
Authenticated Garbling and Efficient Maliciously Secure
Multi-Party Computation

Jonathan Katz
University of Maryland

jkatz@cs.umd.edu

Samuel Ranellucci
University of Maryland

George Mason University

samuel@umd.edu

Xiao Wang
University of Maryland

wangxiao@cs.umd.edu

Abstract

In this paper, we extend the recent work by Wang et al., who proposed a new framework
for secure two-party computation in the preprocessing model that can be instantiated efficiently
using TinyOT. We show that their protocol can be generalized to the multi-party setting, where
the preprocessing functionality is based on the multi-party TinyOT-like protocol. Assuming
there are n parties where at most n−1 parties are corrupted, the function-dependent phase has
a total communication complexity of O(κn2) bits per AND gate; the online phase has a total
communication complexity of O(κn2) bits per input/output bit.

In the second part of this paper, we propose a new multi-party TinyOT protocol. The new
protocol uses a set of new techniques that allow parties to distributively check the correctness
without the need for cut-and-choose. The resulting protocol is much more efficient compared
to previous protocols: with statistical security parameter ρ, the complexity to generate one
AND triple is O(ρ

log |C|n
2), where |C| is the circuit size. The best previous multi-party TinyOT

protocol by Frederiksen et al. has a complexity of O(ρ2

log2 |C|n
2) per AND triple. The complexity

is measured in terms of number of symmetric key operations/number of symmetric key messages.
The resulting protocol enjoys extremely high efficiency, compared to the state-of-the-art

protocol by Lindell et al. that combines the BMR protocol with the SPDZ protocol.

1 Introduction

Secure multi-party computation (MPC) allows a set of parties to privately compute a function on
their joint inputs. The protocol ensures that an adversary corrupting a set of parties cannot learn
anything more than the output of the function.

Most works on MPC [KOS16, FKOS15, BDOZ11, DPSZ12, FLNW17] suffer from one huge
drawback: the protocol requires a number of round-trips proportional to the depth of the circuit
being evaluated. When the parties are geographically separated, or when the number of parties
becomes high, such round-trip time can be overwhelming, compared to the time required for the
other parts of the protocol. For example, the AES circuit has a depth of around 50. If parties are
located in the U.S. and Europe, round-trip time is 75 ms even with dedicated networks provided by
Amazon EC2. This means a total of 3750 ms is spent on round-trips, not to mentioned the time to
perform cryptographic operations and to send messages. Most of these works are based on secret
sharing: for each AND/Mult gate, they require at least one round-trip.

Another completely different approach that constructs constant-round MPC protocol is by
Beaver, Micali, and Rogaway [BMR90]. Their protocol uses any interactive MPC protocol to jointly

1

Complexity

Choi et al. [CKMZ14] O
(
|C| ρ2

log |C|

)
Lindell et al. [LPSY15] + Keller et al. [KOS16] O

(
|C|κn2

)
Section 4 + Frederiksen et al. [FKOS15] O

(
|C| ρ2

log2 |C|n
2
)

Section 4 + Section 6 O
(
|C| ρ

log |C|n
2
)

Table 1: Constant-round Multi-party protocol secure against n − 1 corruption. Choi et
al. is only for three party.

garble a circuit, which can be then evaluated. This approach was regarded as only a theoretical
solution until recently: Damg̊ard and Ishai [DI05] applied this idea to a setting with honest majority;
Choi et al. [CKMZ14] applied to a setting with three parties and dishonest majority; Lindell et
al. [LPSY15, LSS16] uses the SPDZ protocol and Somewhat Homomorphic Encryption to garble a
circuit achieving constant round MPC protocol with all-but-one corruption.

Authenticated Garbling. A recent work by Wang et al. shows that in the two-party setting,
BMR protocol can be made practical. In particular, the paper discusses two techniques: 1) how to
use the TinyOT protocol to distributively garble a single circuit efficiently. The distributed garbled
circuit is “authenticated” such that an adversary cannot arbitrarily change it; 2) how to use ideas
from zero-knowledge garbled circuit [JKO13] to, in turn, construct an improved TinyOT protocol.

Contribution. In this paper, we fully extend the authenticated garbling in the multi-party setting:

1. We present an extension of the main protocol by Wang et al. to the multi-party setting.
The resulting protocol is in the (TinyOT-like) preprocessing model, with communication
O(κn2|C|) bits and only has a constant number of rounds.

2. The above preprocessing functionality can be instantiated using existing work. However, we
design a new protocol that generalizes TinyOT for the multi-party setting. The cost to pre-
process a single AND gate is O(Bn2) where B = ρ

log |C| , while the best previous work [FKOS15]

requires O(B2n2).

3. The resulting protocol is very simple, and we intend to implement it to test its practical
performance.

Outline. In the next section, we will provide some high-level intuition on how our main protocol in
the preprocessing model works. In Section 4, we provide complete description of the protocol, with
proof in Section 5. Finally in Section 6, we discuss an efficient instantiation of the preprocessing
functionality.

2 Notations and Preliminaries

We use κ to denote the computational security parameter and ρ to denote the statistical security
parameter. We also use = to denote equality and := to denote assignment.

2

We represent a circuit as a list of gates. Each gate is represented as (α, β, γ, T), which means
a gate with input-wire indices as α and β; output wire index as γ and gate type as T ∈ {⊕,∧}.
Furthermore, we use Ii to denote the set of all input wire indices for Pi’s input; W to denote the
set of output wire indices for all AND gates, O to denote the set of output wire indices of the
circuit. Parties are denoted as P1, ..., Pn. Since our main protocol is based on garbled circuits, we
designate P1 as the circuit evaluator. M is used to denote the set of parties that are corrupted and
H is used to denote the set of honest parties, which means M∪H = [n].

Information-theoretic MAC (IT-MAC). We use a multi-party variant of the information-
theoretic message authentication code originally used by Nielsen et al. [NNOB12]. We follow the
description from Wang et al. [WRK17]. Each player holds a global key ∆i. To allow the player
Pi to hold a MAC tag for the value b towards player Pj , we give a κ-bit long random key Kj [b]
to Pj and give Mj [b] := Kj [b] ⊕ b∆j to player Pi. We also allow a player Pi to authenticate a
single value x towards all other players: for each j ∈ [n], j 6= i, we give, Pj a random key Kj [x]
and give Mj [b] := Kj [b]⊕ b∆j to Pi. This is equivalent to authenticating the same bit to all other
parties. (We use FnaBit to model this as an ideal functionality and discuss an efficient instantiation
in Section 6.1.)

We will use [x]i to denote a multi-party IT-MAC for a bit x held by Pi. [x]i therefore means
(x, {Mk[x]}k 6=i) for Pi, and [x]i means Kj [x] for Pj with j 6= i. Note that [x]i is XOR-homomorphic:
given two authenticated bits [x]i, [y]i, it is possible to generate an authenticated bit [z]i whose value
is the XOR of the two authenticated bits by doing the following:

1. z := x⊕ y
2. Kj [z] := Kj [x]⊕ Kj [y], ∀j 6= i
3. Mj [z] := Mj [x]⊕Mj [y], ∀j 6= i

It is also possible to negate [x]i resulting in [y]i:

1. y := x⊕ 1
2. Kj [y] := Kj [x]⊕∆j ,∀j 6= i
3. Mj [y] := Mj [x],∀j 6= i

In the above construction, x is known to one party. To generate a distributed authenticated
bit x, where the value is not known to any party, we generate shares for x, namely

⊕
i x

i = x. For
each xi, parties also obtain [xi]i, that is, multi-party MACs on xi with Pi holding xi. We also use
[x]i to denote [xi]i as a simplified notation when it is not ambiguous. It is easy to see that such
distributed authenticated bit is also XOR-homomorphic.

Note that, we use the notation [x]i to denote an multi-party authenticated bit xi where the
global key are ∆’s. In the case where global keys are some G’s, we explicitly add a subscript to
the representation: [x]iG denotes an authenticated bit xi under global keys G’s. Similar, when
the global key is some Gi, we then use Mi[x]Gi , Ki[x]Gi to represent the MAC and keys. That is
Mi[x]Gi = Ki[x]Gi ⊕ xGi.

Related functionalities. The MPC functionality that our main protocol instantiates is shown
in Figure 1. We focus on a simplified version where only P1 gets the output. Our main protocol
works in the FPre-hybrid model. The detailed ideal functionality FPre is shown in Figure 2. From
a high level view, FPre generates multi-party IT-MAC on some value x, y, z such that z = x∧ y. In
the later section, we also refer to this set of multi-party IT-MACs as a AND triple.

