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Abstract

Cost-aware cut-and-choose game is a fundamental technique that has many cryptographic
applications. Best existing solutions of this game assumed for simplicity that the number of
challenges is publicly known. This paper considers an extension of this game where the number
of challenges can be picked probabilistically and hidden to the adversary. Although this small
change leads to a linear program with infinitely many variables and constraints, we discover a
surprising efficiency solver — using only O(n2) space and O(n2) time where n is the upper-bound
on the number of challenges allowed in the strategy space. We then prove that n is bounded
for any fixed cost ratio, implying the optimality of our solution extends to the strategy space
that allow any number of challenges. As two interesting applications of our game solver, we
demonstrate its value in constructing an actively secure two-party computation protocol and an
optimal prefix-free code for encryptions.

1 Introduction

Consider a two-step probabilistic game Cut-and-ChooseA,C(t, r, ε) between an adversary A and a
challenger C.

1. A creates and sends t boxes. Each of the t boxes is either empty or filled.

2. C (without looking at any box) arranges the t boxes into two groups, S0 and S1. C pays
|S0|+ r · |S1| units of cost for her arrangement (where |S0| and |S1| are the sizes of S0 and S1,
and r is a positive constant parameter of the game).

Per outcome, A wins the game if and only if every box in S0 is filled meanwhile every box in S1

is empty. It can be regarded as a zero-sum game where the utility is the winning odds. However,
unlike traditional treatment of zero-sum games, here we introduce a metric of cost that is relevant
to one of the two players (i.e., C) and aim to study optimal strategies achieve certain utility while
minimize the cost. Note that the utility and the cost are two separate metrics that never mix up.
E.g., the |S0|+ r · |S1| units of cost C pays at step 2 should not be counted into A’s utility gain.

Interesting questions about this game include, What is the minimum expected cost for C to
guarantee her winning odd of at least 1− ε? How should C play to achieve this? Their equivalent
dual questions are, Given a particular budget, what is the maximum probability that C can win?
How should C play to achieve this?
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1. A creates and sends boxes that are either empty or filled until C tells him to stop.

2. C samples an integer t and instructs A to stop right after t boxes are received. C arranges
the t boxes into two groups, S0 and S1, and pays |S0|+ r · |S1| units of cost (where |S0|
and |S1| are the sizes of S0 and S1).

Outcome: A wins the game if and only if every box in S0 is filled meanwhile every box in S1

is empty.

Figure 1: The extended cut-and-choose game ExtCnCA,C(r, ε)

While this game can be efficiently solved through mapping it into a continuous backpacking
problem [23], we consider, in this paper, an extension of the above game where the total number
of challenges, t, will be randomized and A learns t only after t boxes are prepared and sent. We
formalize the extended cut-and-choose game in Figure 1. While this small change offers C a better
chance to win, it raises several more challenging questions:

1. Can we precisely quantify the benefit of C due to allowing t to be randomized?

2. How should C pick t to maximize her benefits? Does it make sense to allow t→∞?

3. What is C’s optimal game play?

Practical values of these questions will be evident in concrete applications given below.

1.1 Motivation

Solutions to the extended cut-and-choose game ExtCnCA,C have applications in two very different
contexts. First, it can be used to force honest behavior in executing cryptographic protocols. Second,
the idea leads to an efficient prefix-free source coding scheme designed to encode encryptions. We
will give the mathematical models for both problems and show their equivalence in Section 2.

Forcing Honest Behavior. Cut-and-choose serves an important technique to ensure security of
cryptographic protocols against malicious adversaries who can deviate from the protocol in arbitrary
ways to violate security. To force honest behavior, the idea is to first require the potential adversary
to repetitively run its protocol steps (with a fresh random tape every time); then only a subset of
the runs will be used to accomplish the protocol while the rest are checked to verify honest behavior.
In this context, A “preparing a filled box” corresponds to “running the cryptographic protocol
honestly” but “preparing an empty box” corresponds to “deviating from the prescribed protocol”;
while C “placing a box in S0” corresponds to “checking” the execution and “placing a box in S1”
corresponds to “using” the execution to accomplish the cryptographic protocol. Moreover, the
cryptographic protocol is designed such that a security failure corresponds precisely to “A wins the
cut-and-choose game”, whose probability will be bounded by a known parameter ε. Arranging the
boxes into two groups is analogous to challenging the adversary with one of two choices, for which a
cheating adversary can’t properly respond in both ways. We note that the cost ratio parameter r
reflects that the costs between the two ways to challenge the adversary can be different (i.e. when
r 6= 1).

The cut-and-choose technique has been used in protocols for fair exchange of digital currency [2],
zero-knowledge proofs [5], secure delegation of computation [9], and secure two-party computation [18,
15, 7, 1]. To appreciate the cost gaps between different types of challenges, we first look at the
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Zero-Knowledge Proof of Knowledge protocol for Hamiltonian cycles [5] as an example. In this
protocol, the parties need to de-commit and verify either a matrix (|V |2 items) representation of
an isomorphic graph or a specific Hamiltonian cycle (|V | items), where |V | denotes the number of
vertices in the graph, hence r = |V | (recall that |V | has to be large enough for security to hold). In
secure computation settings, researchers have also realized that the cost ratios are affected by many
factors including the choice of cryptographic primitives and the software/hardware environment,
thus can variate in a wide range (e.g., 10–1000) in practice [1, 23].

Cut-and-choose was first applied to cryptographic protocol design without taking into account
the cost difference in different types of challenges [18, 15, 7, 2, 9]. More recently, Zhu et al. [23]
presented a cost-aware, game-theoretical analysis of cut-and-choose games and demonstrated a
1.1–3.5x speedup (for r ranging from 4 to 1024) using some mixed strategies. However, they assumed
for simplicity that the total number of challenges (i.e., t) is publicly fixed in advance so that the best
strategy for C can be found by solving a linear program of only t variables and 2t + 1 constraints.

However, in these protocols, the total number of challenges, t, does not need to be publicly fixed
in advance. Instead, t can be picked secretly and revealed to A only after t challenge-responses
are done (though, in one round). Intuitively, this enhancement offers C additional advantage.
Unfortunately, solving such games requires solving an extended linear program with infinitely many
variables and infinitely many constraints! Note that even finding an sub-optimal strategy assuming
t < n for a fixed n can be difficult, as there will be O(2n) pure strategies to choose from and the
resulting linear program still has exponentially many variables and constraints. Thus, a priori, the
problem seems exponentially hard.

Optimal Prefix-free Codes of Encryptions. Suppose one would like to use a prefix-free code
to transmit a long stream of encryptions. Prefix-free code, also known as instantaneous code, is
a variable-length code in which no valid codeword can be a prefix of any other valid codeword.
It allows efficient one-pass decoding without needing any “out-of-band” special markers between
codewords. For regular messages of a known distribution, Huffman code can be used to generate
prefix-free codewords in a way that reduces the overall length of the encoded message.

We aim at achieving a similar effect as what Huffman code brings to regular messages, but in a
setting distinguished by two modifications:

1. The input is a stream of encryptions, hence, by security definition, the symbols always appear
uniformly-distributed regardless of the symbol-length. (So Huffman code won’t help to reduce
the cost here.)

2. The cost differs between handling a 0 signal and a 1 signal. But we aim to minimize the
overall cost of handling the encoded message. (In contrast, traditional Huffman code assumes
metric where a 0 costs the same as a 1.)

This special setting is well-motivated by many real-world applications. On the one hand, the
ubiquitous use of encrypted channels leaves most of the network (or storage) devices only having
access to encryptions, which makes existing prefix-free codes inapplicable. Secondly, it is not
uncommon to see cost metrics where handling a 0 differs considerably from that of a 1. Cost metrics
of this property can be time (like wtih Morse code or certain Solid-State Drives technologies [20, 4, 17],
transmitting/writing a 1 takes more time than a 0), energy (since 1 would be represented by a high
voltage/frequency signal whereas 0 by a less costly low voltage/frequency signal), or even error
probability (since, with some media, 1s are more susceptible to interference than 0s, hence more
costly). Therefore, our goal is to construct a prefix-free code with minimal overall cost.

The more general topic of unequal-cost Huffman codes, which does not constrain the input
symbols to appear in uniform distribution like we do, has been intensively studied in the theory
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literature [13, 11, 14, 6, 16]. However, this work approaches the problem from a unique angle
— focusing on uniformly distributed message-encryptions and gives practically highly efficient
encode/decode procedures that are proven to output optimal prefix-free codes.

1.2 Contribution

We model and solve the extended cut-and-choose game (Figure 1). Although this optimization
problem appears to involve an infinite number of variables and constraints, we identify an O(n2)-
space, O(n2)-time solver where n is the upper-bound of t. Since we prove that n can always be
bounded in an optimal strategy, solutions output by our solver are also optimal when compared to
strategies that allow t→∞ (Claim 10).

As a first application of ExtCnCA,C , we propose a cut-and-choose-based constant-round actively-
secure two-party computation protocol that incorporates the concrete strategies output by our
solver. In our protocol, the circuit generator (the A) keeps sending garbled-circuit-hashes (the
boxes) until being notified to stop through an asynchronous channel. Thus, no additional rounds
are needed. We formally present the protocol in Section G.2 and prove its security in the ideal/real
model paradigm (Section G.3). Given the same budget, our technique can thwart active attacks 2x
better than best existing work [23].

As a second application of ExtCnCA,C , we propose an optimal prefix-free code for encryptions
which exploits the cost differences between transmitting/writing 0s and 1s. Potential applications of
this code include storage controllers on encrypted SSDs and network transceivers handling encrypted
traffic.

