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Abstract. Recently, a number of results have been published that show
how to combine classical cryptanalysis with quantum algorithms, thereby
(potentially) achieving considerable speed-ups. We follow this trend but
add a novel twist by considering how to utilise side channel leakage in
a quantum setting. We show how to ‘rewrite’ an existing algorithm for
computing the rank of a key after a side channel attack, such that it
results in an enumeration algorithm that produces batches of keys that
can be tested using Grover’s algorithm. This results in the first quantum
key search that benefits from side channel information.
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1 Introduction

The announcement that NIST will embark on a post-quantum cryptography
project has injected further enthusiasm into researching cryptography in the
presence of quantum computers. At present there exist a number of algorithms
that run efficiently on a quantum computer (see [22] for a survey of the current
state of quantum computation). Some of these are a clear threat to existing
cryptographic techniques and algorithms. For instance Shor’s algorithm [25] to
factor integers leaves a host of cryptographic schemes insecure. Another example
is Grover’s algorithm [9], which can be used to achieve a quadratic speedup in
the majority of unstructured search problems including brute force key search.

Ongoing research in post quantum cryptography focuses on studying ad-
versarial models alongside cryptographic constructions that include access to
quantum algorithms (e.g. Anand et al. [1] investigate the quantum IND-CPA

** This research was carried out while D. P. Martin was a member of the Department
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security of various block cipher modes of operation). Recent research [12,13]
also studies how classical cryptanalytic techniques might benefit from quantum
algorithms via appropriating Simon’s algorithm [26], and enquire about how re-
alistic e.g. a potential brute-force key search on AES would be [8]. Interestingly,
current thinking about post quantum cryptography only marginally touches on
adversaries that also have access to additional information.

We believe that considering how leakage might be exploited within the quan-
tum setting should be a pressing research question. After all, since 1996 when
Kocher [14] showed how side channels® can be used to to break implementations
of otherwise secure schemes, the community has witnessed a host of effective
side channel attacks.

Many side channel attacks operate in two steps: first the device/implementation
leakage is turned into information leakage about the key resulting in probability
or score vectors for each independent chunk of the key; second a search over
the most likely keys is conducted. Our paper is not concerned with the specifics
of the first step. It is the second step, which turns probability /score vectors on
chunks of the key into information about the (whole) key, on which our work
will focus, as we will motivate next.

1.1  Our Contribution

Typical side channel attacks trade off data complexity (i.e. the number of queries
to a device/implementation as part of the first step) and computational com-
plexity (i.e. the effort that it takes to actually determine the secret in the second
step). Given that many practical side channel attacks have a comparatively low
data complexity, there is little to be gained from quantum speed-ups in that re-
spect. However, if we consider side channel attacks that trade off using very few
queries for a large computational effort (via some enumeration/key search fol-
lowing the key leakage extraction) it seems (intuitively) that access to a quantum
algorithm could help.

The logical starting point for search problems is, of course, Grover’s algo-
rithm, which can speed up any unstructured search. However, we are interested
in a highly structured search. In fact, our search problem could be considered
as quantum search where there is some additional information available about
the likelihood of each element being the key. An optimal quantum algorithm
was developed for this problem by Montanaro [21]. This algorithm takes in a
set of elements (to be searched and tested), as well as an advice distribution
for the set. However, one crucial implicit assumption was made: that the advice
distribution was given in order of likelihood.

Side channel attacks typically produce information about the independent
chunks of the unknown key (rather than the whole key) and thus they do not

® A side channel is some additional (unintended) channel that an adversary has ac-
cess to. Beyond power and timing analysis, side channel attacks can be based on
the electromagnetic emanation of a device [16], error messages communicated by a
device [18] and even the sound that a device produces [6].



conveniently output the kind of sorted list that Montanaro’s algorithm requires.
Also, it would be impossible to do so in the case of many interesting practical
scenarios, e.g. the minimum recommended key length today is 128 bits, thus it is
clearly impossible to explicitly generate an ordered list containing 2'2® elements.