3

Functionality Fmpc

Private inputs: Pi has input xi ∈ {0, 1}ni .
1. Upon receiving (input, xi) from Pi, store the message (i, xi) if no message of the form (i, ·) is present in

memory. If (i, xi) is present in memory for all i ∈ [n], the box computes z := f(x1, ..., xn) and sends z to
P1.

Figure 1: Functionality Fmpc for multi-party computation.

Functionality FPre

1. Upon receiving init from all Pi’s, sample {∆i ∈ {0, 1}κ}i∈[n] and send ∆i to Pi. Corrupted parties can
choose their own ∆i.

2. Upon receiving random from all Pi, sample a random bit r and a random multi-party IT-MAC, namely
{(ri, {Mj [ri],Kj [ri]}j 6=i)}i∈[n]. The box sends (ri, {Mj [ri],Ki[rj]}j 6=i) to Pi. Corrupted parties can choose
their own randomness.

3. Upon receiving (AND, (ri, {Mj [ri],Ki[rj]}j 6=i), (si, {Mj [si],Ki[sj]}j 6=i) from Pi, the box checks that each
IT-MAC is valid, picks random {ti}i∈[n], such that

⊕
i∈[n] ti = (

⊕
i∈[n] ri) ∧ (

⊕
i∈[n] si) and random IT-

MACs {(ti, {Mj [ti],Kj [ti]}j 6=i)}i∈[n] on them, and sends (ri, {Mj [ri],Ki[rj]}j 6=i) to Pi. Corrupted party
gets to choose its own randomness.

Figure 2: The multi-party preprocessing Functionality.

3 Protocol Intuition

Our main protocol can be viewed as a (non-trivial) extension of a recent work by Wang et al. that
proposed an authenticated garbling protocol for maliciously-secure two-party computation. From
a high-level view, their protocol constructs shares of a garbled table where permutation bits are
authenticated in the following way.

x⊕ λα y ⊕ λβ P2’s share of Garbled Table P1’s share of Garbled Table

0 0 H(Lα,0, Lβ,0, γ, 00)⊕ (r2
00,M1[r2

00], R00 ⊕ Lγ,z̄00) (r1
00 = z̄00 ⊕ r2

00,K1[r2
00], R00)

0 1 H(Lα,0, Lβ,1, γ, 01)⊕ (r2
01,M1[r2

01], R01 ⊕ Lγ,z̄01) (r1
01 = z̄01 ⊕ r2

01,K1[r2
10], R01)

1 0 H(Lα,1, Lβ,0, γ, 10)⊕ (r2
10,M1[r2

10], R10 ⊕ Lγ,z̄10) (r1
10 = z̄10 ⊕ r2

10,K1[r2
01], R10)

1 1 H(Lα,1, Lβ,1, γ, 11)⊕ (r2
11,M1[r2

11], R11 ⊕ Lγ,z̄11) (r1
11 = z̄11 ⊕ r2

11,K1[r2
11], R11)

With an appropriate choice of the preprocessing functionality, each row of the garbled table can
easily be computed as follows.

x⊕ λα y ⊕ λβ P1’s share of Garbled Table P2’s share of Garbled Table

0 0 H(Lα,0, Lβ,0, γ, 00)⊕ (r00,M[r00], Lγ,0 ⊕ r00∆1 ⊕ K[s00]) (s00 = z̄00 ⊕ r00,K[r00],M[s00])
0 1 H(Lα,0, Lβ,1, γ, 01)⊕ (r01,M[r01], Lγ,0 ⊕ r01∆1 ⊕ K[s01]) (s01 = z̄01 ⊕ r01,K[r01],M[s01])
1 0 H(Lα,1, Lβ,0, γ, 10)⊕ (r10,M[r10], Lγ,0 ⊕ r10∆1 ⊕ K[s10]) (s10 = z̄10 ⊕ r10,K[r10],M[s10])
1 1 H(Lα,1, Lβ,1, γ, 11)⊕ (r11,M[r11], Lγ,0 ⊕ r11∆1 ⊕ K[s11]) (s11 = z̄11 ⊕ r11,K[r11],M[s11])

Our main goal is to generalize these ideas to n > 2 parties where n − 1 parties jointly garble
and then let the excluded party evaluate the garbled circuit. Since up to n − 1 parties can be
malicious, the garbled circuit and associated permutation bits need to be shared among all parties

4

such that no subset of the parties can recover the garbled circuit. Similar to the original 2PC
protocol, permutation bits also need to be authenticated.

In the following example, we will restrict ourselves to the three-party setting. The first step is
to extend the garbled table without considering how to construct the authenticated garbling.

P3’s share of Garbled Table P2’s share of Garbled Table

H(L3
α,0, L

3
β,0, γ, 00)⊕ (r3

00,M1[r3
00], R2

00 ⊕R1
00 ⊕ L3

γ,z̄00
, S3

00) H(L2
α,0, L

2
β,0, γ, 00)⊕ (r2

00,M1[r2
00], S3

00 ⊕ S1
00 ⊕ L2

γ,z̄00
, R2

00)

H(L3
α,0, L

3
β,1, γ, 01)⊕ (r3

01,M1[r3
01], R2

01 ⊕R1
01 ⊕ L3

γ,z̄01
, S3

01) H(L2
α,0, L

2
β,1, γ, 01)⊕ (r2

01,M1[r2
01], S3

01 ⊕ S1
01 ⊕ L2

γ,z̄01
, R2

01)

H(L3
α,1, L

3
β,0, γ, 10)⊕ (r3

10,M1[r3
10], R2

10 ⊕R1
10 ⊕ L3

γ,z̄10
, S3

10) H(L2
α,1, L

2
β,0, γ, 10)⊕ (r2

10,M1[r2
10], S3

10 ⊕ S1
10 ⊕ L2

γ,z̄10
, R2

10)

H(L3
α,1, L

3
β,1, γ, 11)⊕ (r3

11,M1[r3
11], R2

11 ⊕R1
11 ⊕ L3

γ,z̄11
, S3

11) H(L2
α,1, L

2
β,1, γ, 11)⊕ (r2

11,M1[r2
11], S3

11 ⊕ S1
11 ⊕ L2

γ,z̄11
, R2

11)

P1’s share of Garbled Table

(r1
00 = z̄00 ⊕ r3

00 ⊕ r2
00,K1[r3

00],K1[r2
00], R1

00, S
1
00)

(r1
01 = z̄01 ⊕ r3

01 ⊕ r2
01,K1[r3

01],K1[r2
01], R1

01, S
1
01)

(r1
10 = z̄10 ⊕ r3

10 ⊕ r2
10,K1[r3

10],K1[r2
10], R1

10, S
1
10)

(r1
11 = z̄11 ⊕ r3

11 ⊕ r2
11,K1[r3

11],K1[r2
11], R1

11, S
1
11)

In the above example, riuv’s are random bits while Riuv, S
i
uv are random κ-bit strings. As can

be noticed, there are two sets of garbled labels used by P2 and P3 respectively. Furthermore, both
of these sets are shared among the three parties such that the garbled circuit remains private even
when the adversary corrupts all-but-one parties. The last ingredient that we need is a protocol for
constructing these “shared and permuted garbled labels” distributively. Observe that

L3
γ,z̄00

= L3
γ,0 ⊕ z̄00∆3

= L3
γ,0 ⊕ (r1

00 ⊕ r2
00 ⊕ r3

00)∆3

= (L3
γ,0 ⊕ r3

00∆3 ⊕ K3[r1
00]⊕ K3[r2

00])⊕ (K3[r1
00]⊕ r1

00∆3)⊕ (K3[r2
00]⊕ r2

00∆3)

= (L3
γ,0 ⊕ r3

00∆3 ⊕ K3[r1
00]⊕ K3[r2

00])⊕M3[r1
00]⊕M3[r2

00]

Applying this to the construction above, with the FPre functionality described in Section 2:

P3’s share of Garbled Table

H(L3
α,0, L

3
β,0, γ, 00)⊕ (r3

00,M1[r3
00], L3

γ,0 ⊕ r3
00∆3 ⊕ K3[r1

00]⊕ K3[r2
00],M2[r3

00])