2 Problem Statement

Mathematical Model. The extended cut-and-choose game ExtCnCA,C(r, ε) is formalized in
Figure 1. Let n be an upper-bound of t. Fixing n, we denote a pure strategy of A by an n-bit
binary string, a = a1 . . . an, where ai = 0 denotes making the ith box filled whereas ai = 1 denotes
making the ith box empty.1 Symmetrically, C’s strategy can be denoted by a binary string of length
t (t ≤ n), c = c1 . . . ct, where ci = 0 denotes C puts the ith box to S0 whereas ci = 1 denotes C puts
the ith box to S1. Thus, A’s strategy a = a1 . . . an wins a C’s strategy c = c1 . . . ct (t ≤ n) if and
only if ai = ci for all i ∈ {1, . . . , t}, namely, c is a prefix of a. For example, if n = 5, a = 10110 wins
all strategies c ∈ {1, 10, 101, 1011, 10110}.

Let xa be the probability that C groups the boxes according to a binary string a. Let zeros(a)
and ones(a) be the numbers of 0s and 1s in a, e.g. zeros(01011) = 2, ones(01011) = 3. Let len(a)
be the length of a. Let cost(a) = zeros(a) + r · ones(a).

Fixing n, the cut-and-choose game for a given ε and r can be modeled by the mathematical
program described in Figure 2. Note that the equality constraint (3) reflects that {a | a ∈ {0, 1}t, 1 ≤
t ≤ n} is a probability space. The constraint (4) expands to 2n individual inequalities, one for
each string in {0, 1}n. It reflects the requirement that no matter how A chooses his strategy a, his
winning odds is at most ε. This linear program has exponentially many (in terms of n) variables
(an xa for every a ∈ {a | a ∈ {0, 1}t, 1 ≤ t ≤ n}, and exponentially many constraints collectively
written as constraint (4). For a practically useful n (n > 20), it is computationally infeasible to
solve this linear program with black-box calls to state-of-the-art LP solvers.

Literally, solving ExtCnCA,C(r, ε) requires solving an array of instances of the above mathematical
program for all n ≤ ∞.

1We use Sans Serif letters to denote bit-string variables and fixed-width letters to denote bit variables or bit values.
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min
∑

xa · cost(a)

subject to
len(a) ≤ n (1)

xa ≥ 0, ∀a ∈ {0, 1}t, 1 ≤ t ≤ n (2)∑
xa = 1 (3)

xa1 + xa1a2 + · · ·+ xa1a2...an ≤ ε, ∀a = a1a2 . . . an ∈ {0, 1}n (4)

Figure 2: Modeling the cut-and-choose game for a fixed n. Due to symmetry, we can assume,
without loss of generality, that r ≥ 1. The linear program involves 2n+1 − 2 variables, i.e., an xa
for every a ∈ {a | a ∈ {0, 1}t, 1 ≤ t ≤ n}. The cost of cut-and-choose with each a is cost(a) =
zeros(a) + r · ones(a). The equality constraint (3) reflects the fact that {a | a ∈ {0, 1}t, 1 ≤ t ≤ n} is
a probability space. The constraint (4) expands to 2n inequalities (one for each string in {0, 1}n),
reflecting the requirement that however A chooses a, his winning odds is at most ε.

Modeling The Prefix-free Encoding Problem. In this context, we assume the alphabet for
the input ciphertext contains 2k k-bit symbols and the alphabet for the output encoding has 2t

variable length symbols. Assuming the ciphertext is produced with a cryptographically-secure
encryption scheme, then every input symbol occurs with equal probability in the ciphertext, i.e.,
1/2k. Borrowing the len and cost functions defined above and let a denote a codeword, hence
len(a) ≤ t and the cost associated with a is cost(a). Thus, the expected cost per codeword is∑

xa · cost(a) where xa ∈ {0, 1/2k} for all a. Upper-bound t by n, the mathematical program for
computing the minimal cost of the prefix-free code is

min
∑

xa · cost(a)

subject to
len(a) ≤ n

xa ≥ 0, ∀a ∈ {0, 1}t, 1 ≤ t ≤ n∑
xa = 1

xa1 + xa1a2 + · · ·+ xa1a2...an ≤ 2−k, ∀a = a1a2 . . . an ∈ {0, 1}n

xa ∈ {0, 2−k}, ∀a ∈ {0, 1}t, 1 ≤ t ≤ n.

The “prefix-free” property is guaranteed by the combination of the last three constraints, so for any
length n string, only one of its n prefixes can be a valid codeword. By solving the above program, we
can identify exactly 2k ordered codewords whose associated xa are non-zero. An optimal encoding
algorithm simply maps the 2k input symbols to these 2k codewords.

Comparing to the mathematical program of ExtCnCA,C (Figure 2), the mathematical program
for prefix-free codes has the same target function and almost the same constraints, except replacing
ε with 2−k and (2) adding a 5th constraint: xa ∈ {0, 2−k}, ∀a. Thus, an optimal solution for the
program of Figure 1 will also be an optimal solution to the above program if the solution also
satisfies the constraint that xa ∈ {0, 2−k}, ∀a, a fact we will prove as Claim 8. Thus, we can restrict
our attention to solving ExtCnCA,C .

Roadmap. We first describe an efficient solver to ExtCnCA,C(r, ε) for any fixed n (Section 3), then
show how to generalize this result to the setting where n→∞ (Section 4). Finally, we quantify the
benefits of our approach in the two motivating applications (Section 5).
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Other Notations. Let R be the set of real numbers, Q be the set of rational numbers, and Z be
the set of integers. Fix r ∈ Q, we use Z[r] to denote the set

{
a + b · r

∣∣ a, b ∈ Z
}

. For all x ∈ R,
we define 〈x〉 = (|x|+ x)/2. Unless specified otherwise, throughout the paper we denote by ε the
probability that A wins the game, r the cost ratio between the two types of challenges, and n the
fixed upper-bound on the number of challenges.

3 Solve ExtCnCA,C(r, ε) for bounded t

We will show a surprisingly efficient solver for ExtCnCA,C(r, ε). Theorem 1 states its efficiency.

Theorem 1. Given a cost ratio r ∈ Q, a security parameter 0 < ε ≤ 1, and a bound n on t, the
linear program of Figure 2 can be solved using O(n2) space and O(n2) time.

Note that it suffices to consider the case where r ≥ 1 as the game structure is symmetric. In
addition, if n < dlog(1/ε)e, then

∑
xa ≤

∑
a ε ≤ 2nε < 1, namely, constraint (3) can’t be satisfied.

So it suffices to assume n ≥ dlog(1/ε)e. Our proof below is constructive and suggests concrete
game-playing strategies.

3.1 Intuition and Insights

Let ya = ε · xa and v = 1/ε, the original linear program (Figure 2) can be reformulated as

min v ·
∑

ya · cost(a)

subject to

len(a) ≤ n

ya ≥ 0, ∀a where len(a) ≤ n∑
ya = v

ya1 + ya1a2 + · · ·+ ya1a2...an ≤ 1, ∀a = a1a2 . . . an ∈ {0, 1}n.

Because v is a constant solely determined by ε, we can leave it out from the target formula for
now and focus on solving a variant linear program (Figure 3) with respect to v, r. Let gn(v) be the
solution (the minimal cost) to this variant LP. If we know how to compute gn(v) efficiently given
r, v, then we can solve the original LP (Figure 2) for r, ε by computing (1/ε) · gn(1/ε). Hence, from
this point on, we restrict our attention to the LP variant for 0 < v ≤ 2n.2

min
∑

ya · cost(a)

subject to
len(a) ≤ n (1 revisited)

ya ≥ 0, ∀a ∈ {0, 1}t, 1 ≤ t ≤ n (2 revisited)∑
ya = v (5)

ya1 + ya1a2 + · · ·+ ya1a2...an ≤ 1, ∀a = a1a2 . . . an ∈ {0, 1}n (6)

Figure 3: The variant linear program.

2Although we only care about solutions for v ≥ 1 (as ε ≤ 1), for the sake of inductive proof, it is convenient to
generalize the problem to also considering 0 < v < 1.
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We will begin with finding the closed form formulas of g1(v) and g2(v) (Appendix A shows the
detailed steps to derive g1(v) and g2(v)):

g1(v) =

{
v 0 ≤ v ≤ 1

v + (r − 1)(v − 1) 1 < v ≤ 2.

g2(v) =


v 0 ≤ v ≤ 1

v + (r − 1)(v − 1) 1 < v ≤ 2

v + (r − 1)(v − 1) + 2(v − 2) 2 < v ≤ 3

v + (r − 1)(v − 1) + 2(v − 2) + (r − 1)(v − 3) 3 < v ≤ 4

The formulas of g1(v) and g2(v) hint for a conjecture that gn(v) may be a continuous piece-wise
linear functions of v for all n, with integer turning points. That is, gn(v) =

∑2n−1
i=0 Gn[i] · 〈v − i〉 for

some array Gn of constants solely determined by r (r ∈ Q, r ≥ 1).

Roadmap for the rest of this section. We first define a related linear program (Figure 4) and
relate its solution to that of the linear program of Figure 3 by Claim 2 and Claim 3. Then, we
prove that gn(v) is a continuous piece-wise linear function of v (Claim 4) by mathematical induction
where Lemma 11 serves the base step of the proof and Lemma 12 and 13 provide the inductive step.
Note Lemma 12 and 13 are proved using Claim 3 and 2, respectively.

Next, we show how to efficiently compute gn(v) using only O(n) space. The key insight is that
most entries in gn(v)’s coefficient array Gn are zero (Claim 6), although Gn has 2n entries.

Finally, we show how to derive optimal strategies for C to actually play the generalized cut-and-
choose game. While a näıve description of the optimal strategy requires exponential space, our key
idea to overcome this high demand in space is to provide an efficient algorithm (Algorithm 1) for C
to sample her optimal strategy distribution.

