

)

⇔
∏
i∈I 6=

e(g, g̃)a·vi·αsj+iz
i+j

= e(g, g̃)
a·zj

∑
i∈I6=

vi·αwi ·z
i

⇔
∑
i∈I 6=

vi · αsj+izi =
∑
i∈I 6=

vi · αwi · zi

⇔
∑
i∈I 6=

vi(αsj+i − αwi) · zi = 0.

Since αsj+i 6= αwi for all i ∈ I6=, this amounts to evaluating the probability that a random
scalar z is a root of a non-zero polynomial of degree at most ` − 1. The probability that Test

returns a false positive j is thus at most `−1
p , which is negligible.

Remark 3. Our construction achieves the goals that we define at the beginning of Section 1.1.
Indeed, the Encrypt procedure does not depend on the keywords W , and the latter may have
distinct lengths. In particular, the size of C only depends on the length of the message it encrypts.
Moreover, the trapdoors tdW allow to search the word W in S = s0 . . . sm−1 at any possible
offset, while being of size independent of m.
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All these features are provided using only asymmetric prime order bilinear groups, which
can be very efficiently implemented on a computer (e.g., [BGM+10]). We refer to Section 7 for
a more thorough analysis of the efficiency of our protocol.

Remark 4. As explained in Section 2.1, public-key searchable encryption schemes often assume
that the sender will also encrypt the string S by using a conventional encryption scheme Π. Such
a solution enables fast decryption but should be used cautiously in some contexts, such as DPI,
where the sender is likely to be malicious. Indeed, nothing prevents the latter from encrypting an
harmless string S using the searchable encryption scheme while encrypting a different S′ using
Π. The message (S) checked by the gateway would then be different from the one forwarded to
the receiver (S′), which would make the inspection pointless.

It is therefore necessary to check that both ciphertexts decrypt to the same string S, which
can easily be done by the receiver. Indeed, after decrypting the conventional ciphertext, the
latter (who knows sk) can verify whether {(Ci, C ′i)}

m−1
i=0 encrypts S = s0 . . . sm−1 by testing if

C ′i = C
αsi
i for i ∈ [0,m− 1]. One can also perform such tests only for a limited number N ≤ m

of indexes i, but the probability of detecting cheating sender will become N
m .

4 Security Analysis

4.1 Complexity Assumptions

Let us consider an adversary A which, knowing q trapdoors tdWk
, would like to decide if a

ciphertext C encrypts S0 or S1. The natural restrictions imposed by the security model imply

that there is at least one index i∗ such that s
(0)
i∗ 6= s

(1)
i∗ and that, for all k ∈ [1, q] and all

j ∈ [0, `k − 1] (where `k is the length of Wk), s
(0)
i∗−`k+1+j . . . s

(0)
i∗+j and s

(1)
i∗−`k+1+j . . . s

(1)
i∗+j both

differ from wk,0, . . . , wk,`k−1. In other words, any substring of S0 (or respectively S1) of length

`k containing s
(0)
i∗ (resp. s

(1)
i∗ ) must be different from Wk, for all k ∈ [1, q].

If we focus on the index i∗, A must then distinguish whether the discrete logarithm of C ′i∗ in
base gi∗ is a · α

s
(0)
i∗

or a · α
s
(1)
i∗

. To this end, the attacker has access to many elements of G1 (the

public parameters and the other elements of the ciphertext) and of G2 (the trapdoors tdWk
).

All of them are of the form gPu(a,αs,z) or g̃Qv(αs,z,vi,k) for a polynomial number of multivariate
polynomials Pu and Qv. The assumption underlying the security of our scheme is thus related to
the General Diffie-Hellman GDH problem [BBG05], whose asymmetric version [Boy08] is recalled
below.

Definition 1 (GDH assumption.). Let r, s, t and c be four positive integers and R ∈ Fp[X1, . . . ,
Xc]

r, S ∈ Fp[X1, . . . , Xc]
s, and T ∈ Fp[X1, . . . , Xc]

t be three tuples of multivariate polynomi-
als over Fp. Let R(i), S(i) and T (i) denote the i-th polynomial contained in R, S, and T. For
any polynomial f ∈ Fp[X1, . . . , Xc], we say that f is dependent on < R, S, T > if there are

{aj}si=1 ∈ Fsp \ {(0, . . . , 0)}, {bi,j}i=r,j=si,j=1 ∈ Fr·sp and {ck}tk=1 ∈ Ftp such that

f(
∑
j

ajS
(j)) =

∑
i,j

bi,jR
(i)S(j) +

∑
k

ckT
(k).

Let (x1, . . . , xc) be a secret vector. The GDH assumption states that, given the values

{gR(i)(x1,...,xc)}ri=1, {g̃S(i)(x1,...,xc)}si=1 and {e(g, g̃)T
(i)(x1,...,xc)}ti=1, it is hard to decide whether

U = gf(x1,...,xc) or U is random if f is independent of < R, S, T >.

Unfortunately, we cannot directly make use of this assumption unless we severely restrict
the size n of the strings that one can encrypt. In our proof, presented in Section 4.2, one of
the main important steps is showing that, even given a number of keyword trapdoors (and in
particular, the polynomials V associated with those keywords), the adversary is unable to detect
the presence of a fresh keyword; consequently, we can bound the leakage on the input plaintexts
by only considering the adversary’s queries to the issuing oracle. This can be mapped to an
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instance of GDH, but we will need the adversary to choose which of those polynomials are input
to the GDH instance.

