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Abstract. The internal state of RC4 stream cipher is a permutation over ZN and its state

transition is effectively a transposition or swapping of two elements. How the randomness

of RC4 state evolves due to its state transitions has been studied for many years. As the

number of swaps increases, the state comes closer to a uniform random permutation. We call

the burn-in period of RC4 state transition as the number of swaps required to make the state

very close to uniform random permutation under some suitably defined distance measure.

Earlier, Mantin in his Master’s thesis (2001) has performed an approximate analysis of the

burn-in period. In this paper, we perform a rigorous analysis of the burn-in period and in the

process derive the exact distribution of the RC4 state elements at any stage.

Keywords: Bias, Burn-in, Cryptography, Random Permutation, RC4, State transition, Stream

cipher.

1 Introduction

RC4, since its inception in 1987, has been the most popular software stream cipher for commercial

use until recently. The internet security protocols like SSL, SSH, TLS, WEP, WPA have extensively

used RC4. Due to its simple structure, it has also invited a lot of cryptanalytic efforts [21, 27, 9, 7, 5,

4, 14, 15, 12, 13, 15, 17, 19, 25, 26, 10, 3, 23, 24, 22, 2, 8, 6]. Due to the recent attacks on TLS [2, 6], the

Internet Engineering Task Force (IETF) has deprecated its use in TLS 1.0 and it has been removed

from the TLS 2.0 draft under preparation.

Interestingly, the usability of the RC4-like ciphers is re-iterated in the recent proposal of

Spritz [20] from the authors of RC4. The original RC4 and its variants belong to the shuffle-

exchange paradigm and the state evolutions of these ciphers have several interesting combinatorial

results [15]. Thus, even if RC4 is replaced by other stream ciphers in practical protocols, RC4 and

its variants, with their elegant and robust structures and nice combinatorial properties, are likely

to remain model stream ciphers for both designers and cryptanalysts of the future.

? The second author worked for this paper during the winter break in 2016 in his Master of Statistics

course.



The internal state of RC4 consists of an array S of size N = 256, which contains a permutation

of ZN = {0, 1, . . . , N − 1}. A secret key k consists of l (typically 5 to 32) elements from ZN and is

stretched to an array K of size N is such that K[i] = k[i mod l], 0 ≤ i ≤ N − 1.

Like any stream cipher, RC4 algorithm has two components: the Key Scheduling Algorithm

(KSA) and the Pseudo Random Generation Algorithm (PRGA). The KSA initializes S to an

identity permutation over ZN and uses the secret key K to scramble S by N transpositions or

swaps. The PRGA uses this scrambled S to produce one keystream output ∈ ZN per iteration and

updates S by further swaps. The algorithms are described below.

Algorithm KSA

Initialization:

For i← 0, . . . , N − 1

S[i]← i;

j ← 0;

Scrambling :

For i← 0, . . . , N − 1

j ← (j + S[i] +K[i]) mod N ;

Swap(S[i], S[j]);

Algorithm PRGA

Initialization:

i← 0, j ← 0;

Output Keystream Generation Loop:

i← (i+ 1) mod N ;

j ← (j + S[i]) mod N ;

Swap(S[i], S[j]);

t← (S[i] + S[j]) mod N ;

Output z ← S[t];

One direction of analysis of RC4 looks into the randomness of the state S. Randomness of S is

very important, because that in turn results in randomness of the keystream generated from S. In

the actual RC4 KSA, the resulting state has lots of non-randomness that causes non-randomness in

initial few hundred keystream outputs of the PRGA. In practice, these initial outputs are discarded

to ensure randomness of the keystream. The burn-in period for RC4 state transition may be defined

as the number of swaps needed to make the state ε-close to a random permutation under some

distance measure for a negligibly small ε.

Let Sr denote the permutation after r many swaps in the KSA. That is, S0 is the initial identity

permutation at the beginning of the KSA and SN is the permutation after the KSA is over. Similarly,

let SGr denote the permutation after r many swaps in the PRGA. In [11, Chapter 6 and Appendix

C] and later in [15], the problem of estimating Pr(SN [u] = v), 0 ≤ u ≤ N − 1, 0 ≤ v ≤ N − 1, i.e.,

the distribution of the values in each permutation position after the KSA has been discussed. A long

derivation of these results has been presented in Mantin’s thesis [11, Chapter 6 and Appendix C].

Later, Mironov [15] provided a shorter proof. However, Mironov’s argument [15] does not consider

the scenario of arbitrary initial distribution of S, which we have investigated here. Further, we

rigorously investigate the evolution of the randomness of S as the number of swaps increases, and

derive the general distribution of Sr[u] and SGr [u] for each position u ∈ ZN . This helps us to perform

a tighter analysis of the burn-in period for RC4 state transition, that has been bounded via a loose

approximation in Mantin’s thesis [11, Section 6.3.4].



2 Solution for arbitrary initial state distribution

We consider an idealized model for the KSA and PRGA algorithm which is seemingly consistent

with the intent of the cipher designer. All the operations made on the index j in those two algorithms

are aimed at making that index random. So, the idealized model assigns to j a random index from

{0, . . . , N − 1} whenever j gets changed. This idealized models, denoted by KSA* and PRGA*, are

described below.

Algorithm KSA*

Initialization:

For i← 0, . . . , N − 1

S[i]← i;

Scrambling :

For i← 0, . . . , N − 1

j ← Uniform {0, . . . , N − 1};
Swap(S[i], S[j]);

Algorithm PRGA*

Initialization:

i← 0, j ← 0;

Output Keystream Generation Loop:

i← (i+ 1) mod N ;

j ← Uniform {0, . . . , N − 1};
Swap(S[i], S[j]);

t← (S[i] + S[j]) mod N ;

Output z ← S[t];

All the analysis presented in this paper will be based upon this idealized model. So, it has to be

kept in mind that, from now on whenever we use the notations introduced in the previous section,

they are associated with this idealized model.

Let us denote

p(t)u,v := Pr[St[u] = v]

where u, v ∈ {0, . . . , N − 1} and t ≥ 0. Initially the state array S0 is the array of the numbers

0, . . . , N − 1 in their usual order. In particular, for the standard RC4,

p(0)u,v =

{
1, if u = v;

0, otherwise.

According to Algorithm KSA*, at the t-th step during the evolution of the state array (where t

lies between 1 and N ), the (t− 1)-th cell is taken and one of the cells of the total N cells is chosen

uniformly at random. For simplicity of notation, let us call the index of random cell chosen as the

random index and the index of the cell chosen deterministically (e.g. (t− 1)-th cell at t-th step) as

the deterministic index. The contents of these two cells are then interchanged. Hence, for t ≥ 1, the

state probabilities are given by the following result.

Proposition 1. [15]

p(t)u,v =


1

N
, if t = u+ 1;

1

N
p
(t−1)
t−1,v +

N − 1

N
p(t−1)u,v , if t 6= u+ 1.



Note that Mironov [15] used it for the PRGA* which we shall discuss later. We want to use

this recursion to get an expression for the state array probabilities after KSA* completes, i.e. after

time t = N . We shall pursue this objective by two methods, first one being an algebraic way, i.e.

unfolding of the recursion and the later one uses combinatorial arguments.

2.1 Algebraic Derivation of State probabilities for the KSA*

We shall make use of two lemmas as follows.

Lemma 1.

p(t)u,v =
t−1∑
j=0

1

N

(N − 1

N

)j
p
(0)
j,v +

(N − 1

N

)t
p(0)u,v, if 0 ≤ t < u+ 1.