3.2 Formal Analysis

We now introduce another linear program variant described in Figure 4. Compared with the LP of
Figure 3, this new LP has the same target formula as the original LP of Figure 2 and considers a
more restrictive strategy space—only strategies that start with 0. Thus, the number of variables
involved in this new LP is roughly halved, reducing from 2n+1 − 2 to 2n − 1.

min
∑

ya · cost(a)

subject to
ya = 0, ∀ a = 1‖{0, 1}t, 0 ≤ t ≤ n− 1 (7)

len(a) ≤ n (1 revisited)

ya ≥ 0, ∀ a ∈ {0, 1}t, 1 ≤ t ≤ n (2 revisited)∑
ya = v (5 revisited)

ya1 + ya1a2 + · · ·+ ya1a2...an ≤ 1, ∀ a = a1a2 . . . an ∈ {0, 1}n. (6 revisited)

Figure 4: The linear program variant defining fn(v). (“‖” denotes concatenation.)

Let gn(v) be the solution to the LP of Figure 3, and fn(v) be the solution to the LP of Figure 4.
Now we derive two important reductions between gn(v) and fn(v).
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Claim 2. For any v ∈ R+ and v ≤ 2n,

gn(v) = min
0≤u≤v

{
fn(u) + fn(v − u) + (r − 1)(v − u)

}
.

For every r, we thus define un(v) to be the u value that minimizes gn(v).

Claim 3. For any v ∈ R+, v ≤ 2n and integer n ≥ 1,

fn+1(v) = v + min
max(0, v−1

2n−1)≤t≤1

{
t · gn

(
(v + t− 1)/t

) }
.

We will prove both claims above algebraically in Appendix B, but illustrate them here more
intuitively with Figure 5. Envision an n-layer (numbered from 0 to n− 1) perfect binary tree where
all left-edges are associated with 0 and all right-edges with 1, hence every node on layer t can be
identified by a unique t-bit string a. We can assign a non-negative weight ya to the node a and
compute for every a its weighted-cost yacost(a). Computing gn(v) for the linear program of Figure 3
is equivalent to finding a weight-assignment to every node in the tree (except the root node which
corresponds to the empty string) that minimizes

∑
yacost(a) while satisfying the constraints that∑

ya = v and the sum of weights along any path is less than or equal to 1 (Figure 5a). Computing
fn(v) for the linear program of Figure 4 equates to finding a similar weighted-cost-minimizing
weight-assignment, but over a slightly different n-layer tree, where a perfect binary sub-tree of n− 1
layers connects to the root with a 0-edge (Figure 5b). Claim 2 states that solving gn(v) equates
to finding a u value to partition v into u and v − u such that fn(u) + fn(v − u) + (r − 1)(v − u)
is minimized (Figure 5c), where fn(u) is the minimum cost of the dash-line-delineated sub-tree
with quote u and fn(v − u) + (r − 1)(v − u) is the minimum cost of the rest (dot-line-delineated)
part of the tree with quote v − u (note the addend (r − 1)(v − u) is needed to compensate the fact
that fn(v − u) assumes the weighted-cost contribution of the root-connecting 0-edge is (v − u) · 1
whereas here it is a 1-edge that contributes a weighted-cost of (v − u) · r). Claim 3 states that
computing fn+1(v) can be viewed as finding the best t such that v+t ·gn((v−(1−t))/t) is minimized
as 1 − t weight is associated to the root of the n-layer sub-tree (Figure 5d). Note that gn takes
(v − (1− t))/t as input because (a) after (1− t) weight is assigned to the root of the sub-tree, only
v − (1− t) quote is left to the rest of the sub-tree; and (b) gn requires all weights to be normalized
to compare with 1, so we normalize v − (1− t) to (v − (1− t))/t and scales gn((v − (1− t))/t) back
to t · gn((v − (1− t))/t) afterwards. Finally, we stress that the addend v is needed to account for
the weighted-cost contributed by the root-connecting 0-edge.

Given the base case solutions g1 and g2, Claim 2 and Claim 3 suggest a recursive algorithm to
compute gn for every n: given gk, we first derive fk+1 from gk using Claim 3, then derive gk+1 from
fk+1 using Claim 2. Also based on this observation, we prove by mathematical induction that gn is
a continuous piece-wise linear function expressible by a closed-form formula (Claim 4). Additionally,
we show that the induction steps can be efficiently computed using memoization because there are
only O(n) non-zero entries in the coefficient arrays of gn and fn (Claim 6).

Claim 4. Let gn(v) be the solution to the linear program of Figure 3. Then for every n ∈ Z+ and
v ∈ R+, v ≤ 2n,

gn(v) =

2n−1∑
i=0

Gn[i] · 〈v − i〉,

where Gn is an array of 2n non-negative constants uniquely determined by r (the cost ratio).
Moreover, for every n ≥ 2, Gn[0] = 1, Gn[1] = r − 1, Gn[2] = 2, and ∀ 0 ≤ i ≤ 2n − 1, Gn[i] ∈ Z[r].
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Figure 5: Intuitive interpretation of Claim 2 and Claim 3

Claim 5. Let fn(v) be the solution to the linear program of Figure 4. Then for every n ∈ Z+ and
v ∈ R+, v ≤ 2n,

fn(v) = v +

2n−1−1∑
i=0

Fn[i] · 〈v − i〉,

where Fn is an array of 2n−1 non-negative constants uniquely determined by r (the cost ratio).
Moreover, for every n ≥ 3, Fn[0] = 0, Fn[1] = r + 1, Fn[2] = 1, and ∀ 0 ≤ i ≤ 2n − 1, Fn[i] ∈ Z[r].

We prove the above two claims in Appendix C. In addition, the proof of the inductive step
(Lemma 12) gives a simple algorithm to derive fn+1 from gn: setting Fn+1[0] := 0, Fn+1[1] := r + 1,
Fn+1[2] := 1 and Fn+1[i] := Gn[i] for all i ≥ 3.

The proof of the inductive step (Lemma 13) also gives a simple two-step linear algorithm to
derive Gn from Fn:

1. For 0 ≤ i ≤ 2n − 1, compute An[i] := 1 +
∑i

j=0 Fk[j] and Bn[i] := r +
∑i

j=0 Fk[j].

2. Merge An and Bn into a non-decreasing array Hn (with length 2n+1−2), and set Gn[0] := Hn[0]
and Gn[i] := Hn[i]−Hn[i− 1].

The key insight that establishes the efficiency of our approach is that Gn is fairly sparse, a fact
we formally state below and prove in Appendix D.

Claim 6. The array Gn contains at most O(n) non-zero entries.

Claim 6 implies the following corollary.

Corollary 7.

1. The array Fn has at most O(n) non-zero entries because Fn differs from Gn−1 at only the
first three entries.

2. For the array An defined in the proof of Lemma 13, there are at most O(n) position i where
An[i] 6= An[i + 1].

3. The piece-wise linear function un(v) can be succinctly represented in O(n) space, namely
recording the O(n) An[i]s positions’ in Hn (where An[i] 6= An[i + 1]).
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3.3 Obtaining An Optimal Strategy

Fixing n, we have shown how to efficiently compute the minimum expected price C has to pay to
win the cut-and-choose game with probability at least 1− ε. But what strategy should C use to
actually achieve that minimum cost?

Note that a näıve representation of the randomized optimal strategy will require O(2n) variables.
That is, an xa for every a ∈ {0, 1}t, 0 ≤ t ≤ n is needed to denote C’s strategy distribution. To
address this exponential-space demand (in n), our key observation is that C’s optimal strategy
distribution can actually be represented in O(n2) space and it suffices to provide C an efficient
algorithm to sample her cut-and-choose strategy from the optimal strategy distribution.

Optimal Strategy Sampling. Fixing r, we propose to represent C’s optimal strategy by the
family of functions {uk | 1 ≤ k ≤ n}. Recall that Lemma 13 and Corollary 7 show that every uk
is a continuous piece-wise linear function describable in O(n) space. Our sampling algorithm is
described in Algorithm 1. The goal is to ensure every bit-string a being sampled with probability
y∗a/v where {y∗a}a∈{0,1}n solves the linear program of Figure 3. The correctness of our sampling
algorithm is formalized in Claim 8 and proved in Appendix E. The proof also implies that the while
loop (line 3 of Algorithm 1) runs at most n times.

Claim 8. Let x∗a be the probability of Algorithm 1 outputting string a, then {x∗a}a∈{0,1}n solves the

linear program of Figure 2. Moreover, if ε = 2−k for some integer k, then x∗a ∈ {0, 2−k} for all

Algorithm 1 sample(n, ε, r)

Require: ε ∈ R+, n ∈ Z+ and r > 1.

Ensure: Any strategy string a is sampled with probability ya · ε = xa.
1: Pre-compute {uk | 1 ≤ k ≤ n} from r as shown at the end of the proof of Lemma 13
2: x := 1/ε; k := n; i := 1
3: while x > 1 do
4: s← [0, x) . Uniformly sample a real number in [0, x)
5: if 1 < x ≤ 2 then
6: if s < 2− x then
7: return a
8: else if 2− x ≤ s < 1 then
9: ai := 0

10: return a
11: else . 1 ≤ s < x
12: ai := 1

13: return a
14: else . x > 2
15: if s < uk(x) then
16: ai := 0

17: x := uk(x)
18: else . s ≥ uk(x)
19: ai := 1

20: x := x− uk(x)

21: k := k − 1; i := i + 1

22: return a

10



a ∈ {0, 1}n.

Based on what we have shown so far, the proof of Theorem 1 is relatively straightforward.