H(L3
α,0, L

3
β,1, γ, 01)⊕ (r3

01,M1[r3
01], L3

γ,0 ⊕ r3
10∆3 ⊕ K3[r1

10]⊕ K3[r2
10],M2[r3

01])

H(L3
α,1, L

3
β,0, γ, 10)⊕ (r3

10,M1[r3
10], L3

γ,0 ⊕ r3
01∆3 ⊕ K3[r1

01]⊕ K3[r2
01],M2[r3

10])

H(L3
α,1, L

3
β,1, γ, 11)⊕ (r3

11,M1[r3
11], L3

γ,0 ⊕ r3
11∆3 ⊕ K3[r1

11]⊕ K3[r2
11],M2[r3

11])

P2’s share of Garbled Table
H(L2

α,0, L
2
β,0, γ, 00)⊕ (r2

00,M1[r2
00], L2

γ,0 ⊕ r2
00∆2 ⊕ K2[r1

00]⊕ K2[r3
00],M3[r2

00])

H(L2
α,0, L

2
β,1, γ, 01)⊕ (r2

01,M1[r2
01], L2

γ,0 ⊕ r2
10∆2 ⊕ K2[r1

10]⊕ K2[r3
10],M3[r2

01])

H(L2
α,1, L

2
β,0, γ, 10)⊕ (r2

10,M1[r2
10], L2

γ,0 ⊕ r2
01∆2 ⊕ K2[r1

01]⊕ K2[r3
01],M3[r2

10])

H(L2
α,1, L

2
β,1, γ, 11)⊕ (r2

11,M1[r2
11], L2

γ,0 ⊕ r2
11∆2 ⊕ K2[r1

11]⊕ K2[r3
11],M3[r2

11])

P1’s share of Garbled Table

(r1
00 = z̄00 ⊕ r3

00 ⊕ r2
00,K1[r3

00],K1[r2
00],M3[r1

00],M2[r1
00])

(r1
01 = z̄01 ⊕ r3

01 ⊕ r2
01,K1[r3

01],K1[r2
01],M3[r1

01],M2[r1
01])

(r1
10 = z̄10 ⊕ r3

10 ⊕ r2
10,K1[r3

10],K1[r2
10],M3[r1

10],M2[r1
10])

(r1
11 = z̄11 ⊕ r3

11 ⊕ r2
11,K1[r3

11],K1[r2
11],M3[r1

11],M2[r1
11])

5

4 The Main Scheme

In Figure 3 and Figure 4, we present the complete MPC protocol in the FPre-hybrid model. In
Section 6, we will introduce an efficient instantiation of FPre, which extends two-party TinyOT
protocol. Note that similar to [NNOB12], the preprocessing functionality needs a global key query
instruction. This does not affect the security for PPT adversaries.

5 Proof

Theorem 5.1. The protocol in Figure 3 and Figure 4, where H is modeled as a random ora-
cle, securely instantiates Fmpc in the FPre-hybrid model with security negl(κ) against an adversary
corrupting up to n− 1 parties.

Proof. We will consider separately the case where P1 ∈ H and the case where P1 ∈M and P2 ∈ H.
The case when P1 ∈ M and Pi ∈ H for some i ≥ 3 is similar to the second case. This covers all
cases.

Honest P1. Let A be an adversary corrupting {Pi}i∈M. We construct a simulator S that runs A
as a subroutine and plays the role of {Pi}i∈M in the ideal world involving an ideal functionality
Fmpc evaluating f . S is defined as follows.

1-4 S acts as honest {Pi}i∈H and plays the functionality of FPre, recording all outputs. If any
honest party or FPre would abort, S outputs whatever A outputs and then aborts.

5 S interacts with A acting as an honest {Pi}i∈H, using input {xi := 0}i∈H. For each i ∈
M, w ∈ Ii, S receives x̂iw and computes xiw := x̂iw ⊕

⊕
i∈[n] r

i
w. If any honest party would

abort, S outputs whatever A outputs and aborts.

6 S interacts with A acting as honest {Pi}i∈H, using input x1 := 0.

7-8 S interacts with A acting as honest {Pi}i∈H. If an honest P1 would abort, S outputs whatever
A outputs and aborts; otherwise for each i ∈M, S sends (input, xi) on behalf of Pi to Fmpc.

We now show that the joint distribution over the outputs of A and the honest parties in the
real world is indistinguishable from the joint distribution over the outputs of S and the parties in
the ideal world.

Hybrid1. Same as the hybrid-world protocol, where S plays the role of honest {Pi}i∈H, using the
actual inputs {xi}i∈H.

Hybrid2. Same as Hybrid1, except that in step 5, for each i ∈ M, w ∈ Ii, S receives x̂iw and
computes xiw := x̂iw ⊕

⊕
i∈[n] r

i
w. If any honest party would abort, S outputs whatever A

outputs; otherwise for each i ∈M, S sends (input, xi) on behalf of Pi to Fmpc.

The views produced by the two Hybrids are exactly the same. According to Lemma 5.1, P1

will learn the same output in both Hybrids with all but negligible probability.

Hybrid3. Same as Hybrid2, except that, for each i ∈ H, S computes {riw}w∈Ii as follows: S
first randomly pick {uiw}w∈Ii , and then computes riw := uiw ⊕ xiw.

The two Hybrids produce exactly the same view.

6

Protocol Πmpc

Inputs: In the function-independent phase, parties know |C| and |I|; in the function-dependent phase, parties

get a circuit representing function f : {0, 1}|I1| × ... × {0, 1}|In| → {0, 1}|O|; in the input-processing phase, Pi
holds xi ∈ {0, 1}|Ii|.
Function-independent phase:

1. Pi sends init to FPre, which sends ∆i to Pi.

2. For each wire w ∈ I ∪W, i ∈ [n], Pi sends random to FPre, which sends
(
riw,
{
Mj [r

i
w],Ki[r

j
w]
}
j 6=i

)
to Pi,

where
⊕

i∈[n] r
i
w = λw. For each i 6= 1, Pi also picks a random κ-bit string Liw,0.

Function-dependent phase:

3. For each gate G = (α, β, γ,⊕), each i ∈ [n], Pi computes
(
riγ ,
{
Mj [r

i
γ],Ki[r

j
γ]
}
j 6=i

)
:=(

riα ⊕ riβ ,
{
Mj [r

i
α]⊕Mj [r

i
β],Ki[r

j
α]⊕ Ki[r

j
β]
}
j 6=i

)
. For each i 6= 1, Pi also computes Liγ,0 := Liα,0 ⊕ Liβ,0.

4. For each gate G = (α, β, γ,∧):

(a) For each i ∈ [n], Pi sends

(
and,

(
riα,
{
Mj [r

i
α],Ki[r

j
α]
}
j 6=i

)
,

(
riβ ,
{
Mj [r

i
β],Ki[r

j
β]
}
j 6=i

))
to FPre, which

sends
(
riσ,
{
Mj [r

i
σ],Ki[r

j
σ]
}
j 6=i

)
to Pi, where

⊕
i∈[n] r

i
σ =

(⊕
i∈[n] r

i
α

)
∧
(⊕

i∈[n] r
i
β

)
.

(b) For each i 6= 1, Pi computes the following locally.(
riγ,0,

{
Mj [r

i
γ,0],Ki[r

j
γ,0]
}
j 6=i

)
:=
(
riσ ⊕ riγ ,

{
Mj [r

i
σ]⊕Mj [r

i
γ], Ki[r

j
σ]⊕ Ki[r

j
γ]
}
j 6=i

)
(
riγ,1,

{
Mj [r

i
γ,1],Ki[r

j
γ,1]
}
j 6=i

)
:=
(
riγ,0 ⊕ riα,

{
Mj [r

i
γ,0]⊕Mj [r

i
α], Ki[r

j
γ,0]⊕ Ki[r

j
α]
}
j 6=i

)
(
riγ,2,

{
Mj [r

i
γ,2],Ki[r

j
γ,2]
}
j 6=i

)
:=
(
riγ,0 ⊕ riβ ,

{
Mj [r

i
γ,0]⊕Mj [r

i
β], Ki[r

j
γ,0]⊕ Ki[r

j
β]
}
j 6=i

)
(
riγ,3,

{
Mj [r

i
γ,3],Ki[r

j
γ,3]
}
j 6=i

)
:=
(
riγ,1 ⊕ riβ ,

{
M1[riγ,1]⊕M1[riβ], Ki[r

1
γ,1]⊕ Ki[r

1
β]⊕∆i

})
⋃{

Mj [r
i
γ,1]⊕Mj [r

i
β], Ki[r

j
γ,1]⊕ Ki[r

j
β]
}
j 6=i,1

(c) P1 computes the following locally.(
r1
γ,0,

{
Mj [r

1
γ,0],K1[rjγ,0]