If we did bound the size n of the plaintext, by making a guess on the string Sβ = s
(β)
1 . . . s

(β)
m ,

one could define a GDH instance providing all the elements of the public parameters, the trap-

doors for every word W that does not match any of the substrings of Sβ containing s
(β)
i∗ , the

elements {gai }
n−1
i=0 and {ga·αsii }i∈[0,n−1]\{i∗} along with the challenge element U ∈ G1 associated

with the polynomial f = a · zi∗ · αsi∗ .
With such a GDH instance, the security proof becomes straightforward and only requires a

proof that f does not depend on the polynomials underlying the provided elements. However,
the reduction does not abort only if the initial guess is valid, which occurs with probability 1

2n .
So either we require n to be small (say n ≤ 30, for example) or we choose to rely on an

interactive variant of the GDH assumption, in which the elements gR
(i)(x1,...,xc), g̃S

(i)(x1,...,xc) and
e(g, g̃)T

(i)(x1,...,xc) can be queried to specific oracles, to offer enough flexibility to the simulator.
The latter solution is less than ideal because it essentially makes the GDH instance interactive

and consequently our construction will end up offering less security than a static assumption.
Nevertheless, we argue that this solution remains of interest for two reasons. The first is that it
allows to construct a quite efficient scheme with remarkable features: the size of the ciphertext
is independent of the ones of the searchable strings, and the size of the trapdoors is independent
of the size of the messages. Achieving this while being able to handle any trapdoor query is not
obvious and may justify the use of an interactive assumption.

A second reason is that, intrinsically, the hardness of the GDH problem (proven in the
generic group model [BBG05]) relies on the same argument as its interactive variant: as long
as the “challenge” polynomial f does not depend on < R, S, T >, gf(x1,...,xc) is indistinguishable
from a random element of G1. The fact that the sets R, S, and T are defined in the assumption
or by the queries to oracles does not fundamentally impact the proof. We therefore define the
interactive-GDH (i-GDH) assumption and show that our scheme can be proven secure under it.

Definition 2 (i-GDH assumption.). Let r, s, t, c, and k be five positive integers and R ∈
Fp[X1, . . . , Xc]

r, S ∈ Fp[X1, . . . , Xc]
s and T ∈ Fp[X1, . . . , Xc]

t be three tuples of multivariate

polynomials over Fp. Let OR (resp. OS and OT) be oracles that, on input {{a(k)i1,...,ic}
dk
ij=0}k, add

the polynomials {
∑

i1,...,ic

a
(k)
i1,...,ic

∏
j
X
ij
j }k to R (resp. S and T).

Let (x1, . . . , xc) be a secret vector and qR (resp qS) (resp. qT) be the number of queries to OR

(resp. OS) (resp. OT). The i-GDH assumption states that, given the values {gR(i)(x1,...,xc)}r+k·qRi=1 ,

{g̃S(i)(x1,...,xc)}s+k·qSi=1 and {e(g, g̃)T
(i)(x1,...,xc)}t+k·qTi=1 , it is hard to decide whether U = gf(x1,...,xc)

or U is random if f is independent of < R, S, T >.

4.2 Security Results

Theorem 3. The scheme described in Section 3 is SEST-sIND-CPA secure under the i-GDH
assumption for R, S, and T initially set as R = {(zi, xj · zi, a · zi)}i=2n−1,j=|S|−1

i=0,j=0 , S = T = ∅ and
f = a · x0 · zn.

Proof. Let G
(β)
0 denote the Exp

sind−cpa−β
A game, as described in Section 2.2 – recall that this

is the selective version of the IND-CPA security notion. Moreover, let S0 = s
(0)
0 . . . s

(0)
m−1 and

S1 = s
(1)
0 . . . s

(1)
m−1 be the two substrings returned by A at the beginning of the game. Our proof

uses a sequence of games G
(β)
j , for j = 1, . . . , n, to argue that the advantage of A is negligible.

This is a standard hybrid argument, in which at each game hop we randomize another element
of the challenge ciphertext.

Let I6= be the set of indexes i such that s
(0)
i 6= s

(1)
i and I(j)6= be the subset containing the

first j indexes of I6= (if j > |I6=|, then I(j)6= = I6=). For j = 1, . . . , n, game G
(β)
j modifies G

(β)
0

by switching the elements C ′i of the challenge ciphertext to random elements of G1, for i ∈ I(j)6= .
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Ultimately, in the last game, G
(β)
n , the challenge ciphertext contains no meaningful information

about s
(β)
i ∀i ∈ I6=, so the adversary cannot distinguish whether it plays G

(0)
n or G

(1)
n .

In particular, we can write:

Adv
sind−cpa
A (1k, n)

= |Pr[Expsind−cpa−1A (1k, n)]− Pr[Expsind−cpa−0A (1k, n)]|
= |G(1)

0 (1k, n)−G(0)
0 (1k, n)|

≤
∑n−1

j=0 |G
(1)
j (1k, n)−G(1)

j+1(1
k, n)|

+|G(1)
n (1k, n)−G(0)

n (1k, n)|
+
∑n−1

j=0 |G
(0)
j+1(1

k, n)−G(0)
j (1k, n)|

≤
∑n−1

j=0 |G
(1)
j (1k, n)−G(1)

j+1(1
k, n)|

+
∑n−1

j=0 |G
(0)
j+1(1

k, n)−G(0)
j (1k, n)|.