Proof of Theorem 1. Because there are at most O(n) non-zero entries in Gn, it suffices to only
record the O(n) non-zero entries of Gn and takes only O(n) time to compute Gn from Gn−1. Thus,
fixing n, our solver uses O(n2) time (to compute G1, . . . , Gn) and O(n2) space (as it memorizes
G1, . . . , Gn to enable efficient sampling by Algorithm 1).

4 Solve ExtCnCA,C(r, ε) for unbounded t

We now know how to efficiently solve the linear program of Figure 2 for any fixed n, but it remains
to solve the LP for n→∞. Note that the minimum cost of cut-and-choose cannot increase as n
grows because an optimal strategy for n = n0 is always a feasible strategy for n = n0 + 1. Thus, an
intuitive idea is to solve ExtCnCA,C for every possible integer n from dlog(1/ε)e onward (note we
ignore n values less than dlog(1/ε)e because it is impossible for any such n to bound A’s winning
odds by ε). However, the soundness of this idea hinges on answers to the following two questions:

(1) Can we stop searching at some point without sacrificing optimality guarantee?

(2) How do we know when to stop?

Fortunately, we had positive answers to both: (1) a globally optimal strategy always use a finite n;
and (2) we can stop searching once reaching some n̂ such that Gn̂[i] = Gn̂+1[i] for all 0 < i < d1/εe.
We formalize these results as Claim 10 and Claim 9, respectively, and prove them in Appendix F.

Claim 9. If there exist n̂ such that Gn̂[i] = Gn̂+1[i] for all 0 ≤ i < 2n̂, then gn̂(v) = gn̂+i(v) for all
positive integer i and real v (0 < v ≤ 2n̂).

Claim 10. For all ε (0 < ε < 1), let n̂ (n̂ ≥ dεe) be the smallest integer such that Gn̂[i] = Gn̂+1[i]
for all 0 ≤ i < 2n̂, and g∞(1/ε) be the minimal cost of the optimal strategy that allows infinite-length
challenges, then gn̂(1/ε) ≤ g∞(1/ε).

5 Results and Applications

We have implemented the proposed solver and experimentally evaluated our approach. Our solver is
open-sourced at https://github.com/Opt-Cut-N-Choose. In comparison with the best existing
solutions [23] which assumed fixed-length challenges, our solution is more than 2x more effective in
reducing the adversary’s winning odds (Figure 6).

Let n̂ be the upper-bound on the length of the challenges in an optimal strategy. Note that n̂
always exists as per Claim 10 but its value varies with r and ε. Figure 7 plots n̂ for a number of
(r, ε) combinations calculated by our search algorithm described in Section 4. We observe that, for
a fixed ε, n̂ grows roughly linearly with r, while a smaller ε implies a steeper slope.

Apply to Secure Computation. We propose a garbled-circuit-based actively-secure computation
protocol leveraging the above analysis of the extended cut-and-choose game. The full protocol and
its security proof are described in Appendix G. We stress that allowing the length of the challenge
string to vary does not incur extra communication rounds: simply allowing the circuit generator
(the A) to receive the “stop” signal from the circuit evaluator (the C) asynchronously. I.e., the
generator only needs to poll the asynchronous communication channel for a “stop” signal but never
needs to stop sending circuits (using a different communication channel) during the process.
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Apply to Prefix-free Encoding of Encryptions. It is relatively straightforward to derive the
encode and decode functions based on the sample algorithm in Algorithm 1. The high-level idea is,
for encoding, we assign the input symbol to s (instead of a uniformly sampled s) to drive sample;
for decoding, we parse the codeword a backwards to determine the original code w. We formally
present encode (Algorithm 2) and decode (Algorithm 3) in Appendix H. Compared to normal ways of
storing/transmitting encryptions, by exploiting the 0/1 cost gaps, our approach can save 17% (when
r = 5) to 29% (when r = 10). In general, our savings increase when longer input ciphertext-symbols
are considered.

6 Conclusion

We revisited a cost-aware mathematical modeling of cut-and-choose games and quantitatively
evaluate a challenger’s benefits to employ variable-length challenges. Although the resulting
mathematical program involves infinitely many variables and constraints, it can be efficiently solved
with our quadratic solver. The techniques used in our work would be of independent interest to
other optimization problems exhibiting similar structures.
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A Finding g1(v), g2(v)

Finding g1(v). When n = 1, we know a ∈ {0, 1}, cost(0) = zeros(0) + r · ones(0) = 1, cost(1) =
zeros(1) + r · ones(1) = r. Thus, the target linear program reduces to

min y0 · 1 + y1 · r

subject to

y0, y1 ≥ 0

y0 + y1 = v

y0 ≤ 1

y1 ≤ 1.

This linear program can be solved analytically based on three observations:

(1) Because y1 = v−y0, then y0 +y1r = y0 + (v−y0)r = vr+ (1− r)y0. Also because v > 0, r ≥ 1,
we know y0 + y1r is minimized when y0 is maximized.

(2) y0 = v − y1 and y1 ≥ 0 imply that y0 ≤ v. Also because the constraints have that y0 ≤ 1, we
know the maximal value of y0 hinges on whether v is smaller than 1.

(3) y0 ≤ 1, y1 ≤ 1⇒ v = y0 + y1 ≤ 2.

Therefore, the solution with respect to n = 1 is:

1. If 0 ≤ v < 1, y0 = v, y1 = 0 minimizes y0 + y1r to v. Namely, ∀v ∈ (0, 1], g1(v) = v.

2. If 1 ≤ v ≤ 2, setting y0 = 1 and y1 = v − 1 minimizes y0 + y1r to 1 + r(v − 1). Namely,
∀v ∈ (1, 2], g1(v) = 1 + r(v − 1).

Simply put,

g1(v) =

{
v 0 ≤ v ≤ 1

v + (r − 1)(v − 1) 1 < v ≤ 2.

Finding g2(v). When n = 2, we know a ∈ {0, 1, 00, 01, 10, 11}. cost(00) = 2, cost(01) =
cost(10) = r + 1, cost(11) = 2r, hence the problem reduces to

min y0 · 1 + y1 · r + y00 · 2 + (y01 + y10) · (r + 1) + y11 · 2r
subject to

y0, y1, y00, y01, y10, y11 ≥ 0

y0 + y1 + y00 + y01 + y10 + y11 = v

y0 + y00 ≤ 1

y0 + y01 ≤ 1

y1 + y10 ≤ 1

y1 + y11 ≤ 1.
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Note that

target = y0 · 1 + y1 · r + y00 · 2 + (y01 + y10) · (r + 1) + y11 · 2r
≥ (y0 + y00) · 1 + (y1 + y01 + y10 + y11) · r
= (y0 + y00) · 1 + [v − (y0 + y00)] · r
= v · r + (y0 + y00) · (1− r).

Because y0 + y00 ≤ 1 and y0 + y00 ≤
∑

len(a)≤2 ya = v, so target ≥ v if 0 ≤ v ≤ 1 and target ≥
vr + (1− r) = 1 + r(v − 1) = v + (r − 1)(v − 1) if 1 < v ≤ 2. Indeed,

1. If v ∈ [0, 1], setting y0 = v and y1 = y00 = y01 = y10 = y11 = 0 allows target to achieve its
lower bound v.

2. If v ∈ (1, 2], setting y0 = 1, y1 = v − 1, and y00 = y01 = y10 = y11 = 0 allows target to achieve
its lower bound v + (r − 1)(v − 1).

Therefore, if 0 ≤ v ≤ 1, then g2(v) = v; and if 1 < v ≤ 2, then g2(v) = v + (r − 1)(v − 1).
Now consider the case when v > 2. Let v1 = y0 + y00 + y01 and v2 = y1 + y10 + y11, so

the equality constraint translate to v1 + v2 = v. Note that when target is minimized, we must
have v1 ≥ v2 (otherwise, if v1 < v2, let t = min target, achieved with a particular assignment of
y0, y1, y00, y01, y10, y11, we can always swap the values of y0 (y00, y01, respectively) and y1 (y10, y11,
respectively) to obtain t′ = target such that t′ − t = y0(r− 1) + y1(1− r) + y00(r− 1) + y01(r− 1) +
y10(1− r) + y11(1− r) = (v1 − v2)(r − 1) < 0, which contradicts with the fact that t = min target).
Moreover, v1 = y0 + y00 + y01 ≤ (y0 + y00) + (y0 + y01) ≤ 2. Similarly v2 ≤ 2.

Because y00 = v1 − (y0 + y01) ≥ 0 and y00 = v1 − (y0 + y01) ≥ v1 − 1, so y00 ≥ max{v1 − 1, 0}.
Similarly, y01 ≥ max{v1 − 1, 0}. Thus,

y0 · 1 + y00 · 2 + y01 · (1 + r) = (y0 + y00 + y01) + y00 + y01 · r
≥ v1 + max{v1 − 1, 0}+ max{v1 − 1, 0} · r
= v1 + max{v1 − 1, 0} · (1 + r).

Similarly, we can derive

y1 · r + y11 · 2r + y10 · (1 + r) = (y1 + y10 + y11) · r + y10 + y11 · r
≥ v2 · r + max{v2 − 1, 0}+ max{v2 − 1, 0} · r
= v2 · r + max{v2 − 1, 0} · (1 + r).

Thus,

target = y0 · 1 + y00 · 2 + y01 · (1 + r) + y1 · r + y11 · 2r + y10 · (1 + r)

= v1 + max{v1 − 1, 0} · (1 + r) + v2 · r + max{v2 − 1, 0} · (1 + r)

= v1 + v2 · r + (max{v1 − 1, 0}+ max{v2 − 1, 0})(1 + r)

Because v = v1 + v2 > 2, it has to be the case that either v1 ≥ 1 or v2 ≥ 1.