}
j 6=i

)
:=
(
r1
σ ⊕ r1

γ ,
{
Mj [r

1
σ]⊕Mj [r

1
γ], K1[rjσ]⊕ K1[rjγ]

}
j 6=i

)
(
r1
γ,1,

{
Mj [r

1
γ,1],K1[rjγ,1]

}
j 6=i

)
:=
(
r1
γ,0 ⊕ r1

α,
{
Mj [r

1
γ,0]⊕Mj [r

1
α], K1[rjγ,0]⊕ K1[rjα]

}
j 6=i

)
(
r1
γ,2,

{
Mj [r

1
γ,2],K1[rjγ,2]

}
j 6=i

)
:=
(
r1
γ,0 ⊕ r1

β ,
{
Mj [r

1
γ,0]⊕Mj [r

1
β], K1[rjγ,0]⊕ K1[rjβ]

}
j 6=i

)
(
r1
γ,3,

{
Mj [r

1
γ,3],K1[rjγ,3]

}
j 6=i

)
:=
(
r1
γ,1 ⊕ r1

β ⊕ 1,
{
Mj [r

1
γ,1]⊕Mj [r

1
β], K1[rjγ,1]⊕ K1[rjβ]

}
j 6=i

)
(d) For each i 6= 1, Pi computes Liα,1 := Liα,0 ⊕∆i and Liβ,1 := Liβ,0 ⊕∆i, and sends the following to P1.

Giγ,0 := H
(
Liα,0, L

i
β,0, γ, 0

)
⊕
(
riγ,0,

{
Mj [r

i
γ,0]
}
j 6=i , L

i
γ,0 ⊕

(⊕
j 6=i Ki[r

j
γ,0]
)
⊕ riγ,0∆i

)
Giγ,1 := H

(
Liα,0, L

i
β,1, γ, 1

)
⊕
(
riγ,1,

{
Mj [r

i
γ,1]
}
j 6=i , L

i
γ,0 ⊕

(⊕
j 6=i Ki[r

j
γ,1]
)
⊕ riγ,1∆i

)
Giγ,2 := H

(
Liα,1, L

i
β,0, γ, 2

)
⊕
(
riγ,2,

{
Mj [r

i
γ,2]
}
j 6=i , L

i
γ,0 ⊕

(⊕
j 6=i Ki[r

j
γ,2]
)
⊕ riγ,2∆i

)
Giγ,3 := H

(
Liα,1, L

i
β,1, γ, 3

)
⊕
(
riγ,3,

{
Mj [r

i
γ,3]
}
j 6=i , L

i
γ,0 ⊕

(⊕
j 6=i Ki[r

j
γ,3]
)
⊕ riγ,3∆i

)

Figure 3: Our main protocol instantiating Fmpc.

Hybrid4. Same as Hybrid3, except that S uses {xi = 0}i∈H as input in step 5 and step 6.

Note that although the distribution of {xi}i∈H in Hybrid3 and Hybrid4 are different, the

7

Protocol Πmpc, continued

Input Processing:

5. For each i 6= 1, w ∈ Ii, for each j 6= i, Pj sends (rjw,Mi[r
j
w]) to Pi, who checks that (rjw,Mi[r

j
w],Ki[r

j
w]) is

valid, and computes xiw ⊕ λw := xiw

(⊕
i∈[n] r

i
w

)
. Pi broadcasts the value xiw ⊕ λw. For each j 6= 1, Pj

sends Lj
xi⊕λw

to P1.

6. For each w ∈ I1, i 6= 1, Pi sends (riw,M1[riw]) to P1, who checks that (riw,M1[riw],K1[riw]) are valid, and

computes x1
w ⊕ λw := x1

w ⊕
(⊕

i∈[n] r
i
w

)
. P1 sends x1

w ⊕ λw to Pi, who sends Liw,x1w⊕λw
to P1.

Circuit Evaluation:

7. P1 evaluates the circuit following the topological order. For each gate G = (α, β, γ, T), P1 holds(
zα ⊕ λα,

{
Liα,zα⊕λα

}
i6=1

)
and

(
zβ ⊕ λβ ,

{
Liβ,zβ⊕λβ

}
i6=1

)
, where zα, zβ are the underlying values of

the wire.

(a) If T = ⊕, P1 computes zγ⊕λγ := (zα⊕λα)⊕ (zβ⊕λβ) and
{
Liγ,zγ⊕λγ := Liα,zα⊕λα ⊕ Liβ,zβ⊕λβ

}
i 6=1

(b) If T = ∧, P1 computes ` := 2(zα ⊕ λα) + (zβ ⊕ λβ). For i 6= 1, P1 computes(
riγ,`,

{
Mj [r

i
γ,`]
}
j 6=i

, Liγ

)
:= Giγ,` ⊕H

(
Liα,zα⊕λα , L

i
β,zβ⊕λβ , γ, `

)
.

P1 checks that
{(
riγ,`,M1[riγ,`],K1[riγ,`]

)}
i 6=1

are valid and aborts if fails. P1 computes zγ ⊕ λγ :=⊕
i∈[n] r

i
γ,`, and

{
Liγ,zγ⊕λγ := Liγ ⊕

(⊕
j 6=iMi[r

j
γ,`]
)}

i 6=1

Output Processing:

8. For each w ∈ O, i 6= 1, Pi sends (riw,M1[riw]) to P1, who checks that (riw,M1[riw],K1[riw]) is valid. P1

computes zw := (λw ⊕ zw)⊕
(⊕

i∈[n] r
i
w

)
.

Figure 4: Our main protocol instantiating Fmpc, continued.

distribution of {xiw⊕riw}i∈H are exactly the same. The views produced by the two Hybrids are
therefore the same, we will show that P1 aborts with the same probability in both Hybrids.

Observe that the only place where P1’s abort can possibly depends on {xi}i∈H is in step 7(b).
However, this abort depends on which row is selected to decrypt, that is the value of λα⊕ zα
and λβ ⊕ zβ, which are chosen independently random in both Hybrids.

As Hybrid4 is the ideal-world execution, this completes the proof when P1 is honest.

Malicious P1 and honest P2. Let A be an adversary corrupting {Pi}i∈M. We construct a
simulator S that runs A as a subroutine and plays the role of {Pi}i∈M in the ideal world involving
an ideal functionality Fmpc evaluating f . S is defined as follows.

1-4 S acts as honest {Pi}i∈H and plays the functionality of FPre, recording all outputs. If any
honest party would abort, S output whatever A outputs and aborts.

5-6 S interacts with A acting as honest {Pi}i∈H, using input {xi := 0}i∈H. For each i ∈M, w ∈
Ii, S receives x̂iw and computes xiw := x̂iw ⊕

⊕
i∈[n] r

i
w. If any honest party would abort, S

output whatever A outputs and aborts.

8

8 For each i ∈M, S sends (input, xi) on behalf of Pi to Fmpc. If Fmpc abort, S aborts, outputting
whatever A outputs. Otherwise, if S receives z as the output, S computes z′ := f(y1, ..., yn),
where {yi := 0}i∈H, and {yi := xi}i∈M. For each i ∈ H, w ∈ O, if z′w = zw, S sends
(riw,M1[riw]) on behalf of Pi to A; otherwise, S sends (riw ⊕ 1,M1[riw]⊕∆1).

We now show that the joint distribution over the outputs of A and honest parties in the real world
is indistinguishable from the joint distribution over the outputs of S and honest parties in the ideal
world.

Hybrid1. Same as the hybrid-world protocol, where S plays the role of honest {Pi}i∈H using the
actual inputs {xi}i∈H.

Hybrid2. Same as Hybrid1, except that in step 5 and step 6, for each i ∈M, w ∈ Ii, S receives
x̂iw and computes xiw := x̂iw⊕

⊕
i∈[n] r

i
w. If any honest party would abort, S outputs whatever

A outputs; otherwise for each i ∈M, S sends (input, xi) on behalf of Pi to Fmpc.

P1 does not have output; furthermore the view ofA does not change between the two Hybrids.

