
CoverUp: Privacy Through “Forced” Participation
in Anonymous Communication Networks

David Sommer
ETH Zurich

Aritra Dhar
ETH Zurich

Luka Malisa
ETH Zurich

Esfandiar Mohammadi
ETH Zurich

Daniel Ronzani
Ronzani Schlauri Attorneys

Srdjan Capkun
ETH Zurich

Abstract

The privacy guarantees of anonymous communication
networks (ACNs) are bounded by the number of par-
ticipants.As a consequence, an ACN can only achieve
strong privacy guarantees if it succeeds in attracting a
large number of active users. Vice versa, weak privacy
guarantees renders an ACN unattractive, leading to a
low number of users. In this work, we show how to
break this vicious circle. We develop CoverUp, a sys-
tem that “forces” visitors of highly accessed websites
to become involuntary participants of an ACN. CoverUp
leverages basic browser functionality to execute server-
served JavaScript code and to open remote connections
to connect all website visitors to an ACN (which we in-
stantiate by a mix server). We build two applications on
top of CoverUp: an anonymous feed and a chat. We
show that both achieve practical performance and strong
privacy guarantees. Towards a network-level attacker,
CoverUp makes voluntary and involuntary participants
indistinguishable, thereby providing an anonymity set
that includes all voluntary and involuntary participants
(i.e., all website visitors). Given this, CoverUp provides
even more than mere anonymity: the voluntary partici-
pants can hide the very intention to use the ACN. As the
concept of forced participation raises ethical and legal
concerns, we discuss these concerns and describe how
these can be addressed.

1 Introduction

Many privacy-enhancing technologies, in particular
anonymous communication networks (ACNs) as a key
building block, suffer from a lack of a sufficient num-
ber of participants. Without high user participation,
and therefore without significant cover traffic, anonymity
networks become vulnerable to traffic analysis attacks or
suffer from performance loss in terms of their through-
put and latency. The only ACN with a high number of

participants (around 1.5 million users [52]) is Tor [35].
Yet, Tor is known to be prone to traffic analysis attacks,
as illustrated by a wide variety of passive [40, 58, 51]
and active [59, 46, 55] traffic pattern attacks. While
other ACNs [32] have been proposed that are even secure
against global attackers, they suffer from a low number
of participants, since even a perfect ACN can at most
hide a user among all participating users. These ACNs
are in a vicious circle: the lack of participants leads to
low degree of anonymity, and a low degree of anonymity
makes these ACNs unattractive for users. Even if the
number of users produces a large anonymity set, the mere
use of a system can already raise suspicion, which can
serve as a powerful deterrent for a wide range of users.

In this work, we show how these issues can be ad-
dressed through “forced” user participation. The act of
“forcing” users to participate in an ACN enables us to
not only achieve strong anonymity properties via a large
anonymity set, thus helping in bootstrapping an ACN,
but to even hide the intention of those that voluntarily
participate in the ACN.

We design a system, called CoverUp that triggers
users to participate in a centralized, constant-rate mix1

by leveraging the basic functionality of their browsers
to execute (JavaScript) code served by the websites that
they visit. CoverUp is intended to be used on university
or news sites that act as entry servers and serve CoverUp
code to the end-users’ browsers (via an iframe-request
to a CoverUp server) and therefore make them partici-
pate in the ACN. Visitors of these entry servers’ websites
therefore become (involuntary) participants of an ACN
and create cover traffic in which the voluntary partici-
pants can hide their traffic. In addition to the JavaScript
code that is served to the visitors of entry servers’ web-
sites, CoverUp includes a browser extension that is used
by the voluntary participants of the anonymity network.

1While we implement a centralized mix in our case study, our ap-
proach can conceptually be extended to a set of distributed mixes or to
practically any ACN.

1

We use CoverUp in two representative applications: a
feed (e.g., a Wikileaks newsfeed) Wikileaks documents),
and a chat. We evaluate the performance and the pri-
vacy guarantees in all three applications. We show that
they can be practical, provide a high degree of user
anonymity, and enable a user to plausibly deny that it
actively uses CoverUp. In particular, we show through
our prototypical implementations that a strong adversary
cannot distinguish voluntary participants (who addition-
ally installed the CoverUp extension2) from involuntary
participants, which only run the CoverUp code in their
browsers. We assume a strong attacker that can fully ob-
serve the network traffic and can control the entry server.
The feed can tolerate a malicious CoverUp server (which
serves the CoverUp JavaScript code), while the chat re-
quires a trusted CoverUp server.

In the prototype CoverUp the mix servers are im-
plemented as a JAVA servlet API on a Apache Tom-
cat web server. The CoverUp external application and
the browser extension is implemented using Java and
Mozilla Firefox web extension API, respectively. After
a randomized delay of the first message to hide leakage,
the CoverUp downlink and uplink rate of our prototype
is 20 Kbit/s and the latency is 36.55 seconds within one
site. We evaluate the privacy guarantees provided by
CoverUp by analyzing differences in the network delays
between voluntary and involuntary users. We show that
the attacker can distinguish voluntary and involuntary
users with an accuracy of 56.3% with an year’s worth
of observations, for a realistic usage pattern.3

Ethical and legal concerns. “Forcing” participation
might appear intrusive, but it can be implemented with
commonly-used browser functionality and such that the
users are informed about their participation and/or asked
for explicit consent (see Appendix 8 for more). Invol-
untary allocation of resources is nothing unexpected for
a visitor of a webpage; it is already done by advertise-
ments or QoS scripts, such as Google Analytics. In par-
ticular, webpages that incorporate CoverUp would not
cause unexpected behavior on a visitor’s browser. The
computational overhead of CoverUp is negligible but the
traffic overhead for a visitor would be around 7.5MB per
day, which is negligible compared to the data load of
video streaming services. Our work received a formal
approval of our institute’s ethics commission. We finally
discuss the legal implications for involuntary participants
and for the websites that act as a entry server. We elab-
orate on the liability of the entry server across different

2We assume that voluntary users obtain and install the extension in
an out-of-band fashion or in another way not observed by the adversary.

3As the usage pattern has to be adjusted to the involuntary users, we
assume that a usage pattern of 4 times each working day for 10 minutes
each time (see Section 6.2).

jurisdictions. We also discuss that our system is easy to
deploy for proxies and that there could even be incentives
for participation for both proxies and users. We even
argue that, with an increasing demand for privacy pro-
tection [21, 22], websites could increase their reputation
by supporting a privacy service from their pages, and in
turn privacy-supporting visitors would visit those pages.
We analyzed to the best possible extent the legal impli-
cations of our solutions, but as for similar technologies
(e.g., cookies) final judgements are made by the courts
in the different jurisdictions.

In summary, we make the following contributions.

• We introduce a novel concept of privacy by “forced”
participation where we argue that popular services
can help in increasing user participation in privacy
projects and more specifically in creating cover traf-
fic for anonymous communication. As a result, the
anonymity set includes all visitors of a collaborating
popular service, thereby achieving strong anonymity.

• We design CoverUp, a web-based system that helps
in creating cover traffic for anonymity networks (see
Figure 1).

• We instantiate CoverUp in the context of a feed and
chat application and show that it offers practical per-
formance (see Table 1) and strong privacy guarantees
(see Theorem 1).

• We evaluate the privacy of CoverUp and experimen-
tally evaluate the timing leakage of CoverUp on Win-
dows for, both, voluntary and involuntary participants
(see Figure 6 and Figure 7).

• We discuss the legal for the service that acts as a entry
server and for the involuntary participants. We elabo-
rate on the liability of the entry server and discuss why
the involuntary participants in our view should not ex-
perience any legal issues.

Outline of the paper. Section 2 describes the problem.
Section 3 provides detailed system design and attacker
model of CoverUp. Section 4.1 elaborates on implemen-
tation details. Section 4.2 discusses the overhead that
CoverUp causes and presents the latency and bandwidth
of CoverUp. Section 5 defines a privacy notion that cap-
tures involuntary being indistinguishable from voluntary
participants and the connections to anonymity notions
from the literature. Section 6 analyzes the privacy of
CoverUp and shows that the direct privacy leakage of
CoverUp solely depends on its timing leakage. Section 7
experimentally evaluates this timing leakage and inter-
prets the privacy results. Section 8, 9, and 10 discuss the

2

ethical and legal aspects of CoverUp, and the deploy-
ment of CoverUp, respectively. Section 11 discusses re-
lated research, and Section 12 concludes the paper and
outlines future work.

2 Problem description

For many privacy-enhancing systems, anonymous com-
munication is a key building block. The anonymity that
an anonymous communication network (ACN) can pro-
vide is limited by the number of participants. In this
work, we define and study the following main problem:

Can an anonymous communication network be
strengthened by “forced” participation? What
privacy guarantees and performance can such
an ACN provide?

It is clear that increased participation in an ACN in-
creases privacy. However, increasing privacy in an ACN
through forced participation involves some challenges.
The first challenge is to ensure that involuntary partici-
pants can become a part of the ACN without any damage
to their system. Therefore, here, under “forced” partici-
pation we don’t mean that users’ systems are compelled
into participation by infection and malware. Instead, we
assume, and show through our solution, that users can
be made to participate in an ACN through the legitimate
use of existing software and interactions (in our solution,
through their browsers). The second challenge is that
the involuntary participants should not be distinguish-
able from voluntary participants. If an attacker can tell
involuntary participants apart from the voluntary partic-
ipants, increased involuntary participation will not have
an effect on the privacy properties of the ACN. If, how-
ever, the involuntary participants appear just like volun-
tary participants for an attacker, the resulting system will
not only have in a larger anonymity sets but will also
provide plausible deniability for voluntary participants.
Namely, the voluntary participant can always claim that
it was made to participate in the ACN and is not its active
user (i.e., that it is an involuntary user).

The requirement that involuntary participants have to
look the same as voluntary participants makes this prob-
lem particularly challenging. We have to be able to run
code on the machine of an involuntary participant, with-
out damaging her system. At the same time, we have to
develop a toolchain that enables voluntary participants to
use the ACN, while carefully ensuring that they produce
the same observable communication patterns. Since such
a toolchain might introduce additional computations, it
can be prone to producing an observable delay.

To highlight why this is a new type of problem, we
contrast it to anonymous communication systems based

on covert channels. Covert channels use a piggyback ap-
proach to transport data, they depend on existing data
streams, resulting in a dependency of the piggybacked
system for latency, throughput and privacy. An ACN
based on forced participation can create its own cover
traffic and therefore control (i.e. tune) the achieved pri-
vacy, latency and throughput. All other things equal,
such an ACN will also result in higher throughput and
lower latency. However, the privacy properties that a
forced participation systems achieve differ from those of
covert channels. While some covert channels can hide
whether communication took place, and thus achieve
full deniability, forced participation systems make vol-
untary and involuntary participants indistinguishable and
therefor provide plausible deniability. Section 11 thor-
oughly discusses the relationship to covert channels such
as [50, 45, 38, 60].

3 CoverUp

We address the challenges involved in forcing participa-
tion by developing a prototype system, which we name
CoverUp. Section 3.1 presents the uni-directional chan-
nel and how it is used to implement a feed. Section 3.2
shows how this design can be extended to implement a
bi-directional channel.