1. If v2 ≤ 1, then v1 = v − v2 ≥ v − 1 ≥ 2− 1 = 1. Hence,

target ≥ v1 + v2 · r + (max{v1 − 1, 0}+ max{v2 − 1, 0})(1 + r)

= v1 + v2 · r + (v1 − 1)(1 + r)

= v1 + (v − v1) · r + (v1 − 1)(1 + r)

= 2v1 + vr − (1 + r)

≥ 2(v − 1) + vr − (1 + r)

= (2 + r) · v − r − 3.
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2. If v2 ≥ 1, we know v1 ≥ v2 ≥ 1 and v1 = v − v2 ≤ v − 1. Hence,

target ≥ v1 + v2 · r + (max{v1 − 1, 0}+ max{v2 − 1, 0})(1 + r)

= v1 + v2 · r + (v1 − 1 + v2 − 1)(1 + r)

= v1 + v2 · r + (v − 2)(1 + r)

= v1 + (v − v1) · r + (v − 2)(1 + r)

= v · r + v1 · (1− r) + (v − 2) · (1 + r)

≥ v · r + (v − 1) · (1− r) + (v − 2) · (1 + r)

= (2 + r) · v − r − 3.

When v ∈ [2, 3], we can verify that setting y0 = 3 − v, y00 = y01 = v − 2, y1 = 1, y10 = y11 = 0
actually achieves this lower bound, i.e., target = (2 + r) · v − r − 3.

Finally, when v ∈ [3, 4], we must have v1 ≥ 1 and v2 ≥ 1. Thus,

target ≥ v1 + v2 · r + (max{v1 − 1, 0}+ max{v2 − 1, 0})(1 + r)

= v1 + v2 · r + (v1 − 1 + v2 − 1)(1 + r)

= v1 + v2 · r + (v − 2)(1 + r)

= v1 + (v − v1) · r + (v − 2)(1 + r)

= v · r + v1 · (1− r) + (v − 2) · (1 + r)

≥ v · r + 2 · (1− r) + (v − 2) · (1 + r)

= v · (2r + 1)− 4r.

In this case, we can verify that setting y0 = 0, y00 = y01 = 1, y1 = 4− v, y10 = y11 = v − 3 actually
achieves this lower bound of target.

In summary,

g2(v) =


v, 0 ≤ v ≤ 1

v + (r − 1)(v − 1), 1 < v ≤ 2

(2 + r) · v − r − 3 = v + (r − 1)(v − 1) + 2(v − 2), 2 < v ≤ 3

(2r + 1) · v − 4r = v + (r − 1)(v − 1) + 2(v − 2) + (r − 1)(v − 3), 3 < v ≤ 4.

B Proofs of Claim 2 and Claim 3

Claim 2. For any v ∈ R+ and v ≤ 2n,

gn(v) = min
0≤u≤v

{
fn(u) + fn(v − u) + (r − 1)(v − u)

}
.

For every r, we thus define un(v) to be the u value that minimizes gn(v).
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Proof.

gn(v) = min
(1)(2)(5)(6)

∑
ya · cost(a)

= min
(1)(2)(5)(6)

 ∑
a=0‖{0,1}∗

ya · cost(a) +
∑

a=1‖{0,1}∗
ya · cost(a)


= min

0≤u≤v

 min
(1)(2)(6)∑

ya=u

a=0‖{0,1}∗

{∑
ya · cost(a)

}
+ min

(1)(2)(6)∑
ya=v−u

a=1‖{0,1}∗

{∑
ya · cost(a)

}
= min

0≤u≤v

 min
(1)(2)(6)(7)∑

ya=u

{∑
ya · cost(a)

}
+ min

(1)(2)(6)∑
ya=v−u

a=1‖{0,1}∗

{∑
ya · cost(a)

}
= min

0≤u≤v

fn(u) + min
(1)(2)(6)∑
ya=v−u

a=1‖{0,1}∗

{∑
ya · cost(a)

}
= min

0≤u≤v

fn(u) + min
(1)(2)(6)∑
ya=v−u

a=0‖{0,1}∗

{∑
ya · cost(a)

}
+ (r − 1)(v − u)


= min

0≤u≤v

{
fn(u) + fn(v − u) + (r − 1)(v − u)

}
.

Claim 3. For any v ∈ R+, v ≤ 2n and integer n ≥ 1,

fn+1(v) = v + min
max(0, v−1

2n−1)≤t≤1

{
t · gn

(
(v + t− 1)/t

) }
.

Proof. Let y0 = 1− t where 0 ≤ t ≤ 1. Then

fn+1(v) = min
(1)(2)(5)(6)(7)

{∑
ya · cost(a)

}
= min

0≤t≤1

 min
(1)(2)(5)(6)(7)

y0=1−t

{∑
ya · cost(a)

}
Expand min

(1)(2)(5)(6)(7)

y0=1−t

{∑
ya · cost(a)

}
into its LP form, we get
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min
∑

ya · cost(a)

subject to

y0 = 1− t

ya = 0, ∀ a = 1‖{0, 1}t, 0 ≤ t ≤ n

len(a) ≤ n + 1

ya ≥ 0, ∀ a ∈ {0, 1}t, 1 ≤ t ≤ n + 1∑
ya = v

ya1 + ya1a2 + · · ·+ ya1a2...an+1 ≤ 1, ∀ a = a1a2 . . . an+1 ∈ {0, 1}n+1.

That is,

min
∑

ya · cost(a)

subject to

y0 = 1− t

ya = 0, ∀ a = 1‖{0, 1}t, 0 ≤ t ≤ n

len(a) ≤ n + 1

ya ≥ 0, ∀ a ∈ {0, 1}t, 1 ≤ t ≤ n + 1

y0 +
∑
a 6=0

ya = v

y0 + y0a2 + · · ·+ y0a2...an+1 ≤ 1, ∀ a = 0 a2 . . . an+1 ∈ {0, 1}n+1.

Fixing t, the linear program can be simplified to

v + min
∑

ya · cost(a)

subject to

len(a) ≤ n

ya ≥ 0, ∀ a ∈ {0, 1}t, 1 ≤ t ≤ n∑
ya = v + t− 1

ya1 + ya1a2 + · · ·+ ya1a2...an ≤ t, ∀ a = a1a2 . . . an ∈ {0, 1}n.

Let y′a = ya/t, we can reformulate the linear program as

v + t ·min
∑

y′a · cost(a)

subject to

len(a) ≤ n

y′a ≥ 0, ∀ a ∈ {0, 1}t, 1 ≤ t ≤ n∑
y′a = (v + t− 1)/t

y′a1 + y′a1a2 + · · ·+ y′a1a2...an ≤ 1, ∀ a = a1a2 . . . an ∈ {0, 1}n.
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which is exactly v + min0≤t≤1 {t · gn((v + t− 1)/t))}. Thus,

fn+1(v) = min
0≤t≤1

 min
(1)(2)(5)(6)(7)

y0=1−t

{∑
ya · cost(a)

}
= v + min

0≤t≤1

{
t · gn

(
(v + t− 1)/t

) }
.

Finally, because (v + t− 1)/t =
∑

y′a ≤ 2n and t ≥ 0, we additionally know t ≥ max
(

0, v−1
2n−1

)
.

C Proofs of Claim 4 and Claim 5

Claim 4. Let gn(v) be the solution to the linear program of Figure 3. Then for every n ∈ Z+ and
v ∈ R+, v ≤ 2n,

gn(v) =

2n−1∑
i=0

Gn[i] · 〈v − i〉,

where Gn is an array of 2n non-negative constants uniquely determined by r (the cost ratio).
Moreover, for every n ≥ 2, Gn[0] = 1, Gn[1] = r − 1, Gn[2] = 2, and ∀ 0 ≤ i ≤ 2n − 1, Gn[i] ∈ Z[r].

Proof. This can be proved using mathematical induction: (1) Lemma 11 shows the base case;
(2) Given that Claim 4 holds for n = k, applying Lemma 12 and Lemma 13, we know Claim 4 must
hold for n = k + 1. Hence completing the proof.

Claim 5. Let fn(v) be the solution to the linear program of Figure 4. Then for every n ∈ Z+ and
v ∈ R+, v ≤ 2n,

fn(v) = v +
2n−1−1∑
i=0

Fn[i] · 〈v − i〉,

where Fn is an array of 2n−1 non-negative constants uniquely determined by r (the cost ratio).
Moreover, for every n ≥ 3, Fn[0] = 0, Fn[1] = r + 1, Fn[2] = 1, and ∀ 0 ≤ i ≤ 2n − 1, Fn[i] ∈ Z[r].

Proof. This is a corollary from direct application of Claim 4 and Lemma 12.

Lemma 11. Claim 4 holds for n = 1 and n = 2.

Proof. We have shown in Section 3.1 that g1(v) = v for 0 ≤ v ≤ 1 and g1(v) = v + (r− 1)(v− 1) for
1 < v ≤ 2. Thus Claim 4 holds at n = 1, with Gn[0] = 1, Gn[1] = r − 1. Similarly, the analytical
form of g2(v) shown in Section 3.1 implies that Claim 4 holds for n = 2.

Lemma 12. If Claim 4 holds for n ≤ k, then Claim 5 holds for n = k + 1.