Instead we give an algorithm that is able to efficiently generate keys (to be
tested) according to a side channel advice distribution in such a way that it
can be efficiently plugged into Grover’s algorithm. Our work is inspired by the
quantum algorithm of Montanaro [21], and builds on the algorithm of Martin et
al. [20], which is one of the plethora of enumeration algorithms that have been
developed over the last few years [4,20,19,24,27,29].

1.2 Organisation

In Sect. 2 we introduce notation and recap the latest developments in fast and
parallel key search. The first contribution of this work (in Sect. 3) is then to take
the key rank algorithm of Martin et al. [20] and show how to use it to return a
single key (the 7*") with a weight in a particular range. Using this new insight,
and varying the value of r, we are able to construct a new, more efficient, key
enumeration/search algorithm in Sect. 3.1. Our main contribution is showing
how the newly derived (classical) search algorithm can then be turned into a
quantum key search algorithm in Section 4, which provides, at least, a quadratic
speed-up over the classical algorithm. To our knowledge this is the first time that
a side channel attack has been improved with the use of a quantum algorithm.

2 Preliminaries

Our work brings together recent advances from side channel research (key rank
and enumeration) and quantum algorithms (quantum search with advice). To
keep the paper reasonably self contained, we introduce and explain the necessary
background regarding key enumeration/search, alongside introducing notation.

We assume that any key k can be split into m independent chunks, called
subkeys (k1,...,kn), each of which can take one of n possible values. Whilst
our algorithms do not require that each subkey is the same size, this assumption
helps to ease explanation. We denote the secret key to be targeted by the attack
ast = (t1,...,tm)-

Our work is not concerned with how the leakage is obtained or how it is
manipulated to infer information about the key. We refer to the established lit-
erature (e.g. [17]) for an in-depth explanation. We only assume that the result
of a leakage attack is an n by m matrix w = (wq,...,wy,), w;; € Z". Each
column represents the likelihood information that we have about the values of a
respective key chunk, whereby we adopt the convention that larger numbers cor-
respond to smaller likelihoods. We also assume that there is a notion of ‘adding’
likelihoods, and this is defined by integer addition. Thus, we can determine the
weight (likelihood) of any (sub)set of subkeys by simply adding up weights. The
likelihood of a key k will be denoted pr, = > | w; 1,
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Table 1: All possible keys sorted by weight.

Remark 1. Different types of attack techniques may lead to different types of
matrix (i.e. some attacks might produce probabilities as outputs, others inte-
gers). There are existing techniques such as [3,23,28] that show that it is pos-
sible to ‘convert’ various side channel attack outputs to probabilities. Other
papers [20,19,4] discuss converting probabilities to integers (i.e. they enquire
regarding how much precision needs to be retained). In summary, whilst the
conversion of outcomes from typical leakage attacks to integer values is nor-
mally lossy, previous work shows that in well understood scenarios it can be
done and leads to sensible results.

2.1 Key Search with Additional Information

To ease further explanations, we now introduce a small example and use it to
motivate the notions of key rank, enumeration and search.

Ezample 1. Our illustrative toy example, which will run throughout the paper,
consists of a key that can be split into two subkeys, where each subkey can take
three different values {1, 2,3}. The target key ¢ in this example is t = (2,1). The
observed leakage has been turned into the matrix that contains the information
about how likely each of the values are:

01
w=110
32

Remember that lower weights indicate more likely values, and the weight of
the key can be derived by adding the weights of the subkeys. We can thus sort
the key combinations according to their overall weight, as shown in Table 1.

The weight of the target key ¢ is ps = wi 2 + w21 = 1+ 1 = 2. Thus in
an ordered list, it would appear after the keys with weights 0 and 1. There are
three keys with weights 0 and 1, hence the rank of the target key will be 3 (the
number of more likely keys®).

As should become clear from the example, we can define the rank of a key t
with respect to a weight matrix w in a natural manner.