In order to bound this result, we must prove that A cannot distinguish G
(β)
j from G

(β)
j+1, which

is formally stated by the lemma below.
Assuming that this lemma were proved, each term above is negligible under the i-GDH

assumption, which concludes the proof.

Lemma 4. For all j = 0, . . . , n − 1 and β ∈ {0, 1}, the difference |Pr[Gβj (1k, n) = 1] −
Pr[Gβj+1(1

k, n) = 1]| is negligible under the i-GDH assumption for R, S, and T initially set as

follows: R = {(zi, xj · zi, a · zi)}i=2n−1,j=|S|−1
i=0,j=0 , S = T = ∅ and f = a · x0 · zn.

5 Proof of Lemma 4

First, let us note that if |I 6=| ≤ j, then I(j+1)
6= = I(j)6= . The games G

(β)
j and G

(β)
j+1 are therefore

exactly the same and there is nothing to prove. We thus just have to consider the case |I6=| ≥ j+1.

Let i∗ be the (j + 1)-st index of I6=. From the i-GDH challenge containing {(gzi , gxj ·zi ,
ga·z

i
)}i=2n−1,j=|S|−1
i=0,j=0 along with U ∈ G1, the simulator generates the public key pk by first

defining gi = gz
n+i−i∗

(so gi∗ = gz
n
). Next, it sets g

αsi∗
i = gx0·z

n+i−i∗
and gαsi = gxf(s)·z

n+i−i∗

∀s ∈ S \ {si∗}, where f : S \ {si∗} → [1, |S| − 1] is bijective. By setting g = gz
n−i∗

, one can note
that pk is well-formed.

Upon receiving an OIssue query for a string W = w0 . . . w`−1, the simulator checks that
the latter fulfills the condition defined in step 6 of Figure 2 (namely the fact that W does not
match only one of the strings S0 and S1). The simulator then uses the OS oracle to return a valid

trapdoor. It is worth noting that this condition implies that w0 . . . w`−1 6= s
(β)
i∗−j . . . s

(β)
i∗−j+`−1, for

all j ∈ [max(0, i∗+ `− n),min(i∗, `− 1)]. Indeed, if this relation held for some j, then we would
have:

s
(β)
i∗−j . . . s

(β)
i∗−j+`−1 = w0 . . . w`−1 6= s

(1−β)
i∗−j . . . s

(1−β)
i∗−j+`−1

since s
(β)
i∗ 6= s

(1−β)
i∗ . Thus, the condition would not be satisfied.

Finally, the simulator creates the challenge ciphertext as follows. It sets Ci as ga·z
n+i−i∗

for
i = 0, . . . ,m − 1 (all these elements are provided in the i-GDH challenge). It then generates

C ′i
$← G1 for the first j-th indexes of I6=, uses the OR oracle to get valid C ′i for i /∈ I(j+1)

6= and
sets C ′i∗ as U .

If U = ga·x0·z
n

= g
a·αsi∗
i∗ , then C ′i∗ is a valid element and the simulator is playing game G

(β)
j .

Else, C ′i∗ is a random element from G1 and the simulator is playing game G
(β)
j+1. An adversary

able to distinguish G
(β)
j from G

(β)
j+1 is thus able to break the i-GDH assumption if the polynomial

f = a · x0 · zn is independent of the sets R, S, and T (after q queries to OS and 1 query to OR),
which remains to prove.
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Before stating this result in the next lemma we first simplify the notations to make the proof
easier to follow. First, we will omit the superscript (β) and so we will denote the challenge string

as s0 . . . sm−1 instead of s
(β)
0 . . . s

(β)
m−1. Since each αs is associated with a unique value xi, we will

replace the latter by the former. Therefore, the challenge polynomial will be a ·αi∗ ·zn instead of
a · x0 · zn. Each query to OS is associated with a string wt,0 . . . wt,`t−1 (for t ∈ [1, q]) submitted
to the OIssue oracle. In the following we will thus simply say that wt,0 . . . wt,`t−1 is submitted

to OS . Such a query adds the polynomials
∑`t−1

i=0 vt,iαwt,iz
i (we may have vt,i = vt,j for i 6= j)

and {vt,i}`t−1i=0 to S. Similarly, a query to OR adds {a · αsi · zn−i
∗+i}i∈[0,n−1]\{i∗} to R.

With these new notations, the set R initially contains {(zi, αs · zi, a · zi)}2ni=1,s∈S , while S and
T are initially empty.

Lemma 5. 2 Let R, S, and T be the sets defined above after q queries to OS and one query to
OR. If, for any t ∈ [1, q], the string wt,0 . . . wt,`t−1 submitted to OS differs for all j ∈ [max(0, i∗+
`− n),min(i∗, `− 1)], from si∗−j . . . si∗−j+`k−1, then the polynomial a ·αi∗ · zn is independent of
< R, S, T >.

Proof. We want to prove that one cannot find combinations of polynomials from the sets R, S
and T such that

(a · αi∗ · zn)(
∑

j ajS
(j)) =

∑
i,j bi,jR

(i)S(j) +
∑

k ckT
(k).