Proof. We shall prove this by induction on t. For t = 1 and any u > 0, v, it holds true directly from

Proposition 1. Now suppose it holds true for all t = 1, . . . , k − 1, where 2 ≤ k ≤ N − 1. Then by

Proposition 1, for any u > k − 1, v, we have

p(k)u,v =
1

N
p
(k−1)
k−1,v +

N − 1

N
p(k−1)u,v

=
1

N

[ k−2∑
j=0

1

N

(N − 1

N

)j
p
(0)
j,v +

(N − 1

N

)k−1
p
(0)
k−1,v

]
+
N − 1

N

[ k−2∑
j=0

1

N

(N − 1

N

)j
p
(0)
j,v +

(N − 1

N

)k−1
p(0)u,v

]

=

k−1∑
j=0

1

N

(N − 1

N

)j
p
(0)
j,v +

(N − 1

N

)k
p(0)u,v

and hence by induction hypothesis our lemma is proved. ut

Lemma 2.

p(t)u,v =

t−1∑
k=0

1

N

(N − 1

N

)k
p
(0)
k,v−

[ u∑
k=0

(N − 1

N

)k
p
(0)
k,v

] 1

N

(N − 1

N

)t−u−1
+

1

N

(N − 1

N

)t−u−1
, if u+1 ≤ t ≤ N.

Proof. We again prove this by induction on t. It holds true for t = 1 as the only u we have to check

for is u = 0. Now suppose it holds true for t = 1, . . . , k−1 where 2 ≤ k ≤ N . Then by Proposition 1

and Lemma 1 we proved before, we have for k > u+ 1



p(k)u,v =
1

N
p
(k−1)
k−1,v +

N − 1

N
p(k−1)u,v

=
1

N

[ k−2∑
j=0

1

N

(N − 1

N

)j
p
(0)
j,v +

(N − 1

N

)k−1
p
(0)
k−1,v

]
+

N − 1

N

[ k−2∑
j=0

1

N

(N − 1

N

)j
p
(0)
j,v −

[ u∑
j=0

(N − 1

N

)j
p
(0)
j,v

] 1

N

(N − 1

N

)k−u−2
+

1

N

(N − 1

N

)k−u−2]

=

k−1∑
j=0

1

N

(N − 1

N

)j
p
(0)
j,v −

[ u∑
j=0

(N − 1

N

)j
p
(0)
j,v

] 1

N

(N − 1

N

)k−u−1
+

1

N

(N − 1

N

)k−u−1
And for k = u+ 1, it is obvious by Proposition 1. Hence, the lemma is proved. ut

So, putting t = N in Lemma 2, we get the following result.

Theorem 1.

p(N)
u,v =

N−1∑
j=0

pqjp
(0)
j,v −

[ u∑
j=0

qjp
(0)
j,v

]
pqN−u−1 + pqN−u−1, ∀ 0 ≤ u, v ≤ N − 1,

where Np := 1 and q := 1− p.

Notice that, the above expression holds true for arbitrary initial state array distribution. Putting

values for the initial state probabilities, which are stated earlier we get,

p(N)
u,v =

{
pqv + pqN−u−1, if u < v;

pqv + (1− pqv)pqN−u−1, if u ≥ v.

This concludes our algebraic proof.

2.2 Combinatorial Derivation of the State probabilities for the KSA*

The combinatorial proof will be only for t = N and assuming that, initially the state array is a fixed

permutation of the numbers {0, . . . , N − 1}, rather than a probability distribution. Let us denote

the initial permutation by (β0, . . . , βN−1),i.e. the u-th cell of the state array initially contains the

numbers βu, for u = 0, . . . , N − 1. We shall prove the result through a series of lemmas. These

lemmas may seem somewhat similar to the lemmas used to prove similar result in [18], but their

ultimate result does not match with others. After our proof is finished we shall try to point out

some flaws in their analysis which have caused the different result.

Another motivation of our alternative derivation is to get rid of the unnecessary idea of “relative

position” used in [11, Chapter 6 and Appendix C]. We give a direct proof which is easy to follow.

Lemma 3. If the event (Sr[k] = v) occurs for some 0 ≤ k < r, then after t-th step, v will be in

one of the cells among 0 to t− 1, for all t ≥ r.



Proof. We shall show by induction on t. Clearly holds true for t = r. Suppose holds true for

t = r, . . . , s, where r ≤ s ≤ N − 1. Now at (s + 1)-th step, if the current position of v remains

unchanged, then we are done. Otherwise, notice that the deterministic index at (s + 1)-th step is

s and by induction hypothesis v is not in s-th cell after s-th step. So, the only way the position

of v can be changed is by choosing the current cell of v as the random index and then after the

(s+ 1)-th step, v will end up in the s-th cell and therefore the induction hypothesis holds true. ut

Lemma 4.

p
(v+1)
v+1,βv

= pqv,∀ v ≥ 0.

Proof. Notice that, the deterministic index at the (v + 1)-th step is v. So, v has not been chosen

as a deterministic index up to step v. We consider two situations. In one situation, v has not been

chosen as a random index up to step v, and then to get βv at the (v + 1)-th cell after (v + 1)-th

step, the random index at the (v + 1)-th step should be (v + 1). This whole event has probability

pqv.

In the other situation, v is chosen as a random index at r-th step for the first time, where

1 ≤ r ≤ v. Then the event (Sr[r − 1] = βv) occurs. And therefore by Lemma 3, βv will be in one

of the cells among 0 to v after (v + 1)-th step. Therefore, this situation does not contribute to the

event (Sv+1[v + 1] = βv). Hence, the lemma is proved. ut

Lemma 5.

p
(t)
u,βv

= pqv, ∀ 0 ≤ v ≤ t− 1 < u ≤ N − 1.

Proof. Note that up to the t-th step of the evolution of the state array, the deterministic indices

are 0 to t− 1. So, for any index v which is less than t, the probability of βv being in any of the cells

between t and N − 1 after t-th step is equal, and therefore

p
(t)
u,βv

= p
(t)
t,βv

, ∀ v ≤ t− 1 < u.

Using the recursion relation of the state probabilities and the above relation, we have for all v ≤
t− 2 < t− 1 < u,

p
(t)
u,βv

= pp
(t−1)
t−1,βv

+ qp
(t−1)
u,βv

= pp
(t−1)
u,βv

+ qp
(t−1)
u,βv

= p
(t−1)
u,βv

. (1)

Thus, by Lemma 4 and (1)

p
(t)
u,βv

= p
(v+1)
u,βv

= p
(v+1)
v+1,βv

= pqv , ∀ v ≤ t− 1 < u,

which concludes our proof. ut

Lemma 6.

Pr[SN [u] = v|St[j] = v] = pqj−t, ∀ v ≥ 0, 0 ≤ u < t ≤ j,

provided P [St[j] = v] is positive.



Proof. Consider the situation when the event (St[j] = v) has occurred. Now we shall do a rearrange-

ment of the state array. Think of the first t cells of the state array, i.e., cells from 0 to t− 1. Notice

that u-th cell is among them. Take this t cells together and put them at the end of the array. The

j-th and the u-th cell of the old state array now becomes the (j − t)-th and the (N − t+ u)-th cell

of the new state array respectively. The next operations on the old state array making t, . . . , N − 1

as deterministic indices can be thought of same kind of operations on the new state array with

0, . . . , N − t − 1 as deterministic indices. Now, in the new state array v was initially in (j − t)-th
cell and the event (SN [u] = v) in the old state array implies that v will go to the (N − t + u)-th

cell of the new state array after N − t operations, which by Lemma 5 has probability pqj−t. (Since

that result is valid for any initial permutations.) This completes the proof of this lemma. ut

Lemma 7.

Pr[SN [u] = βv|Su+1[u] = βv] = qN−u−1, ∀ 0 ≤ u, v ≤ N − 1.

Proof. After (u + 1)-th step, βv is in u-th cell. Suppose, after this (u + 1)-th step, u is chosen as

the random index for the first time during the r-th step, r > u+ 1. Then the event (Sr[r− 1] = βv)

has occurred. Finally, after the N -th step βv ends up in u-th cell, hence consider the last step

during which the position of βv has been changed, let it be t-th step. Hence, the events (St−1[u] 6=
βv), (St[u] = βv), . . . , (SN [u] = βv) have occurred, and t > r > u+ 1. Therefore, at t-th step, u was

not the deterministic index, but the content of u-th cell has been changed in this step which implies

u was the random index at t-th step. Therefore, the event (St−1[t − 1] = βv) has occurred. But

Lemma 3 tells that, as the event (Sr[r−1] = βv) has occurred, βv will be in one of the cells among 0 to

t−2 after (t−1)-th step. Therefore, to get βv at the u-th cell after N -th step, u should not be chosen

as the random index in any of the following steps. Hence, Pr(SN [u] = βv|Su+1[u] = βv) = qN−u−1.

ut

Lemma 8.