5 Rank could be defined as keys with a lower or equal weight but considering a strictly
lower weight favours the adversary.



Definition 1 (Key Rank). Given an n X m matriz w and target key t, the
rank of the key t is defined as the number of keys k with a weight smaller than
the weight of t. Formally:

ranke(w) = {k = (k1, ..., km)|poe < pt}

In the context of an attack, where an adversary has access to a weight matrix
but does not know the target key ¢, the adversary will want to enumerate (and
test) keys with respect to their likelihood as given by the weight matrix. We
hence define key enumeration with respect to a weight matrix.

Definition 2 (Key Enumeration). Given an n X m weight matric w and
e € Z, output the e keys with the lowest weights (breaking ties arbitrarily).

Note that this definition only asks for the e most likely keys, and not that they
are returned in likelihood order. Optimal key enumeration would require exactly
that, i.e. output the e most likely keys k1, ..., k. in the order of their weights.

In certain scenarios (such as restarting an enumeration algorithm) the ad-
versary may require e keys from an arbitrary position in the key space. This is
captured by Extended Key Enumeration.

Definition 3 (Extended Key Enumeration). Given an n x m weight ma-
triz w and e, f € Z, output the e keys with the lowest weights (breaking ties
arbitrarily), after ignoring the first [ keys.

In this scenario the algorithm will output keys kfy1,..., ket f41-

Clearly to succeed in an attack, an adversary needs not just to enumerate
the most likely keys, but needs to check which one actually equals the target
key. This is achieved using a testing function T which behaves as follows:

lifk=t
0 otherwise

T(k) = {

More concretely, in the context of encryption; the testing function could
utilise one or more plaintext/ciphertext pairs together with the underlying scheme.

Ezxample 2. Consider an attack on the block cipher AES with 128 bit keys. We
assume that the adversary has access to a plaintext/ciphertext pair (m,c =
AES¢(m)), and an implementation of AES. In this situation T can be constructed
as follows:

[ 1if AESk(m) =c¢
T(k) = {0 otherwise

We can now define key search.

Definition 4 (Key Search). Given an n x m weight matriz w, a testing func-
tion T and e € Z, output any k;, with i < e, such that T(k;) = 1 and k; would
be output from enumeration, on input w and e. If no such i exists output L.

A similar definition can be given for Extended Key Search.
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(a) The original graph structure of [20] (b) The more efficient graph structure of [19]

Fig. 1: Two possible graph constructions for our running example (with W = 4).

2.2 Efficiently computing the rank of a key

We base our work on the key rank algorithm by Martin et al. [20] (along with the
improvements [19,15]). This might be surprising at first as we are aiming to con-
struct a quantum key search algorithm. However, Martin et al.’s rank algorithm
directly enables the construction of a quantum-compatible key search algorithm.
Therefore we now briefly sketch the working principle of their algorithm.

An integer parameter W is fixed, which denotes the target weight, or the
largest weight that should be considered. A graph is specified with n-m - W + 2
vertices, according to the following simple rules (described informally). Two
vertices are called ‘Accept’ and ‘Reject’ and these are sink vertices. The other
vertices are called v; ., for i € [1.m],j € [1..n], and w € [0..W — 1]. Each has
out-valency two, so that each such vertex v; ;., has a ‘right child’ that represents
the idea that k; = j (consider the ith subkey selected) and a ‘left child’ that
represents the idea that k; # j (consider the ith subkey yet to be determined).
A path from vy,;0 to ‘Accept’ will take exactly m ‘right’ forks, so that each
subkey is selected exactly once on the path, so that the path effectively selects
a whole key. A path will only reach ‘Accept’ if the total accumulated weight
from these selections is kept below W, otherwise it will divert to ‘Reject’. The
number of paths from v; 1,0 to ‘Accept’ is therefore constructively identical with
the number of keys having weight strictly less than W, and therefore is actually
the rank of any key having weight exactly W, if one such exists.