Hybrid3. Same as Hybrid2, except that in step 5 and step 6, S uses {xi := 0}i∈H as input
and in step 8, S computes z′ as defined. For each w ∈ O, if z′w = zw, S sends (riw,M1[riw]);
otherwise, S sends (riw ⊕ 1,M1[riw]⊕∆1).

A has no knowledge of riw, therefore riw and riw ⊕ 1 are indistinguishable.

Note that since S uses different values for x between the two Hybrids, we also need to show
that the distribution of garbled rows opened by P1 are indistinguishable for the two Hybrids.
According to Lemma 5.2, P1 is able to open only one garble rows in each garbled table Gγ,i.
Therefore, given that {λw}w∈I1∪W values are not known to P1, masked values and garbled
keys are indistinguishable between two Hybrids.

As Hybrid3 is the ideal-world execution, the proof is complete.

Lemma 5.1. Consider an A corrupting parties {Pi}i∈M such that P1 ∈ H, and denote xiw :=
x̂iw ⊕

⊕n
i=1 r

i
w, where x̂w is the value A sent, riw are the values from FPre. With probability all but

negligible, P1 either aborts or learns z = f(x1, ..., xn).

Proof. Define z∗w as the correct wire values computed using x defined above and y, zw as the actually
wire values P1 holds in the evaluation.

We will first show that P1 learns {zw ⊕ λw = z∗w ⊕ λw}w∈O by induction on topology of the
circuit.

Base step: It is obvious that {z∗w ⊕ λw = zw ⊕ λw}w∈I1∪I2 , unless A is able to forge an IT-MAC.

Induction step: Now we show that for a gate (α, β, γ, T), if P1 has {z∗w ⊕ λw = zw ⊕ λw}w∈{α,β},
then P1 also obtains z∗γ ⊕ λγ = zγ ⊕ λγ .

• T = ⊕: It is true according to the following: z∗γ ⊕ λγ = (z∗α ⊕ λα)⊕ (z∗β ⊕ λβ) = (zα ⊕ λα)⊕
(zβ ⊕ λβ)zγ ⊕ λγ

• T = ∧: According to the protocol, P1 will open the garbled row defined by i := 2(zα ⊕ λα) +
(zβ ⊕ λβ). If P1 learns zγ ⊕ λγ 6= z∗γ ⊕ λγ , then it means that P1 learns r∗γ,i 6= rγ,i. However,
this would mean that A forge a valid IT-MAC, happening with negligible probability.

9

Now we know that P1 learns correct masked output. P1 can therefore learn correct output
f(x, y) unless A is able to flip {rw}w∈O, which, again, happens with negligible probability.

Lemma 5.2. Consider an A corrupting {Pi}i∈M and that P1 ∈M, with negligible probability, P1

learns both garbled labels for some wire generated by an honest party.

Proof. The proof is very similar to the proof of semi-honest garbled circuit protocol by Lindell and
Pinkas [LP09]. Let’s use z∗w’s to denote the correct value on all input wire and internal wires if x
and y defined above are used to evaluate the circuit, and use zw to denote the actual wire values
when P1 is malicious.

We will show that z∗w ⊕ λw = zw ⊕ λw, and Lw,z∗w⊕λw = Lw,zw⊕λw , and that P1 does not learn
Lw,zw⊕λw⊕1 for all w ∈ O.

Base step: Honest Pi only sends one garbled labels to P1, and ∆i is hidden from A, therefore the
base step is true.

Induction step: It is obvious that P1 cannot learn the other label for an XOR gate and we will
focus on AND gates.

Note that P1 only learns one garbled keys for input wire α and β. However, each row is encrypted
using different combinations of Lα,b and Lβ,b. In order for P1 to open two rows in the garbled table,
P1 needs to learn both garbled keys for some input wire, which contradict with assumptions in the
induction step.

6 Instantiation of the Preprocessing Functionality

In this section, we describe an efficient instantiation of FPre. All previous protocols [LOS14,
BLN+15, FKOS15] for multi-party TinyOT relies on cut-and-choose with bucketing to ensure cor-
rectness and at least an additional round of bucketing to ensure the privacy, resulting a complexity
at least O(B2n2) per AND triple, where B is the bucket size. In order to achieve better perfor-
mance, we instead propose a new distributed checking protocol that allows parties to distributively
check the correctness of each triple, without cut-and-choose. The adversary is able to perform
selective failure attacks on a triple where the probability of being caught is at least one-half. We
then used bucketing to eliminate such leakage. Overall our protocol has complexity O(Bn2).

6.1 Multi-Party Authenticated Bit

The first step of our protocol is to design a multi-party variant of authenticated bit [NNOB12]. One
naive solution for Pi to obtain an authenticated bit is to let Pi to run a two-party authenticated
bit protocol (F2

aBit) with every other party using the same input x. This solution does not work,
since a malicious Pi can potentially use inconsistent values when running F2

aBit with other parties.
In our protocol shown in Figure 6, we use this general idea and in addition, we also perform checks
to ensure that the values are consistent. The check is similar to the recent malicious OT extension
protocol by Keller et al. [KOS15], where parties perform some random linear check, which reveals
some linear relationship of the input. To eliminate such leakage, a small number of additional
random authenticated bits are computed and checked together. They are later discarded to break
the linear dependency.

Theorem 6.1. The protocol in Figure 6 securely instantiates the FnaBit functionality with statistical
security 2−ρ in the F2

aBit-hybrid model.

10

Functionality FnaBit

Honest Parties: The box receives (input, i, `) from all parties and picks random bit-string x ∈ {0, 1}`. For each
j ∈ [`], k 6= i, the box picks random Kk[xj], and computes {Mk[xj] := Kk[xj] ⊕ xj∆k}k 6=i, and sends them to
parties. That is, for each j ∈ [`], it sends {Mk[xj]}k 6=i to Pi and sends Kk[xj] to Pk for each k 6= i.

Malicious Party: Corrupted parties can choose their output from the protocol.

Global Key Queries: The adversary at any point can send some (p,∆′) and told if ∆′ = ∆p.

Figure 5: Functionality FnaBit for multi-party authenticated bit.

Protocol Πn
aBit

1. Set `′ := `+ 2ρ. Pi picks random bit-string x ∈ {0, 1}`
′
.

2. For each k 6= i, Pi and Pk runs F2
aBit, where Pi sends {xj}j∈[`′] to F2

aBit. From the functionality, Pi gets
{Mk[xj]}j∈[`′], Pk gets {Kk[xj]}j∈[`′].

3. For j ∈ [2ρ], all parties perform the following:

(a) All parties sample a random `′-bit strings r.

(b) Pi computes Xj =
⊕`′

m=1 rmxm, and broadcast Xj , and computes
{
Mk[Xj] =

⊕`′

m=1 rmMk[xm]
}
k 6=i

.

(c) Pk computes Kk[Xj] =
⊕`′

m=1 rmKk[xm].

(d) Pi sends Mk[Xj] to Pk who check the validity.

4. All parties return the first ` objects.

Figure 6: The protocol Πn
aBit instantiating FnaBit.

Proof. Case 1: Pi ∈ H. Note that in this case, the only way malicious parties can break the
protocol is to learn some information about {xi}i∈[`] in the checking step. However, we will show
that, because we “throw out” the last 2ρ authenticated bits, the adversary can learn nothing about
x’s.

Using sj to denote the last 2ρ bits of r in the j-th check. According to Lemma 6.1 and the
parameters we chose, the probability that any subset of {sj}j∈[2ρ] is linearly independent is 1−2−ρ.
Now we will show that if linear independence holds then the adversary cannot learn anything.

For the j-checking, X =
(⊕`

m=1 rmxm

)
⊕
(⊕2ρ

m=1 smx`+m

)
. Note that

⊕2ρ
m=1 smx`+m from

each checking are independent random bits, where {xm}`
′
m=` is random. This is true because the si’s

are linearly independent. Therefore,
⊕2ρ

m=1 smx`+m acts as one-time pad to
⊕`

m=1 rmxm. Given
the above, the simulation is straightforward. Note that for all global key queries, S can send the
query to F2

aBit and send the answer from F2
aBit to A.

Case 2: Pi ∈ M. The simulation is straightforward if we could show that for any A who uses
inconsistent x’s can pass all 2ρ checks with at most negligible probability. This is what we will
proceed to show.

Suppose that A sends x1 to F2
aBit when interacting with one honest party, and uses a different

x2 with another honest party, where x1 6= x2. We also assume that A passes all checks. Note that

11

for the j-th checking, if A is not able to forge a MAC, then the probability that the checking passes
is the probability that Xj =

⊕
m rmx

1
m and that Xj =

⊕
m rmx

2
m.