Pr(SN [u] = βv|Su+1[r] = βv) = 0, ∀ 0 ≤ v ≤ N − 1, 0 ≤ r < u ≤ N − 1,

provided Pr[Su+1[r] = βv] > 0.

Proof. Suppose, after the (u+1)-th step, βv is in the r-th cell, where 0 ≤ r < u. Finally, after the N -

th step, βv ends up in the u-th cell; hence consider the last step during which the position of βv has

been changed and let it be the t-th step. Hence, the events (St−1[u] 6= βv), (St[u] = βv), . . . , (SN [u] =

βv) have occurred, and t > u + 1. Therefore, at t-th step, u was not the deterministic index, but

the content of u-th cell has been changed in this step which implies u was the random index at t-th

step. Therefore, the event (St−1[t − 1] = βv) has occurred. But Lemma 3 tells that, as the event

(Su+1[r] = βv) has occurred, βv will be in one of the cells among 0 to t − 2 after (t − 1)-th step.

This leads to Pr[SN [u] = βv|Su+1[r] = βv] = 0. ut

We are now ready with our equipments and shall complete the proof of the main result in two

steps.



Theorem 2.

p
(N)
u,βv

= pqv + pqN−u−1, ∀ 0 ≤ u < v ≤ N − 1.

Proof. Consider the cell where βv is after (u + 1)-th step. v is not a deterministic index up to

(u + 1)-th step. Notice that, if v is not chosen as a random index up to the (u + 1)-th step, then

βv is in v-th cell after (u + 1)-th step. Now, if v chosen as a random index in the r-th step where

1 ≤ r ≤ u + 1, then the event (Sr[r − 1] = βv) occurs which guarantees by Lemma 3 that βv will

be in one of the cells among 0 to u after (u + 1)-th step. Therefore, the only possible positions of

βv after (u+ 1)-th step are 0, . . . , u, v. This argument also indicate that Pr[Su+1[v] = βv] = qu+1.

Now, Lemma 8 gives that Pr(SN [u] = βv|Su+1[r] = βv) = 0, for all 0 ≤ r < u. Therefore,

Pr(SN [u] = βv) = Pr(SN [u] = βv|Su+1[u] = βv)p
(u+1)
u,βv

+ Pr(SN [u] = βv|Su+1[v] = βv)p
(u+1)
v,βv

.

Lemma 7 gives, Pr[SN [u] = βv|Su+1[u] = βv] = qN−u−1. By the recursion relation for state

array probabilities, p
(u+1)
u,βv

= p. Lemma 5 gives, Pr(SN [u] = βv|Su+1[v] = βv) = pqv−u−1. All these

together give

Pr[SN [u] = βv] = pqN−u−1 + pqv.

ut

Theorem 3.

p
(N)
u,βv

= pqv(1− qN−u−1) + pqN−u−1, ∀ 0 ≤ v ≤ u ≤ N − 1.

Proof. Similar to the previous analysis, we consider the cell where βv is after (u + 1)-th step.

Lemma 8 guarantees that Pr(SN [u] = βv|Su+1[r] = βv) = 0, for all 0 ≤ r < u. Therefore,

Pr[SN [u] = βv] =

N−1∑
k=u

Pr(SN [u] = βv|Su+1[k] = βv) Pr[Su+1[k] = βv]. (2)

By Lemma 6,Pr(SN [u] = βv|Su+1[k] = βv) = pqk−u−1, for all u + 1 ≤ k ≤ N − 1. Lemma 7 gives,

Pr[SN [u] = βv|Su+1[u] = βv] = qN−u−1. Lemma 5 gives Pr[Su+1[k] = βv] = pqv, for all k ≥ u+ 1.

And finally by the recursion relation Pr[Su+1[u] = βv] = p. All these combined give,

Pr[SN [u] = βv] = pqv
N−1∑
k=u+1

pqk−u−1 + pqN−u−1

= pqv(1− qN−u−1) + pqN−u−1.

ut

These two propositions complete our proof. Now, returning to the analysis presented in [18],

their argument in the proof of Lemma 2 of that paper needs some correction. The proof argues that

the only two ways for the event (Sv+1[u] = v) to occur (where v ≥ u+ 1) are



1. (Sv[u] = v) has already occurred and the index u is not involved in the swap in (v+ 1)-th step.

2. (Sv[u] 6= v) has occurred and the value v comes into the u-th cell from the v-th cell in the

(v + 1)-th step.

But when calculating the probability, the proof says

Pr[Sv[u] 6= v, Sv[v] = v] = Pr[Sv[u] 6= v] Pr[Sv[v] = v],

whereas actually

Pr[Sv[u] 6= v, Sv[v] = v] = Pr[Sv[v] = v],

as the events on both sides are equal. This false independence assumption brings an extra negative

term in their expression in Lemma 2, and gives false state probabilities.

2.3 Distribution of the state array after the r-th round of PRGA*

We have computed the distribution of the state array after KSA* for arbitrary initial distributions

in Lemma 1 and Lemma 2. We now wish to carry out further calculations to obtain the distribution

of the state array after the r-th round of the PRGA*. The scrambling process in both KSA* and

PRGA* are the same in nature. Each loop goes by taking deterministic indices from 0 to N − 1,

one by one and then choosing a random index followed by interchanging their contents. We shall

refer to this type of loop by the usual loop. The only difference between KSA* and PRGA* is that,

while KSA* performs only one usual loop, PRGA* performs many of them consecutively but the

first loop taking 1 to N−1 as deterministic indices. Our result in Theorem 1 enables us to calculate

the distribution of the state array after one usual loop for any arbitrary initial distribution. So, if

we can compute the distribution of the state array after one loop, where the deterministic indices

run from 1 to N − 1 (let us call such loops as unusual loops) for arbitrary initial distribution, we

should be able to compute the distribution of the state array after any round of PRGA*. We may

not be able to find a simple closed form expression as for the KSA*, but we shall try to make the

expression as simple as possible.

To proceed in the above mentioned direction, let us first introduce some notations, which we

will be handy in all of the coming sections.

1. 1N := N ×N identity matrix.

2. x := (p, pq, . . . , pqN−1)
T

.

3. x′ := (p, pq, . . . , pqN−2, 0)
T

.

4. yu := (p, pq, . . . , pqu, 0, . . . , 0)
T
, ∀ u ∈ ZN .

5. ψ := (pqN−1, . . . , p)
T

.

6. ψ′ := (pqN−2, . . . , p, 0)
T

.

7. ζ := (0, . . . , 0, qN−1)
T

.



Now, suppose KSA* is performed k-times on the state array, which means the state array has

gone through k usual loops. We define

p(k)v := (p
(Nk)
0,v , . . . , p

(Nk)
N−1,v)

T
, k ≥ 1; v ∈ ZN .

Here, p
(k)
v is actually the distribution of the element v in the cells of S at time Nk, i.e., after the

completion of k-th usual loop. Now using Lemma 2 we have

p(Nk)u,v := xTp(k−1)v − qN−u−1yTu p(k−1)v + pqN−u−1; k ≥ 1. (3)

Now define

B :=


qN−1yT0
qN−2yT1
· · ·

q0yTN−1

 .
So, then using Equation (3) we can write

p(k)v := 1Nx
Tp(k−1)v −Bp(k−1)v +ψ.

And if we denote

A := 1Nx
T −B, (4)

then our final formula for the evolution of the distribution of the element v becomes

p(k)v := Ap(k−1)v +ψ, ∀ v ∈ ZN . (5)

Note that A,ψ don’t depend upon v. The deviation of the distribution of the element v from the

uniform distribution can be defined as

δ(k)v := p(k)v − p1N , k ≥ 1; v ∈ ZN .