Ezxample 3. We construct a graph for our running example and choose the target
weight W to equal 4, i.e. we want to know how many combinations of subkeys
lead to a key with weight strictly smaller than 4. Our graph hence contains



2-3-4+2 vertices and can be drawn in a ‘flattened’ version, as shown in Fig. 1a.
The upper ‘half’ corresponds to the first subkey, and the lower half to the second
subkey. The vertices in each column represent the current weight. To draw the
graph, we begin at the start node S (v1,1,), and then draw the right child (it
points to a vertex representing the first value of the second subkey with the
correct weight vg 1 9) and the left child (points to a vertex representing the next
value in the subkey v; 20, unless it is the last value in which case it points to
reject — these are omitted for readability).

The right child of S points to weight 0 in the next subkey (because the weight
of having k1 = 1 equals zero in our example), and the left child points at the
weight 0 in the next row (because we are not choosing the element so the weight
remains unchanged). Suppose we now consider the vertex vs 1 9. This again has
two children. The right child corresponds to choosing the first value of subkey
2, which has weight 1. Hence the total weight is 1, which is smaller than 4 and
thus the right child goes into the accept node. The left child corresponds to
not choosing the first value, but considering the second value (v 2¢). The other
paths in the graph are generated according to the same principles.

The algorithm to compute the key rank counts all paths that lead to the
accept node. Consequently, by augmenting the algorithm to also store the cor-
responding subkeys that are visited on those paths that lead to accept, this
algorithm immediately gives rise to a key enumeration algorithm. There are
different considerations (in particular the choice of ordering, which impacts on
memory complexity) when implementing this principle and [20] discusses these
in great depth. In recent work, the algorithm was further simplified and made
more efficient by slightly changing the recurrence relation that iterates through
the graph [19]. Further work gave evidence that there might be still a (signifi-
cantly) faster key rank algorithm possible: [15] contains an algorithm ‘Threshold’
which proves to be the fastest among the compared algorithms, but at the sig-
nificant disadvantage that it does not support extended key enumeration. Since
the Threshold algorithm does not support ranking between two weights, it is not
suitable for our purpose.

3 Key Ranking Leading to Faster Enumeration.

The key rank algorithm in the previous section constructed a graph (and counted
paths in it) by using right children to move ‘down the graph into the next chunk’
and left children to indicate that a value had not been selected. Thus every node
had exactly two outgoing edges. However, the graph could be compressed by
allowing vertices to have multiple outgoing edges, resulting in a two, instead of
three, index system. This was explored, and shown to be more efficient, in [19].

Ezxample 4. We refer again to our running example. Let v; correspond to the
row, in the graph, for the i*" key chunk. The start node now points to 3 vertices
representing the three possible values the subkey could take. The vertices for the
second subkey have edges going to accept if and only if adding the weight for the



respective value results in a total weight smaller than W. Figure 1b shows the
corresponding graph. There are three edges from vy o to the accept node because
all three weights in wy are smaller than 4. There are two edges from vy ; to the
accept node because two weights of ws are smaller than 4 — 1 = 3. There is only
one edge possible from v; 3 because only one value of ws is small enough such
that the overall weight is smaller than 4.

Our key observation is that the number of vertices from the edge to the accept
node can be written down in a simple and elegant manner. Let us consider the
vertex v; ,, for the pair (7, w). The vertices v; 4, for ¢ < m, have out degree n (v; 4,
has an edge to viy1,wiw,,; for 1 < j < n (when w+ w;; < W)). Let there also
be an accept node (which is a sink) such that vy, ., has edges to the sink when
Wp,j < W —w. With this we can define a matrix b, where b; ,, stores how many
paths there are from v;,, to the sink. Since each path from v, o corresponds to
a key with weight at most W, this gives a representation that is equivalent to
the graph. The equations for constructing b are given below.

bi,w = Zbﬂ*lwaﬂUz‘,]‘ for i <m (1)
J=1

b = Z Hwpm,; <W —w} (2)
j=1

where 1(-) returns 1 if the expression evaluations to true and 0 otherwise.