First note that the factor a of the target polynomial only appears in the set R and more
specifically in the set {a · zi}2n−1i=0 and in the output of the OR oracle. Therefore, the elements of
the set R that are not a multiple of a cannot be involved in the previous relation.

In the first sum of the second member, we can then discard the elements {zi, {αs ·zi}s∈S}2n−1i=0 .

Since T is empty, we can also remove the last sum. So, let {uj , u′i, ai,t,k, bi,t, a′j,t,k, b′t,k}
i=m−1,j=2n−1,t=q,k=`t−1
i=0,j=0,t=1,k=0

be the scalars such that

a · αsi∗ · z
n(

q∑
t=1

(bi∗,t · Vt +

`t−1∑
k=0

ai∗,t,k · vt,k))

=

2n−1∑
j=0

a · uj · zj(
q∑
t=1

(b′j,t · Vt +

`t−1∑
k=0

a′j,t,k · vt,k))

+ (
m−1∑

i=0,i 6=i∗
a · u′i · αsi · zn+i−i

∗
)(

q∑
t=1

(bi,t · Vt +

`t−1∑
k=0

ai,t,k · vt,k))

Our goal is then to show that bi∗,t =
∑`t−1

k=0 ai∗,t,k · vt,k = 0 for all t ∈ [1, q].
We can note that two different queries to the OS oracle lead to different scalars vt,k with

overwhelming probability. More specifically, we have vt,k 6= vt′,k′ for any t 6= t′ ∈ [1, q] and
(k, k′) ∈ [0, `t − 1] × [0, `t′ − 1]. Therefore, the previous equation holds only if the following
equality holds for all t ∈ [1, q]:

a · αsi∗ · z
n(bi∗,t · Vt +

`t−1∑
k=0

ai∗,t,k · vt,k)

=

2n−1∑
j=0

a · uj · zj(b′j,t · Vt +

`t−1∑
k=0

a′j,t,k · vt,k)

+ (

m−1∑
i=0,i 6=i∗

a · u′i · αsi · zn+i−i
∗
)(bi,t · Vt +

`t−1∑
k=0

ai,t,k · vt,k)

Now, if we consider each member of this equation as a polynomial in the variables {αs}s∈S ,
we can group the different monomials according to their degree (we also divide each member by
a):
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1.
∑2n−1

j=0 uj · zj(
∑`t−1

k=0 a
′
j,t,k · vt,k) = 0

2. αsi∗ ·zn(
∑`t−1

k=0 ai∗,t,k ·vt,k) =
∑2n−1

j=0 uj ·zj(b′j,t ·Vt)+(
∑m−1

i=0,i 6=i∗ u
′
i ·αsi ·zn+i−i

∗
)(
∑`t−1

k=0 ai,t,k ·
vt,k)

3. αsi∗ · zn · bi∗,t · Vt = (
∑m−1

i=0,i 6=i∗ u
′
i · αsi · zn+i−i

∗
)(bi,t · Vt)

We can simplify the last equation by removing Vt in each member:

αsi∗ · z
n · bi∗,t =

m−1∑
i=0,i 6=i∗

u′i · αsi · bi,t · zn+i−i
∗

Thus, there is no monomial of degree n in z in the right member of the equation, which
means that bi∗,t = 0.

Let us define u′i∗ = −1. In the equation 2, we can merge the left member with the last sum
of the right member:

(

m−1∑
i=0

u′i · αsi · zn+i−i
∗
)(

`t−1∑
k=0

ai,t,k · vt,k) +

2n−1∑
j=0

uj · zj(b′j,t · Vt) = 0

Since Vt =
∑`t−1

k=0 vt,k · αwt,k · zk, we have:

2n−1∑
j=0

uj · zj(b′j,t ·
`t−1∑
k=0

vt,k · αwt,k · z
k) = −(

m−1∑
i=0

u′i · αsi · zn+i−i
∗
)(

`t−1∑
k=0

ai,t,k · vt,k)

⇔
2n+`t−2∑
j=0

zj
`t−1∑
k=0

b′j−k,t · uj−k · vt,k · αwt,k = −(

m−1∑
i=0

u′i · αsi · zn+i−i
∗
)(

`t−1∑
k=0

ai,t,k · vt,k)

where b′i,t = ui = 0 if i ≥ 2n. The coefficient associated with zn is
∑`t−1

k=0 b
′
n−k,t · un−k ·

vt,k · αwt,k in the left member and u′i∗ · αsi∗ (
∑`t−1

k=0 ai∗,t,k · vt,k) in the right one. To prove that

(
∑`t−1

k=0 ai∗,t,k · vt,k) = 0, we will prove that b′n−k,t · un−k = 0, for all k ∈ [0, `t − 1].