Now, suppose p
(0)
v = p1N , i.e., p

(0)
k,v = p, ∀ k ∈ ZN . Then by Theorem 1 we have

p(N)
u,v =

N−1∑
j=0

pqjp−
[ u∑
j=0

qjp
]
pqN−u−1 + pqN−u−1

= p2
1− qN

1− q
− p2qN−u−1 1− qu+1

1− q
+ pqN−u−1

= p(1− qN )− pqN−u−1 + pqN + pqN−u−1 = p

Hence,

p(0)v = p1N ⇒ p(1)v = p1N .

And hence by Equation 5, we have

p1N = pA1N +ψ.

Combining the above equation with Equation (5) we get the following result.



Theorem 4. If δ
(0)
v and δ

(k)
v denote the deviation of the distribution of the element v, before

and after k ≥ 1 KSA* loops (i.e., before and after k usual loops) respectively, from the uniform

distribution, then

δ(k)v = Akδ(0)v , ∀ v ∈ ZN ,

where A is as defined in (4).

Thus the matrix A acts like a transition matrix for an usual loop.

Let
{
p
′(0)
u,v

}
0≤u,v≤N−1

be the initial distribution entering an unusual loop, where p
′(0)
u,v = Pr[S0[u] =

v]. And suppose
{
p
′(N−1)
u,v

}
0≤u,v≤N−1

be the distribution of the state array after the unusual loop

is completed. Now we shall again use the trick of rearranging the state array. Consider the 0-th cell

of the state array S, and we put this cell at the end of the array and relabel the cells of the new

array from 0 to N − 1 in usual way. Call the new state array S∗. Therefore, the i-th cell of S′ was

actually (i+ 1)(modN)-th cell of S. Consider the first (N − 1) steps of the usual loops performed

on the array S∗. Then the array obtained after placing the last cell of S∗ at the first, is the same in

distribution with the array S after an unusual loop is performed. If
{
p
∗(0)
u,v

}
0≤u,v≤N−1

is the initial

distribution for S∗, then by construction we have the following relation

p∗(0)u,v = p
′(0)
(u+1) mod N,v , ∀ u, v ∈ ZN .

If
{
p
∗(N−1)
u,v

}
0≤u,v≤N−1

is the distribution of S∗ after (N − 1) steps of the usual loop, then

p∗(N−1)u,v = p
′(N−1)
(u+1) mod N,v , ∀ u, v ∈ ZN .

We again define,

p′(k)v := (p
′((N−1)k)
0,v , . . . , p

′((N−1)k)
N−1,v )

T
, k = 0, 1; v ∈ ZN ,

and

p∗(k)v := (p
∗((N−1)k)
0,v , . . . , p

∗((N−1)k)
N−1,v )

T
, k = 0, 1; v ∈ ZN .

As p
∗(1)
v is obtained by performing first (N − 1) operations on the initial distribution p

∗(0)
v , using

Lemma 1 and Lemma 2 we can write,

p∗(1)v = 1Nx
′Tp∗(0)v −B′p∗(0)v +ψ′, ∀ v ∈ ZN ,

where,

B′ :=


qN−2yT0
qN−3yT1
· · ·

q0yTN−2
−ζT

 .



Then define,

A′ = 1Nx
′T −B′,

which gives

p∗(1)v = A′p∗(0)v +ψ′, ∀ v ∈ ZN .

Now we want to write everything in terms of p
′(k)
v s. Denote by P , the permutation matrix

defined as

P :=

[
0N−1 IN−1

1 0TN−1

]
.

Then, Pp
′(k)
v = p

∗(k)
v , which gives,

Pp′(1)v = A′Pp′(0)v +ψ′, ∀ v ∈ ZN ,

i.e.,

p′(1)v = P−1A′Pp′(0)v + P−1ψ′, ∀ v ∈ ZN .

It is also easy to see from Lemma 1 and Lemma 2 that

p′(0)v = p1N ⇒ p∗(0)v = p1N ⇒ p∗(1)v = p1N ⇒ p′(1)v = p1N ,

which gives

p1N = pP−1A′P1N + P−1ψ′.

So, if we define δ
′(k)
v := p

′(1)
v − p1N , and A0 := P−1A′P , then we have the following result

Theorem 5. If δ
′(0)
v and δ

′(1)
v denote the deviation of the distribution of the element v in the state

array, before and after an unusual loop respectively, from the uniform distribution, then

δ′(1)v = A0δ
′(0)
v , ∀ v ∈ ZN .

As a corollary we can also write the following.

Corollary 1. If δ
′(0)
v and δ

′(k)
v denote the deviation of the distribution of the index v on the state

array, before and after k ≥ 1 unusual loops respectively, from the uniform distribution, then

δ′(k)v = Ak0δ
′(0)
v , ∀ v ∈ ZN .

Therefore, after every usual and unusual loop, the deviation vector for each v is pre-multiplied

by the matrix A and A0 respectively. We therefore refer these matrices by the associated matrix of

the two loops respectively.

Now using Theorem 4 and Theorem 5 we have the following result.



Theorem 6. consider KSA*,PRGA* together performing k loops, where k = k1 +k2, and k1 loops

are of KSA* and k2 loops are of PRGA*, and they have been performed sequentially, i.e., the KSA*

loops are performed first. If δ
(0,0)
v and δ

(k1,k2)
v denote the deviation of the distribution of the index

v on the state array, before and after these k loops respectively, from the uniform distribution, then

if k2 ≥ 1, we have

δ(k1,k2)v = Ak2−1A0A
k1δ(0,0)v , ∀ v ∈ ZN .

one of the two special cases of Theorem 6 are when KSA* is performed k times, which means

k = k1, k2 = 0 and for this the result is already specified in Theorem 4. The other special case

happens when we consider the usual RC4 scenario where KSA* is performed once and the rest are

PRGA*. This corresponds to the case k1 = 1, k2 = k − 1. Then the theorem gives us following

corollary.

Corollary 2. If δ
(0,0)
v and δ

(1,k−1)
v denote the deviation of the distribution of the element v in

the state array, before and after k loops of RC4 KSA* and PRGA* respectively, from the uniform

distribution, then if k ≥ 2, we have

δ(1,k−1)v = Ak−2A0Aδ
(0,0)
v , ∀ v ∈ ZN .

Note that from δvs we can easily find out the exact distributions. Therefore Corollary 2 gives us

the expression for the distribution of the state array after KSA* and (k − 1) loops in PRGA*.

3 Analysis of Burn-in Period

After the derivation of the state probabilities in previous section we shall now turn our attention

to the rate at which the state probabilities converge to the uniform distribution.

Let us first recall Theorem 4, 5, 6. Recall that δ
(k1,k2)
v gives us the deviation of the distribution

of index v from the uniform distribution after k1 KSA* loops and k2 ≥ 1 PRGA* loops. After each

usual loop this deviation is multiplied by A whereas after each unusual loop it gets multiplied by

A0. But these deviations being vectors, we want to summarize them by a single quantity, i.e., we

would like to take some kind of norm of this deviation vectors. Therefore, we define,

d(k1,k2)v := ||δ(k1,k2)v ||,

∆(k1,k2) := max
0≤v≤N−1

d(k1,k2)v = max
0≤v≤N−1

||δ(k1,k2)v ||;

Where ||.|| denotes some kind of vector norm. Then by Theorem 6, we have

d(k1,k2)v = ||δ(k1,k2)v || = ||Ak2−1A0A
k1−1δ(0,0)v || ≤ ||A||k1+k2−1M ||A0||M ||δ(0,0)v || ;

where ||.||M denotes some sort of matrix norm for which the relation ||Av|| ≤ ||A||M ||v|| holds true.

Our next task is to search for such suitable norm.



Our first choice should be the most popular operator norm for the matrix and L2 norm for the

vector. But the vectors, δ
(k1,k2)
v s which we are dealing with in our case have some special properties,

i.e. their coordinates add up to 0 and the absolute values of their each coordinate are less than 1.