The array index by o contains the rank of the key with score W. It is assumed
that b; ,, = 0 for all 1 <4 <m if w > W. Correctness follows from [20].

In order to compute by o we start by filling in the values for by, ,, for 0 < w <
W (using Eq. 2) and then fill in b; ,, working backwards over the i’s (using Eq. 1).
Each b; ; is computed and stored once. Since there are m-W array elements each
of which look at n b; ;’s and then write an integer of size m - logn (since there
are n™ total keys), the total time complexity is O(m? - n - W -logn).

As b contains m - W elements, each of which contains an integer of size
m - logn, the required space is O(m? - W -logn).”

It is possible to change the rank algorithm such that it counts all keys with
weight in a particular range, instead of weight less than a target. We refer to
this algorithm as Rank(w, W7, W5), and define it formally in Alg. 6 (App. A).
This helps to meet the extended key enumeration definition and will be required
for our new enumeration algorithm. To achieve this Eq. 2 is replaced with the
following:

n
b w = Z 1{W —w < wy,; < We —w} (3)
j=1
" Martin et al. [20] show how to tweak their algorithm such that the entirety of b does

not have to be stored. However, for enumeration, repeat access to b is required and
thus this is not applicable.



Algorithm 1 An algorithm for requesting particular keys
function getKey(b, w, Wy, Ws, r)
if r > by then return | end if
k « [0]™
w <+ 0
fori=1tom—1do
for j =1tondo
if r < bi+1,w+wi,j then
W — W+ wj
break j
end if
TAT— bi+1,w+wi,]-
end for
end for
for j =1ton do
if r <1{W1 —w < wy,; < Wy —w} then

km < J
break
end if
’I”(—T—]_{Wl—’LUS’LUmJ' <W2—w}
end for
return k

end function

We assume that an algorithm exists that ‘fills’ b with the correct values for
weights [W7q, W3), called Initialise(w, Wy, W), which is formally defined in Alg. 4

(App. A).

The getKey algorithm We will require an algorithm getKey (b, w, Wy, Wa, 1)
which returns the r*" key with weight between W; and W3 to design a quantum
search algorithm with side channel advice.® This can be achieved utilising the
data structure b, as shown in Alg. 1.

Correctness of getKey follows from the correctness of b. Since the algorithm
is deterministic it is clear that given the same r twice it will return the same key
and that, due to its similarity to Depth First Search, no key will be returned
twice, for different r. Thus we are able to talk about the r*" key. This is also
important for the quantum and classical enumeration algorithms that follow.
The algorithm has to assign values to each of the m subkeys, which can involve
up to n comparisons of integers of size m -logn. This gives the algorithm a time
complexity of O(m? - n -logn).

8 The 7" key does not have to be the r*" most likely key in this range, any arbitrary
ordering will suffice.



Algorithm 2 The key search algorithm
function KS(w,e, T)
Wl <~ Wmin
Wy — Whiin + 1
step < 0
Choose W, such that Rank(w, 0, W,) is approx e
while W, < W, do
k + keySearch(w, Wy, W5, T)
if & #1 then return k end if
step < step + 1
W1 < WQ
Choose Wy such that Rank(w, Wy, Ws) is approx a®t¢?
end while
return |
end function

3.1 A Faster Classical Enumeration Algorithm

The getKey algorithm given in Alg. 1 can trivially be converted into an algorithm
which enumerates all keys, with weight in the range [W7, W3).

If there are e keys in the range [W;, Ws), the keyEnumerate algorithm simply
runs getKey e times, giving a total time complexity of O(m?-n- Wy -logn +e-
m? - n -logn). The original algorithm by Martin et al. [20] has time complexity
O(e - m?-n - Wy -logn). Therefore, the new algorithm is considerably faster.
Since our algorithm can be split into enumeration ranges, it can be made highly
parallelisable using techniques from [15]. As there is a trade off between range size
and runtime, we will discuss this is more detail (for a single machine) below. A
formal description can be found in Alg. 5 (App. A). Correctness of keyEnumerate
follows from the correctness of getKey?”.