Our system leverages common and widely-used
JavaScript-functionality of browsers to cause visitors
of a cooperating web site to produce cover traffic for
CoverUp users. We call this website the entry server and
it could be a university, a knowledge site, or a news site.
As depicted in Figure 1a (Step 1), this entry server in-
cludes in its webpage a request to a dedicated server (the
CoverUp server). The CoverUp server responds with
a JavaScript code snippet (Step 2), which triggers the
browsers of the visitors (Step 3) to produce constant rate
cover traffic to a dedicated server (the mix server). The
mix server responds to all parties with the feed (Step 4).
The voluntary participants of CoverUp extract the con-
tent, e.g., from the feed, via an external application (Step
5). We assume that this external application is retrieved
out of band. Involuntary participants do not have an ex-
ternal application installed and will therefore not retrieve
the feed; instead, they only generate cover traffic via the
JS code served by the CoverUp server.

The privacy provided by CoverUp is tied to the brows-
ing behavior of the involuntary participants. Section 6.2
discusses the resulting limitations and their implications.

3.1 Uni-directional channel (feed)
This set-up constitutes a uni-directional channel, over
which the mix server can send information to voluntary
participants. The browser stores the data received by the

3

entry server

.

.

.

mix server

CoverUp server

1. connects to

3. forwards
via JS code to

browser

external
application

5. extract
feed content

2. forces clients
to connect to

browser

external
application

5. extract
feed content

involuntary
participants

voluntary
participants

4. sends
feed to

(a) Uni-directional channel: feed.

entry server

.

.

.

involuntary
participants

mix server

CoverUp server

voluntary
participants

3. connect
clients via JS to

2. forces clients
to connect to

4. relays chat
messages to

external
application

5. extract & inject
chat messages

browser extension

+

external
application

5. extract & inject
chat messages

browser extension

+

1. connects to

chat

chat

(b) Bi-directional channel: chat.

Figure 1: Main components of CoverUp. (a) CoverUp uni-directional channel enables participants to anonymously download
feeds, while assuming no trust in any of the servers that they connect to. (b) CoverUp bi-directional channel supports anonymous
chat with minimal trust assumptions on the CoverUp and the mix server. The mix server only makes sure that the participant’s
communication is properly mixed and therefore cannot be subject to traffic correlation attacks.

mix server into a database (the localStorage), out of
which the external application retrieves the content. With
this uni-directional channel, we implement a continuous
data feed (in the spirit of a broadcast), which is suited
to send information for which a user does not want to
be caught reading it (e.g., sensitive medical information,
leaked documents, or a leaked e-mail list of an incrim-
inating web service). Our system tolerates a global yet
remote network-level attacker (all connections are TLS-
secured) that controls all parts of the system (depicted
by the red devils in Figure 1a) except for the computer
of some the voluntary participants. Additionally, we as-
sume that the content of the feed is signed by an external
party for which the external application has the verifica-
tion key. This external party is also trusted. We defend
against a global attacker’s traffic correlation capabilities
by producing traffic at a constant rate.

We cryptographically protect involuntary participants
from accidentally storing parts of the feed’s potentially
controversial content on their disc by cryptographically
ensuring (via an all-or-nothing scheme [53]) that invol-
untary participants – without actively trying to – do not
have sufficient information from which the content of the
feed can potentially be reconstructed. This protection is
important from a legal perspective (see Section 9).

Dataflow of the uni-directional channel. Figure 1a
depicts a high level system design and data flow of the

uni-directional channel and the feed application.

1. A voluntary or involuntary participant requests a web-
site from an entry server.

2. The entry server delivers a web-page that contains
an iframe-request for the CoverUp server. The
CoverUp server serves the iframe which in turn con-
tains CoverUp’s JavaScript snippet. This code gets
executed by the participant’s web browser.

3. This JavaScript code asks the mix server to deliver
a droplet data packet from a randomly chosen foun-
tain or a fountain details list containing description
of fountains at the mix server, depending on the page
context of the entry server. The mix server delivers
a droplet or fountain table depending on the request
of the previous step. The script saves the response
packet to the web browser’s cache database file.

The involuntary participant does not execute any opera-
tion beyond this.

4. The voluntary participant installs the external applica-
tion (received out of band) which periodically checks
for a new feed data, i.e., droplet data in the web
browser persistent cache, and copies the data into it’s
own local storage.

5. After accumulating a sufficient amount of droplets,
the external application assembles the entire feed ci-

4

pher text which is encrypted by an all-or-nothing
scheme. The external decrypts the message and ver-
ify digital signature signed by the mix server to check
data authenticity.

3.2 Bi-directional channel (chat)
Based on this uni-directional channel, we construct a bi-
directional channel, which enables a voluntary partici-
pants to additionally send data over CoverUp. As de-
picted in Figure 1b, the bi-directional channel requires
a browser extension (assumed to be retrieved out of
band) that modifies the outgoing messages (Step 5), pro-
duced by the JavaScript code snippet in the participants’
browser. With this bi-directional channel, we implement
a chat application, where the mix server relays chat mes-
sages between voluntary participants. For this applica-
tion, it is crucial that the voluntary participants send mes-
sages when the unmodified JavaScript (JS) code snippet
has been sent by the CoverUp server.

Concerning the trust assumptions, we need to trust
the integrity check for the JS code snippet, since oth-
erwise an attacker could introduce malicious modifica-
tions into the JS code that would enable it to identify
voluntary participants. To enable the browser extension
to efficiently check the integrity of the JavaScript snipped
(which is crucial to prevent timing leakage), we trust the
CoverUp server in this application. The browser exten-
sion simply checks whether the origin of the JavaScript
code snippet is as expected. Alternatively, we can tol-
erate a malicious CoverUp server if we check the in-
tegrity of the JavaScript code byte for byte, which pro-
duces a significant delay. We did not choose this alter-
native, since – as we show in Section 4.2 and 7 – the ef-
ficiency of CoverUp directly correlates with the privacy
that CoverUp achieves.

To gain efficiency, the voluntary participants sends to
the mix server the recipient in plaintext. The mix server
then relays the chat message to the corresponding re-
ceiver. Thus, we trust the mix server. Alternatively (and
not done in the prototype), CoverUp could implement
a bi-directional broadcast channel, where the messages
sent by the voluntary participants for the CoverUp server
are indistinguishable from the messages of the involun-
tary participants. This variation vastly reduces uplink
bandwidth but can tolerate a malicious mix server (see
Section 6 for a thorough discussion).

Dataflow of the bi-directional channel.

1. The voluntary participant composes an interactive re-
quest x on the external application. x also contains a
unique marker to indicate that it is a request for bi-
directional communication.

Mix
server external applicationbrowser

JavaScript

extension

bi-directional
response

8

local
storage

bi-directional
request

1

7

3

6

2

5

4

www

Figure 2: A snapshot of Bi-directional channel from a vol-
untary participants perspective. The application sends a bi-
directional request (encrypted chat) via the CoverUp extension
to the mix server and receives a response (response chat).

2. The application sends x to the browser extension.

3. The browser extension sets x to the JavaScript snippet
to send it as the request payload to the mix server.

4. The snippet sends a request droplet to the mix server
with x as the payload. Prior to that, the snippet estab-
lishes a TLS session with the mix server.

5. Upon receiving x, mix server responds with a bi-
directional data r,

6. The JavaScript snippet stores the response r to the
browser’s persistent storage.

7. The external application polls the persistent storage in
regular intervals.

8. The external application displays r to the voluntary
participant on it’s interface.

Apart from chat, we also implement interactive brows-
ing mechanism using the bi-directional channel which
can be viewed as an enhancement over the feed.
CoverUp implements a communication infrastructure

on top of HTTP communication that is secure against
traffic correlation attacks and even hides whether a user
intended to participate, which in turn implies strong pri-
vacy properties (see Section 6 for detailed discussion).

4 CoverUp’s implementation

This section explains the design choices in and the details
of the implementation of the prototype (Section 4.1) and
discusses the overhead and performance of the CoverUp
prototype (Section 4.2).

4.1 CoverUp’s implementation
We implemented a prototype and made it available under
http://coverup.tech. The CoverUp implementation
consists of five components: a CoverUp server, a mix
server, an external application, a browser extension, and
a short JavaScript code snippet. The CoverUp server and

5

bi-directional

create/update
state

state exists

broadcast

update state

bi-directional

request

no

no

yes

yes

response

Figure 3: Mix server data flow for bi-directional (chat) channel
request. The state denotes to a unique value which corresponds
to a specific voluntary user.

the mix server is implemented as a JAVA Servlet, run-
ning on an Apache Tomcat web server. The external
application is written in JAVA. The browser extension
is implemented for Firefox using the JavaScript WebEx-
tensions API. The JavaScript code snippet which fetches
feed/interactive data is kept at the CoverUp server. The
external application and the server implementation con-
sists of about 11 KLOC and the browser extension of
about 200 LOC.

We make the following four assumptions about the
browser, which are in line with Firefox’s explicitly stated
security policies. First, iframes are isolated, which we
need for the code integrity of CoverUp’s JavaScript snip-
pet. Once we checked whether an iframe is loaded from
the correct source and the source is in another domain
than the parent page, there should not be any way that
the parent page of the iframe can change the code, ex-
cept by changing the source of the iframe [41]. Second,
a JS code that is supplied from an arbitrary source is not
able to read from or write to another context of a dif-
ferent domain source without its consent. Third, the JS
code can only access the browser’s localStorage cache
and store a limited amount of data. Fourth, the JS code
cannot read or write data created by another JavaScript
code which originates from a different origin. This prop-
erty is known as the “same-origin-policy” [42], and all
modern browsers publicly claim to enforce this policy.

The system is parametric in the payload size and the
droplet request rate. The payload size and request rate is
the same, irrespective of the response type (be it a feed,
a browsing, or a chat request or response). Our proto-
type implementation uses a payload size of 75 KB and
droplet request rate of once a minute. Section 4.2 evalu-
ates our choices for these system parameters. Increasing
the payload increases the traffic overhead, in particular of
involuntary user’s, and reducing the request rate reduces
the latency but decreases the privacy (see Section 7.5).
Hence, there is a natural trade-off between the latency

and privacy and the amount of traffic overhead cause and
bandwidth (i.e., throughput) of the system.

As a next step, we describe the implementation of the
applications of our case studies: feed and chat.

4.1.1 Feed

A voluntary user would install an external application,
which polls from the firefox local storage cache file. We
use fountain codes to deliver the feed data. The mix
server keeps such droplets on disk and dispatch them as
soon as it receives a request(from both voluntary and in-
voluntary participants). The cache file contains both the
table of fountains and the droplets. The CoverUp exter-
nal application reassembles droplets on regular basis and
show them when they are ready.

4.1.2 Chat

The messaging protocol is an application on top of the
bi-directional channel. The implementation involves in-
dexing the messages as POP (post office protocol [20])
where the indexing is done by the public addresses of
the clients. This public address is derived from the
curve25519 public keys (first 48 bits of hashed public
key). The chat application assumes that the user added
all long term public keys of all his trusted peers. For
the cryptographic protection for the messages, the appli-
cation computes a shared secret from the long term key
pairs, e.g., for a prime group generator g, a secret key
a of the user and the public key gb of the recipient the
shared secret would be (gb)a = gab. While this prototype,
in particular, does not achieve forward secrecy, there is
conceptually no problem with including a forward-secret
key exchange scheme into the chat.

