Error-free protection of EC point multiplication
by modular extension

Martin Seysen
February 21, 2017

Giesecke & Devrient GmbH, Prinzregentenstrae 159, D-81677 Miinchen,
e-mail: m.seysen@gmx.de

Abstract

An implementation of a point multiplication function in an elliptic-
curve cryptosystem can be attacked by fault injections in order to reveal
the secret multiplier. A special kind of such an attack is the sign-change
fault attack. Here the result of a point multiplication is changed in such
a way that it is still a point on the curve. A well-known countermeasure
against this kind of attack is to perform the point multiplication on a
modular extension of the main curve by a small curve. Then the result
is checked against the result of the same point multiplication recalculated
on the small curve. The problem with this countermeasure is that the
point at infinity on the small curve may be reached as an intermediate
result with a non-negligible probability. In this case the comparison with
the result on the small curve is either faulty or meaningless. We propose
a variant of the modular extension countermeasure where the point at
infinity is never reached as an intermediate result on the main or on the
small curve.

Keywords: elliptic curve, point multiplication, modulus extension

1 Introduction

One of the most fundamental operations in elliptic curve cryptography (ECC)
is point multiplication, i.e. the multiplication of a point on the curve with a
scalar. This is used in almost all ECC algorithms, such as ECDSA, ECDH and
also in pairing-based EC cryptography.

There are several different ways to represent an elliptic curve. The Weier-
strass form of a curve (discussed in the next section) is widely used in ECC
standards [16, 15] It is well known that the standard formula for point addition
fails on a curve in Weierstrass form in certain cases. In this paper we describe

an error-free implementation of the ECC point multiplication resistant against
side-channel and fault attacks, which is most useful for curves in Weierstrass
form.

In a side channel attack, the attacker observes information such as timing
differences, power consumption or electromagnetic radiation leaking from an
implementation. He may also observe many executions of a cryptographic op-
eration with different inputs, and perform statistical analysis on the input and
on the leaking information in order to obtain information about the secret data
processed in that implementation. A common countermeasure against side-
channel attacks is to add dummy operations when an operation is executed
conditionally, so that the attacker cannot see if the condition is satisfied.

In a fault attack, the attacker changes the behavior of an implementation
by inducing faults, e.g. by laser attacks, inserting glitches, etc. One type of a
fault attack is the safe-error-attack, where the attacker disturbs an operation
that may be a dummy operation under a certain condition. That condition may
be guessed depending on the effect onto the final result.

In a differential fault attack, the attacker tries to change the value of a certain
variable, and to observe the effect on the final result. In ECC, two of the most
relevant attacks against point multiplication are the invalid-curve fault attack
[5] and the sign-fault change attack [3]. At an invalid-curve fault attack, the
attacker tries to change a point on a curve to a point lying on a weaker curve.
Then it may be easier to attack point multiplication on the weaker curve. For
a sign-fault change we assume that in some places either a point addition or
a point subtraction enters into the point multiplication. When changing an
addition to a subtraction or vice versa, this has a well-defined effect on the final
result that an attacker can use to obtain a bit of the multiplier.

Fan et al. [7] propose a combination of a of fault and a side-channel attack,
where a specially prepared point enters into the point multiplication. They
assume that this point can be changed to a point of low order on a different
curve by a single bit flip and that the occurrence of the neutral element of the
group may be detected by side-channel analysis. Goubin [9] proposes a side-
channel attack based on a similar idea. He assumes that specific points exist on
a curve which can easily be detected by side-channel analysis, e.g. points with
one zero co-ordinate.

2 Point multiplication

An elliptic curve group is an algebraic group, and the elements of that group
are the points on the projective plane over a field I satisfying a certain equation
of degree 3 or 4. In most cases relevant for cryptography, point multiplication
is performed in a subgroup of known prime order of an elliptic curve group over
a finite field F.

A point on the curve is usually represented as a pair (x,y) € F2. Here F?
represents the affine plane over I, considered as a subset of the projective plane
over F. A variety of different types of equations is used to define an elliptic

curve, e.g. the short Weierstrass form, which is y?> = 2% + ax + b for fields of
characteristic p > 3 or y2 + 2y = 2% + ax? + b for fields of characteristic 2.
Edwards or Montgomery curves are based on different types of equations.

The neutral element of the group on a curve in Weierstrass form is the point
at infinity which cannot be represented in affine co-ordinates.