The L2 norm ignores these special properties and therefore does not give good bound for the rate of

convergence in our case (empirically confirmed). The vector norm which we shall use in our analysis

is the L∞ norm which is defined as

||δ(k1,k2)v ||∞ := max
1≤i≤N

|eTi δ(k1,k2)v |;

where ei is the i-th coordinate vector. The matrix norm which we shall use is very particular to

fit our purpose. It is obtained in the following manner. Take any C = ((cij))1≤i,j≤N . Suppose

ci(1), . . . , ci(N) are the elements of the i-th row of C in non-increasing order. We consider two cases.

First consider the case where N is even. Then for any v with 1TNv = 0, we have,

eTi Cv = eTi

N∑
j=1

N∑
k=1

ckjeke
T
j v

=

N∑
j=1

cije
T
j v

=

N∑
j=1

cij

(
eTj v + ||v||∞

)
− ||v||∞

N∑
j=1

cij .

Note that, 0 ≤ eTj v + ||v||∞ ≤ 2||v||∞, for all j and
∑N
j=1(eTj v + ||v||∞) = N ||v||∞ as 1TNv = 0.

Hence,

eTi Cv =

N∑
j=1

cij

(
eTj v + ||v||∞

)
− ||v||∞

N∑
j=1

cij

≤
N
2∑
j=1

ci(j)

(
eTj v + ||v||∞

)
+ ci(N

2 +1)

N∑
j=N

2 +1

(
eTj v + ||v||∞

)
− ||v||∞

N∑
j=1

cij

=

N
2∑
j=1

ci(j)

(
eTj v + ||v||∞

)
+

N
2∑
j=1

ci(N
2 +1)

(
− eTj v + ||v||∞

)
− ||v||∞

N∑
j=1

cij

≤
N
2∑
j=1

ci(j)

(
eTj v + ||v||∞

)
+

N
2∑
j=1

ci(j)

(
− eTj v + ||v||∞

)
− ||v||∞

N∑
j=1

cij

=

N
2∑
j=1

ci(j)(2||v||∞)− ||v||∞
N∑
j=1

cij

=

 N
2∑
j=1

ci(j) −
N∑

j=N
2 +1

ci(j)

 ||v||∞; ∀ i.



Therefore,

||Cv||∞ ≤ max
1≤i≤N

 N
2∑
j=1

ci(j) −
N∑

j=N
2 +1

ci(j)

 ||v||∞.
Similarly if N is odd, then

||Cv||∞ ≤ max
1≤i≤N

N+1
2∑
j=1

ci(j) −
N∑

j=N+1
2

ci(j)

 ||v||∞.
Therefore, if we take,

||C||M := max
1≤i≤N

 N
2∑
j=1

ci(j) −
N∑

j=N
2 +1

ci(j)

 , if N is even;

and

||C||M := max
1≤i≤N

N+1
2∑
j=1

ci(j) −
N∑

j=N+1
2

ci(j)

 , if N is odd,

then it serves our purpose. Note that, this norm is invariant under row and column permutations.

From now on, by measure of a row, we shall refer the quantity associated with the row, which we

maximize over the rows to get the matrix norm.

Now our next target is to find the expressions for ||A||M and ||A0||M . We now have the following

result.

Result 1 Let Np = 1 and q = 1− p. A = ((aij))1≤i,j≤N . Then if N is even, we have

||A||M := max
1≤i≤N

 N
2∑
j=1

ai(j) −
N∑

j=N
2 +1

ai(j)

 =

 N
2∑
j=1

a1(j) −
N∑

j=N
2 +1

a1(j)

 ;

and this expression simplifies to

||A||M = 1− 2q
N
2 − qN−1 + 2qN .

On the other hand if N is odd and N ≥ 15, then

||A||M := max
1≤i≤N

N+1
2∑
j=1

ai(j) −
N∑

j=N+1
2

ai(j)

 =

N+1
2∑
j=1

a1(j) −
N∑

j=N+1
2

a1(j)

 ,
which simplifies to

||A||M = 1− q
N−1

2 − q
N+1

2 − qN−1 + 2qN .



The proof of this result is pretty long and full of calculations, hence it is given in Appendix A.

Let us denote the term ||A||M by ηN to point out that it is a function of N . Using the fact that

qN −→ e−1 and q −→ 1 if N −→∞, we have

ηN ≈ 1− 2√
e
− 1

e
+

2

e
= (1− 1√

e
)
2

, for large N.

Let us call this term as α := (1− 1√
e

)
2

. The approximation ηN ≈ α is quite good for N ≥ 60, with

the approximation error being less than 0.005, as seen from Fig. 1. Also note that ηN ≤ α, for all

N .
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Fig. 1. Plot of ηN versus N

It now remains to compute the value of ||A0||M . As already observed, the norm is invariant

under column and row operations, we get ||A0||M = ||A′||M . Look at the k-th row of the matrix A′.

It is

(p− pqN−k−1, . . . , pqk−1 − pqN−2, pqk, . . . , pqN−2, 0),



for k = 1, . . . , N − 1. Compare it with the (k + 1)-th row of A, which looks like

(p− pqN−k−1, . . . , pqk−1 − pqN−2, pqk − pqN−1, pqk+1, . . . , pqN−2, pqN−1).

The interesting thing is to note that, only two terms differ in the above which gives us that the

measure for these rows differ at most by 2pqN−1. The last row of the matrix A′ is

(p, pq, . . . , pqN−2, qN−1),

and the measure for this row is therefore qN−1 + p(1 + · · · + q
N
2 −2) − p(q

N
2 −1 + · · · + qN−2) =

qN−1 + (1− qN
2 −1)− qN

2 −1(1− qN
2 ) = 1− 2q

N
2 −1 + 2qN−1. Therefore,

||A0||M ≤ max(||A||M + 2pqN−1, 1− 2q
N
2 −1 + 2qN−1).

Using the approximation which we have used earlier we conclude that

||A0||M ≤ 1− 2√
e

+
2

e
= (1− 1√

e
)
2

+
1

e
=: β.

Now using Theorem 6 we can conclude the following theorem.

Theorem 7. Suppose δ
(0,0)
v and δ

(k1,k2)
v denote the deviation of the distribution of the index v on

the state array, before and after k1 loops of KSA* and k2 loops of PRGA* respectively, from the

uniform distribution. The first loop of PRGA* is always an unusual loop, and we allow the different

loops of KSA* to PRGA* to be performed in any pre-fixed order. Then for N ≥ 15, if k2 ≥ 1, we

have,

||δ(k1,k2)v ||∞ ≤ α(k1+k2−1)β||δ(0,0)v ||∞, ∀ v ∈ ZN ,

and if k2 = 0 then we have

||δ(k1,0)v ||∞ ≤ αk1 ||δ(0,0)v ||∞, ∀ v ∈ ZN ,

where α = (1− 1√
e

)
2

, and β = α+
1

e

In the above theorem we have allowed a slight flexibility than Theorem 6 that the different loops

can be performed in any order. This is possible because after taking the norm all the norms corre-

sponding to A will come together.

We shall do now two special cases of Theorem 7. Considering only KSA* is performed k times,

We can write a corollary to Theorem 7 by taking k1 = k, k2 = 0.

Corollary 3. Consider k ≥ 1. Suppose δ
(0)
v and δ

(k)
v denote the deviation of the distribution of the

index v on the state array, before and after k loops of KSA*, from the uniform distribution. Then

for N ≥ 15,

||δ(k)v ||∞ ≤ αk||δ(0)v ||∞, ∀ v ∈ ZN ,

where α = (1− 1√
e

)
2

.



Another corollary can be written considering the usual RC4 scenario, i.e., k1 = 1, k2 = k − 1.

Corollary 4. Consider k ≥ 2. If δ
(0,0)
v and δ

(1,k−1)
v denote the deviation of the distribution of the

index v on the state array, before and after k loops of RC4 KSA*-PRGA* respectively, from the

uniform distribution, then for N ≥ 15,

||δ(1,k−1)v ||∞ ≤ α(k−1)β||δ(0,0)v ||∞, ∀ v ∈ ZN ,

where α = (1− 1√
e

)
2

, and β = α+
1

e
.