Whenever a new message arrives from a source ad-
dress, the mix server keeps the message to the index of
the destination address. When a uni-directional or a bi-
directional request arrives from the destination address,
the mix server delivers the message as the response and
removes the message from the previously kept index lo-
cation.

4.2 Overhead, latency, & bandwidth

We estimate CoverUp’s overhead, latency, and band-
width to demonstrate that it can perform reasonably well
in a real world scenario, is feasible for deployment in
large scale, and does nothing incur an intolerable over-
head. CoverUp has four adjustable system parameters:
request payload size, response payload size, the average
request frequency, and the average loading time. A
lower request and loading time leaves room for more ar-
tificial noise and thus increases privacy.

6

In our prototype implementation the request/response
payload size is 75 KB, the average droplet request fre-
quency is 30 seconds, and the average loading time is
20 seconds for a sub-system that only contains the feed
application (and no browser extension), and 5 minutes
for the deployment of the full system with chat and feed.
Due to the browser extension’s high leakage (see Fig-
ure 4), we increased the loading time to cover that leak-
age with noise (see Section 7).

4.2.1 Overhead

We discuss the communication load on the entry server
and the involuntary participants. The entry server’s traf-
fic overhead is minimal: the size of the iframe tag in
its html code. The involuntary participants’ traffic over-
head depends on the system parameters. To find suit-
able values for the system parameters, we looked at the
Alexa top 15 news sites, in particular since the privacy
improvements of CoverUp’s “forced” participation ap-
proach depends on the entry server’s regular number of
visitors. The average main-page load-size of the Alexa
Top 15 news sites is around 2.2 MB. A few examples
are CNN with 5.6 MB, NYTimes with 2.4 MB, Huffing-
tonPost with 6.1 MB, TheGuardian with 1.8 MB, Forbes
with 5.5 MB, BBC with 1.1 MB and Reddit with 0.8
MB,.

Assume an involuntary participants that keeps each
working day 10 tabs of the entry server open and each
one for 10 minutes. This participants would have 7.5
MB (= 10 · 5 · 2 · 75 KB) of data per day and 165 MB
(= 22 ∗ 7.5 MB) per month. For landline data flat-rates
(i.e., for non-mobile visitors), 165 MB is not significant,
e.g., in comparison to the traffic caused by streaming
videos. Even a heavier usage of 80 hours per day, re-
sulting in 1.65 GB of monthly overhead, would for many
users be dominated by their video streaming traffic.

We envision a deployment of CoverUp not to in-
clude mobile users. In the future, however, the band-
width budget of mobile users is increasing. For mobile
phone contracts where customers have a limited budget
for high-speed bandwidth and an unbounded budget for
low-speed bandwidth, mobile network providers start in-
creasing the low-speed bandwidth from 64 Kbit/s to 1
Mbit/s [6]. We believe this trend will continue in the
following years and, thus, the bandwidth overhead will in
the future not even be an issue for mobile users. Exclud-
ing mobile users from any overhead could additionally
exclude involuntary participants from structurally weak
areas.

The computational overhead for involuntary partici-
pants is insignificant, for non-mobile visitors. Section 8
further discusses the ethical aspects of using the involun-
tary participants’ resources.

Type Session Bandwidth
feed (chat disabled) downlink 20 Kbits/s
expected goodput per session 11.6 Mbit
feed + chat uplink/downlink 20 Kbits/s
expected goodput per session 6 Mbit
Type First Request Delay
feed (chat disabled) 20 s + RT T
feed + chat 300 s + RT T
Type Latency During Session
feed (chat disabled) 36.55 s + RT T
feed + chat 36.55 s + RT T
chat (best case) 4.5 s

Table 1: CoverUp’s payload bandwidth per session, delay of
the first request and latency after the first request. A session
starts after first request is sent. We assume that each tab is
open for 10 minutes, thus a session length of 10 minutes minus
the first request delay. The latency is given for the duration of
the session. 6.55 seconds is added by the communication with
CoverUp’s external application.

4.2.2 Latency & bandwidth

We evaluate the performance of CoverUp for the dura-
tion that a tab is opened, since the usage of CoverUp is
bound to the visiting patterns of involuntary participants
towards the entry server’s sites. Depending on the ser-
vice that the entry server offers, it might not be common
to keep the tab open for a long time or to visit the site
more than a few times a day. For the performance evalu-
ation, we assume each tab to stays open for 10 minutes,
which is in line with recent studies about e-commerce
sites [1, 3].

We say that a session starts after the initial request has
been sent. Table 1 illustrates the goodput (useful data
transmitted), the first request delay, and the latency dur-
ing a session. As the privacy leakage is lower in the case
where the feed functionality is enable but the chat func-
tionality is disabled, we use different request delays for
the cases: expected 20 and 300 seconds for first request
delay, for feed-only and feed+chat respectively, and ex-
pected 36.55 seconds for the latency during the session in
both cases. Section 7 explains our choice for the delays.
In addition to the delay of the first request CoverUp’s
also delays the subsequent requests, however with a dif-
ferent rate. As data is only regularly send after this first
request, the feed-only variant of CoverUp has a higher
goodput (11.6 Mbit) per 10 minute-session than the full
feed + chat variant (6 Mbit).

Recall that in all measurements the fixed request pro-
cessing time at the mix server is constant time, fixed at
50 millisecond and doubled when the number of partic-
ipants exceeds a threshold (see Section 4.1). Moreover,
the external application has a polling rate of once every
5 seconds, and the Firefox incurs a 4 seconds-delay be-
fore writing data into the localStorage. In our implemen-
tation, the minimal latency for the chat is, thus, around

7

4.5 second. This time is measured from the moment the
sender dispatched the encrypted chat from his external
application to the time the receiver is able to see the mes-
sage on his external application (the decryption time is
negligible).

5 Privacy notions

This section defines the privacy notion that CoverUp

achieves: no attacker can tell whether a participant in a
protocol is voluntary or involuntarily (Section 5.1). Sec-
tion 5.2 discusses the connection of our privacy notion to
other known privacy notions from the literature.

5.1 Defining privacy

As a worst-case assumption, the attacker has complete
knowledge about the running time distributions of the
voluntary and the involuntary participants. The attacker
is able to control the content sent by the entry server (i.e.,
the entry server is untrusted) and has full control over the
network link (on the Internet Protocol level). In particu-
lar, the attacker is able to request arbitrary data and exe-
cute arbitrary JavaScript code in the web browsers con-
text of the entry server and is able to drop, modify, and
resend any messages sent over the network.

We overapproximate potential previous knowledge by
granting the attacker the capability to control the partic-
ipant’s behavior. In particular, this overapproximation
avoids the need to deal with various introduce user be-
havior profiles, since the attacker can choose the user
profiles that maximize the leakage. Of course, a volun-
tary participant needs a more extended set of input com-
mands than an involuntary participant. To avert any leak-
age to the attacker, the commands for both kinds are like
for the voluntary one, while for the involuntary the sur-
plus is simply ignored. Because this attacker might stress
the OS infinitely, we restrict the input rate of these com-
mands to a fixed rate tuser. Timing leakage is crucial for
the notion that we consider. Since interactive Turing ma-
chine, or other computation and network models, such
as the UC framework, do properly capture timing leak-
age, we use TUC [25] (a refinement of UC) as network
and computation model (see Appendix 14.1 for a brief
description). TUC enables a normal execution of all pro-
tocol parties and an adversary that can measure timing
leakage. As the accuracy of a TUC adversary is not lim-
ited per se and in many deployed operating systems the
accuracy of the timestamps is limited to around 1 mi-
crosecond4, we introduce a limit tnet on the sample rate
of the attacker.

4Often the timestamp also contains nanoseconds but the accuracy is
nevertheless in microseconds.

Similar to other cryptographic definitions, we use a
machine, called the challenger Ch, to capture the capa-
bilities and the restriction to the attacker and to define
the task that has to be solved by the attacker. This chal-
lenger chooses one out of two protocols at random and
runs it, one πI modelling involuntary participant or and
the other πV modelling voluntary participant. The chal-
lenger is located between the attacker and the participant,
handles all their communication, enforces all restrictions
(input rate tuser and sampling rate tnet). The attacker
can intercept any network traffic and controls the entry
server. The attacker now has to guess, which scenario
the challenger runs. We let the attacker send commands
that specify the participant’s interaction with the system.
As we quantify over all probabilistic poly-time bounded
(ppt) machines, we implicitly assume that the attacker
has full knowledge about πI and πV .

Example 1: Instantiating the model with CoverUp. In the
case of CoverUp, the scenario πI constitutes a Firefox
browser together with our external application, which
visits an entry server. The attacker determines what
the participant does on the entry server. Only the uni-
directional without any external application is used. In
the other scenario πV , the CoverUp extension is installed
in the Firefox browser, together with our running exter-
nal application. Here, the user utilizes the external appli-
cation explicitly. The attacker tries now to distinguish to
which scenario applies to a specific participant. To ac-
complish that, he gives commands to the participant as it
would be in πV . If it is in πI , the additional commands
just get ignored. Appendix 14.2 gives a full description
of πI and πV . �

Along the lines of other indistinguishability-based def-
initions, we compare the probabilities of two interac-
tions: a ppt machine A (the attacker) either interacts
with the challenger that internally runs (i) πI or (ii) πV .
We require that no ppt attacker A can distinguish case
(i) from case (ii). Technically, no ppt machine A shall
have a higher probability to output (as a final guess) 0 in
case (i) has more than a distance δ away from the prob-
ability that A outputs (as a final guess) 0 in case (ii).
In contrast to other indistinguishability-based definition
and similar to differential privacy [36], we do not require
δ to be negligible in the security parameter, as we also
want to capture systems that do have a small amount of
leakage, such as CoverUp, which is however even after
thousands attacker-observations still small.

Definition 1. A pair of protocols (πI ,πV) δ -hides the
intention of participation if and only if there is a δ ∈
{y | 0≤ y≤ 1} such that for all probabilistic poly-time

8

machine A we have∣∣∣∣Pr[0← 〈A |Ch(πI , tuser, tnet)〉)]

−Pr[0← 〈A |Ch(πV , tuser, tnet)〉)]
∣∣∣∣≤ δ

where b←〈X |Y 〉 denotes the interaction between the in-
teractive machines X and Y. This interaction stops when-
ever X stops, b is the output of X after it stopped.

Throughout the paper, we use the notion of an at-
tacker’s accuracy, i.e., his probability to guess correctly.
A notion that is also used in the context of classifiers.
The δ from the defintion above can be converted into ac-
curacy by accuracy = δ/2+0.5.5

Recall that the notion of differential privacy addition-
ally includes a multiplicative factor ε . While our defi-
nitions and results could be generalized to such a mul-
tiplicative factor ε – ending up with computational dif-
ferential privacy –, we omitted the ε (thus concentrating
on ε = 0) in order to simplify the interpretation of our
definition and results.

5.2 Connections to other properties

Our privacy notion implies several well-known notions.
We discuss the relations below. While the following ar-
guments and statements can be made more precise, be-
low we present the arguments only informally, in order to
illustrate that our privacy notion is suited for anonymous
communication networks.

k-(sender) anonymity. The notion of k-anonymity is
a common for characterizing the anonymity of an ACN.
This notion guarantees that an attacker cannot guess with
significantly more than a probability of 1/k by whom a
message was sent. If k-anonymity is broken, an attacker
knows that a message was sent by a particular partici-
pant. Hence, the attacker can choose a pair of partici-
pants, for which it knows that it was a voluntary partic-
ipants. Hence, with the set of all involuntary and vol-
untary participants not controlled by the attacker as an
anonymity set, our privacy notion implies (by contrapo-
sition) k-anonymity.