An ECC point multiplication algorithm is constructed from simpler ECC
operations, namely the doubling of a point and the addition or subtraction of
two points. When performing these operations on curves in Weierstrass form,
the following problems arise. The standard addition formula for computing
P, + P, with P;, P, points on the curve, fails in case P, = +£P,. There is a
different formula for computing 2P;. Of course, all computations in affine co-
ordinates fail when the result is the point at infinity. In this paper we assume
that point doublings and additions may fail only in the cases mentioned above.
There are also unified formulas for point doubling and addition at the cost of
some extra field operations, see [4].

Note that additions and doublings in affine coordinates require divisions in
I, which are expensive and also vulnerable to side-channel attacks. For division-
free practical implementations of point multiplication, projective co-ordinates
(z,y,2) are used to represent a point on the curve. Variants of projective co-
ordinates, e.g. Jacobian projective co-ordinates, allow even more efficient im-
plementations.

3 Balanced Binary Representation of the Mul-
tiplier

We have seen that there is no unified formula for point doubling and addition
for elliptic curves in Weierstrass form without additional cost. Thus in a naive
implementation of double and add, as in Algorithm 1 for point multiplication,
an attacker can easily distinguish between these two operations, so that the
multiplier k£ becomes completely visible for him.

Algorithm 1 Point multiplication by naive double and add

Input Point P on curve E, integer k = E;;}) kj27 k; € {0,1}, ki—q = 1.
Output Q=kP.

[1] put Q=P

[2] for j from ¢ — 2 down to 0 do :

3] Q=2-Q

[4] if kj=1then Q=Q+P

[5] output Q.

Coron [6] suggests to perform addition in Step 4 always, and to drop the
result, if it is not needed. This opens the door to safe-error attacks as discussed

in section 1. There is a variety of other techniques less susceptible to safe-
error attacks, see e.g. [10] for an overview. So called window methods have
been proposed to save additions. Here the idea is to precompute a table of
small multiples of the point to be multiplied, and to perform a fixed number of
subsequent doublings before a single addition takes place, see e.g. [8, 12] for an
overview. The number of subsequent doublings is called the window size of the
algorithm.

In the remainder of this section we will review the balanced binary point
multiplication in [14], which is also a window method, and we will present a
variant of that method where the point at infinity of the curve is never reached as
an intermediate result. A very similar method has been proposed in [12]. Tt will
turn out in the next section, that the balanced binary point multiplication can
easily be protected against sign-fault attacks by a suitable modular extension
of the curve.

The following Lemma is easy to show, see [12, 14]:

Lemma 1 Every odd integer k with |k| < 2¢° can be represented as
i—1
k= kj2°, kjodd, —2° <kj <2°.
j=0

So we may present the algorithm for balanced binary multiplication of a
point P on an elliptic curve F with an odd multiplier k as follows:

Algorithm 2 Balanced binary point multiplication

Input Point P on curve F, window size e, odd integer k with
k= Y""o k20, by odd, —2¢ < kj < 2°.

Output Q =kP.

[1] put T[j] = j- P for all odd j with —2° < k; < 2°

[2] put Q =T[k;_1]

[3] for j from i — 2 down to 0 do :

[4] Q=2°-Q // done by repeated doubling

[5] Q=Q+T[k]

[6] output Q.

Since point negation is almost trivial for curves in Weierstrass form, it suffices
to store the positive multiples of P in Step 1.

In most cryptographic applications we may assume that point multiplication
is performed in an elliptic curve group of known prime order ¢q. So in case of
an even multiplier & we may simply call Algorithm 2 with input k — ¢ instead
of k, as suggested in [14].

We assume that the addition in Step [5] is simply done by the point addition
formula, so that it will fail on a curve in Weierstrass form in case Q = £T'[k;].

Distinguishing between doubling (in Step [4]) and addition (in Step [5]) by side
channel analysis reveals no information about the multiplier or the point. So
we may use the fastest doubling or addition formula available for a specific type
of curves.