Proof. By Claim 3, we know that fk+1(v) = v + min
max

(
0, v−1

2k−1

)
≤t≤1

t · gk
(
v + t− 1

t

)
. In addition, if
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Claim 4 holds for n ≤ k, i.e., gk(v) = 〈v〉+ (r − 1)〈v − 1〉+ 2〈v − 2〉+
∑2k−1

i=3 Gk[i] · 〈v − i〉, then

fk+1(v) = v + min
max

(
0, v−1

2k−1

)
≤t≤1

t · gk
(
v + t− 1

t

)

= v + min
max

(
0, v−1

2k−1

)
≤t≤1

t ·

(〈
v + t− 1

t

〉
+ (r − 1)

〈
v + t− 1

t
− 1

〉
+ 2

〈
v + t− 1

t
− 2

〉

+

2k−1∑
i=3

Gk[i] ·
〈
v + t− 1

t
− i

〉)

= v + min
max

(
0, v−1

2k−1

)
≤t≤1

(
〈v + t− 1〉+ (r − 1)〈v + t− 1− t〉+ 2〈v + t− 1− 2t〉

+

2k−1∑
i=3

Gk[i] · 〈v + t− 1− i · t〉

)

= v + min
max

(
0, v−1

2k−1

)
≤t≤1

(
〈v + t− 1〉+ (r − 1)〈v − 1〉+ 2〈v − t− 1〉

+

2k−1∑
i=3

Gk[i] · 〈v − 1− (i− 1) · t〉

)

Let M(t) = 〈v + t − 1〉 + (r − 1)〈v − 1〉 + 2〈v − t − 1〉 +
∑2k−1

i=3 Gk[i] · 〈v − 1 − (i − 1) · t〉. Thus
fk+1(v) = v + min

max
(
0, v−1

2k−1

)
≤t≤1

M(t). Next, we consider how to select t to minimize M(t).

1. When 0 ≤ v < 1, because 〈v − 1〉 = 0, 〈v − 1 − t〉 = 0, 〈v − 1 − (i − 1) · t〉 = 0, hence M(t)
reduces to 〈v + t− 1〉, which can be minimized to 0 when t ≤ 1− v.

2. When 1 ≤ v < 2, M(t) is always minimized when t = v − 1 because

(a) If t ≥ v − 1, M(t) reduces to v + t− 1 + (r − 1)(v − 1), which always increases with t,
hence can be minimized when t = v − 1 (note v < t + 1, so t ≥ v − 1).

(b) If t ≤ v − 1,

M(t) = v + t− 1 + (r − 1)(v − 1) + 2(v − t− 1) +

b v−1
t
c+1∑

i=3

Gk[i] · (v − 1− (i− 1) · t)

= r · (v − 1) + 2 · (v − 1)− t +

b v−1
t
c+1∑

i=3

Gk[i] · (v − 1− (i− 1) · t)

which is a decreasing function of t, thus is minimized also when t = v− 1 (note 1 + t ≤ v,
so t ≤ v − 1).
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Therefore,

fk+1(v) = v + min
max(0, v−1

2k−1
)≤t≤1

t · gk((v + t− 1)/t)

= v + (v − 1) · gk(2)

= v + (v − 1) · (Gk[0] · 2 + Gk[1] · (2− 1))

= v + (r + 1)(v − 1)

3. When v ≥ 2, (like the case when t ≤ v − 1),

M(t) = r · (v − 1) + 2 · (v − 1)− t +

b v−1
t
c+1∑

i=3

Gk[i] · (v − 1− (i− 1) · t),

is also decreasing with t. However, this time, M(t) is minimized when t = 1, because the only
bound that t is subject to is (v − 1)/(2k − 1) ≤ t ≤ 1. Thus, fk+1(v) = v + gk(v).

In summary, we have shown that

fk+1(v) =


v 0 ≤ v < 1

v + (r + 1)(v − 1) 1 ≤ v < 2

v + gk(v) 2 ≤ v

which can be equivalently re-written as

fk+1(v) = v + (r + 1)〈v − 1〉+
(
gk(v)− v − (r − 1)〈v − 1〉 − 〈v − 2〉

)
= v + (r + 1)〈v − 1〉+ 〈v − 2〉+

2k−1∑
i=3

Gk[i]〈v − i〉

Thus, Claim 5 holds for n = k + 1.

Lemma 13. If Claim 5 holds for n ≤ k, then Claim 4 holds for n = k.

Proof. By Claim 2, gk(v) = min
0≤u≤v

(
fk(u) + fk(v − u) + (r − 1)(v − u)

)
. Assuming Claim 5 holds,

i.e., fk(v) = v +
2k−1∑
i=0

Fk[i] · 〈v− i〉, our goal is to show that there exist an array Gk = [1, r− 1, 2, . . . ]

such that gk(v) =
2k−1∑
i=0

Gk[i] · 〈v − i〉.

Let f̃k(x) = fk(x) + (r − 1)x, so gk(v) = min
0≤u≤v

(
fk(u) + f̃k(v − u)

)
. We also know that

f̃k(v) = fk(v) + (r − 1) · v

= v +

2k−1∑
i=0

Fk[i] · 〈v − i〉+ (r − 1) · v

= r · v +

2k−1∑
i=0

Fk[i] · 〈v − i〉.
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We further calculate the derivatives of fk(v) and f̃k(v) as follows,

f ′k(v) =

v +
2k−1∑
i=0

Fk[i]〈v − i〉

′ = 1 +

bvc∑
i=0

Fk[i]

f̃k
′
(v) =

vr +
2k−1∑
i=0

Fk[i]〈v − i〉

′ = r +

bvc∑
i=0

Fk[i]

Solving min
0≤u≤v

(
fk(u) + f̃k(v − u)

)
can be best illustrated with an analogy. For a fixed v, this

minimization problem is equivalent to the following packing problem: given two arrays (denoted
by Ak and Bk, respectively) of unit-volume objects, whose weights are Ak[i] = 1 +

∑i
j=0 Fk[j] and

Bk[i] = r +
∑i

j=0 Fk[j] (1 ≤ i ≤ v, note that A and B are non-decreasing arrays because every entry
in Fk is non-negative), find the minimum weight of a pile of volume-v objects picked from the two
arrays (partial picking is allowed). This is because

fk(u) =

buc−1∑
i=0

Ak[i] + (u− buc) ·Ak[buc]

f̃k(v − u) =

bv−uc−1∑
i=0

Bk[i] + (v − u− bv − uc) ·Bk[bv − uc].

The packing problem can be simply solved by merging the two non-decreasing arrays Ak and Bk

into a single non-decreasing array and picking the first volume-v objects from the beginning, while
the u value that achieves this minimum is precisely the volume of objects picked from array Ak.

Thus, let Hk be the non-decreasing array merged from Ak and Bk, then

gk(v) =

bvc−1∑
i=0

Hk[i] + (v − bvc) ·Hk

[
bvc
]
.

By defining Gk[0] = Hk[0] and Gk[i] = Hk[i] − Hk[i − 1] for all positive integers i, we can
re-write the above formula as gk(v) =

∑v
i=0Gk[i] · 〈v − i〉, where Gk[i] is always non-negative.

In addition, by assumption, Fk[0] = 0, Fk[1] = r + 1, Fk[2] = 1, so Ak = [1, r + 2, r + 3, . . . ] and
Bk = [r, 2r+1, 2r+2, . . . ], hence we can compute Gk[0] = Hk[0] = Ak[0] = 1 (r ≥ 1⇒ Ak[0] ≤ Bk[0]),
Gk[1] = Hk[1] − Hk[0] = Bk[0] − 1 = r − 1, Gk[2] = Hk[2] − Hk[1] = Ak[1] − r = r + 2 − r = 2.
Therefore, Claim 4 holds.

Last, we note that un(v) can be computed as the volume of objects from An in the first v volume
of Hn. A decimal v implies partially packing an object, and the partially packed volume is counted
into un(v) if and only if it comes from An. It is easy to see that un(v) is a continuous piece-wise
linear function, whose horizontal line-segments are those [i, i + 1] where Hn[i] comes from Bn; and
whose slope-1 line-segments are those [i, i + 1] where Hn[i] comes from An.

D Proof of Claim 6

Claim 6. The array Gn contains at most O(n) non-zero entries.
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Proof. According to Claim 4, Gn[i] ≥ 0 and Gn[i] ∈ Z[r] for all i ∈ [0, 2n − 1]. Moreover, we know∑2n−1
i=0 Gn[i] = Hn[2n − 1] and by Lemma 14, Hn[2n − 1] = 1 + n · r. Let ` be the lower bound of all

non-zero entries in Gn, then there can’t be more than d(1 + n · r)/`e ∈ O(n) non-zero entries in Gn,
otherwise their sum,

∑2n−1
i=0 Gn[i], will be greater than 1 + n · r.

Lemma 14. For all n ≥ 1, Hn[2n − 1] = 1 + n · r.

Proof. We will prove this lemma by induction. We have shown that H1[1] = 1 + r at the end of
the proof of Lemma 13, hence the lemma holds when n = 1. Assume it holds when n = k. Recall

that Hk+1 is an array merged from array
{

1 +
∑j

i=0 Fk+1[i]
}
0≤j<2k

and
{
r +

∑j
i=0 Fk+1[i]

}
0≤j<2k

.

Since r ≥ 1, we know

Hk+1[2
k+1 − 1] = r +

2k−1∑
i=0

Fk+1[i]

= r + Fk+1[0] + Fk+1[1] + Fk+1[2] +

2k−1∑
i=3

Fk+1[i]

= r + 0 + (r + 1) + 1 +
2k−1∑
i=3

Gk[i]

= r + 1 + (r − 1) + 2 +
2k−1∑
i=3

Gk[i]

= r + Gk[0] + Gk[1] + Gk[2] +

2k−1∑
i=3

Gk[i]

= r +
2k−1∑
i=0

Gk[i]

= r + Hk[2k − 1] = r + 1 + k · r = 1 + (k + 1) · r.

which shows the induction step, hence completes the proof.