By covering all (uncompromised) involuntary partic-
ipants into the anonymity set, CoverUp achieves strong
anonymity properties. This is the main strength of this
work.

5For a set of true positives TP, false negatives FN, true negatives
TN, and false positives FN, Definition 1 can be rewritten as |T P|/|T P∪
FN| − |FP|/|FP∪T N| ≤ δ . For accuracy = |T P∪T N|/|T P∪FN ∪
FP∪T N|, if |T P∪FN|= |T N∪FP| then we get 2∗accuracy−1≤ δ .

Plausible deniability. Plausible deniability is very
close to our privacy notion. Plausible deniability means
that a voluntary participant can always plausibly deny,
by way of presenting evidence for the contrary, that
it did not voluntarily participate in CoverUp. If plau-
sible deniability would be violated, an attacker would
be able to distinguish voluntary and involuntary partici-
pants. Hence, by contraposition, our notion implies plau-
sible deniability.

6 Privacy analysis of CoverUp

This section analyzes the privacy of CoverUp. Sec-
tion 6.1 shows that CoverUp has solely timing leakage.
Section 6.2 discusses potential sources of indirect pri-
vacy leakage, and Section 6.3 discusses the implications
of a malicious CoverUp and a malicious mix server.

6.1 Reduction to timing leakage
For a model of CoverUp we show that solely the tim-
ing differences in the request and response times leak
information. As an intermediary step, we observe that
if the involuntary participant would use some delays no
information leaks (Lemma 1). Then, we show that the
statistical distance of these timing differences fully char-
acterizes the privacy leakage (Theorem 1).

In our model of πI of voluntary and πV of involuntary
participants we make some simplifying assumptions. We
use the two protocols πI and πV from Example 1 (the full
description can be found in Appendix 14.2). While these
protocols exclude many secondary effects by the OS and
the browser, we argue that our analysis is still valuable.
πI and πV exclude effects of the browser caused by run-
ning an additional extension, effects of the OS caused by
running CoverUp’s external application, and effects by
the native messages between the external application and
the extension. As these ignored effects solely introduce
additional timing leakage, it suffices to prove that despite
timing leakage there is no leakage, for which our model
is sufficient. Section 7 measures this timing leakage on
real systems, including these secondary effects.

As a next step, we argue that πV is indistinguishable
from a variant of πI that includes additional delays. For
this observation, we need a technical notion. The timing
transcript of an interaction is the projection of all mes-
sages of the transcript to a constant value, say 0, which
models that only the time at which a message was are
observable. We say the bucketing of a timing transcript
according to a sampling rate tnet is the tnet -timing tran-
script. Moreover, we call the statistical distance of two
distributions (of transcripts) the timing leakage of these
two distributions with respect to the sampling rate tnet .
See Appendix 14.5 for the full lemma and a detailed

9

proof. This observation implies that an active attacker
that, e.g., holds back messages, cannot learn more than
a passive eavesdropper. Hence, it suffices to concentrate
passive eavesdroppers.

We use Lemma 1 to show that the timing leakage be-
tween πI and πV already completely characterizes how
well an attacker can distinguish πI from πV . The main
proof idea for Theorem 1 is that πI and πI + Γ are
solely distinguishable by their timing leakage. Since by
Lemma 1 πI +Γ and πV are indistinguishable, πI and πV
are only distinguishable by their timing leakage (for the
full proof see Appendix 14.5).

Theorem 1. If the timing leakage of πI and πV is at most
δ for a sampling rate tnet , and if πI and πV use a secure
channel, then for πI and πV we have δ + µ-hide the in-
tention of participation, for some negligible function µ

(in the sense of Definition 1).

Proof. The two protocols πI +Γ and πI are distinguish-
able by at most δ probability, since their transcripts are
exactly the same except for the timing trace. Due to
Lemma 1, we know that the timing leakage of πI +Γ and
the timing leakage of πV are indistinguishable. More-
over, we know by assumption that the timing leakage of
πV and πI is at most δ . Hence, the timing leakage of πI
and πI +Γ is at most δ .

|Pr[πI]−Pr[πI +Γ]| ≤ δ (1)

Plugging our results together, we get∣∣Pr[πI]−Pr[πV]
∣∣

=
∣∣Pr[πI]−Pr[πI +Γ]+Pr[πI +Γ]−Pr[πV]

∣∣
≤
∣∣Pr[πI]−Pr[πI +Γ]

∣∣︸ ︷︷ ︸
Equation (1)
≤ δ

+
∣∣Pr[πI +Γ]−Pr[πV]

∣∣︸ ︷︷ ︸
Lemma 1
≤ µ

≤ δ +µ

6.2 Indirect privacy leakages
This section discusses indirect privacy leakages which
are not direct consequences of CoverUp.

Browsing privacy. Involuntary users of CoverUp po-
tentially reveal their browsing behavior to CoverUp

server, as a malicious CoverUp server can read HTTP
header’s referer field. This leakage is inherent in our ap-
proach to use an entry server and to utilize involuntary
participants to produce cover traffic. While this leakage
exists, we would like to put it into perspective. Many
popular web sites already leak this information to other
services, such as advertisement networks or external an-
alytic tools, such as Google Analytics.

Suspicious behavior leaks privacy. Another source
of indirect privacy leakage would be that the usage
of CoverUp may unconsciously influence the behavior
of voluntary participants, e.g., if voluntary users spend
more time on a specific entry server in order to use
CoverUp thus significantly reduce the anonymity set.
Recent studies show that the average visiting time of
e-commerce website is between 8.7 and 10.3 minutes
(2016 Q1) [1, 3]. Potentially, such a knowledge can be
used by an attacker to distinguish voluntary participants
from involuntary participants. To mitigate this CoverUp
extension can alert users when they spent too much time
on the entry server. Another way of mitigating this prob-
lem is to adjust the entry server’s webpage to ask the vis-
itors of the entry webpage when they are closing the tab
“Do you want to keep the tab open to increase the pri-
vacy of CoverUp? The tab will be automatically closed
after X minutes.” With some piece of JavaScript code it
is possible to automatically close the tab after X minutes.

Browser profiling. Potentially, browser profiling
methods can be used to learn whether a particular
extension is installed [29]. However, measuring these
effects is out of scope of this work.

6.3 Malicious mix and CoverUp server

The bi-directional channel, hence the chat, in our proto-
type requires to trusts the mix server and the CoverUp

server. For efficiency reasons, the mix server directly
learns the intended recipient of a chat message. This
trust assumption can be removed by introducing a bi-
directional broadcast: the requests of all participants
(voluntary and involuntary) would be broadcast to all
other participants, letting the involuntary participants
send garbage. Such a bi-directional broadcast would,
however, reduce the uplink rate by a factor of 1/n2, with
n being the number of participants.

A malicious CoverUp server could serve involuntary
participants malicious JavaScript code, which opens var-
ious attack vectors. Against attackers that do not have
physical access to the CoverUp server, one could in
principle defend by utilizing trusted components on the
server side (e.g., Intel SGX or ARM Trustzone) to ensure
that the correct JavaScript code is served even if the rest
of the server is compromised. Alternatively, the exten-
sion could check byte for byte whether all messages from
the CoverUp server are as expected and, if not, the ex-
tension would not do anything. We decided not to imple-
ment this variant, as it incurs high delays and increases
the timing leakage.

10

7 Timing leakage experiments

This section experimentally evaluates the timing leak-
age of CoverUp. For the evaluation we used 26 systems
running Windows Server 2012 operating system. Sec-
tion 7.1 describes the experimental set-up. Section 7.2
inspects the effects of adding any noise after the mea-
surement is done. Section 7.4 proves an upper bound
for distinguishability and Section 7.5 discuss CoverUp

privacy evaluation under circumstances such as noise vs.
leakage and noise vs. observations. Section 7.6 draws
conclusive remarks of the timing leakage experiment.

7.1 The experimental set-up
The goal of the experiments is to measure the leakage
from the timing delays of CoverUp. To simulate realistic
scenarios, we set up the involuntary and both kind of vol-
untary participants on 26 identical systems running Win-
dows Server 2012 equipped with Intel Xeon E3-1245 3.4
GHz CPU and 16 GB of main memory. All the systems
also run Apache tomcat server with the CoverUp and mix
server deployed. The involuntary version of the test set-
up only has running Mozilla Firefox browser while for
the first scenario the later one executes identical browser
and CoverUp’s external application to receive the feed.
To simulate the second scenario (the chat) the voluntary
participant’s browser additionally runs our extension and
a python script in background which sends automated
chat data to the browser extension utilizing native mes-
saging (via STDIO). All of the communications between
the server and the browser are executed on loop-back net-
work network interface. We use tshark [10] to capture all
such network traffic on loop-back interface. We compare
the distributions of timing traces produced by a volun-
tary participant (both chat and feed) to the distribution
produced by an involuntary participant. All the experi-
ments are conducted on these 3 set-ups to investigate the
timing leakage from the browser due to the browser ex-
tension and the external application.

Reflecting the attacker model. The attacker model
(see Section 3) is reflected in our experiments by taking
timing traces from the perspective of the attacker who
has access to all network traffic. Therefore, we cap-
tured the traffic on a corresponding network interface.
As a network-level attacker can change the TCP flag for
timestamps and compel the victim’s operating system to
add timestamps to the TCP headers [9], we conduct all
measurements in the settings where the browser, the en-
try server, the CoverUp server, and the mix server resides
on a same system. The network traffic dump contains
reliable timestamps with a resolution of less than 1 mi-
croseconds. Our attacker model also assumed that the

attacker has no control over the operating system hence
can not determine the existence of the CoverUp external
application or the browser extension.

Types of measurements. We have profiled the execu-
tion time of the browser extracted from the TCP time
stamp of the network packets dispatched by the browser
in two separate measurements: the initial loading time
measurement and the periodic execution measurement.

The loading time measurement simulates the case
where the browser requests CoverUp’s iframe and the
browser performance in composing its context internally.
We simulate this case by forcing the iframe to refresh on
the entry server page in the browser. Before CoverUp’s
snippet is refreshed, it already has requested a feed
packet from the mix server and has received an answer.
In the corresponding network traffic dump, we compute
the timing difference between the response of the initial
iframe html source request to its first droplet request to
the mix server, because waiting for the first droplet re-
quest after the iframe request enables loading the exten-
sion’s content script. This timing difference captures any
distinguishing feature produced by the extension.

The periodic measurement models the scenario where
the voluntary and involuntary participant load the iframe
once, followed by one feed request to the server and
one response from the mix server. In the network traffic
dump, we look for the timing difference for two contigu-
ous feed requests from the browser.

Evaluation details. All the experiments are performed
on 26 identical system running Windows Server 2012
standard edition. The systems are equipped with In-
tel Xeon E3-1245 3.4 GHz CPU and 16 GigaByte of
main memory. We deployed CoverUp and mix server
on Apache Tomcat web server. We also prepare a cus-
tom SSL certificate and configure Tomcat to use SSL all
the time (strict transport layer security). All of the com-
munications between the server and the browser are ex-
ecuted on loop-back network network interface. We use
tshark [10] to capture all such network traffic on loop-
back interface. To obtain the time differences between
subsequent requests, we use the time stamp of the first
TCP packet (carrying TLS application data) for each re-
quest and answer and simply subtract them. To avoid
any caching artifacts, we disable the support for HTTP
request caching on the server side completely.