Pr

{⊕
m

rmx
1
m =

⊕
m

rmx
2
m

}
= Pr

{⊕
m

rm(x1
m ⊕ x2

m) = 0

}

= Pr

{⊕
m∈I

rm = 0 : I is the set of indices where x1
m 6= x2

m

}
= 1/2

Each checking is independent as long as r is selected independently. Therefore, A can pass all
checks with probability at most 2−2ρ.

Lemma 6.1. Let r1, ..., rl be random bit vectors of length k. With probability at most 2l−k, there
exists some subset I ⊂ [l], such that ⊕

i∈I
ri = 0

Proof. Note that given a fixed interval I ⊂ [l], the probability that
⊕

i∈I ri = 0 is 2−k. According
to the union bound, the probability that any subset I ⊂ [l] has

⊕
i∈I ri = 0 is 2−k × 2l = 2l−k.

6.2 Multi-Party Leaky Authenticated AND Triple

Once we have multi-party version of authenticated bit, our next step is to compute leaky authenti-
cated AND triples. The adversary can perform selective failure attacks where he gets caught with
some probability.

The first step is to compute the AND triples, such that the triples will be correct if every party
behaves honestly without revealing any party’s share. This is done in our protocol by letting every
distinct pair of parties, namely Pi, Pj , compute XOR-shares of xiyj⊕xjyi. Similar to the improved
TinyOT protocol [WRK17], each pair of the computation only requires 4 bits of communication.
The next step is to check the correctness of the computation. Note that this is main challenge. In
existing protocols, they follow the cut-and-choose with a sacrifice and merge step. Cut-and-choose
ensures that only small number of triples that are not checked are incorrect; bucketing is used twice
to gain correctness and privacy, leading to a B2n2 term.

Our checking phase differs substantially from existing works. We design an efficient checking
protocol, that always ensures the correctness of the triple (if no party aborts) which allows malicious
parties to learn k bits of some specific information with probability 2−k. This leakage can be easily
eliminated using bucketing discussed later. In the two-party protocol, one party construct “checking
tables” and lets the other party to evaluate/check. In the multi-party protocol here, we instead let
all parties distributively construct the “checking tables”. Interestingly, distributively constructing
these checks is inspired by the main protocol where parties distributively construct garbled tables.
In the distributive checking, all parties compute the checking as if

⊕
i x

i = 0 and
⊕

i x
i = 1, in a

way such that each party obtains some share Hi and Di. If
⊕

i x
i = 0 and the correctness holds,

then
⊕

iHi = 0; if
⊕

i x
i = 1 and the correctness holds, then

⊕
iHi⊕Di = 0. Then all parties will

jointly perform an oblivious comparison to check if one of the above equation is correct.
In more detail, the correctness proof proceeds as follows: First, each value will be given new

MACs under fresh random global keys. This will be done by using the MACs and keys under Ω

12

Functionality FnLaAND

Honest parties: For each i ∈ [n], the box picks random [x]i, [y]i, [z]i such that (
⊕
xi) ∧ (

⊕
yi) =

⊕
zi.

Corrupted parties:

1. Corrupted parties can choose all their randomness. Furthermore, adversary can send (R, {Qi}i∈[n], D),
which are κ-bit strings, to the box and perform a linear combination test. The box will check

R⊕
⊕
i

xiQi ∈ {0, D}

If the check is incorrect, the box outputs fail and terminates, otherwise the box proceeds as normal.

Global Key Queries: The adversary at any point can send some (p,∆′) and will be told if ∆′ = ∆p.

Figure 7: Functionality FnLaAND for leaky AND triple generation.

and then using these keys as garbled labels. We will then use these fresh values to produce Hi, Di,
D :=

⊕
iDi with two properties. The first property is:

1. if
⊕

i xi = 0 and
⊕

i zi = 0 then
⊕

iHi = 0

2. if
⊕

i xi = 1 and
⊕

i yi ⊕ zi = 0 then
⊕

iHi = D

If on the other hand none of these conditions are met and we reveal D to the adversary then
it should be infeasible for the adversary to influence the Hi held by honest parties such that the
adversary can select Hi for the malicious parties such that

⊕
iHi ∈ { 0, D }.

Given such a construction for Hi and Di, it seems that all we need to do is open up the Hi and
verify that

⊕
iHi ∈ { 0, D }. However revealing Hi does not work since it would reveal

⊕
i xi which

needs to remain secret. However by having each player random sample a bit bi ∈ { 0, 1 } and then by
having each player reveal Ti := Hi⊕ biD instead of Hi, then we can verify that (

⊕
i xi)

∧
(
⊕

i yi) =⊕
i zi without revealing information. As noted before, this protocol is vulnerable to selective failure

attacks. The full description of this protocol is presented in Figure 8.

6.2.1 Correctness of the protocol

We want to show first that if all parties behave honestly, then the protocol outputs correct AND
triples. Defining c =

⊕
i x

i, we would like to show that
⊕

iHi ∈ {0, D}.

13

Protocol Πn
LaAND

Compute the triple with semi-honest security

1. For each i ∈ [n] each party calls FnaBit and obtains random authenticated bits {[x]i, [y]i, [r]i};
2. For each i, j ∈ [n] such that i < j, Pi computes and sends the following values to Pj :

G0,0 := Lsb(H(Ki[x
j], Ki[y

j]))⊕ (0⊕ xi) ∧ (0⊕ yi)⊕ ri
G1,0 := Lsb(H(Ki[x

j]⊕∆i, Ki[y
j]))⊕ (1⊕ xi) ∧ (0⊕ yi)⊕ ri

G0,1 := Lsb(H(Ki[x
j], Ki[y

j]⊕∆i))⊕ (0⊕ xi) ∧ (1⊕ yi)⊕ ri
G1,1 := Lsb(H(Ki[x

j]⊕∆i, Ki[y
j]⊕∆i))⊕ (1⊕ xi) ∧ (1⊕ yi)⊕ ri

Pi computes sj := ri ⊕ xiyi; Pj computes si := Lsb(H(Mi[x
j],Mi[y

j]))⊕Gxj ,yj ⊕ xjyj .

3. For each i ∈ [n], Pi computes zi := xiyi⊕
(⊕

k 6=i sk
)

. Pi also broadcasts ei := zi⊕ ri to all other parties.

All parties computes [z]i := [r]i ⊕ ei.
Check the correctness

4. For each i ∈ [n], Pi randomly sample a Φi. For every pair of i, j ∈ [n], Pi compute and sends the following
to Pj :
Ui,j,0 := H(Ki[x

j])⊕ Ki[x
j]Φi

Ui,j,1 := H(Ki[x
j]⊕∆i)⊕ Ki[x

j]Φi ⊕ Φi
Pj computes Mi[x

j]Φi := Ui,j,xj ⊕H(Mi[x
j])

5. For i ∈ [n], Pi computes the followings

Hi := xiΦi ⊕
(⊕

k 6=i Ki[x
k]Φi ⊕Mk[xi]Φk

)
⊕ zi∆i ⊕

(⊕
k 6=i Ki[z

k]⊕Mk[zi]
)

Di := Φi ⊕ yi∆i ⊕
(⊕

k 6=i Ki[y
k]⊕Mk[yi]

)
and broadcast Di. All parties computes D :=

⊕
iD

i.

6. Pi picks a random bit b, compute and simultaneously broadcast Ti := Hi ⊕ bD. All parties compute
T :=

⊕
i Ti and check if T ∈ {0κ, D} or not.

Figure 8: The protocol Πn
LaAND.

Case 1: c = 0. In this case, the relationship we would like to check is
⊕

i z
i = 0.