E Proof of Claim 8

Claim 8. Let x∗a be the probability of Algorithm 1 outputting string a, then {x∗a}a∈{0,1}n solves the

linear program of Figure 2. Moreover, if ε = 2−k for some integer k, then x∗a ∈ {0, 2−k} for all
a ∈ {0, 1}n.

Proof. Let y∗a be the value of ya that solves the LP of Figure 4, hence y∗a = εxa. Let fn be the
solution function to the LP of Figure 4 as was defined in Section 3.2. For every t (1 ≤ t ≤ n),
recall that fn−t+1(x) denotes the minimal extra cost of using the rest n− t challenges bits if the
probability of using t or more challenges is x · ε. In the proof of Lemma 12, we have shown that

fn−t+1(x) =


x 0 ≤ x < 1

x + (r + 1)(x− 1) 1 ≤ x < 2

x + gn−t(x) x ≥ 2

(8)
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which can actually be achieved by setting (in the inductive step)

y0 =


x 0 ≤ x < 1

2− x 1 ≤ x < 2

0 x ≥ 2

(9)

Note in the step of calculating fn−t+1, εy0 is the probability that a ends up having exactly t bits
while at = 0. y0’s formula above implies

1. If 0 ≤ x < 1, then len(a) = t (namely C uses precisely t challenge bits) happens with probability
x/x = 1.

2. If 1 ≤ x < 2, then: (1) with probability (2− x)/x, len(a) = t; (2) with probability (x− 1)/x,
len(a) > t and at+1 = 0; (3) with probability (x− 1)/x, len(a) > t and at+1 = 1. Note that (2)
and (3) can be derived from solving gn−t(2).

3. If x > 2, then len(a) > t. Moreover, the probability that at+1 = 0 will be un−t(x)/x, which
has been shown in the proof of Lemma 13 when solving gn−t(x).

Now it is straightforward to verify that the code inside the while loop (line 3 of Algorithm 1)
reflects precisely the theoretical analysis above.

Showing x∗a ∈ {0, 2−k} for all a ∈ {0, 1}n is equivalent to proving y∗a ∈ {0, 1} for all a ∈ {0, 1}n
since y∗a = εxa = 2kxa. Following formula (9), if x is an integer, the y0 must be either 0 or 1. Then
it reduces to showing that the x values on all layers of recursion are an integer, i.e., all recursive calls
to fn, fn−1, . . . , f1 are with integer inputs. By formula (8), if f is invoked with an integer x, then the
next g will also be invoked with integer x. By Claim 2, we know that if g is invoked with an integer
v, then f will be invoked with u and v − u, both of which are integer because fn is a piece-wise
linear function. Finally, note that fn is initially invoked with integer x = 2k, thus, all subsequent
invocation of g and f are with integer values. This completes the proof that y∗a ∈ {0, 1}.

F Proofs of Global Optimality

Claim 9. If there exist n̂ such that Gn̂[i] = Gn̂+1[i] for all 0 ≤ i < 2n̂, then gn̂(v) = gn̂+i(v) for all
positive integer i and real v (0 < v ≤ 2n̂).

Proof. Fix an ε ≥ 1/2n. We know that gn(1/ε) can be deterministically computed from {Gn[i] | 0 ≤ i < 2n}
for all n (by Claim 4), which, in turn, is deterministically computable from

{
Fn−1[i] | 0 ≤ i < 2n−1

}
(by Lemma 13), which, again, can be deterministically computed from

{
Gn−1[i] | 0 ≤ i < 2n−1

}
(by

Lemma 12). Therefore, once the first 2n entries of Gn[i] is identical to those of Gn+1, Gn stops
changing as n increases, hence gn also stops changing.

Claim 10. For all ε (0 < ε < 1), let n̂ (n̂ ≥ dεe) be the smallest integer such that Gn̂[i] = Gn̂+1[i]
for all 0 ≤ i < 2n̂, and g∞(1/ε) be the minimal cost of the optimal strategy that allows infinite-length
challenges, then gn̂(1/ε) ≤ g∞(1/ε).

Proof. Fix ε. Aiming at a contradiction, we assume g∞(1/ε) < gn̂(1/ε) and let S be an optimal
strategy that achieves g∞(1/ε). Let S1 be an optimal strategy that achieves gn̂(1/ε). Since gn(1/ε)
is a continuous function of ε for all n, for an ε2 > ε, there is an optimal mixed-strategy S2 (using
only finite-length challenges) whose expected cost lies in between g∞(1/ε) and gn̂(1/ε). On the
other hand, we can derive a strategy S3 from S by simply giving up all strategies that use challenges
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longer than some `. Thus, S3 has an expected cost less than g∞(1/ε) but offers a weaker security
guarantee (i.e., its failure probability ε3 > ε). Note that ` decreases monotonically as ε3 increases
and for every ε3, we can always find an ` for every ε3. Now if we pick ε3 = ε2, a particular strategy
S3 obtained this way, using only finite number of cut-and-choose bits, will have an expected cost
less than g∞(1/ε), which is in turn less than the expected cost of S2, hence a contradiction with the
fact that S2 is optimal among all strategies using finite-length challenges.

G Efficient Secure Computation using Variable-Length Challenges

Let Hash be a collision resistant hash function, REHash be a collision-resistant hash function that is
also a suitable randomness extractor [10], and Com be a commitment scheme. We will use Hash to
commit garbled circuits succinctly. We use REHash to create the generator’s input wire labels from
ElGamal commitments. We use Com to commit the preimage of the generator’s input wire labels.

G.1 Building Blocks

Garbled Circuits Yao’s garbled-circuit provides a generic mechanism to construct a (passively)
secure two-party protocol for computing f starting from any boolean circuit for f [22]. Bellare,
Hoang, and Rogaway [3] formalized a garbling scheme G as a 5-tuple (Gb,En,Ev,De, f) of algorithms,
where Gb is an efficient randomized garbler that, on input (1k, f), outputs (F, e, d); En is an encoder
that, on input (e, x), outputs X; Ev is an evaluator that, on input (F,X), outputs Y ; De is a decoder
that, on input (d, Y ), outputs y. The correctness of G requires for every (F, e, d)← Gb(1k, f) and
every x, De(d,Ev(F,En(e, x))) = f(x). Let “≈” denote computational indistinguishability. Privacy
of G implies that there exists an efficient simulator S such that for any x ∈ {0, 1}`,{

(F, e, d)← Gb(1k, f), X ← En(e, x) : (F,X, d)
}
≈ {S(1k, f, f(x, y))}.

In a garbled-circuit protocol, one party (the circuit generator) prepares an “encrypted” version
of a circuit computing f . The second party (the circuit evaluator) then obliviously computes the
output of the circuit without learning any intermediate values. Starting with a (known) boolean
circuit for f , the circuit generator associates two random cryptographic keys w0

i , w
1
i with each wire i

of the circuit, where w0
i encodes a 0-bit and w1

i encodes a 1-bit. Then, for each binary gate g of the
circuit with input wires i, j and output wire k, the generator computes ciphertexts

Enc
w

bi
i

(
Enc

w
bj
j

(
w

g(bi,bj)
k

))
for bi, bj ∈ {0, 1}. The resulting four ciphertexts, in random order, constitute a garbled gate. The
collection of all garbled gates forms the garbled circuit that is sent to the evaluator. Given keys
wi, wj associated with both input wires i, j of some garbled gate, the evaluator can compute a key
for the output wire of that gate by decrypting the appropriate ciphertext. These keys can then be
mapped to their semantic values using mappings provided by the circuit generator.

Oblivious Transfer An oblivious transfer (OT) protocol allows a sender, holding strings w0 and
w1, to transfer wb to a receiver holding a selection bit b; the receiver learns nothing about w1−b, and
the sender does not learn b. A committing oblivious transfer (COT) gives the receiver additionally
the commitments of the sender’s inputs. We use the batched 1-out-of-2 COT as a black-box to send
wire labels corresponding to the evaluator’s input. UC secure 1-out-of-2 committing OT can be
efficiently instantiated from dual-mode cryptosystems [19].
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ElGamal Commitment Let g be a generator of a group G of order q where DDH is assumed to be
hard and h ∈ G be an element whose discrete logarithm (base-g) is hidden to the commitment receiver.
To commit a message m using ElGamal commitment, the committer sends EGCom(h;m, r) =
(gr, hrgm). To open an commitment, the committer sends r. ElGamal commitment is perfectly
binding, as well as computationally hiding. More importantly, we use the following two properties
of ElGamal commitment in our protocol:

1. Given EGCom(h;m, r) and EGCom(h;m′, r′), it is possible to prove m = m′ in zero-knowledge
using the ZKPoK for DH-tuples (also used by Lindell [18]).

2. Given EGCom(h;m, r), m ∈ {0, 1}, and w = logg h, it is easy to learn m, since m = 0 if and

only if [EGCom(h;m, r)]1 = [EGCom(h;m, r)]w0 , where [·]i refers to the ith component of a
tuple.

G.2 Protocol Specification

We assume the inputs of P1 and P2 are x and y (x, y ∈ {0, 1}`), respectively, and the output
f(x, y) ∈ {0, 1}. We assume P1 is the circuit generator and P2 the evaluator. Let G = 〈g〉 be a

multiplicative group of order q where DDH is assumed to be hard. We use “s
seedj←− S ” to denote

a uniform sampling from the set S using randomness drawn from seed j , (as opposed to “←” that
refers to sampling using an unspecified randomness). The protocol proceeds as follows.

1. P1 and P2 run a committing coin-tossing protocol where P2 learns the output and P1 learns
the commitment of the output. P2 runs Algorithm 1 with the coin-tossing output to pick its
challenge-string a.