7.2 The timing without additional noise

CoverUp does not send the droplet requests at fixed time
but rather draws delay noise from a gaussian distribution
and accordingly noises the time at which the requests are

11

Periodic test

1000
time (ms)

D
en

si
ty

998 999 1001 100
2

0
2

4
6

8
Voluntary
Involuntary

Loading test

2020

D
en

si
ty

2000 2010 2030 204
0

0.
0

0.
2

0.
4

0.
6

0.
8 Voluntary

Involuntary

time (ms)

Figure 4: Distribution of timing traces (without additional
noise) of 26 windows server systems running periodic and load-
ing testing. Periodic test consists of around 12.9 million timing
traces while the loading test around 600K (voluntary chat and
involuntary both).

sent. To simplify and accelerate testing, however, the ex-
periments do not draw this noise. We added the noise
artificially afterwards. We measured the independence
of generating noise inside the experiment and adding it
after the experiment. Section 7.3 elaborates on this inde-
pendence.

For the sake of illustration, we briefly describe the his-
tograms of the timing traces without the additional noise.
Figure 4 depicts the differences in the measurements of
our implementations on all the systems. The loading
process invokes much more computational power and
is therefore more noisy, as opposed to sending and re-
ceiving a simple network packet as in the periodic case,
the distribution in the loading one have a wider range.
Remarkable here is that in the periodic case the distri-
butions for interactive and non-interactive requests look
very similar. The mean and median differ less than a mi-
crosecond.

7.3 Independence of additional noise

In the analysis of the timing leakage, we simulated the
additional noise by adding it to the measurement result.
To justify this procedure, we conducted separate exper-
iments, similar to the periodic scenario, but instead of
waiting 1000ms for the next droplet request, we drew in
JavaScript a uniformly distributed random number (using
Math.random()) and expanded it in an affine way such
that an interval ranges from 200ms to 1800ms. Addi-
tionally, we stored each of the drawn random numbers
together with an epoch time stamp. Later in the analysis

0.30 0.24 0.18 0.12 0.06 0.00 0.06 0.12 0.18 0.24
ms

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
e
n
si

ty

No Noise added

0.30 0.24 0.18 0.12 0.06 0.00 0.06 0.12 0.18 0.24
ms

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
e
n
si

ty

Noise added in JavaScript subtracted

Figure 5: Statistical Independence using uniform noise: Dis-
tance: 1.8%

11 3 6 12 24 46 88 166 316 600

width of the noise distribution [s] (log-scale)

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7
at

ta
ck

er
’s

ac
cu

ra
cy

Loading
Feed
Chat

Periodic
Feed
Chat

Figure 6: Attacker’s accuracy vs the width of the noise distri-
bution, for 20’000 periodic and 1’000 loading observations if
only feed is enabled and 10’000 periodic and 1’000 loading ob-
servations if chat is enabled. The noise distributions are half-
gaussian distributions with mean 0 and a very high standard
deviation (10 times the width of the noise).

step, we subtracted the corresponding random number
from the network dump measurement. This procedure
produced measurements artifacts, caused by the time res-
olution of our system (which lies slightly under 1us).
As we are only interested in the fact whether artificially
adding the noise after the experiment is independent of
directly adding the additional noise in the experiments,
we clustered close histogram bars that are not separated
by a significant gap.

Figure 5 shows the resulting distribution. The statisti-
cal distance of these two distributions is 1.8% which is
an acceptable value.

12

0.0 0.2 0.4 0.6 0.8 1.0

number of observations

0.0

0.2

0.4

0.6

0.8

1.0
at

ta
ck

er
’s

ac
cu

ra
cy

0 4000 8000 12000 16000 20000 24000 28000 32000
0.50

0.52

0.54

0.56

0.58

0.60

Periodic
Feed
Chat

0 500 1000 1500 2000 2500 3000 3500 4000
0.50

0.52

0.54

0.56

0.58

0.60

0.62

Loading
Feed
Chat

Figure 7: The accuracy of an attacker for periodic and loading
leakage, with the following noise widths (with expected request
time): feed periodic 60s (30s), chat periodic 60s (30s), feed
loading 40s (20s), chat loading 10 min (5 min).

7.4 Attacker accuracy upper bound

Estimating the attacker’s pre-knowledge about the de-
lays of a user is challenging. In principle, we cannot
exclude that a very strong (e.g., state-funded) attacker
runs measurement experiments on many combinations
of hardware, browsers, and operating systems. These
measurements might be usable by a malicious website
to fingerprint the operating system and the hardware, as
indicated shown in a recent work [29]. Therefore, our
analysis includes a minimal privacy bound against an
overly strong attacker that extensively measured the tim-
ing leakage for the system of the eavesdropped partici-
pant (in the sense of Definition 1). We then compute the
accuracy of the optimal attacker with this pre-knowledge
as the statistical distance (also called the total variance).
Lemma 3 in Appendix 15 recalls the textbook-proof that
the statistical distance is an upper bound on the advan-
tage (= 2∗ (accuracy−0.5)) of any (i.e., also potentially
unbounded) attacker.

We over-approximate the attacker’s advantage δi af-
ter i subsequent runs of CoverUp as follows: δ0 =
statistical distance after adding noise,δi = δi−1 + (1 −
δi−1) · δ0,. Appendix 16 proves this over-approximates
the attacker’s advantage. Recall that all our graphs
show the attacker’s accuracy, which can be computed as
advantage/2+ 0.5. Moreover, for computing this accu-
racy, we use 100 microseconds instead of 1 microsecond,
since it turns out that after convolution with the noise dis-
tribution there is virtually no advantage to use 1 instead

of 100 microseconds.

7.5 Evaluating privacy

We evaluate the privacy that different noise distribu-
tions of request delays yield against various amounts
of attacker observations. The timing leakage is up-
per bounded by the sum of the leakage caused by
loading of the JavaScript (up to requesting the first
droplet) and by subsequent periodic requests. Because
our two experiments take place at two different stages
of CoverUp’s procedure, we can capture these leak-
ages separately and quantify them separately, as well.
We call the accuracy of an attacker that can distin-
guish the two loading experiments the loading accu-
racy and the accuracy of an attacker that can distinguish
the two periodic experiments as periodic accuracy. The
bound for the attacker’s accuracy = loading accuracy+
periodic accuracy−0.5.

Leakage vs. noise. Figure 6 plots the attacker’s accu-
racies vs width of the noise distribution, with a log-scale
x-axis. As noise distribution, we use a very wide half-
Gaussian distribution with mean 0 which we truncate af-
ter n seconds. This width n of the noise distribution (x-
axis on Figure 6) also determines the standard deviation
that we use: we use 10n as standard deviation. In this
way, we effectively obtain almost a uniform distribution.

Figure 6 shows that the width of the noise is inverse
proportional to the accuracy of the attacker. Moreover,
it shows for feed-only deployment of the system the at-
tacker’s accuracies for up to 20’000 observations and, for
the system with chat the attacker’s accuracies to 10’000
observations. For the sake of illustration, we will se-
lect a few numbers that yield strong privacy. The figure
indicates that if only the feed application is deployed,
for a width of the noise of 40s the loading accuracy is
≤ 50.2% and with a width of 60s the periodic accuracy
is ≤ 50.9%. If the chat is additionally enabled and with
a noise width of 600 seconds, the loading accuracy is
≤ 53.2% and, with a width of 60 seconds the periodic
accuracy is ≤ 53.1%.

The figure shows that even less noise would achieve
reasonable privacy guarantees. For the chat case, 200s
and 1’000 loading observations would yield a loading
accuracy of less than 60%, and even the periodic noise
could be reduced 30s while having for 10’000 periodic
observations a periodic accuracy of ≤ 55%.

For feed + chat, a loading noise of 10 minutes (5 min-
utes expected time) is still practical for a high-latency
chat, as the average visiting time of an e-commerce user
around 10.3 minutes [1, 3]. With 10 minutes of load-
ing noise (i.e., 5 minutes expected initial request time),

13

our high-latency chat would still be able to send 10 re-
quests in the expected case. The size of the payload can
be increased without violating the privacy of the volun-
tary participants; a single request and response can be
used to send and receive high amount of new messages.

Leakage vs. number of observations. Figure 7 shows
the development of the upper bound on the attacker’ ac-
curacy if the number of observations increases. For these
graphs, we assumed the following request delay noise
widths (with expected request time): feed periodic 60s
(30s), chat periodic 60s (30s), feed loading 40s (20s),
chat loading 10min (5min). The leakage increases lin-
early with an increasing number of observations. The
figure shows that with these widths even a 3 times more
active voluntary chat participant with 30’000 observa-
tions could still count on ≤ 60% periodic accuracy and
≤ 60% loading accuracy.

7.6 Privacy conclusion

Recall that the usage pattern of a voluntary participant is
restricted to the visiting behavior of involuntary partici-
pants, as discussed in Section 6.2. While this usage pat-
tern depends on the specific service that the entry server
provides, we assume the usage pattern for a popular e-
commerce site. As shown in [1, 3] each visit should not
be longer than 10.3 minutes. We stress that this usage
pattern can be controlled and recommended or even en-
forced by the extension or the external application. Ad-
ditionally, we envision a button to set the extension ac-
tive only when required by the user. This justifies our
assumptions of a voluntary participants that visits and
utilizes the entry server 4 times per working day, stays
each time 10 minutes, and has 4 weeks of holidays per
year. In a deployment of feed-only application with noise
widths as above (loading = 40s, periodic = 60s), a year
worth of observations correspond to around 20’000 pe-
riodic observations and 1’000 loading observations (see
Section 6.2). These parameters results in an attacker’s
accuracy of ≤ 51.1%, which is only 1.1% better than
pure guessing. In a deployment of the full system (in-
cluding the chat) with widths as above (loading = 600s,
periodic = 60s), a year worth of observations correspond
to around 10’000 periodic and 1’000 loading observa-
tions. That results in an attacker’s accuracy of ≤ 56.3%,
which is only 6.3% better than pure guessing.

8 Ethical aspects

While our design takes care not to harm a involuntary
participant’s system, it causes an involuntary partici-
pant’s browser to execute our JavaScript code, stores

content and forces participation in our protocol. In order
words, we propose to use the computation and traffic re-
sources of a visitor to increase the anonymity of an ACN.
To inform the visitor about this involuntary allocation of
resources, the entry web page can include information
for the visitors or even require explicit consent from the
visitors.

We argue that the amount of resources that we allocate
is not out of scale. Our work received a formal approval
of our ETH’s ethics commission. First, the involuntary
allocation of resources is nothing unexpected for the vis-
itor; it is already done by advertisements or QoS scripts
such as Google Analytics. In particular, webpages that
incorporate CoverUp would not cause unexpected be-
havior on a visitor’s browser. Second, we propose to
only incorporate our design into non-mobile version of
a webpage, thereby excluding mobile phone visitors and
visitors from structurally weak areas from any overhead.
Third, we discuss the overhead for a visitor in Section 4.2
in detail. As a summary, the computational overhead of
CoverUp is negligible but the traffic overhead for a visi-
tor would be around 9MB per day. While this is a non-
negligible amount of traffic, a single YouTube Video or
even visiting 4 Alexa Top 15 News Sites can cause more
traffic. Moreover, we think that in the future traffic will
become much cheaper while our system remains highly
useful even if solely text is transmitted, i.e., with 9MB
per day.