To convert the enumeration algorithm into a key search algorithm keySearch,
rather than storing the keys they would be tested using T. Upon finding the
correct key the algorithm terminates, otherwise (if all keys in the budget have
been tested but the key was not found) the algorithm returns L.

Combining together the above algorithm with the techniques for searching
over partitions independently gives the key search algorithm in Alg. 2. To con-
struct our algorithm, we draw inspiration from the algorithm of Montanaro [21].
It works by partitioning the search space into sections whose size follows a geo-
metrically increasing sequence using a size parameter a = O(1). This parameter
is chosen such that the number of loop iterations is balanced with the number of

9 The keyEnumerate algorithm could be made more efficient by directly adjusting
getKey instead of calling it multiple times in a disjoint manner. The bottleneck
that arises is that getKey(b,4) and getKey(b,7 + 1) might perform a lot of similar
work to output the key, for example they may have the same m — 1 first subkeys.
This can be avoided using backtracking to produce keys in a manner similar to depth
first search.

10



keys verified per block. It is fairly straightforward to see that this is the optimal
choice (it follows similar ideas to the Exponential Search Algorithm [2]).

3.2 Total Runtime

The algorithm starts by finding W,, which takes O(m?-n-W,, 4z -log n+log Wiaz)
time,'® where W,,q, is the key with the largest weight. Since the algorithm
searches e keys such that approximately a® keys are tested at each iteration s,
the loop will iterate O(log, €) times.

On iteration s, the call to keySearch takes O(m?-n-Ws-logn+a®-m?-n-logn).
Finally the call to calculate Wy costs O(log W) uses of Rank(), as Wy < W, we
can binary search up to W, instead of Wy,4,. Putting it all together gives an
asymptotic time complexity of O(m?-n-logn(W,,a. +e+We-loge)). See App. B
for the derivation details.

4 Quantum Key Search

Finally we are in a position to give the novel quantum search with side channel
advice algorithm, which achieves, at least, a quadratic speed-up over the classi-
cal key search. We heavily rely on Grover’s algorithm [9], which is a quantum
algorithm to solve the following problem: Given a black box which returns 1 on a
single input x, and 0 on all other inputs, find x. If there are X possible inputs to
the black box, the classical algorithm uses O(X) queries to the black box — the
correct input might be the very last input tested. However, a version of Grover’s
algorithm solves the problem using O(v/X) queries, with certainty [10,11,5]. We
actually require a slight variant which can support having either zero or one
inputs on which the testing function returns 1, at the cost of one extra query.

Our QKS algorithm based on this subroutine is given in Alg. 3. The algorithm
is nearly identical to the classical KS one given in Alg. 2. The crucial difference is
the work done within the loop. Since Grover’s algorithm is being called instead
of keySearch, some of the work classically done in keySearch must be done within
the loop, so that it is compatible with Grover. The algorithm must generate the
array b, construct a testing function which takes in a ‘key index’ instead of a key
and convert the index output back to a key. Otherwise, the algorithm behaves
exactly the same as the classical algorithm.

4.1 Total Runtime

Assuming a coherently addressable quantum RAM (QRAM) model [7] for read-
ing the data structure b in quantum superposition, the time complexity can be
assessed as for the classical algorithm. The only exception is that at iteration s,
the algorithm makes O(a?) calls to getKey instead of the a® calls classically. It

10 As shown by Martin et al. [19]. The initial (9(m2 N - Wiaa - logn) can be reused by
future queries reducing their work to O(log Wiaz).