Recall the definition of ∆k. Similarly we can define

∆∗k := max
0≤v≤N−1

||δ(1,k−1)v ||;

Thus ∆∗k is a measure of the deviation of the distribution of the state array from the uniform distri-

bution after k loops of RC4 KSA*-PRGA*. Taking maximum w.r.t. v on both sides of Corollary 4,

we get the following result.

Lemma 9. Consider k ≥ 2. Then for all N ≥ 15,

∆∗k ≤ α(k−1)β∆∗0,

where α = (1− 1√
e

)
2

, and β = α+
1

e
.

We now have to answer the question, how small ∆∗k would be convenient to say that the distribution

of the state array after k loops of KSA* and PRGA* is almost uniform ?. This value should depend

on N , as even small departure from the uniform distribution for large N would be significant since

the uniform probability in each cell is very small in magnitude. We therefore set the threshold to

be of O(N−δ) for some convenient δ chosen. This δ should be greater than 1 though, in order to

make the bound sensible.

We shall here work with the threshold N−δ. Let RN is the minimum number of loops after

which the departure from uniform, ∆k becomes less than N−δ. Using Lemma 9 we can write

α(k−1)β∆∗0 ≤ N−δ. (6)

In other words,

k ≥ −δ logN − log∆∗0 − log β

logα
+ 1, (7)

as α < 1. Combining (6) and (7), we can write the following theorem,

Theorem 8. For N ≥ 15,

RN ≤ d
−δ logN − log∆∗0 − log β

logα
+ 1e.



4 Application to RC4 and RC4+: A Comparative Study

4.1 Application to RC4:

Let us apply the theorem to RC4 scenario. Here, N = 256, and we take δ = 3, which shall ensure

that the maximum deviation from the uniform distribution will be less than 10−7. To calculate ∆∗0,

we observe that

p(0)v = ev, ∀v ∈ ZN ,

where ev is the (v + 1)-th co-ordinate vector in RN . Hence,

||δ(0,0)v ||∞ = ||p(0)v − p1N ||∞ = q,∀v ∈ ZN ,

which implies

∆∗0 = q.

Therefore, putting the numerical values in Theorem 8, we get that that, RN ≤ 10. This result

implies that total 10 loops is sufficient in RC4 to get a state-space distribution which deviates from

the uniform distribution by at most 10−7.

4.2 Application to RC4+:

RC4+ is a refinement of the RC4 algorithm, with some more state array scrambling steps. Like

RC4, we also here work with an idealized model of RC4+ consistent with the intention of the cipher

designer. We shall concentrate here on only on key scheduling part of it, as the idealized model for

its PRGA part does not exactly fall in th framework we have developed. The KSA+ algorithm is

given below.

Algorithm KSA+

Initialization:

For i← 0, . . . , N − 1

S[i]← i;

Basic Scrambling :

For i← 0, . . . , N − 1

j ← Uniform {0, . . . , N − 1};
Swap(S[i], S[j]);

IV Scrambling :

For i← N

2
− 1, . . . , 0

j ← Uniform {0, . . . , N − 1};
Swap(S[i], S[j]);

For i← N

2
, . . . , N − 1

j ← Uniform {0, . . . , N − 1};
Swap(S[i], S[j]);

Zigzag scrambling :

For y ← 0, . . . , N − 1

if y ∼= 0 mod 2 then

i← y

2
else

i← N − y + 1

2
j ← Uniform {0, . . . , N − 1};
Swap(S[i], S[j]);



So, KSA+ contains three types of loops, usual loop, IV scrambling loop and the zigzag loop. The

operations in each loop are exactly the same except for the fact that the index i is varied over 0 to

N −1 in different permutations. Let us develop a theory for this in general. Consider a permutation

π of {0, . . . , N − 1}, say (π(0), . . . , π(N − 1)). Consider the loop described below.

π scrambling :

For i← 0, . . . , N − 1

j ← Uniform {0, . . . , N − 1};
Swap(S[π(i)], S[j]);

Suppose {pu,v}0≤u,v≤N−1 is the distribution entering the loop with the usual notations carried

out, and
{
p∗u,v

}
0≤u,v≤N−1 be the distribution after the loop is carried out. Consider a transformed

state array S′ obtained from S by the relation S′[i] = S[π(i)]. Then the initial distribution on S′ is{
Pr[S′0[u] = v] := qu,v = pπ(u),v

}
0≤u,v≤N−1 ,

and the final distribution is{
Pr[S′N [u] = v] := q∗u,v = p∗π(u),v

}
0≤u,v≤N−1

.

On the other hand, the scrambling loop on S is actually an usual loop on S′, as S[j]
d
= S[π(j)] if

j ← Uniform {0, . . . , N − 1} . Now let us define pv,p
∗
v,qv,q

∗
v in the usual way as defined earlier, for

each index v. And then define the deviations from the uniform as δv = pv−p1N ,δ∗v = p∗v−p1N ,δ′v =

qv − p1N ,δ′∗v = q∗v − p1N . Let us now write some relations which are obvious from the context.

Pπδv = δ′v; Pπδ
∗
v = δ′∗v ,

where Pπ is the permutation matrix corresponding to the permutation π. And Theorem 6 gives

δ′∗v = Aδ′v,

and therefore,

δ∗v = P−1π APπδ
′
v = Aπδ

′
v,

where Aπ = P−1π APπ. Note that Aπ is a matrix obtained by just row and column permutation of

A, and therefore,

||Aπ||M = ||A||M .

As the norm of the associated matrix denotes the reduction in the deviation, we confirm that, all

the permutation loops are same w.r.t. that criterion. Hence, we can write down the following two

results.



Lemma 10. Consider k ≥ 2. If δ
(0)
v and δ

(k)
v denote the deviation of the distribution of the index

v on the state array, before and after k loops of KSA+ respectively, (with the terminology that each

KSA+ consists of three loops), from the uniform distribution, then for N ≥ 15,

||δ(k)v ||∞ ≤ αk||δ(0)v ||∞, ∀ v ∈ ZN ,

where α = (1− 1√
e

)
2

.

Lemma 11. Consider k ≥ 2. If δ
(0)
v and δ

(k)
v denote the deviation of the distribution of the index

v on the state array, before and after k loops of KSA+ respectively, (with the terminology that each

KSA+ consists of three loops), from the uniform distribution, and

∆+
k := max

0≤v≤N−1
||δ(k)v ||∞.

Then for N ≥ 15,

∆+
k ≤ α

k∆+
0 ,

where α = (1− 1√
e

)
2

.

Theorem 9. If R+
N is the minimum number of loops in KSA+ after which the departure from the

uniform distribution becomes less than N−δ, then

R+
N ≤ d

−δ logN − log∆+
0

logα
e,

for N ≥ 15, and ∆+
0 is as defined in Lemma 11.

As a remark we mention that, if N is even, then the bound N ≥ 15 is not needed.

5 Conclusion

RC4 stream cipher has a nice combinatorial structure. The evolution of its internal state, which is a

permutation over ZN , is drived by a random key with a hope to reach an almost uniformly random

permutation as quickly as possible. In this paper, we perform rigorous analysis of this evolution and

determine how the distance between the RC4 internal state and an uniformly random permutation

decreases as a function of the number of rounds. This yields interesting results on the “burn-in”

period of the RC4 structure, i.e., the number of KSA-PRGA rounds before the cipher can be

used in practice. One caveat of our analysis is that we assume the pseudo-random index j of RC4

permutation to be uniformly random over ZN . This is a standard assumption in all the prior works

as well. In reality, however, this assumption is not true. It remains an interesting open question if

similar analysis can be performed by first deriving the exact distribution of j values in different

rounds and then using this distribution in the computation of burn-in period.
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A Proof of Result 1

Recall our previous notation that p = 1
N and q = 1− p. Recall the definition of A. Note that k-th

row of A looks like

(p(1− qN−k), . . . , p(qk−1 − qN−1), pqk, . . . , pqN−1), ∀ 1 ≤ k ≤ N.