We want to obtain an error-free version of Algorithm 2 for a point P of prime
order q. For window size e > 1 the error cases are given by:

Lemma 2 Let P be a point on the curve E of order q, q prime, and let e > 1,
q > 2°, and assume |k| < 2q, k odd, in Algorithm 2. Then apart from the
obvious case k=0 (mod q), Algorithm 2 fails only if one of the following two
conditions holds:

1. q—-2"<k<q+2¢"1 | k=—q (mod 2°*!)
2. —q—2Tt<k<—q+2°tt, k=g (mod2°F?)
Proof

The algorithm fails only if the neutral element of the group is reached in
Step 4 or if Q = £T'[k;] in Step 5. Since the group generated by P has odd
order, the neutral element cannot be reached by a doubling operation, so the
algorithm may fail in Step 5 only. Put s;_1 = k;—1, s; = 2°-s;41+k; for j <i—1,
and put Q; = s; - Q. Clearly, so = k, and the result @ of Step 5 in round j is
equal to Q;, for j running from 7 — 2 down to 0. Assume that the algorithm
fails and we have k # 0 (mod ¢). Then s; — k; = £k; (mod ¢) holds for at
least one j < i — 2. Obviously, the sequence |s;—1],|si—2],-..,|So| contains odd
numbers only and is non-decreasing. Thus all |s;| are < |k| and hence less than
2q. Since ¢ > 2° and, asymptotically, |s;| ~ 2¢|s;_1| > 4]s;_1|, we may assume
|sj| < ¢—2-2¢for j > 0. This means that s; —k; = +k; (mod g) is impossible
for j > 0, and since sg = k, we obtain k — kg = £ko (mod ¢). By assumption
kE#0 (mod q), so we have k = 2ky (mod ¢). Since k is odd and |k| < 2¢, we
have k — 2kg = +q, with |k| = g > |ko|. By definition of the k;, we have kg = k
(mod 2¢) and hence —k = ¢ (mod 2°"1) in case k > 0 and k = ¢ (mod 2°t1)
in case k < 0. k — 2ko = +q implies |q — |k|| < |2ko| < 2¢T1.

O

Once the error cases are known, we may easily add a small multiple of the
order ¢ to a given multiplier kg, such that Algorithm 2 runs error free. More
specifically, we have:

Lemma 3 Let P, E, q, e > 1 as in Lemma 2 and let kg € Z with 0 < kg < gq,
be a multiplier. Then there is an odd k with kP = koP, |k| < 2q such that
Algorithm 2 computes kP error free. A suitable X\ with —2 < A < 1 and k =
ko + Aq can be effectively computed from the lowest three bits of ko and q.

Proof
Put

B (1, ko) if ko is odd
(s1,k1) = { (=1,q — ko) if ko is even

o (s1, k) if k1 #—q (mod 8)
(s2,k2) = { (_131,12q — k1) if ki =—¢ (mod 8)

k = 82'k2

Obviously, kg = s;k; = k& (mod q), s; = £1, 0 < k; < ig and k; is odd
for i = 1,2. Assume that Algorithm 2 fails for k and sy = 1. Then ko = —¢q
(mod 8) by Lemma 2, part 1. By definition of k2 we have k; = —¢ (mod 8).
Otherwise we would have k; = ko, k1 # —¢ (mod 8), contradicting ko = —gq
(mod 8). From k; = —¢g (mod 8) we conclude —¢ = ky =2¢—k; (mod 8) by
definition of ky. This implies 4¢ = 0 (mod 8), which is impossible for an odd
q.

Assuming that Algorithm 2 fails for & and s = —1, we obtain a similar
contradiction by using Lemma 2, part 2.

O

A secure implementation of Algorithm 2 for an arbitrary multiplier kg with
0 < kg < g should compute k = kg + Ag with A obtained from the lowest three
bits of ky and g by table lookup.

4 Protecting Point multiplication by modular
extension

4.1 Sign fault attacks and known countermeasures

Blomer, Otto and Seifert [3] have introduced sign change fault attacks which
change the result of a point multiplication in such a way that it is still a point
on the curve. This attack applies especially to window methods, such as Algo-
rithm 2 where an addition in Step 5 may be changed to a subtraction or vice
versa.

As a countermeasure, it is suggested in [3] to perform the point multiplication
on a modular extension of the main curve by a small curve and to check the
result against the result of a point multiplication recalculated on the small curve.

The problem with this countermeasure is that the point at infinity on the
small curve may me reached as an intermediate result with non-negligible prob-
ability. [3] does not specify how addition Py + P; is to be performed if P, = £P;,
holds on the small but not on the main curve. Depending on how this special
case is executed on the combined curve and on the small curve, the final compar-
ison between the result on the combined and on the small curve may be either
faulty or meaningless in some cases. Specifically, using a small curve of order r
may yield considerably more than a fraction of 1/r faulty or meaningless cases.
See [13] for a detailed discussion of this issue. Here we just remark that an
additional check for P; = +P5 is undesirable regarding performance, and con-
ditional code execution depending on the result of such a check is undesirable
regarding side-channel resistance.