The natural restriction placed on the strings wk submitted to OS implies that, for all i ∈
[max(0, i∗ − `t + 1),min(m − `t, i

∗)], ∃di ∈ [0, `t − 1] such that si+di 6= wdi . So, for all i ∈
[max(0, i∗ − `t + 1),min(m − `t, i∗)], the previous relation gives (by considering the coefficient
associated with zn−i

∗+i+di):

`t−1∑
k=0

b′n−i∗+i+di−k,t · un−i∗+i+di−k · vt,k · αwt,k = u′i+di · αsi+di (
`t−1∑
k=0

ai+di,t,k · vt,k)

The inequality αwt,di 6= αsi+di implies that
∑`t−1

k=0,wt,k=wt,di
b′n−i∗+i+di−k,t · un−i∗+i+di−k · vt,k ·

αwt,di = 0. We recall that our Issue algorithm ensures that vk 6= vk′ if wk = wk′ . Therefore, we
must have b′n−i∗+i+di−k,t · un−i∗+i+di−k · vt,k · αwt,di = 0 for each k such that wt,k = wt,di and
in particular for k = di. This implies that b′n−i∗+i,t · un−i∗+i = 0 for all i ∈ [max(0, i∗ − `t +
1),min(m− `t, i∗)], which is equivalent to b′n−k,t · un−k = 0, for all k ∈ [i∗−min(i∗,m− `t), i∗−
max(0, i∗ − `t + 1)]. If min(i∗,m − `t) = i∗ and max(0, i∗ − `t + 1) = i∗ − `t + 1, then we are
done : the equation

∑`t−1
k=0 b

′
n−k,t · un−k · vt,k · αwt,k = u′i∗ · αsi∗ (

∑`t−1
k=0 ai∗,t,k · vt,k) implies that

(
∑`t−1

k=0 ai∗,t,k · vt,k) = 0 and thus the independence of a · αsi∗ · zn. It then only remains to focus
on the special cases (I) where i∗ > m− `t or (II) where i∗ − `t + 1 < 0.

Case (I): i∗ > m−`t. Here, we must prove that b′n−k,t ·un−k = 0 even for k ∈ [0, i∗+`t−m−1].
Let us assume the opposite i.e., there is some k′ ∈ [0, i∗+`t−m−1] such that b′n−k′,t ·un−k′ 6= 0.
We recall the previous equation

2n+`t−2∑
j=0

zj
`t−1∑
k=0

b′j−k,t · uj−k · vt,k · αwt,k = −(

m−1∑
i=0

u′i · αsi · zn+i−i
∗
)(

`t−1∑
k=0

ai,t,k · vt,k)
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Let us consider the monomial of degree n− k′+ `− 1 in z. In the left member, its coefficient
is
∑`t−1

k=0 b
′
n−k′+`t−1−k,t · un−k′+`t−1−k · vt,k · αwt,k . In the right member, its coefficient is 0 since

the degree is at most n− i∗ +m− 1 and k′ ≤ i∗ + `t −m− 1 ⇔ n− k′ + `t − 1 ≥ n− i∗ +m.
Therefore we have:

`t−1∑
k=0

b′n−k′+`t−1−k,t · un−k′+`t−1−k · vt,k · αwt,k = 0.

Our Issue process ensures that all vt,k · αwt,k are distinct (they are the coefficients of the
polynomial Vt). This means that b′n−k′+`t−1−k,t · un−k′+`t−1−k = 0 for all k ∈ [0, `t − 1] and in
particular for k = `t − 1, which contradicts our initial assumption b′n−k′,t · un−k′ 6= 0. Therefore,
b′n−k,t · un−k = 0 for all k ∈ [0, i∗ + `t −m− 1]

Case (II): i∗ < `t−1. We must here prove that b′n−k,t ·un−k = 0 for k ∈ [i∗+1, `−1]. We follow
a similar strategy and assume that there is some k′ in this interval such that b′n−k′,t·un−k′ 6= 0. We
now focus on the coefficients of degree n−k′ on both sides of the equations. On the left one, this is∑`t−1

k=0 b
′
n−k′−k,t·un−k′−k ·vt,k ·αwt,k . On the right side the coefficient is 0 since the minimum degree

is n− i∗ and k′ ≥ i∗+1⇔ n−k′ ≤ n− i∗−1. Therefore,
∑`t−1

k=0 b
′
n−k′−k,t ·un−k′−k ·vt,k ·αwt,k = 0

which means, as before, that b′n−k′−k,t · un−k′−k = 0 for all k ∈ [0, `t − 1] and in particular for
k = 0. Again, this contradicts our assumption on k′ so we can deduce that b′n−k,t · un−k = 0 for
k ∈ [i∗ + 1, `− 1], which concludes our proof.

6 Handling Regular Expressions

Our solution, introduced in Section 3, allows for pattern matching of keywords of arbitrary
lengths, for ciphertexts emitted from arbitrary sources (we call this having universal tokens). In
this section, we extend our notion of keyword-search to a more generic case, in which some of
the keyword characters are fully-unknown (wildcards) and some are only partially-unknown (in
an interval of size greater than 1).

Consider the general case in which one wants to search for substrings of the form W =

w0 . . . wt−1w
(St)
t wt+1 . . . w`−1 where w

(St)
t denotes any element from the set St ⊂ S. For example,

St can be the set [0-9] of all integers between 0 and 9.
A trivial solution could be to issue a trapdoor for every possible value of wt but this would

imply, for the gateway, to store the |St| resulting trapdoors and to test each of them separately.
This not only raises a question of efficiency, but it also gives the gateway much more information
on the input string. Intuitively, at the end of the search, the gateway will not only be able to
tell that a given character is within a certain subset, but also which particular element of the
subset it corresponds to.

In the following, we show how to modify our construction to allow for two notable regular
expressions: wildcards and interval searches, without leaking any additional information, and
with a minimal efficiency loss.