⊕
i

Hi =
⊕
i

xiΦi ⊕
⊕
k 6=i

Ki[x
k]Φi ⊕Mk[xi]Φk

⊕ zi∆i ⊕

⊕
k 6=i

Ki[z
k]⊕Mk[zi]


=
⊕
i

xiΦi ⊕
⊕
k 6=i

Ki[x
k]Φi ⊕Mk[xi]Φk

⊕⊕
i

zi∆i ⊕

⊕
k 6=i

Ki[z
k]⊕Mk[zi]


=
⊕
i

xiΦi ⊕
⊕
k 6=i

Ki[x
k]Φi ⊕Mi[x

k]Φk

⊕⊕
i

zi∆i ⊕

⊕
k 6=i

Ki[z
k]⊕Mi[z

k]


=
⊕
i

xiΦi ⊕
⊕
k 6=i

xkΦi

⊕⊕
i

zi∆i ⊕

⊕
k 6=i

zk∆i


=

(⊕
i

xi

)
·
(⊕

i

Φi

)
⊕
(⊕

i

zi

)
·
(⊕

i

∆i

)
= 0

14

Case 2: c = 1. In this case, the relationship we would like to check is
⊕

i(z
i ⊕ yi) = 0, because⊕

i x
i = 1. We would like to show that

⊕
iHi = D, which means that

⊕
i(Hi ⊕Di) = 0.⊕

i

(
Hi ⊕Di

)

=
⊕
i

Φi ⊕ xiΦi ⊕

⊕
k 6=i

Ki[x
k]Φi ⊕Mk[xi]Φk

⊕ (zi ⊕ yi)∆i ⊕

⊕
k 6=i

Ki[z
k]⊕Mk[zi]⊕ Ki[y

k]⊕Mk[yi]


=
⊕
i

Φi ⊕ xiΦi ⊕

⊕
k 6=i

Ki[x
k]Φi ⊕Mk[xi]Φk

⊕⊕
i

(zi ⊕ yi)∆i ⊕

⊕
k 6=i

Ki[z
k]⊕Mk[zi]⊕ Ki[y

k]⊕Mk[yi]


=
⊕
i

Φi ⊕ xiΦi ⊕

⊕
k 6=i

Ki[x
k]Φi ⊕Mi[x

k]Φk

⊕⊕
i

(zi ⊕ yi)∆i ⊕

⊕
k 6=i

Ki[z
k]⊕Mi[z

k]⊕ Ki[y
k]⊕Mi[y

k]


=
⊕
i

Φi ⊕ xiΦi ⊕

⊕
k 6=i

xkΦi

⊕⊕
i

(zi ⊕ yi)∆i ⊕

⊕
k 6=i

(zk ⊕ yk)∆i


=
⊕
i

Φi ⊕
(⊕

i

xi

)
·
(⊕

i

Φi

)
⊕
(⊕

i

(zi ⊕ yi)
)
·
(⊕

i

∆i

)
= 0

6.2.2 Unforgeability

Lemma 6.2. If (
⊕

i xi)∧ (
⊕

i yi) 6=
⊕
zi then the protocol results in an abort except with negligible

probability.

We Define c =
⊕

i x
i. We define Ki[x

j]Φi from U0 and define Φi from Di. We denote Qi,j :=
U1 ⊕ U∗1 , where U∗1 is what an honest party would compute based on values defined above. We
further use H∗i to denote the value that an honest Pi would have computed. For i ∈ M, we
define Ri := Ti ⊕ H∗i For i ∈ H, honest parties computes Hi affected by the malicious parties:

Hi = H∗i ⊕
(⊕

k 6=i x
kQk,i

)
.

Case 1: c = 0. We will prove by contradiction, and assume that the equation does not hold,
meaning that

⊕
i z
i = 1. We also assume that the check goes through, meaning that

⊕
i Ti ∈ {0, D}.

In the following, we will derive a contradiction. Note that

⊕
i

H∗i =

(⊕
i

xi

)
·
(⊕

i

Φi

)
⊕
(⊕

i

zi

)
·
(⊕

i

∆i

)
=
⊕
i

∆i

Therefore, we know that⊕
i

Ti =
⊕
i

(Hi ⊕ biD)

=
⊕
i∈M

(Hi ⊕ biD)⊕
⊕
i∈H

(Hi ⊕ biD)

=
⊕
i∈M

(H∗i ⊕ biD ⊕Ri)⊕
⊕
i∈H

H∗i ⊕ biD ⊕
⊕
k 6=i

xkQk,i


=
⊕
i

H∗i ⊕
⊕
i

biD ⊕
⊕
i∈M

Ri ⊕
⊕
i∈H

⊕
k 6=i

xkQk,i


=
⊕
i

∆i ⊕
⊕
i

biD ⊕
⊕
i∈M

Ri ⊕
⊕
i∈H

⊕
k 6=i

xkQk,i



15

In order to make
⊕

i Ti to be in the set {0, D}, the adversary needs to find paddings such that

⊕
i∈M

Ri ⊕
⊕
i∈H

⊕
k 6=i

xkQk,i

 ∈ {⊕
i

∆i,
⊕
i

∆i ⊕D

}

The above happens with at most negligible probability.

Case 2: c = 1. We will prove by contradiction, and assume that the equation does not hold,
meaning that

⊕
i

(
zi ⊕ yi

)
= 1. We also assume hat the check goes through, meaning that

⊕
i Ti ∈

{0, D}. In the following, we will derive a contradiction. Note that

⊕
i

H∗i =
⊕
i

Φi ⊕
(⊕

i

xi

)
·
(⊕

i

Φi

)
⊕
(⊕

i

(zi ⊕ yi)
)
·
(⊕

i

∆i

)
⊕
⊕
i

Di

=

(⊕
i

∆i

)
⊕D

Similar to the above, ⊕
i

Ti =
⊕
i

(Hi ⊕ biD)

=
⊕
i∈M

(Hi ⊕ biD)⊕
⊕
i∈H

(Hi ⊕ biD)

=
⊕
i∈M

(H∗i ⊕ biD ⊕Ri)⊕
⊕
i∈H

H∗i ⊕ biD ⊕
⊕
k 6=i

xkQk,i


=
⊕
i

H∗i ⊕
⊕
i

biD ⊕
⊕
i∈M

Ri ⊕
⊕
i∈H

⊕
k 6=i

xkQk,i


=
⊕
i

∆i ⊕D ⊕
⊕
i

biD ⊕
⊕
i∈M

Ri ⊕
⊕
i∈H

⊕
k 6=i

xkQk,i


In order to make

⊕
i Ti to be in the set {0, D}, the adversary needs to find paddings such that

⊕
i∈M

Ri ⊕
⊕
i∈H

⊕
k 6=i

xkQk,i

 ∈ {⊕
i

∆i,
⊕
i

∆i ⊕D

}

The above happens with at most negligible probability.

6.2.3 Proof

Theorem 6.2. The protocol in Figure 8, where H is modeled as a random oracle, securely instan-
tiates FnLaAND functionality in the FnaBit-hybrid model.

Proof. We constructor a simulator in the following. For all global key queries, S redirect them to
FnaBit and redirect the answer to A.

1. S plays the role of FnaBit storing all information sent to parties.

2. For each i ∈ H, S simulates Pi as follows: When Pi interacts with Pj with i < j, Pi sends
four random bits to Pj .

16

3. S simulate each honest Pi by broadcasting a random bit.

4. For each i ∈M, S receives {Ui,j,b}j∈H,b∈{0,1} from Pi. S picks random {Uj,i,b}j∈H,b∈{0,1} and
sends them to Pi playing the role of Pj for each j ∈ H.

5. For each i ∈ H, S acts an honest Pi, using some random Di, and awaits for {Di}i∈M broadcast
from malicious parties.

6. For each i ∈M, S defines Φi as

Φi := Di ⊕ yi∆i ⊕

⊕
k 6=i

Ki[y
k]⊕Mk[y

i]


using values when S plays the role of FnaBit. S computes zi := ei ⊕ ri, where ei is the value
broadcast by the malicious parties, ri is the value when S used to play the role of FnaBit. If(⊕

i x
i
)
∧
(⊕

i y
i
)
6=
(⊕

i z
i
)
, S acts as honest parties until the protocol aborts, outputting

whatever A outputs. In detail, S can use values that S used when playing the role of FnaBit.
If the equation hold, S will perform the following to check if A launched a selective failure
attack:

S computes c =
⊕

i x
i, and Ki[x

j]Φi := Ui,j,0⊕H(Ki[x
j]Ωi), and computes Φi := Di⊕ yi∆i⊕(⊕

k 6=i Ki[y
k]⊕Mk[y

i]
)

. S then computes Qi,j := Ui,j,1⊕U∗i,j,1, where U∗i,j,1 is what an honest

Pi would have sent based on values defined above. We further use H∗i to denote the value
that an honest Pi would have computed. For i ∈ M, we define Ri := Ti ⊕ H∗i . For i ∈ H,

honest parties computes Hi affected by the malicious parties: Hi = H∗i ⊕
(⊕

k 6=i x
kQk,i

)
. S

defines Qk =
⊕

i 6=k,i∈HQk,i. S sends (
⊕

iRi, {Qi}i∈[n], D) to FLaAND. If FLaAND terminates,
S aborts outputting whatever A outputs; otherwise, S obtains {Ti}i∈M and picks random
{Ti}i∈H such that

⊕
i Ti = rD for some random bit r and follow the protocol using these

values.