Another type of modular extension has been suggested by Baek and Va-
syltsov [1]. Here sign-fault attacks are prevented by choosing a different type of

equation for the small curve, such that point negation on the small curve is more
complicated than on the large curve presented in short Weierstrass form. Then
sign faults induced by fault attacks lead to a false result modulo the small curve.
However, this leads a performance penalty for the operation on the combined
curve, since the combined curve satisfies a more complicated type of equation
than the main curve. Also, this countermeasure makes specific assumptions
about the representation of the main and the small curve.

Joye [11] uses a small curve in the ring Z/r?Z for protection against fault
analysis, leading to about the same security level as a curve in Z/rZ in [1].

4.2 QOur new countermeasure

Assuming that the point on the main curve has a known prime order (as it is
the case in most cryptographic applications), we propose a simple variant of
the modular extension countermeasure based on Algorithm 2, where the point
at infinity is never reached on the main or the small curve as an intermediate
result.

Our new method makes no assumption about the curve, except that there
is a formula for point addition P; + P» which is correct in case P; # +P, and
that there is a formula for point doubling which is correct if the doubled point
is not the neutral element. This is the case for curves in Weierstrass form, and
we may use the fastest algorithms available for doubling or adding.

All we have to do is to extend the main curve E of characteristic p in Algo-
rithm 2 by a small curve E’ of characteristic p’ coprime to p, such that E’ has
a cyclic 2-Sylow group and order divisible by 2¢T1. We also choose a point P’
on E’ of maximum order, with the order of P’ a multiple of 26%1.

Algorithm 3 Error-free point multiplication with modular extension

Input Point P of order g, g prime, on a curve E of chracteristic p,
window size e > 1, multiplier £ with 0 < k < gq.
Point P’ of order 2! - ¢’ on a small auxiliary curve E’
of characteristic p’ < p.

Output @ =kP.

[1] Put ky =k + Ag with A as in Lemma 3 such that Algorithm 2
computes k1 P error free.

[2] Let E* be the curve obtained by Chinese remaindering £ and E'.

[3] Let P* be the point on E* obtained by Chinese remaindering P and P’.
[4] Compute @* = ky - P* on the curve E* using Algorithm 2.

[5] Compute @ =k; - P’ on the curve E’ using Algorithm 2.

6] if Q=@ (modyp)

Output @ := Q* mod p
else
Output Fault attack detected!

Proposition 4 Algorithm 8 computes the point kP without errors in all cases.

Proof

It suffices to show that the computation of kq P is error free on the curve E and
that the computation of k1P’ is error free on the curve E’. The computation
on F is error free by Lemma 3.

Consider the computation on E’. The point P’ on E’ has even order. In
Step 5 of Algorithm 2 we always add and even multiple @’ of P’ to an odd
multiple 7" [k;] of P’, so that the faulty case T"[k;] = £Q" cannot occur. Clearly,
the result of Step 5 is an odd multiple of P’. Thus the input @’ into Step 4 of
Algorithm 2 is always an odd multiple of P’. Since P’ has order divisible by
2¢+1 the point at infinity is not reached when @’ is multiplied by 2¢ in Step 4.
O

Remark

Algorithm 3 is not limited to curves of prime characteristic. We can also work
on a curve F in the field F,» with, possibly, p = 2. Then we may represent Fp»
by F,[x]/R for a suitable polynomial R € F,[z]| of degree n. We may choose a
small curve E’ of order divisible by 2°*! over the field Fpm, with Fpm represented
by Fp[z]/R’ for a suitable polynomial R’ € Fp[z| of degree m. In case m < n,
the polynomials R and R’ are coprime in F,[z], so that we can also combine the
curves E and E’ by Chinese remaindering them in F,[z]/(R - R').