6.1 Handling Wildcards

The first case we consider assumes W = w0 . . . w
(Si1 )
i1

. . . w
(Sir )
ir

. . . w`−1 with Si1 = ... = Sir = S,

which means that w
(Si1 )
i1

, . . . , w
(Sir )
ir

can take any value from the set S and can consequently be
seen as “wildcards”.

Informally, this implies that the (j + i1)-th,...,(j + ir)-th ciphertext elements must not be
taken into account when testing if Cj . . . Cj+`−1 encrypts W . This leads to the following variant
of our main protocol where only the Issue and the Test algorithms differ (slightly) from the
original ones.

– Issue(W, sk): Let D = {i1, . . . , ir}. The issuance process of a trapdoor tdW for W =

w0 . . . w
(Si1 )
i1

. . . w
(Sir )
ir

. . . w`−1 is described by Algorithm 2.
The only difference with the original Issue algorithm is the additional condition i /∈ D
which ensures that V will have no monomial of degree i for i ∈ D.
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Ind[s] = 0 for all s ∈ S ;
L[i] = 0 for all i ∈ [0, `− 1];
V = 0, c = 0;
for i = 0, . . . , `− 1 do

if i /∈ D then
if L[Ind[wi]] = 0 then

L[c]
$← Zp, Ic ← {i};

c = c+ 1;

else
IInd[wi] = IInd[wi] ∪ {i};

end

V = V + zi · αwi · L[Ind[wi]];
Ind[wi] = Ind[wi] + 1 ;

end

end

tdW ← (c,D, {Ij}c−1
j=0, {g̃

L[j]}c−1
j=0, g̃

V );

Algorithm 2: Issue supporting wildcards

– Test(C, tdW ): this algorithm remains unchanged except that the trapdoor now contains the
set D. The process still consists of checking if the equality

(1)
c−1∏
t=0

e(
∏
i∈It

C ′j+i, g̃
L[t]) = e(Cj , g̃

V ).

holds for j = 0, . . . ,m− `.

One can note that this variant does not increase the complexity of our scheme. Actually,
this is the opposite: all the indexes in D are discarded in the product of (1). Regarding security,
one can note that the proof of Section 4 still applies here, since the latter does not require the
coefficients vi to be different from 0.

6.2 Handling General Subsets

Now let us consider the general case where the substring W one wants to search contains w
(Si)
i

for a subset Si ( S. For example, Si can be the set [0,9] of all the integers x ∈ [0, 9] or the
set {a, . . . , z} of the letters of the Latin alphabet. Our construction can actually be modified to
handle this kind of searches provided that: 1) the searchable sets Si are known in advance, and
can be used during the Keygen process; and 2) all these subsets are disjoint. We argue that both
conditions are reasonable since this is often the case for regular expressions.

6.3 The Protocol

– Setup(1k, n): Let (G1,G2,GT , e) be the description of type 3 bilinear groups of prime order

p, this algorithm selects g
$← G1 and g̃

$← G2 and returns pp← (G1,G2,GT , e, g, g̃, n).
– Keygen(S,S(1), . . . ,S(k)): This algorithm now takes as input k disjoint subsets of S. We can

assume, without loss of generality, that S = S(1) ∪ . . . ∪ S(k) since we can simply add the
complement of all previous sets if this is not the case. The function f : S → {1, . . . , k}
which maps any element s ∈ S to the index of the set S(j) which contains it is thus perfectly
defined. The algorithm then selects |S| + k + 1 random scalars {αs}s∈S , β1, . . . , βk, z $← Zp
and computes gi ← gz

i
for i = 0, . . . , n − 1 along with (gαsi , gβdi ) for d = 1, . . . , k and all

s ∈ S(d). The public key is then set to {gi}n−1i=0 ∪kd=1 {(g
αs
i , gβdi )}i∈[0,n−1],s∈S(d) and sk as

{αs}s∈S , β1, . . . , βk, z.
– Encrypt(S, pk): To encrypt a string S = s0 . . . sm−1, where m ≤ n the user selects a random

scalar a and returns C = {(Ci, C(1)
i , C

(2)
i )}m−1i=0 , where Ci ← gai , C

(1)
i ← (g

αsi
i )a and C

(2)
i ←

(g
βf(si)
i )a, for i = 1 . . .m.

18



Ind[s] = 0 for all s ∈ S ;
Ind′[k] = 0 for all k ∈ [0, d− 1] ;
L[i] = 0 for all i ∈ [0, `− 1];
V = 0, c = 0;
for i = 0, . . . , `− 1 do

if i /∈ D then
if L[Ind[wi]] = 0 then

L[c]
$← Zp, Ic ← {i};

c = c+ 1;

else
IInd[wi] = IInd[wi] ∪ {i};

end

V = V + zi · αwi · L[Ind[wi]];
Ind[wi] = Ind[wi] + 1 ;

else
if L[Ind′[h(i)− 1]] = 0 then

L[c]
$← Zp, Ic ← {i};

c = c+ 1;

else
IInd′[h(i)−1] = IInd′[h(i)−1] ∪ {i};

end

V = V + zi · βh(i) · L[Ind′[h(i)− 1]];
Ind′[h(i)− 1] = Ind′[h(i)− 1] + 1 ;

end

end

tdW ← (c,D, {Ij}c−1
j=0, {g̃

L[j]}c−1
j=0, g̃

V );

Algorithm 3: Issue supporting general subsets

– To issue a trapdoor tdW for a string W = w1 . . . w
(Si1 )
i1

. . . w
(Sir )
ir

. . . w` of length ` ≤ n, the
algorithm first checks that all the involved subsets have been taken as input by the Keygen

algorithm, i.e. Sij ∈ {S(1), . . . ,S(k)} for j = 1, . . . , r, and returns ⊥ otherwise. The function

h which maps every index ij to the integer d ∈ {1, . . . , k} such that Sij = S(d) is thus
correctly defined. Let D = {i1, . . . , ir}, we modify the original Issue procedure as described
in Algorithm 3.