2. P1 picks w ← Zq, w0 ← Zq, and sets w1 = w − w0 mod q. It then sends h = gw, h0 = gw0

and h1 = gw1 to P2, who verifies h = h0 · h1.

3. P1 keeps generating garbled circuits of f until being notified to stop. For the j-th garbled
circuit:

(a) P1 generates the whole circuit from a randomly picked secret seed j . In particular,

i. For the i-th input wire for P1’s input, P1 picks r0i,j
seedj←− Zq and r1i,j

seedj←− Zq, and com-

putes u0i,j := EGCom(h; 0, r0i,j) and u1i,j := EGCom(h; 1, r1i,j), where EGCom(h;m, r) =

(gr, hr · gm). Then P1 sets the two wire labels X0
i,j := REHash(u0i,j) and X1

i,j :=

REHash(u1i,j).

(b) For all 1 ≤ i ≤ `, P1 computes and randomly permutes Com(u0i,j) and Com(u1i,j), then
sends them to P2.

(c) P1 picks two wire labels for the final output wire: Z0
j

seedj←− Zq, Z
1
j

seedj←− Zq.

(d) P1 sends output recovery commitments h0g
Z0
j and h1g

Z1
j .

(e) P1 computes the hash of the garbled circuit, hashj , and sends it to P2.

4. P2 receives len(a) garbled circuit hashes (along with their output recovery commitment pairs)
and notifies P1 to stop. Then, P2 opens the coin-tossing result to P1, who then derives P2’s
the challenge-string a.
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5. P1 and P2 run an OT protocol for every bit of y, where P1, as the OT sender, inputs
{
Y 0
i,j

}len(a)

j=1

and
{
Y 1
i,j

}len(a)

j=1
; P2, as the OT receiver, inputs yi (the ith bit of y). At the end of this step,

P2 learns
{
Y yi
i,j | 1 ≤ i ≤ `, 1 ≤ j ≤ len(a)

}
.

6. For all 1 ≤ j ≤ len(a), P2 selects the j-th circuit to be checked if aj = 0, hence requesting P1

to reveal seed j . P2 checks the following:

(a) The circuit generated from seed j matches with its hash hashj received in step 3e.

(b) The wire labels for each of P1’s input wire match with their commitments received in
step 3b under some permutation.

(c) The OT inputs of P1 match with the input labels used in every check-circuit (thus we
require Committing OT).

If any circuit is found incorrect, P2 aborts.

7. For all 1 ≤ j ≤ len(a), P2 selects the j-th circuit if aj = 1, and evaluate it as follows:

(a) For every 1 ≤ i ≤ `, P1 decommits one of the two commitments sent in step 3b for P2 to
learn uxi

i,j . P2 computes Xxi
i,j = REHash(uxi

i,j).

(b) P1 sends w0 + Z0
j and w1 + Z1

j to P2, who verifies that they are consistent with the
output recovery commitments received in step 3d.

(c) P2 evaluates the circuit using
{
Xxi

i,j

}`

i=1
and

{
Y yi
i,j

}`

i=1
, obtaining Ẑj .

8. For all i ∈ [1, `], P1 proves (using efficient DH-based ZKPoK [18, Protocol 3.2, Step 9])

that
{
uxi
i,j | aj = 1

}
are consistently associated with the same xi bit. That is, P1 proves in

zero-knowledge that

Either
(
∀j ∈ {j | aj = 1} :

(
g, gr

0
i,j , h,

[
uxi
i,j

]
1

)
∈ DH

)
or
(
∀j ∈ {j | aj = 1} :

(
g, gr

1
i,j , h,

[
uxi
i,j

]
1
/g
)
∈ DH

)
.

Recall that uxi
i,j =

(
gr

xi
i,j , hr

xi
i,jgxi

)
and

[
·
]
i

refers to the ith entry in a tuple.

9. Note that exactly one of the following three cases must happen.

(a) If there exist j′, j′′ ∈ {j | aj = 1} such that Ẑj′ matches up with h0g
Z0
j′ and Ẑj′′ matches

up with h1g
Z1
j′′ , then P2 uses Ẑj′ and Ẑj′′ to recover x (through recovering both w0 and

w1, hence w, which allows to open uxi
i,j = EGCom(h;xi, r) for all i ∈ [1, `]), then outputs

f(x, y).

(b) If for all j ∈ {j | aj = 1}, there exists a unique b for all matching Ẑj and hbg
Zb
j , then P2

outputs b.

(c) If there does not exist any j such that Ẑj matches with hbg
Zb
j , then P2 aborts.
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G.3 Proof of Security

Theorem 15. Under the assumptions outlined in Section G.1, the protocol given in Section G.2
securely computes f in the presence of malicious adversaries.

We consider the standard definition of security for actively secure two-party computation allowing
aborts [12, Section 7.2.3]. In our proof, we refer to the term “negligible” in the concrete (instead of
asymptotic) sense, i.e., any non-negative value smaller than ε is considered negligible.

Proof. We prove our protocol in Section G.2 secure in a hybrid world where the parties have access to
ideal functionalities for the committing coin-tossing and oblivious transfer. By standard composition
theorems [8], this implies security when those subroutines are instantiated using secure protocols for
those tasks.

Corrupted P1: For every corrupted P1, we describe an efficient simulator S1 (running the corrupted
P1 as a subroutine) that interacts with an honest P2 through a trusted party T computing f . We
shall show that the joint distribution of the outputs of S1 and P2 is computationally indistinguishable
from that of P1 interacting with P2 in the real world execution. S1 works as follows:

1. S1, pretending an honest P2 with input y = 0, runs P1 till step 8 (if P1 fails any of the checks
during the process, S1 sends ⊥ to the trusted party and outputs whatever P1 outputs).

2. If P1 responds correctly, S1 extracts P1’s effective input x through the zero-knowledge proof
of knowledge proof. S1 sends x to the trusted party, and receives f(x, y) in return. S1 gives
f(x, y) to P1 and outputs whatever P1 outputs.

The fact that the above experiment is indistinguishable from that of running P1 and P2 in the
real world can be proved through examining the behavior of S1 in every step:

1. In step 1 of S1, if S1 ends up sending ⊥ to T and outputting P1’s outputs, exactly the same
thing will happen when P2 executes in the real world because S1 runs the same instructions as
a real world P2 does (except that S1 always sets y = 0, a specific difference that is guaranteed
to be hidden to P1 by the security of oblivious transfer). If P1 responds correctly to all the
checks in step 1, S1 proceeds to step 2 and we analyze further below.

2. In step 2 of S1, since P1 passes all the checks, the ideal world P2 will output f(x, y), while the
real world P2 will also be able to recover x (with the same input recovery mechanism proposed
by [1]), except for a negligible probability.

We additionally point out that a malicious P1 can’t hope distinguish the two experiments by
behaving differently depending on the cut-and-choose string of S1. This is because

1. P1 can win S1 in cut-and-choose with only negligible probability, as S1 sampled its cut-and-
choose string with Algorithm 1.

2. Assuming P1 does not win S1 in the cut-and-choose game, a malicious P1 who responds
incorrectly to S1 in all polynomial runs (with different random tapes of S1) is destined to
respond incorrectly to P2 in the real world, except for a negligible probability.

Corrupted P2: For every corrupted P2, we describe an efficient simulator S2 (running the corrupted
P2 as a subroutine) that interacts with an honest P1 through a trusted party (T ) computing f . We
shall show that the joint distribution of the outputs of P1 and S2 is computationally indistinguishable
from that of P1 interacting with P2 in the real world execution. S2 works as follows:
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1. S2 runs P2 till step 1 (coin-tossing), where S2 extracts P2’s cut-and-choose string a through
the ideal coin-tossing functionality.

2. S2, pretending an honest P1 with x = 0, runs P2 till step 5. At step 5, S1 extracts P2’s
effective input y through the ideal functionality for OT. S2 sends y to T and in return receives
f(x, y). Then, S2 rewinds P2.

3. S2, pretending P1 with input x = 0, runs P2 till step 3. At step 3, for every check circuit, P2

generates a garbled circuit honestly; while for every evaluation circuit, P2 invokes the garbled
circuit simulator (the one used in defining garbling scheme privacy) with f and f(x, y) and
sends the simulated garbled circuit to P2. (Note that S2 already learns P2’s cut-and-choose
string a from the rewound coin-tossing step.)

S2 resumes P2 till the end and outputs whatever P2 outputs.

The indistinguishability of this experiment and the one running P1 and P2 in the real world
can be easily derived from the security (more specifically, the notion of privacy) of the garbling
scheme.

H Cost-Aware Prefix-free Codes

Algorithm 2 encode(w;n, r)

Require: ε ∈ R+, n ∈ Z+ and r > 1, w ∈ {0, 1}n.
1: Pre-compute {uk | 1 ≤ k ≤ n} from r as shown at the end of the proof of Lemma 13
2: x := 2len(w); k := n; i := 1
3: while x ≥ 1 do
4: if x = 1 then
5: return a
6: else
7: if w < uk(x) then
8: ai := 0

9: x := uk(x)
10: else
11: ai := 1

12: w := w − uk(x)
13: x := x− uk(x)

14: k := k − 1; i := i + 1
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Algorithm 3 decode(a;n, r)

Require: ε ∈ R+, n ∈ Z+ , r > 1 and a.
1: Pre-compute {uk | 1 ≤ k ≤ n} from r as shown at the end of the proof of Lemma 13
2: x := 1; ` = len(a); k := n− ` + 1; i := `; w := 0
3: while i ≥ 0 do
4: if i = 0 then
5: return w
6: else
7: if ai = 0 then
8: x := uk(x)
9: else

10: w := w + uk(x)
11: x := x + uk(x)

12: k := k + 1; i := i− 1
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