4.3 Finding suitable small curves

While finding large curves of prime (or almost prime) order for cryptographic
purposes is a challenging task, we can easily find small curves of order 2¢*1¢’,
q' prime, for, say, e < 5 and 230 < 261/ < 264,

Hasse’s theorem states that if £ is an elliptic curve over the finite field Fyn,
then the number |E| of points on E satisfies ||E| — (p" +1)| < 24/p”. Thus
|E| has one of O(p™/?) different possible values. Assuming that the group of
the curve E is cyclic and has a large prime factor, a random point G on E is
a generator with high probability. Using a baby-step giant-step method, the
order of G can be found with time and space complexity O(p"/*), which is easy
in case p" < 264,

Assuming that the orders of the elliptic curves over a finite field are approx-
imately uniform distributed over their feasible interval, the probability that a
curve has order 2¢t1¢ for a prime ¢’ is about 2~ (¢*1 /log(p™). This means that
small curves to be used in Algorithm 3 are easy to find. A simple C program
based on these ideas finds a suitable small curve over a field of prime charac-
teristic p and e = 5 in a few seconds for a 32-bit p and and in a few hours for a
64-bit p on a standard PC. The Schoof-Elkies-Atkin (SEA) algorithm [2] could
be adjusted to speed up the case of a 64-bit p.

In the next section we will show that our modular extension method is quite
effective as a protection against a generalized form of sign-fault attacks. So we
believe that using a fixed small curve of order about 23° is sufficient for our

purposes and that there is no practical need to implement the SEA algorithm
for finding a suitable small curve.

4.4 Protection against term-fault attacks

Instead of a sign-fault attack we consider a more powerful kind of attack that we
will call a term-fault attack. Here the attacker is allowed to change the additive
term T'[k;] in Step 5 of Algorithm 2 to any small multiple T'[k’] stored in the
table of multiples computed in Step 1. Changing a few bits of k; may lead to
such an attack. So this kind of attack is as realistic as the ’classical’ sign-fault
attack in [3]. More generally, term-fault attacks are applicable to any kind of
windowing method in ECC point multiplication or modular exponentiation.

Changing T'[k;] to T[k}] in round j in Step 5 of Algorithm 2 changes the
result Q to Q + 2% (T'[K;] — T[k;])P. Since |T'[k;] — T[k;]| is even and less than
2¢t!l we may say that a term-fault attack changes @ to Q + a2¢P for some
€ € N and odd « with |a| < 2°.

We now assume that the attacker may change the term 7T'[k’] in two different
rounds of Step 5. This changes the result @ to

Q —|— 0412£1P —|— &22€2P = Q + 261 (O[l + 04226)13 5

for suitable €1, €2,€’,€ > 0 and odd |a1], |as| < 2°. Modular extension with a
curve E’ of order 2¢t'¢’ will detect this kind of attack, unless the factor of P
in the last equation is zero modulo the order ¢’ of E’. Since ¢’ is odd, it suffices
to ensure

a2 # a1 (mod ¢') for all odd ai,az, 0 < ay,as < 2°and 0 < € < €npay,

with €pax depending on the maximum size of the main curve to be supported.
This condition can easily be checked for, say, emax < 1000, which is sufficient
for practical ECC implementations. Adding this check to the C program for
generating auxiliary curves in the last section leads to a negligible additional
overhead.

So in practice our modular extension method achieves a protection against
term-fault attacks at up to two different positions.

4.5 Processing a point on the small curve

We recommend to choose a fixed small curve E’ (with a cyclic group) of order
2¢+1y for prime ¢’ and to precompute a fixed generator point G’ of maximum
order on that curve. In order to prevent the attacks of type [7, 9], we recommend
to use a random multiple P’ = kK'G’, k' odd, k' #£ 0 (mod ¢’) as the input point
of the small curve in Algorithm 3. Then an attacker has less control over the
point P* processed in Algorithm 3.

So we have to do two point multiplications on the curve E’. Before starting
Algorithm 3 we compute P’ = k'G’. In Step 5 of Algorithm 3 we will compute
k1P = (ki - K')G', where ki - k' may be reduced modulo 2°T1¢’. So we just

need the capability to multiply a fixed point G’ with an odd number k, 0 < k <
26+1q/.

Since G’ has order divisible by 2T! and k is odd, we could use Algorithm 2
with window size up to e for an error free point multiplication on E’. But
for this purpose comb methods are much faster. Especially, Algorithm 6 in [8]
computes kP’ error free for odd k and e > 1, since it involves doubling of odd
multiples of G’ and adding odd to even multiples of G’ only. The fixed multiples
of G’ used in that algorithm can be precomputed.

5 Conclusion

Modular extension of a curve by a small curve during point multiplication is a
well-known countermeasure to prevent fault attacks. Previously known modular
extension methods have the problem that the point at infinity may be reached
on the small curve during operation, or that calculations on the combined curve
are more complicated than on the original curve.