– Test(C, tdW ): To test whether the string S encrypted by C contains the substring W , the

algorithm parses tdW as (c,D, {Ij}c−1j=0, {g̃L[j]}
c−1
j=0, g̃

V ) and C as {(Ci, C(1)
i , C

(2)
i )}m−1i=0 and

checks, for j = 0, . . . ,m− `, if the following equation holds:

c−1∏
t=0

e((
∏

i∈It∧i/∈D

C
(1)
j+i)(

∏
i∈It∧i∈D

C
(2)
j+i), g̃

L[t]) = e(Cj , g̃
V ).

It then returns the set (potentially empty) J of indexes j for which there is a match.

The values βj defined in this protocol can be seen as an encoding of the subset S(j), in the
same way as the scalars αs encode the characters s ∈ S. Actually, it is as if we worked with a
larger set S ′ containing S but also the “characters” S(j). The fact that one encrypts using both
encodings makes the ciphertext compatible with any kind of trapdoors: if the i-th element of W

is of the form wj , we use C
(1)
j , whereas we use C

(2)
j for an element of the form w

(Sj)
j . Correctness

and security follow directly from the original construction.
Regarding efficiency, encrypting for both encodings adds an element of G1 by character to

the ciphertext. Nevertheless, as we explain in the next section, working with a larger set S ′
allows to reduce the number of random scalars that we need to generate the trapdoors, which
leads to a faster Test procedure.
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7 The Complexity of our Scheme

We describe in this section the timings one can get for different parameters. But first we discuss
the different strategies for choosing the set S.

7.1 Generic Complexity

When considering data streams, the most relevant sets are the one of bits (i.e. S = {0, 1}) or the
one of bytes (i.e. S = {0, . . . , 255}). Larger sets (for example the one containing all sequences of
r bytes for some r > 1) would improve the efficiency of the Test procedure but would harm our
ability to detect all patterns. We focus on four specific points: the sizes of (1) the public key,
of (2) the ciphertext and of (3) the trapdoor along with (4) the number of pairings required to
detect the presence of a pattern of size `.

1. The size of pk. Let n be the maximum number of bytes one can encrypt with the pro-
tocol of section 3.3. If S = {0, 1}, then the public key contains (1 + 2)8n elements of G1

which amounts to 768n bytes using Barreto-Naehrig (BN) [BN06] curves. If we now con-
sider bytestrings (i.e. S = {0, . . . , 255}), then pk contains (1 + 256)n elements of G1 which
amounts to 8224n bytes using the same curves.

2. The length of the ciphertext. Each character is encrypted by 2 elements of G1 that
represent 64 bytes. Therefore, encrypting m bytes requires 512m bytes if S = {0, 1} and
64m bytes if S = {0, . . . , 255}.

3. The size of tdW . Our algorithm makes this evaluation much more difficult to perform.
Indeed, the fact that we can reuse the same random scalar for two different characters
wi 6= wj implies that the size of tdW strongly depends on the keyword W itself. For example,
a “constant” keyword W = s . . . s of size ` would entail a trapdoor containing `+1 elements
of G2. Conversely, a keyword W = w0 . . . w`−1 with wi 6= wj for i 6= j would only require to
store 2 elements of G2. Nevertheless, we notice that larger sets decrease the probability of
having equal characters. More specifically, assuming uniform distribution of the characters
within a keyword, a trapdoor contains, on average, (1 + d`/2e) elements of G2 if S = {0, 1}
and only (1 + d`/256e) if S = {0, . . . , 255}. We can then hope to gain a factor 128 in the
latter case.

4. The number of pairings. The number of pairings one must compute to test the presence of
a keyword W of length ` within an encrypted string is related to the size of the corresponding
trapdoor tdW . More specifically, if tdW contains N elements of G2, then one must perform
N(m− `+ 1) pairings, where m is the length of the encrypted string. Therefore, a shorter
trapdoor implies a more efficient Test procedure, which means that it is better to work with
S = {0, . . . , 255} than with S = {0, 1}.

Public key aside, we note that working on bytes instead of bits allows to significantly decrease
complexity. Our timings then correspond to the case where S = {0, . . . , 255}.

7.2 Implementation of SEST for DPI

As we explain, evaluating the size of the trapdoors, and therefore the number of pairings requires
to make assumptions about the distribution of the keywords. Previous estimations assumed a
uniform distribution of the latter, which is unlikely in practice. We therefore evaluate our protocol
on the SNORT public rules set [SNO] to provide a more concrete estimation3.

The SNORT rules set contains thousands of rules which mostly consist in searching some
specific patterns in a stream. We parsed all these rules and got 6048 different patterns. Figure
3 describes the sizes of the corresponding trapdoors.