9 Discussion of selected legal questions

One of the challenges in answering the question whether
the provision of CoverUp and the upload of the
JavaScript code by the entry server is legal or not (and
many other questions evolving around the use of the
Internet) is that, whereas the Internet functions glob-
ally, law mostly [43] remains limited by territory be-
cause sovereign states put their own legislation into ef-
fect [17, 18, 11]. The legal provisions and possible of-
fenses that apply to the technical setup of CoverUp, dif-
fer from country to country. Moreover, as law is not an
exact science and definite legal statements are made by
the courts, we conclude the legal discussion herein with
an assessment that we consider probable.

In this section we limit the legal analysis to a selected
discussion on whether the activity of the provider of the
entry server could qualify as cybercrime offense. We do
not, for instance, analyse offenses by the provider of the
CoverUp server or of the mix server, or cover aiding and
abetting.

Many countries enforce their own laws and have their
own (territorial) jurisdiction, many countries, among oth-
ers the EU member states and the USA, have ratified [2]
in the Convention on Cybercrime [43] (CCC) – the inter-

14

national treaty on crimes committed via the Internet and
other computer networks. This international treaty crim-
inalizes, among others, illegal access (article 2 CCC),
data interference (article 4 CCC), and misuse of devices
(article 6 CCC). Do these offenses apply to the provider
of the entry server?

9.1 Illegal access
Illegal access (article 2 CCC) penalizes the entering of a
computer system but does not include the mere sending
of an e-mail message or a file to a system. The appli-
cation of standard tools provided for in the commonly
applied communication protocols and programs, is not
per se “without right”, in particular not if the accessing
application can be considered to have been accepted (e.g.
acceptance of cookies [19, 14, 15, 16] by client).

However, a broad interpretation of article 2 CCC is not
undisputed (refer [43], para. 44 - 50).

Upon request, the entry server delivers a webpage that
contains an iframe request for the CoverUp server, which
then delivers the JavaScript to the browser for the down-
load of the droplets. Not only does the entry server
merely send a file (pointer) to the browser, but the request
to download the JavaScript from the CoverUp server is
standard browser functionality for communication. The
same would happen if the entry server were financed by
online advertising: upon request the entry server would
deliver a webpage pointing to the advertising server and
trigger the download of the advertising text or pictures
to the browser. As this is a standard online process, we
conclude that even in a broad interpretation of article 2
CCC, the provider of the entry server should not be ille-
gally accessing the browser.

9.2 Data interference
Data interference (article 4 CCC) penalizes the damag-
ing, deletion, deterioration, alteration or suppression of
computer data “without right”. This provision protects a
computer device from the input of malicious code, such
as viruses and Trojan horses as well as the resulting al-
teration of data. However, the modification of traffic data
for the purpose of facilitating anonymous communica-
tions (e.g., the activities of anonymous remailer systems)
should in principle be considered legitimate protection of
privacy (refer [4, 5, 8, 7], [12, Recitals(1) and (35)]), [13,
Article 13], and, therefore, be considered as being under-
taken “with right” [43, para. 61].
CoverUp does not damage, delete, deteriorate, or sup-

press data on the participant’s client. However, it does
alter the data on the hard disk: on the one hand the
webpage with the iframe uses disk space and thus mod-
ifies the participant’s data; on the other hand CoverUp

triggers the download of the JavaScript code and subse-
quently the droplets from the mix server to the involun-
tary participant’s browser, which again uses disk space
and thus modifies the data anew.

However the explanatory report to the Convention on
Cybercrime foresees that the file causing data interfer-
ence be “malicious”. Code is malicious if it executes
harmful functions or if the functions are undesirable.

As we concluded in the previous subsection, the web-
page containing the iframe request for the CoverUp

server submitted by the entry server is standard core
browser functionality. Thus from a technical viewpoint,
CoverUp is not harmful. Therefore in our view the
provider of the entry server not does cause any malicious
data interference. We advocate that article 4 should not
apply to the provision of the webpage with the iframe by
the provider of the entry server.

9.3 Misuse of devices

Misuse of devices (article 6 CCC) penalizes the produc-
tion, making available, or distribution of a code designed
or adapted primarily for the purpose of committing a cy-
bercrime offense, or the possession of such a computer
program. It refers to the commission of “hacker tools”,
i.e. programs that are e.g. designed to alter or even de-
stroy data or interfere with the operation of systems, such
as virus programs, or programs designed or adapted to
gain access to computer systems. The objective element
of offense comprises several activities, e.g. distribution
of such code (i.e. the active act of forwarding data to
others), or making code available (i.e. placing online de-
vices or hyperlinks to such devices for the use by others)
[2, para. 72].

One of the main questions relating to the misuse of de-
vices is how to handle dual use devices (code). Dual use
means in our case that the JavaScript code could be used
to download legal content, e.g. political information, as
well as illegal content, e.g. child pornography. Should
article 6 CCC only criminalize the distribution or making
available of code that is exclusively written to commit of-
fenses or should it include all code, even if produced and
distributed legally? Article 6 CCC restricts the scope to
cases where the code is objectively designed primarily
for the purpose of committing an offense, thereby usu-
ally excluding dual-use devices [2, para. 72 - 73].

First, it is important to note that CoverUp was not de-
signed primarily for the purpose of committing an of-
fense. While the main purpose of CoverUp is to protect
privacy, it can be used to conceal illegal activities.

Second, can the download of criminal information be
considered an illegal activity if the information is en-
crypted? Here we draw a legal analogy to data protection
law. Data relating to an identified or identifiable person

15

is considered personal data [12, article 2(a)], [23, article
4(1)]. If a person is identifiable or identified, data protec-
tion law applies. However, if the personal data are pseu-
domised or anonymised, then data protection law might
not apply anymore because the (formerly identiable or
identified) person cannot longer be identified.

Recital (83), article 6(4)(e), 32(1)(a) and 34(3)(a) of
the new General Data Protection Regulation6 stipulate
that encryption renders the personal data unintelligible
and mitigates the risk of infringing the new regulation.

By applying this data protection principle to the en-
cryption of data by CoverUp we can argue that the data
provided by the mix server in the droplets are not infor-
mation because the data is unintelligible. Not only does
the involuntary participant not have sufficient data to re-
assemble the droplets to a whole, but the data are en-
crypted in such manner that it is impossible to make any
sense of it. At least from a theoretical viewpoint the en-
cryption of CoverUp cannot be breached. We therefore
conclude that the JavaScript code (a) with regard to the
involuntary participant does not qualify as dual use de-
vice because even if it is used for illegal purpose, the
data transmitted remain unintelligible and therefore do
not qualify as information; and (b) with regard to the vol-
untary participant can be qualified as dual use device be-
cause the encrypted and unintelligible data are decrypted
and reassembled to intelligible information.

9.4 Legal conclusion

We discussed the applicability of articles 2 (illegal ac-
cess), 4 (data interference), and 6 (misuse of device)
CCC to CoverUp. We conclude that the provider of the
entry server is probably not illegally accessing the partic-
ipant’s browser by applying CoverUp; that the provider
of the entry server probably does not cause any mali-
cious data interference; and that the use of CoverUp

with regard to the involuntary participant does not qual-
ify as misuse of device. As regards the reassembly of the
droplets to a meaningful whole, if the information is il-
legal, CoverUp might qualify as dual use device and fall
under article 6 CCC. We conclude that at least with re-
gard to the risk of indictment pursuant to article 6 CCC it
seems advisable that the provider of the entry server does
not provide the JavaScript code for download.

10 Deployment

We have witnessed a steady rise of concern regarding pri-
vacy. Such includes state backed surveillance, web based
services collecting huge amount of private information

6Regulation (EU), applicable as of 25.5.2018

and discrimination of citizens who access sensitive ma-
terials such as leaked documents. In recent years, a num-
ber of countries reformed their privacy protection laws,
which specifically aims to provide protections against the
misuse of citizens’ private data. One major example is
European Union’s EU-GDPR and the surveys accompa-
nying it [21, 22] shows that there is a need for privacy-
preserving systems. Anonymous communication net-
works (ACN) is the basic building blocks for many pri-
vacy preserving protocols. CoverUp provides a strong
privacy guarantee for hiding the intention. Our proposed
forced participation technique achieves this by hiding the
voluntary users in the traffic generated by the involuntary
users. Existing systems can easily incorporate CoverUp

by setting up the entry server in their own service. The
code integrating is effortless and requires almost no mod-
ification. The host servers only have to include an iframe
pointing to the CoverUp server.

The external application and the browser extension
have to be delivered out-of-band channel. Installing
these two components is straight-forward as it only in-
cludes to add the extension program to Chrome and run
the external application’s compiled binary.

11 Related Work

Hiding ones intentions in the internet is done since the
beginning. It is closely connected the field of censorship
circumvention.

Anonymous communication protocols. There are nu-
merous approaches to hide a user’s traffic. Anonymous
communication (AC) protocols hide traffic by rerouting
and potentially waiting. Low-latency AC protocols, such
as Tor [35] or Hornet [31], are vulnerable to traffic corre-
lation attacks. High-latency mix-nets, such as Mixmin-
ion [34], which do not require the user client to continu-
ously send messages leak a user’s intend to connect to the
anonymity network, which might seem suspicious and
prevent a user from using the mix-net client. AC proto-
cols that do require the user client to continuously send
messages, such as DISSENT [32] or Vuzuvela [57], still
require the active participation of the users in the proto-
col, which can leak the intention. Our solution can be
easier deployed and does not require a sophisticated in-
frastructure.

Ricochet is a related project: an anonymous chat.
Based on Tor’s hidden service design, Ricochet imple-
ments a privacy-preserving instant messenger. As Rico-
chet is based Tor, it suffers from Tor’s weaknesses, such
as traffic correlation attacks and website fingerprinting.
As our system is a constant-rate communication system,
CoverUp does not suffer from these kinds of attacks. Tor

16

and thus Ricochet leak that a user intends to use Tor. Vy
CoverUp’s indistinguishability of voluntary and involun-
tary participants enables users to deny the intention to
participate in the system.

Covert channels & steganography. Covert channels
hide whether communication took place, and thus
achieve full deniability. As covert channels typically
use a piggyback approach to transport data, they de-
pend on existing data streams, resulting in a dependency
of the piggybacked system for latency and throughput.
Steganography is another approach which is hiding mes-
sages in unsuspicious looking data [47, 37, 24]. But
once detected, the origin and therefore the intention is
obvious. The same applies to Mixing [48]. Plausible
deniability is the possibility to deny the knowledge of
actions done by others (e.g., Cirripede [44]). Off-the-
record messaging: published MAC key after talk: does
not protect against real time monitoring [26].