One observation which we shall use repeatedly in the proof is that (1− 1
N )N i.e., qN is increasing

in N , while qN−1 is decreasing in N . This can be proved simply by differentiating the functions

(1− 1
x )x and (1− 1

x )x−1 respectively.

Case 1: N is even

Let J denotes a subset of size
N

2
of the index set {1, . . . , N}. Then

||A||M = max
1≤i≤N

 N
2∑
j=1

ai(j) −
N∑

j=N
2 +1

ai(j)


= max

1≤i≤N
max
J

∑
j∈J

aij −
∑
j /∈J

aij


= max

1≤i≤N

max
J

2
∑
j∈J

aij

− N∑
j=1

aij

 .
The first row of A is the following,

p(1− qN−1, q, . . . , qN−1);

and let us define,

2p(1 + q + · · ·+ q
N
2 −1 − qN−1)− p(1 + · · ·+ qN−2) =: I.

Let us take a closure look of the structure of row k of A. Note that,

ak1 > · · · > akk; ak,k+1 > · · · > ak,N .

Therefore,

max
J

∑
j∈J

akj

 = max
(l,m)∈Qk

 l∑
i=1

ak,k+i +

m∑
j=1

ak,j

 ,



where Qk :=

{
(l,m)| l,m ≥ 0; l +m =

N

2
, k + l ≤ N,m ≤ k

}
. So, let us define,

Dk,l,m = 2

 l∑
i=1

ak,k+i +

m∑
j=1

ak,j

− N∑
j=1

akj

= 2p(qk + · · ·+ qk+l−1 + (1− qN−k) + · · ·+ (qm−1 − qN+m−k−1))− p(1 + · · ·+ qN−k−1).

Our target is to show

Dk,l,m ≤ I, ∀(l,m) ∈ Qk, k ∈ {1, . . . , N} . (8)

We shall only show for N ≥ 10. For smaller values of N , i.e., N = 2, 4, 6, 8, the correctness of the

result can be checked directly by calculating the matrix A.

Let us consider first the case k = 1. Then m = 0, 1, and D1,N2 −1,1
= I. So, it is enough to show

1 − qN−1 ≥ q
N
2 , as this will imply that D1,N2 ,0

≤ D1,N2 −1,1
. Now we have, qN−1 decreasing in N

and hence, qN−1 + q
N−1

2 is decreasing in N . Therefore,

qN−1 + q
N
2 ≤ qN−1 + q

N−1
2 ≤ (

15

16
)15 + (

15

16
)7.5 < 1, ∀ N ≥ 16.

For smaller values of N we have to check directly from the expression.

Now, we have to consider the case where k ≥ 2. First consider l,m > 0.Then, 0 < l,m < N
2 ,

and

I −Dk,l,m = 2p(

N
2 −1∑
i=0

qi −
m−1∑
i=0

qi +

N−k+m−1∑
j=N−k

qj −
k+l−1∑
j=k

qj − qN−1)

−p
N−2∑
j=0

qj + p

N−k−1∑
j=0

qj

= 2p(

N
2 −1∑
i=m

qi +

N−k+m−1∑
j=N−k

qj −
k+l−1∑
j=k

qj − qN−1)− p
N−2∑
j=N−k

qj

Therefore, enough to show

2(

N
2 −1∑
i=m

qi +

N−k+m−1∑
j=N−k

qj −
k+l−1∑
j=k

qj − qN−1) ≥
N−2∑
j=N−k

qj (9)

Note that, if m > k − 2, i.e. m = k − 1, k, then

N
2 −1∑
i=m

qi −
k+l−1∑
j=k

qj =

m+l−1∑
i=m

qi −
k+l−1∑
i=k

qi ≥ 0,

and
N−k+m−1∑
j=N−k

qj ≥
N−2∑
j=N−k

qj ;

N−k+m−1∑
j=N−k

qj ≥ qN−1,



which ensures that (9) holds true. So, now we should consider only the case m ≤ k − 2. Then

m+ 2 ≤ k ≤ N

2
+m as k + l ≤ N . In this case we can simplify (9) and conclude that it is enough

to show

2(1− qk−m)(

N
2 −1∑
i=m

qi) +

N−k+m−1∑
j=k

qj −
N−2∑

j=N−k+m

qj − 2qN−1 ≥ 0, (10)

i.e.

2(1− qk−m)qm
1− ql

1− q
+ qN−k

1− qm

1− q
− qN−k+m 1− qk−m

1− q
− qN−1 ≥ 0,

i.e., dividing both sides by
qN−k+m

1− q
we conclude that it is enough to show

2(1− ql)qk−N (1− qk−m) + (2q − 1)qk−m−1 + q−m ≥ 2.

Let us define,

uN,m = 2(1− qN
2 −m)q−N ; vN,m = (2q − 1)q−m−1,

and

Ek,N,m = uN,m(qk − q2k−m) + vN,mq
k + q−m,

and therefore we have to show

Ek,N,m ≥ 2.

Note that

Ek,N,m − Ek+1,N,m = pqk
[
uN,m(1− (1 + q)qk−m) + vN,m

]
,

and uN,m(1−(1+q)qk−m)+vN,m is an non-decreasing function of k when n,m are held at constant.

Therefore,

Ek,N,m ≥ Ek+1,N,m ⇒ Ek+1,N,m ≥ Ek+2,N,m,

i.e., when Ek,N,m starts increasing it goes on increasing. Therefore, to find the minimum it is enough

to search at the extremes i.e. k = m+ 2 and k = m+
N

2
. We shall instead search for the minimum

at k = m,m+
N

2
as it will suffice.

Em,N,m = 2− q−1 + q−m ≥ 2, as m > 0.

Em+N
2 ,N,m

= 2(1− qN
2 −m)qm−

N
2 (1− qN

2 ) + (2q − 1)q
N
2 −1 + q−m

= 2qm−
N
2 − 2qm + 4q

N
2 − qN

2 −1 + q−m − 2

= qm−
N
2 − 2qm + 4q

N
2 − qN

2 −1 + (qm−
N
2 + q−m)− 2

≥ qm−N
2 − 2qm + 4q

N
2 − qN

2 −1 + 2q−
N
4 − 2,



where the last expression is increasing in m because qN ≥ 1
4 which implies q−

N
2 ≤ 2. Therefore it

is enough to check at m = 0 which gives us

Em+N
2 ,N,m

≥ q−N
2 + 2q−

N
4 + 4q

N
2 − qN

2 −1 − 4

= q−
N
2 + 2q−

N
4 + (3− p

q
)q

N
2 − 4

≥ q−N
2 + 2q−

N
4 + (3− 1

17
)q

N
2 − 4, ∀ N ≥ 18;

Now consider the function x −→ x+ 2
√
x+ (3− 1

17 ) 1
x , and it can easily be seen by differentiating

that this function is increasing when x2 + x
3
2 ≥ (3− 1

17 ). Now, we know, q−
N
2 is decreasing in N ,

and hence, q−
N
2 ≥ limN→∞ q−

N
2 =
√
e and e+ e

3
4 ≥ (3− 1

17 ). Therefore we have that the function

q−
N
2 + 2q−

N
4 + (3− 1

17 )q
N
2 − 4 is decreasing in N and therefore the minimum value is the limiting

value when N goes to ∞, i.e.,
√
e + 2e

1
4 + (3 − 1

17 ) 1√
e
− 4 > 2. Hence, Em+N

2 ,N,m
≥ 2, ∀ N ≥

18. And for smaller values of N i.e., for N = 10, 12, 14, 16, we can directly check by calculating

q−
N
2 + 2q−

N
4 + 4q

N
2 − qN

2 −1− 4. So, we are done with the first case of the proof except for the case

that l = 0 or m = 0.

Note that, qk + qN−k ≥ 2q
N
2 ≥ 2(1/2) = 1, as qN is increasing in N . This implies that,

ak,k+1 ≥ ak1, which in turn implies that I ≥ Dk,1,N2 −1
≥ Dk,0,N2

. Therefore the case for l = 0 is

solved.