Note that the first five steps are perfectly indistinguishable given that H is a random oracle. We
will focus on the last step. If in step 6, it is the case that

(⊕
i x

i
) (⊕

i y
i
)
6=
(⊕

i z
i
)
, then it

is easy to see that the views are indistinguishable: all parties behave the same between hybrids.
According to the unforgeability lemma, the protocol will abort with all but negligible probability.
In the following, we will focus on the case when the equation holds.

First, given definition in step 6, we can express an honest parties’ Ti as Ti := H∗i ⊕
(⊕

i x
kQk,i

)
,

where Qk,i are values defined based on A’s message. Note that
⊕

i∈HH
∗
i is already defined, since⊕

iH
∗
i = 0. Now we will show that for any proper subset S ⊂ H,

⊕
i∈S H

∗
i is indistinguishable

from random to the A. It is easy to see: we use e to denote an honest party such that e ∈ H, e /∈ §.
Such e always exists, since S is a proper subset of H. Observe that in the computation of H∗:

H∗i := xiΦi ⊕

⊕
k 6=i

Ki[x
k]Φi ⊕Mk[x

i]Φk

⊕ zi∆i ⊕

⊕
k 6=i

Ki[z
k]⊕Mk[z

i]


The value F ∗i =

(⊕
k 6=i Ki[x

k]Φi ⊕Mk[x
i]Φk

)
is independent of the remaining part. Therefore we

17

Functionality FnaAND

Honest parties: For each i ∈ [n], the box picks random [x]i, [y]i, [z]i such that (
⊕
xi) ∧ (⊕yi) =

⊕
zi.

Corrupted parties: Corrupted parties get to choose all of their randomness.

Global Key Queries: The adversary at any point can send some (p,∆′) and will be told if ∆′ = ∆p.

Figure 9: Functionality FnaAND for generating AND triples

Protocol Πn
aAND

1. Pi call FnLaAND `′ = `B times and obtains {[xj]i, [yj]i, [zj]i}j∈[`′].

2. All parties randomly partition all objects into ` buckets, each with B objects.

3. For each bucket, parties combine B leaky ANDs into one non-leaky AND. To combine two leaky ANDs,
namely

(
[x1]i, [y1]i, [z1]i

)
and

(
[x2]i, [y2]i, [z2]i

)
:

(a) Each party Pi reveals di := yi1 ⊕ yi2 with MAC checked, All parties compute d :=
⊕

i d
i.

(b) Each party Pi sets [x]i := [x1]i ⊕ [x2]i, [y]i := [y1]i, [z]i := [z1]i ⊕ [z2]i ⊕ d[x2]i.

Parties iterate all B leaky objects, by taking the resulted object and combine with the next element.

Figure 10: Protocol Πn
aAND instantiating FnaAND.

will show
⊕

i∈S F
∗
i is indistinguishable from random.⊕

i∈S
F ∗i =

⊕
i∈S

⊕
k 6=i

(
Ki[x

k]Φi ⊕Mk[x
i]Φk

)
=
⊕
i∈S

⊕
k 6=i

(
Ki[x

k]Φi

)
⊕
⊕
i∈S

⊕
k 6=i

(
Mk[x

i]Φk
)

=
⊕
i∈S

⊕
k 6=i

(
Ki[x

k]Φi

)
⊕
⊕
k∈S

⊕
i 6=k

(
Mi[x

k]Φi

)
=
⊕
i∈S

⊕
k 6=i

(
Ki[x

k]Φi

)
⊕
⊕
i∈[n]

⊕
k∈S,k 6=i

(
Mi[x

k]Φi

)
From the equation, it is clear that for i ∈ S, Ke[x

i] is not in the computation, while Me[x
i] is. Since

Ke[x
i] is randomly picked by Pe,

⊕
i∈S F

∗
i is random. Therefore we can see that for any proper

subset S ⊂ H,
⊕

i∈S Ti is indistinguishable from random, which concludes the proof.

6.3 Multi-Party Authenticated AND Triple

Once we have a protocol for leaky authenticated AND triple, it is straightforward to obtain an
non-leaky authenticated AND triple, using the combine protocol in [WRK17]. We show the details
of the protocol in Figure 10.

18

Acknowledgments

This material is based upon work supported by NSF awards #1111599 and #1563722; Samuel
Ranellucci is also supported by NSF award #1564088.

References

[BDOZ11] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In Advances in Cryptology—
Eurocrypt 2011, volume 6632 of LNCS, pages 169–188. Springer, 2011.

[BLN+15] Sai Sheshank Burra, Enrique Larraia, Jesper Buus Nielsen, Peter Sebastian Nordholt,
Claudio Orlandi, Emmanuela Orsini, Peter Scholl, and Nigel P. Smart. High perfor-
mance multi-party computation for binary circuits based on oblivious transfer. Cryp-
tology ePrint Archive, Report 2015/472, 2015. http://eprint.iacr.org/2015/472.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols. In Proceedings of the twenty-second annual ACM symposium on Theory of
computing, pages 503–513. ACM, 1990.

[CKMZ14] Seung Geol Choi, Jonathan Katz, Alex J. Malozemoff, and Vassilis Zikas. Efficient three-
party computation from cut-and-choose. In Advances in Cryptology—Crypto 2014, Part
II, volume 8617 of LNCS, pages 513–530. Springer, 2014.

[DI05] Ivan Damg̊ard and Yuval Ishai. Constant-round multiparty computation using a black-
box pseudorandom generator. In Victor Shoup, editor, Advances in Cryptology—
Crypto 2005, volume 3621 of LNCS, pages 378–394. Springer, 2005.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Advances in Cryptology—
Crypto 2012, volume 7417 of LNCS, pages 643–662. Springer, 2012.

[FKOS15] Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and Peter Scholl. A unified
approach to MPC with preprocessing using OT. LNCS, pages 711–735. Springer, 2015.

[FLNW17] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-throughput secure
three-party computation for malicious adversaries and an honest majority. In Advances
in Cryptology—Eurocrypt 2017, LNCS. Springer, 2017.

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using gar-
bled circuits: how to prove non-algebraic statements efficiently. In 20th ACM Conf. on
Computer and Communications Security (CCS), pages 955–966. ACM Press, 2013.

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with
optimal overhead. In Advances in Cryptology—Crypto 2015, Part I, volume 9215 of
LNCS, pages 724–741. Springer, 2015.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious arith-
metic secure computation with oblivious transfer. In 23rd ACM Conf. on Computer
and Communications Security (CCS), pages 830–842. ACM Press, 2016.

19

http://eprint.iacr.org/2015/472

[LOS14] Enrique Larraia, Emmanuela Orsini, and Nigel P. Smart. Dishonest majority multi-
party computation for binary circuits. In Advances in Cryptology—Crypto 2014, Part
II, volume 8617 of LNCS, pages 495–512. Springer, 2014.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party
computation. Journal of Cryptology, 22(2):161–188, April 2009.

[LPSY15] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient con-
stant round multi-party computation combining BMR and SPDZ. In Advances in
Cryptology—Crypto 2015, Part II, volume 9216 of LNCS, pages 319–338. Springer,
2015.

[LSS16] Yehuda Lindell, Nigel P. Smart, and Eduardo Soria-Vazquez. More efficient constant-
round multi-party computation from BMR and SHE. LNCS, pages 554–581. Springer,
2016.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In Advances
in Cryptology—Crypto 2012, volume 7417 of LNCS, pages 681–700. Springer, 2012.

[WRK17] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated garbling and ef-
ficient maliciously secure two-party computation. Cryptology ePrint Archive, Report
2017/030, 2017. http://eprint.iacr.org/2017/030.

20

http://eprint.iacr.org/2017/030

	Introduction
	Notations and Preliminaries
	Protocol Intuition
	The Main Scheme
	Proof
	Instantiation of the Preprocessing Functionality
	Multi-Party Authenticated Bit
	Multi-Party Leaky Authenticated AND Triple
	Correctness of the protocol
	Unforgeability
	Proof

	Multi-Party Authenticated AND Triple