3 We stress that the only goal of this section is to provide timings on a concrete and non-artificial set of patterns.
We chose the DPI use-case for which searching on encrypted streams is particularly relevant. But we obviously
do not claim that our solution is practical enough to handle all Internet traffic worldwide.
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Trapdoors of size 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 23 27

Number 2067 1879 705 745 361 140 69 32 20 19 3 2 1 2 1 1 1

Fig. 3. Number of trapdoors of size N , where N is the number of elements of G2. In other words, among the 6048
trapdoors generated for the SNORT rules set, 2076 contain 2 elements of G2, 1879 contain 3 elements of G2, and
so on.

This table highlights the advantage of our issuing protocol: even for large patterns we manage
to keep most of the time short trapdoors thanks to the re-use (when possible) of the random
scalars. The whole trapdoors set thus only amounts to 1.35 MB.

Since the number of pairings is related to the size of the trapdoors, one could to try to deduce
from this table the total number of pairings required to test all SNORT patterns. However, we
stress that this would only be a quite inaccurate upper bound. First, because many of these
patterns are part of the same rule which enables to avoid unnecessary tests: if there is no match
for a pattern defined by a rule, then it is pointless to test the other ones within the same rule.
Second, because many rules include parameters called “depth”, “offset”, “distance” or “within”
which allow to reduce the search to a smaller part of the stream.

The number of pairings for the whole SNORT rules set is thus significantly smaller than the
one we could expect from the complexity evaluation we provide in Section 7.1. Moreover, we
recall that the optimal Ate pairing [Ver10] that we use to instantiate the map e can be split into
two parts that are usually called the Miller loop and the final exponentiation. The latter, which
roughly represents half of the computational cost of a pairing, can be performed once for all the
pairings involved in the same equality test, which allows to further reduce the complexity of the
Test procedure.

We ran an experiment on a stream of 1500 bytes using a computer running Linux 4.13 and
equipped with an Intel E5-1620 3.70GHz processor. Testing all Snort rules took 28 minutes. This
is obviously too much for online analysis but we stress that alternatives (e.g. FHE) offering the
same features would be even more complex. Moreover, this corresponds to testing thousands of
patterns on a single computer: by using parallelization and more powerful hardware, one could
hope to dramatically reduce these timings.

Finally, we provide in Figure 4 the timings of the Encrypt and the Test algorithms for
larger strings (up to 30 KB). It shows that encryption remains quite efficient even for large
strings. The Test algorithm is obviously slower since it implies pairings computations but it
takes (approximatively) only one second for strings of few kilobytes.

String length (B) 1500 3000 5000 10000 30000

Encrypt (s) 0.08 0.15 0.27 0.5 1.5

Test (s) 0.6 1.2 1.6 3.3 11.1

Fig. 4. Timings for encrypting a string of m bytes and searching a pattern of 100 bytes within it.

8 Conclusion

In this work, we introduced the concept of searchable encryption with shiftable trapdoors
(SEST). This type of construction provides a practical solution to the generic problem of pattern
matching with universal tokens. Notably, we are the first to provide a searchable encryption al-
ternative that allows for arbitrarily-chosen keywords of arbitrary length, which can be applied to
any ciphertext encrypted with the generated public key in this system. In particular, since we do
not rely on symmetric keys, multiple entities can use the same public key to encrypt. Moreover,
our construction is also highly usable for encrypted streams of data (we need no backtracking),
and it returns the exact position at which the pattern occurs. Our instantiation of the SEST
primitive uses bilinear pairings, and we allow for some regular expressions such as wildcards, or
partial keywords in which we know some entries to be within a given interval.

Beyond applications in deep-packet inspection, the fact that our algorithm essentially follows
the approach of Rabin-Karp allows us to also use that same algorithm for application scenarios

21



such as searching on structured data, matching subtrees to labelled trees, delegated searches on
medical data (compiled from multiple institutions), or 2D searches.

We propose a main construction, which we adapt to accounting for wildcards and for interval
searches. The former adaptation is relatively simple, since the issued trapdoor just contains zero
coefficients for the wildcards. For the interval searches we need to modify our key generation
algorithm, providing special elements that we map interval characters to; however, this only
works for intervals which are known in advance.

Our scheme provides trapdoors for the keywords which are at most linear in the size of the
keywords only, and the size of the ciphertexts is linear in the size of the plaintext size. Although
our public keys are large (linear in the size of the maximal plaintext size), we do achieve a
complete decorrelation between the plaintext encryption and the trapdoor generation for the
keywords. Our scheme provides in practice an almost linear – in the size of the plaintext –
complexity (in terms of the number of pairings). Our implementation results for the publicly-
given SNORT rules show that while the encryption algorithm scales well with the plaintext size,
the testing algorithm – which is slower – will benefit from the fact that it is fully parallelizable.

We prove the security of our scheme under an interactive version of the GDH assumption.
Our modification of this assumption is relatively minor, allowing the adversary to choose on
which input to play the GDH instance. We also argue that our construction offers an interesting
tradeoff between the secure, but quite cumbersome, systems based on existing cryptographic
primitives and the fast, but unsecure, current solutions where the gateway decrypts the traffic.
Moreover, we hope that the practical applications of this primitive will incite new work on this
subject, in particular to construct new schemes which would rely on standard assumptions.
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