McPherson et al. proposed CovertCast, a broadcast
hidden in normal video streams like YouTube [50]. Che
et al. were able to create a deniable communication
channel based on different levels of noisy channels [30].
Deploying that system is, however, require a much
higher effort by the service provider (e.g., YouTube)
and does not provide any interactive communication like
CoverUp. Freewave [45] provides a covet channel where
the user can modulate his internet traffic signal into
acoustic data and transfer it to remote server via VoIP
such as skype. Such system have bandwidth limitation
and is vulnerable to attacks described in [39]. SWEET
[60] describes a covert channel e-mail communication
where the user can send the query to the remote server
by using any available mail server. Such system suf-
fered from very low bandwidth and high latency, mak-
ing them practically infeasible for deployment. Cloud-
Transport [28] introduced covert communication which
involves publicly accessible cloud servers such as Ama-
zon S3 which acts as the oblivious mix. But services like
this does not provide protection against attackers learn-
ing intention. Infranet [38] describes a system executing
covert communication using image stenography but also
suffers from a low bandwidth.

12 Conclusion & future work

We discussed how “forced” participation can improve the
privacy of anonymous communication network (ACNs).
By adding involuntary participants to the anonymity set,
we achieve not only an increased anonymity set but also
a plausible deniability: an attacker cannot tell whether an
observed communication stream originates from a volun-
tary or an involuntary participant. We developed a sys-

tem CoverUp with two features: feed, and high-latency
chat. This approach of “forced” participation can help to
bootstrapp mid- and high-latency ACNs.

Peer-to-peer variant. Even though the CoverUp per-
forms reasonably well in terms of bandwidth (for serving
normal HTML pages, refer Section 4.2.1), the latency is
bounded by the droplet request rate from a particular en-
try server. The latency can be decreases significantly by
adding a peer to peer communications between all the
participants. Such peer to peer network allows the feed
data transferred between participants hence decrease the
load of the CoverUp and in particular the mix server. Ef-
fectively CoverUp will behave like a bit torrent network
enhancing the bandwidth multiple fold.

Mix-server as a full HTTP proxy. CoverUp can be
easily extended to make the mix server acts like a full
HTTP proxy server. Such modification will allow a
voluntary participants to browse through arbitrary web
pages. This can be an immediate extension of CoverUp.

Custom browser. Our evaluation of the timing leakage
of CoverUp (Section 7) shows that the browser exten-
sion, used for the bi-directional channel, has some tim-
ing leakages. After many careful observations and ex-
periments, we conjecture that the timing leakages arises
from the browser’s internal scheduler. The extension op-
erates through several layers of heavy abstractions which
makes it non trivial to develop extensions which are such
timing sensitive in nature. We think that a set modifica-
tions in the browser code will solve such problem where
all the modifications can be implemented on native code
rather than high level abstraction (such as the JavaScript
based API). Such modification is nontrivial and requires
a high amount of engineering effort, making it out of
scope for our current research. But such modification
can be an immediate followup of this work and would be
a major contribution towards privacy preserving brows-
ing applications.

References

[1] 2016 q1 demandware shopping index.

[2] Chart of signatures and ratifications of treaty 185.

[3] E-commerce kpi study: There’s (finally) a bench-
mark for that.

[4] European convention on human rights (ehcr).

[5] Fourth amendment.

17

[6] Heise article (in German): O2 entschärft
Drosselung: Neue Tarife immer mit mindestens 1
Mbit/s.

[7] Katz v. united states, 389 u.s. 347 (1967).

[8] Olmstead v. united states, 277 u.s. 438 (1928).

[9] Rfc 7323 - tcp extensions for high performance.

[10] tshark-the wireshark network analyzer 2.0.0.

[11] America’s founding documents — national
archives, 1776.

[12] Directive 95/46/ec of the european parliament and
of the council, Nov 1995.

[13] Federal constitution of the swiss confederation, Apr
1999.

[14] Directive 2002/22/ec of the european parliament
and of the council, Apr 2002.

[15] Directive 2002/58/ec of the european parliament
and of the council, July 2002.

[16] Regulation (ec) no 2006/2004 of the european par-
liament and of the council, Dec 2004.

[17] Consolidated version of the treaty on the function-
ing of the european union, May 2008.

[18] Eur lex, May 2008.

[19] Directive 2009/136/ec of the european parliament
and of the council, Dec 2009.

[20] Rfc 918 - post office protocol, Dec 2009.

[21] Attitudes on data protection and electronic identity
in the european union, June 2011.

[22] State of privacy report 2015, 2015.

[23] Regulation (ec) no 2006/679 of the european par-
liament and of the council, May 2016.

[24] ARTZ, D. Digital steganography: hiding data
within data. IEEE Internet computing 5, 3 (2001),
75–80.

[25] BACKES, M., MANOHARAN, P., AND MOHAM-
MADI, E. TUC: Time-sensitive and Modular Anal-
ysis of Anonymous Communication. In Proceed-
ings of the 27th IEEE Computer Security Foun-
dations Symposium (CSF) (2014), IEEE, pp. 383–
397.

[26] BONNEAU, J., AND MORRISON, A. Finite-state
security analysis of otr version 2.

[27] BOYKO, V. On the Security Properties of OAEP
as an All-or-Nothing Transform. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1999, pp. 503–518.

[28] BRUBAKER, C., HOUMANSADR, A., AND
SHMATIKOV, V. Cloudtransport: Using cloud stor-
age for censorship-resistant networking. In Inter-
national Symposium on Privacy Enhancing Tech-
nologies Symposium (2014), Springer, pp. 1–20.

[29] CAO, Y., LI, S., AND WIJMANS, E. (Cross-
)Browser Fingerprinting via OS and Hardware
Level Features. In Proc. 25th Network and
Distributed System Security Symposium (NDSS)
(2017), Internet Society.

[30] CHE, P. H., BAKSHI, M., AND JAGGI, S. Re-
liable deniable communication: Hiding messages
in noise. In Information Theory Proceedings
(ISIT), 2013 IEEE International Symposium on
(July 2013), pp. 2945–2949.

[31] CHEN, C., ASONI, D. E., BARRERA, D.,
DANEZIS, G., AND PERRIG, A. Hornet: high-
speed onion routing at the network layer. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security (2015),
ACM, pp. 1441–1454.

[32] CORRIGAN-GIBBS, H., AND FORD, B. Dissent:
accountable anonymous group messaging. In Pro-
ceedings of the 17th ACM conference on Com-
puter and communications security (2010), ACM,
pp. 340–350.

[33] DAEMEN, J., AND RIJMEN, V. The design of
Rijndael: AES-the advanced encryption standard.
Springer Science & Business Media, 2013.

[34] DANEZIS, G., DINGLEDINE, R., AND MATHEW-
SON, N. Mixminion: Design of a type iii anony-
mous remailer protocol. In Proceedings of the
Symposium on Security and Privacy (S&P) (2003),
IEEE, pp. 2–15.

[35] DINGLEDINE, R., MATHEWSON, N., AND
SYVERSON, P. Tor: The second-generation onion
router. Tech. rep., DTIC Document, 2004.

[36] DWORK, C., MCSHERRY, F., NISSIM, K., AND
SMITH, A. Calibrating Noise to Sensitivity in Pri-
vate Data Analysis. In Proc. 10th Theory of Cryp-
tography Conference (TCC) (2006), pp. 265–284.

[37] EGGERS, J. J., BAEUML, R., AND GIROD, B.
Communications approach to image steganogra-
phy. In Electronic Imaging 2002 (2002), Interna-
tional Society for Optics and Photonics, pp. 26–37.

18

[38] FEAMSTER, N., BALAZINSKA, M., HARFST, G.,
BALAKRISHNAN, H., AND KARGER, D. R. In-
franet: Circumventing web censorship and surveil-
lance. In USENIX Security Symposium (2002),
pp. 247–262.

[39] GEDDES, J., SCHUCHARD, M., AND HOPPER, N.
Cover your acks: Pitfalls of covert channel censor-
ship circumvention. In Proceedings of the 2013
ACM SIGSAC conference on Computer & commu-
nications security (2013), ACM, pp. 361–372.

[40] GILAD, Y., AND HERZBERG, A. Spying in the
dark: Tcp andtortraffic analysis. In International
Symposium on Privacy Enhancing Technologies
Symposium (2012), Springer, pp. 100–119.

[41] GOOGLE. Content security policy (csp) - google
chrome.

[42] GOOGLE. Cross origin xmlhttprequest - google
chrome.

[43] GROUP, I. N. W. Convention on cybercrime, bu-
dapest, 23.xi.2001, Oct 1984.

[44] HOUMANSADR, A., NGUYEN, G. T., CAESAR,
M., AND BORISOV, N. Cirripede: Circumvention
infrastructure using router redirection with plausi-
ble deniability. In Proceedings of the 18th ACM
Conference on Computer and Communications Se-
curity (New York, NY, USA, 2011), CCS ’11,
ACM, pp. 187–200.

[45] HOUMANSADR, A., RIEDL, T. J., BORISOV, N.,
AND SINGER, A. C. I want my voice to be heard:
Ip over voice-over-ip for unobservable censorship
circumvention. In NDSS (2013).

[46] JANSEN, R., TSCHORSCH, F., JOHNSON, A.,
AND SCHEUERMANN, B. The sniper attack:
Anonymously deanonymizing and disabling the tor
network. Tech. rep., DTIC Document, 2014.

[47] KAMBLE, M. P. R., WAGHAMODE, M. P. S.,
GAIKWAD, M. V. S., AND HOGADE, M. G. B.
Steganography techniques: A review. International
Journal of Engineering 2, 10 (2013).

[48] LE BLOND, S., CHOFFNES, D., ZHOU, W., DR-
USCHEL, P., BALLANI, H., AND FRANCIS, P. To-
wards efficient traffic-analysis resistant anonymity
networks. In ACM SIGCOMM Computer Commu-
nication Review (2013), vol. 43, ACM, pp. 303–
314.

[49] MACKAY, D. J. Fountain codes. In Communi-
cations, IEE Proceedings- (2005), vol. 152, IET,
pp. 1062–1068.

[50] MCPHERSON, R., HOUMANSADR, A., AND
SHMATIKOV, V. Covertcast: Using live streaming
to evade internet censorship. Proceedings on Pri-
vacy Enhancing Technologies 2016, 3 (2016), 212–
225.

[51] MOLLAND, H., AND HELLESETH, T. An im-
proved correlation attack against irregular clocked
and filtered keystream generators. In Annual Inter-
national Cryptology Conference (2004), Springer,
pp. 373–389.

[52] PROJECT, T. T. Tor metrics, Nov 2016.

[53] RIVEST, R. L. All-or-nothing encryption and the
package transform. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1997, pp. 210–218.

[54] SHOKROLLAHI, A. Raptor codes. IEEE trans-
actions on information theory 52, 6 (2006), 2551–
2567.

[55] SUN, Y., EDMUNDSON, A., VANBEVER, L., LI,
O., REXFORD, J., CHIANG, M., AND MITTAL,
P. Raptor: routing attacks on privacy in tor. In
24th USENIX Security Symposium (USENIX Secu-
rity 15) (2015), pp. 271–286.

[56] SUNDARARAJAN, J. K., SHAH, D., AND
MÉDARD, M. Arq for network coding. In Informa-
tion Theory, 2008. ISIT 2008. IEEE International
Symposium on (2008), IEEE, pp. 1651–1655.

[57] VAN DEN HOOFF, J., LAZAR, D., ZAHARIA, M.,
AND ZELDOVICH, N. Vuvuzela: Scalable private
messaging resistant to traffic analysis. In Proceed-
ings of the 25th Symposium on Operating Systems
Principles (2015), ACM, pp. 137–152.