Now, k > N
2 implies l ≤ N − k < N

2 , and hence, m > 0. So, to consider 1 ≤ k ≤ N
2 . Note that

it is enough to prove that

qk+
N
2 −1 + qN−k < 1,

as it guarantees ak1 < ak,k+N
2

which implies Dk,N2 ,0
< Dk,N2 −1,1

≤ I.

(qk+
N
2 −1+qN−k)−(qk+1+N

2 −1+qN−k−1) = qk+
N
2 −1(1−q)−qN−k−1(1−q) = (1−q)qN−k−1(q2k−

N
2 −1).

Therefore, qk+
N
2 −1 +qN−k is at first decreasing and then increasing as k varies to 1 to N

2 . Hence for

maximum value it is enough to check at k = 1, N2 , and at both of these points the value is q
N
2 + q

N
2

which is less than 1, already proven. Therefore,

||A||M = I = 2p(1 + q + · · ·+ q
N
2 −1 − qN−1)− p(1 + · · ·+ qN−2)

= 1− 2q
N
2 − qN−1 + 2qN .

Case 2: N is odd



We shall follow similar technique as used in the even case. Let J denotes a subset of size
N − 1

2
of the index set {1, . . . , N}, and u denotes a single index from the same set.. Then

||A||M = max
1≤i≤N

N+1
2∑
j=1

ai(j) −
N∑

j=N+1
2

ai(j)


= max

1≤i≤N
max
J,u:u/∈J

∑
j∈J

aij −
∑

j /∈J,j 6=u

aij


= max

1≤i≤N

 max
J,u:u/∈J

2
∑
j∈J

aij + aiu

− N∑
j=1

aij

 .
The first row of A is the following,

p(1− qN−1, q, . . . , qN−1);

and let us define,

2p(1 + q + · · ·+ q
N−1

2 −1 − qN−1) + pq
N−1

2 − p(1 + · · ·+ qN−2) =: I.

As expected from previous experience, here also we have,

ak1 > · · · > akk; ak,k+1 > · · · > ak,N .

Therefore,

max
J,u:u/∈J

2
∑
j∈J

akj + aku

 = max
(l,m)∈Qk

2

l∑
i=1

ak,k+i + 2

m∑
j=1

akj + ak,k+l+1, 2

l∑
i=1

ak,k+i + 2

m∑
j=1

akj + ak,m+1

 .
where Qk :=

{
(l,m)| l,m ≥ 0; l +m =

N − 1

2
, k + l ≤ N,m ≤ k

}
.

So, let us define, for l < N − k,

D′k,l,m = 2

 l∑
i=1

ak,k+i +

m∑
j=1

akj + ak,k+l+1

− N∑
j=1

akj

= 2p(qk + · · ·+ qk+l−1 + (1− qN−k) + · · ·+ (qm−1 − qN+m−k−1)) + pqk+l − p(1 + · · ·+ qN−k−1),

and for m < k,

D′′k,l,m = 2

 l∑
i=1

ak,k+i +

m∑
j=1

akj + ak,m+1

− N∑
j=1

akj

= 2p(qk + · · ·+ qk+l−1 + (1− qN−k) + · · ·+ (qm−1 − qN+m−k−1)) + p(qm − qm+N−k)− p(1 + · · ·+ qN−k−1).



Our target is to show

D′k,l,m, D
′′
k,l,m ≤ I, ∀(l,m) ∈ Qk, k ∈ {1, . . . , N} , (11)

and where they are defined. After this part the proof is completely similar to the proof given in

even part. So, to avoid the repetition of the calculations, we just sketch the next part of the proof.

Let us first consider the case for D′k,l,m. Let us consider first the case k = 1. Then m = 0, 1,

and D′
1,N−1

2 −1,1
= I. So, it is enough to show 1− qN−1 ≥ qN−1

2 , as this will imply that D′
1,N−1

2 ,0
≤

D′
1,N−1

2 −1,1
. Now we have, qN−1 decreasing in N and hence, qN−1 + q

N−1
2 is decreasing in N .

Therefore,

qN−1 + q
N−1

2 ≤ (
14

15
)14 + (

14

15
)7 < 1, ∀ N ≥ 15.

The situations with l = 0,m = 0 and m ≥ k − 1 are similarly solved as for the even case. For,

l,m > 0 and m ≤ k − 2 case, simplifying the expression we see that it is enough to show

E′k,N,m := 2(1− ql)qk−N (1− qk−m) + (2q − 1)qk−m−1 + q−m + pqk−m−
N+1

2 − pq2k+l−N−m ≥ 2.

Considering it as a function of k only, keeping N,m fixed, we see that

E′k,N,m − E′k+1,N,m

pqk

is increasing in k. Therefore, E′k,N,m can have minimum only at two ends, i.e. k = m,m+ N+1
2 .

E′m,N,m = (2q − 1)q−1 + q−m ≥ 2.

E′N+1
2 +m,N,m

= 2qm−
N−1

2 − 2qm+1 + 4q
N+1

2 − q
N−1

2 + q−m − 2 + p− pq
N+1

2

≥ qm−
N−1

2 + 2q−
N−1

4 − 2qm+1 + 4q
N+1

2 − q
N−1

2 − 2 + p− pq
N+1

2 ,

and the final RHS term is increasing in m as q−
N+1

2 ≤ 2. So, enough to check at m = 0. So, enough

to show,

q−
N−1

2 + 2q−
N−1

4 − 2q + 4q
N+1

2 − q
N−1

2 − 2 + p− pq
N+1

2 ≥ 2.

The LHS converges to
√
e+ 2e

1
4 + 3 1√

e
− 4 > 2. So, after some N LHS will be greater than 2. For

some initial terms we have to check directly. Now for the last case we have to show that D′′k,l,m ≤ I.

The cases for l = 0,m = 0 and m ≥ k−1 are easy to handle. For l,m > 0 and m ≤ k−2, simplifying

the expression we see that it is enough to show,

E′′k,N,m = 2(1− ql)qk−N (1− qk−m) + (2q − 1)qk−m−1 + q−m + pqk−m−
N+1

2 − pqk−N + p ≥ 2.

Easy to observe that
E′′k,N,m − E′′k+1,N,m

pqk



is increasing in k considering N,m fixed. So, E′′k,N,m can have minimum only at the two ends,

k = m+ 1,m+ N+1
2 . Let us define,

E′′m+1,N,m = Fm,N .

Observe that, Fm,N − Fm+1,N is decreasing in m and

F0,N − F1,N = q−Np(p(2q − 1)− qN−1) ≤ 0,

as 2q + qN−2 ≥ 2. Therefore, Fm,N − Fm+1,N ≤ 0, and hence, Fm,N will be minimum at m = 1(as

m = 0 case is done separately) and observe that,

F1,N − 2

p
−→ e−

√
e+ 1 > 0.

Therefore, F1,N ≥ 2 after some terms and those cases are easy to check. This finishes checking at

k = m+ 1. For other end point,

E′′N+1
2 +m,N,m

= 2qm−
N−1

2 − 2qm+1 + 4q
N+1

2 − q
N−1

2 + q−m − 2 + p− pqm−
N−1

2 + p

≥ qm−
N−1

2 + 2q−
N−1

4 − 2qm+1 + 4q
N+1

2 − q
N−1

2 − 2 + 2p− pqm−
N−1

2 ,

and the final RHS term is increasing in m as q−
N+1

2 ≤ 2. So, enough to check at m = 0. So, enough

to show,

q−
N−1

2 + 2q−
N−1

4 − 2q + 4q
N+1

2 − q
N−1

2 − 2 + 2p− pq−
N−1

2 ≥ 2.

The LHS converges to
√
e+ 2e

1
4 + 3 1√

e
− 4 > 2. So, after some N LHS will be greater than 2. For

some initial terms we have to check directly. Then simplifying for the expression of I, we get

||A||M = 1− q
N−1

2 − q
N+1

2 − qN−1 + 2qN .

This completes the proof. ut