We have presented an error-free window method for point multiplication
that allows an error-free modular extension, so that the point at infinity is
never reached on the main or on the small curve as an intermediate result.
In our method there is no need to hide the difference between point doubling
and addition to an attacker, and also no need to test for special cases where
the doubling or addition formula may fail. Thus the fastest formulas for both
operations can be used.

We do not make any specific assumptions about the internal representation
of the points on the curve. We just assume that the formulas for point doubling
and addition are correct in all cases where the standard doubling and adding
formulas for Weierstass curves in affine co-ordinates are correct.

We have introduced term-fault attacks, which are a generalization of the
well-known sign-fault attacks, and which are applicable to all kinds of windowing
methods in ECC point multiplication or in RSA exponentiation. Our modular
extension method is resistant against term-fault attacks in up to two different
rounds of the point multiplication algorithm.

Our method can be used for curves over I, and [Fan.

References

[1] Y.-J. Baek and I. Vasyltsov. How to prevent dpa and fault attack in a uni-
fied way for ecc scalar multiplication: Ring extension method. In E. Daw-
son and D.S. Wong, editors, Information Security Practice and Ezperience
(ISPEC 2007), volume 4464 of Lecture Notes in Computer Science, pages
225-237. Springer, 2006.

[2] L. F. Blake, G. Seroussi, and N. P. Smart. Elliptic curves in cryptography,
volume 265 of London Mathematical Society lecture note series. Cambridge
University Press, pub-CUP:adr, 1999.

10

[3]

[14]

[15]

J. Blomer, M. Otto, and J.P. Seifert. Sign change fault attacks on elliptic
curve cryptosystems. In L. Breveglieri, I. Koren, D. Naccache, and J.P.
Seifert, editors, Fault Diagnosis and Tolerance in Cryptography, volume
4236 of Lecture Notes in Computer Science, pages 36-52. Springer, 2006.

E. Brier and M. Joye. Weierstrass elliptic curves and side-channel attacks.
In PKC: International Workshop on Practice and Theory in Public Key
Cryptography. LNCS, 2002.

Ciet and Joye. Elliptic curve cryptosystems in the presence of permanent
and transient faults. IJDCC': Designs, Codes and Cryptography, 36, 2005.

S. Coron. Resistance against differential power analysis for elliptic curve
cryptosystems. In CHES: International Workshop on Cryptographic Hard-
ware and Embedded Systems, CHES, LNCS, 1999.

J. Fan, B. Gierlichs, and F. Vercauteren. To infinity and beyond: Combined
attack on ECC using points of low order. In B. Preneel and T. Takagi,
editors, CHES, volume 6917 of Lecture Notes in Computer Science, pages
143-159. Springer, 2011.

Min Feng, Bin B. Zhu, Maozhi Xu, and Shipeng Li. Efficient comb elliptic
curve multiplication methods resistant to power analysis, April 12 2005.

L. Goubin. A refined power-analysis attack on elliptic curve cryptosystems.
In PKC: International Workshop on Practice and Theory in Public Key
Cryptography. LNCS, 2003.

M. Joye. Elliptic curves and side-channel analysis. In ST Journal of System
Research, July 21 2003.

M. Joye. Fault-resistant calculations on elliptic curves, 09 2010. EP Patent
App. EP 2228716A1, http://www.google.com/patents/EP2228716A17
cl=en.

Katsuyuki Okeya and Tsuyoshi Takagi. The width-w NAF method provides
small memory and fast elliptic scalar multiplications secure against side
channel attacks. Lecture Notes in Computer Science, 2612:328-342, 2003.

P. Rauzy, M. Moreau, S. Guilley, and Z. Najm. Using modular extension
to provably protect ecc against fault attacks. Cryptology ePrint Archive,
Report 2015/882, 2015. http://eprint.iacr.org/.

M. Seysen. Computation of a multiple of a group element for cryptographic
purposes, 11 2002. WO Patent App. WO 2002091332A2, http://wuw.
google. je/patents/W02002091332A27cl=en.

National Institute of Standards U.S. Department of Commerce and Tech-
nology. Digital signature standard (dss). FIPS PUB 186-4, http://
nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf.

11

[16] National Institute of Standards U.S. Department of Commerce and Tech-
nology. Recommended elliptic curves for federal government use. http:
//csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf.

12