11



Algorithm 3 The quantum key search algorithm
function QKS(w,e, T)
Wl <~ Wmin
Wy — Whiin + 1
step < 0
Choose W, such that Rank(w, 0, W,) is approx e
while W, < W, do
b « Initialise(w, W1, Ws)
f(-) « T(getKey(b, w, W1, Wa,))
Call Grover using f for one or zero marked elements in range [W7, Wa)
if marked element ¢ found then return getKey(¢, Wy, W5) end if
step < step + 1
Wi < Why
Choose Wy such that Rank(w, Wy, Ws) is approx a®*P
end while
return |
end function

can be shown that the time complexity of the total calls that Grover’s algorithm
makes to getKey is O(y/e-m? - n-logn), shown in App. B. Combining this with
the classical analysis of the rest of the algorithm gives the total time complexity
of O(m? -n -logn(Wax + e+ W, -loge)).

While the classical and quantum time complexities look fairly similar, we get
a quadratic speed-up because the parameters m,n, W are attack dependent and
tend to be fairly small. For example, for typical attacks on AES-128, m = 16 and
n = 256. The weights W are normally controlled by the attacker using a precision
parameter and thus unlikely to grow large. Thus the dominating variable is the
number of keys enumerated, which gains a quadratic improvement in a quantum
setting.

Conclusion We demonstrated that it is possible to leverage the power of a
side channel attack in the quantum setting. Our quantum key search with side
channel advice thus benefits from a quadratic improvement over a classical key
search. Clearly our work is restricted to the setting of ‘classical’ side channel
attacks that follow a divide and conquer principle, which result in information
about subkeys independently. However, this setting is very common and applies
to attacks such as differential and simple power (EM, timing, cache) analysis.
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A Additional Algorithms

For completeness, in this appendix we give any additional algorithms required
for implementation of the key search algorithms.

Algorithm 4 The initialise algorithm to generate b

function Initialise(w, W1, W2)
b [[0]"2)"
for w=0to Wy —1do
for j =1tondo
bm,w — bm,w + 1{W1 —w < Wim,; < Wy — w}
end for
end for
for i =m — 1 down to 1 do
for w=0to Wy —1do
for j =1tondo
if w4+ ws; < Wa then
bij = bij + bit1,wtw,
end if
end for
end for
end for
return b
end function

Algorithm 5 A new enumeration algorithm

function keyEnumerate(w, Wy, Ws)
K« {}
b «+ Initialise(w, W7, Wa)
k+ 0
r<1
while True do
k < getKey(b, w, Wy, Wa, 1)
if kK =1 then break end if
K + KU{k}
r—r+1
end while
return K
end function
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Algorithm 6 The key rank algorithm
function Rank(w, Wy, Ws)
b «+ Initialise(w, W7, Ws)
return b, o
end function

B Time Complexity Calculations

The time complexity of the classical key search algorithm was derived using the
following calculations:

m?-n-Was - logn + log Whiae
llog, e+1]
+ Z (m?-n- Wy -logn+a®-m?-n-logn + log W)
s=0

=m"-n- Wiy -logn +log Winaa
llog, e+1]
+e-m?-n-logn + Z (m?-n - Wy -logn + log W)
s=0

<m*-n-Wpas - logn + log Wi,az

+e-m?-n-logn+ (log, e +2)(m?* - n - W, - logn + log W,.)
=m?-n-logn(Wae + ¢+ (log, e + 2)W.) + (log, e + 2) log W, + log Wiae
= O0(m? - n -logn(Wiae + e+ W, - loge))

Where the classical algorithm made a® calls to getKey for iteration s of the
loop, Grover’s algorithm makes [ 7§ -a3]+1 calls [10,11,5]. The time complexity of
total calls to getKey, made by Grover’s algorithm, can be calculated as follows:

[log, e+1] -
Z ([Z~a%1+1)~m2~n~logn
s=0
|log, e+1] -
=m?-n-logn-( Z% ([Z~a%]+1))
- |log, e+1]
§m2~n-logn~(2logae+4+z- ; a?)

Wl

- llog, e+1]
zmz-n~logn-(210gae+4+z-/ a
Ve)

=0
T T-a
—92.m2.-n-1 - (1 94 =
m”-n-logn- (log, e+ +4+4lna
=0O(Ve-m? -n-logn)

)
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