[58] WANG, T., AND GOLDBERG, I. Improved website
fingerprinting on tor. In Proceedings of the 12th
ACM workshop on Workshop on privacy in the elec-
tronic society (2013), ACM, pp. 201–212.

[59] WANG, X., CHEN, S., AND JAJODIA, S. Network
flow watermarking attack on low-latency anony-
mous communication systems. In 2007 IEEE Sym-
posium on Security and Privacy (SP’07) (2007),
IEEE, pp. 116–130.

[60] ZHOU, W., HOUMANSADR, A., CAESAR, M.,
AND BORISOV, N. Sweet: Serving the web
by exploiting email tunnels. arXiv preprint
arXiv:1211.3191 (2012).

13 Preliminaries

In this section we describe existing tools and techniques
that have been used in our proposed system CoverUp.

19

13.1 Fountain Code
Fountain codes [49, 56] are a class of forward error cor-
rection (FEC) codes with the following properties

• Arbitrary sequence of encoding symbols can be
generated form a given set of source symbols i.e.,
input data.

• Original source symbols can be recovered from any
subset of encoding symbols with size more than a
threshold value T .

• Encoding symbols can be delivered regardless of
specific order.

• Fountain codes does not show fixed code rate.

In this paper, we have used a bit-wise XOR (⊕) based
fountain code with error detection mechanism.

In a simple analogy, one can consider an empty glass
for water. A fountain emits the input data encoded in a
large amount of droplets in a steady stream. Anyone can
collect them in a glass alternately and if one thinks the
glass is filled enough, one may try to assemble the data
from the water (data stored in the glass). If the amount
of droplets is insufficient to reassemble the data, one has
to wait longer to collect more droplets and retries later.

Our specific fountain code implementation is not opti-
mal. There exists efficient fountain codes such as Raptor
[54] in the literature but most of them are protected by
intellectual property rights.

13.2 All-or-nothing transformation
All-or-nothing transformation is an encryption mode in
which the data only can be decrypted if all the encrypted
data is known. More precisely: “An AONT is an un-
keyed, invertible, randomized transformation, with the
property that it is hard to invert unless all of the output is
known.”[27].

We modified the all-or-nothing scheme proposed by
Rivest [53] which encrypts all data with a symmetric key
cryptography algorithm (in our implementation, we use
AES-128 [33]) in Cipher Block Chaining (CBC) mode
and appends a new block in which the encryption key is
XOR’ed (⊕) with the 128 bit truncated SHA-256 hashes
of all the encrypted blocks. This guarantees that one
needs all encrypted data (or at least its hash) to extract
the decryption key from last block.

1. Input message block: m1, m2, . . . , mn

2. Chose random key K
R←− {0,1}128 for AES-128.

3. Compute output text sequence m′1, m′2, . . . , m′n,m
′
key

as follows:

• Let m′i = Enc(K ,mi) ∀ i∈ 1, . . . ,n with CBC
mode.

• Let m′key = K ⊕h1⊕h2⊕ . . .⊕hn
where hi =
Hi[1, . . . ,128];Hi =SHA-256(mi) ∀i ∈
1, . . . ,n

• Send m′ = m′1|| . . . ||m′n||m′key

The receiver can recover the key K only after receiv-
ing all message blocks. He executes the following steps

• K = m′key⊕h1⊕h2⊕ . . .⊕hn.

• mi = Dec(K ,m′i) ∀ i ∈ 1, . . . ,n.

14 Detailed privacy analysis

14.1 TUC: A time-sensitive model for net-
works of machines

For quantifying the privacy guarantees of CoverUp, we
use the TUC framework as a time-sensitive model for
network of machines. TUC constitutes a model for net-
works of machines that is time-sensitive. In TUC, time
is represented as a rational number, and there is a global
time, on which the time of each machine depends. Each
machine has a local clock that is a function t in the global
time. This function represents potential delays or inaccu-
racies of the local timer. Moreover, TUC assigns to each
machine a speed s. Hence, a machine is after c step at
the global time c/s and the local timer of that machine
shows t(c/s).

The execution of a network of machines in TUC is
conducted by a single machine, called the execution, that
runs all participating machines as submachines. This
execution sequentially activates each machine, counts
the steps that each machine performs, and coordinates
the timely sending and receiving of messages between
the submachines. Due to the sequential activation of
machines, it can happen that one machine is already
far in the future compared to all other machines. It is
shown [25] that all reasonable activation strategies lead
to the same results. As a consequence, we ignore that
TUC internally uses sequential activation and treat all
machines as if they are executed in parallel and run ac-
cording to their speed.

A party can consist of several parallel machines (e.g.,
several CPUs) that communicate to each other.

14.1.1 Timeless environment and attacker

As in the UC framework, TUC includes an environment
and an adversary. This environment and this adversary
can consist of several machines that work in parallel. A

20

natural way of modeling this capability is to represent the
environment and the adversary as a set of parallel ma-
chine. While such a model is more accurate, we decided
for the sake simplicity to over-approximate this strength
of the environment and the adversary by allowing both
parties to make an arbitrary (but poly-bounded) amount
of computation steps in one time-step.

14.1.2 Internet topology

As in the UC framework, TUC models how two ma-
chines directly communicate to each other. The inter-
net can, thus, be represented by a network of interme-
diary machines that (if honest) relay the message from
the sender to the destination. A partially global attacker
can, of course, compromise several of these machines.
Hence, we can abstract this network of machines by the
information which connections between protocol parties
leaks the message to the attacker. In addition to the pre-
vious model, we additionally need to specify the delay of
the network, i.e., how much time the connection between
two parties takes.

14.2 Description of protocols

We use two protocols namely πI and πV to denotes the
sequence of executions performed by the involuntary
and voluntary participants respectively. A protocol π

is defined as a quadruplet {B,Π,SCoverUp,Smix}. Where
B,Π,SCoverUp and Smix denotes a browser, a set of opera-
tions, CoverUp server and the mix server respectively. A
browser B is defined as a interactive Turing machine. B
has three ports namely user port, network port and out-
put port. B takes input from a user (and/or an attacker
A) via the user port. All requests and responses to and
from remote servers such as SCoverUp and Smix is done
via the network port which provides a secure communi-
cation channel. The output port is utilized to send any
output result to the user e.g. data received from Smix.
Additionally a browser can also execute a JavaScipt code
which in turn can send request over network to a specific
recipient (e.g. Smix) via the network port. Upon receiv-
ing response, browser can send it to the user (and/or the
attacker). We specify two instance of browser, namely
BI and BV corresponding to πI and πV respectively. The
browser instance BV is BI with an extension E installed
in it. E is also an interactive Turing machine which in-
troduces additional transitions to B. Hence BV = BI‖E.7

Algorithm 1: Challenger Ch(πb, tnet , tuser)

Notation: Ch challenger, A adversary, πb protocol (b ∈ {I,V}),
p ∈ {network,user} the interface over which the
message comes

1 Upon Initialization
begin

2 Initialize two empty FIFO queues Qnet ,Quser

3 Upon Receiving m from the A over interface p
begin

4 if p = user then
5 Quser.push(m)

6 else if p = network then
7 Qnet .push(m)

8 Invoke every tnet point in time begin
9 (m1,m2)← Qnet .pop()

10 Send (m1,m2) over the network port to πb

11 Invoke every tuser point in time begin
12 (m1,m2)← Quser.pop()
13 Send (m1,m2) as user inputs to πb

14 Whenever πb outputs m over the interface p begin
15 Send (m, p) to A

14.3 The challenger
Algorithm 1 describes the challenger Ch(π, tnet , tuser).
We consider a message in form of a pair (m, p) where
m is the message itself in bitstring format and p denotes
to the port where m arrives. In our definition there can be
three types of ports:

1. u : Denotes to the user port where there can be in-
coming and outgoing data flow from the browser
due to user activities. We denotes the activities
as Command (A) and Command (B) which relates
to mouse click events on the website of the entry
server and the CoverUp/mix server (specified in the
command), respectively.

2. N : Denotes to the network port where network
leakage in terms of traffic pattern is observed.

3. CS : This the port where the entry server sends and
receives data. The outgoing data can be the pro-
grammed java script codes and HTML pages. The
incoming data consists of the response from the java
script code and the HTML page.

The challenger Chb relies on two FIFO queues QNET
and QBrowserπ

for input which are populated by network
traffic and the browser Bb respectively. Chb polls to both
of these queues in a predefined time interval tq.

7‖ is defined as the combination of two state machine as de-
scribed in https://www.cs.cmu.edu/afs/cs/academic/class/

15671-f95/www/handouts/shared-memory/node1.html

21

14.4 Hybrid Games & main theorem

Protocol 1 BI : abstraction of the browser in πI (feed)
1 Upon Connecting to the entry server and receiving an iframe

begin
2 Compose request r from the iframe
3 Send r to CoverUp server via secure channel

4 Upon Receiving a JavaScript code code from CoverUp server
begin

5 Execute code begin
6 h f ← feed

7 data←{0}k

8 send (h f ‖Data) via the secure channel to the mix server

9 Upon Receiving D from mix server over the secure channel
begin

10 Send D to the user

Protocol 2 BV : abstraction of the browser in πV (bi-
directional channel)

1 Upon Connecting to the entry server and receiving an iframe
begin

2 Compose request r from the iframe
3 Send r to CoverUp server via secure channel

4 Upon Receiving a JavaScript code code from CoverUp server
begin

5 Execute code begin
6 Data← readBiDirectionalData()
7 Set h f ← bi−directional

8 Set IDint ←{0,1}k

9 Send (h f ‖IDint‖Data) to the mix server

10 Upon Receiving D from mix server over the secure channel
begin

11 Send D to the user

Games 1-3 describe hybrid games which incorporate
small changes over Game 0 or Ch(πI) (protocol executed
by involuntary participants) and transform the protocol to
Ch(πV) (protocol executed by voluntary participants) by
adding up a small amount of delay.

Protocol 3 CoverUp (r): CoverUp server side com-
putation

1 Upon Receiving a request r from a browser BI/V

begin
2 code← JavaScript code snippet
3 Send code to BI/V

Protocol 4 mix server(h f) : the mix server side con-
stant time computation

1 Upon Receiving (h f ‖IDint‖Data) from the secure channel
begin

2 FixedExecutionTime← x
3 start← timeNow()
4 if h f = bi−directional then
5 Initialize state with IDint

6 if stateExists() = TRUE then
7 Set state← getState(IDint)

D← covertData(state,Data)
8 Call UpdateState(state)

9 else
10 D← broadcast

11 Sleep for (x− (timeNow()−start))
12 Send D over the secure channel

Game 1
1 Ch: Upon Receiving (m, p) from A for client

begin
2 if p = u & m = (Command(m1),Command(m2)) then
3 if b = 0 then
4 Send (Command(m1),Command(m2)) over u to

Browser(φ)

5 else
6 Send (Command(m1),Command(m2)) over u to

Browser(φ)

7 else
8 Send m over p to Browser(φ)

9 π1
I : Upon receiving a bi-directional request R from ωU

begin
10 RequestQueue.push(R)

Game 2
1 π2

V : Upon Initialization at Ch side
begin

2 Data← readBiDirectionalData()
3 Set h f ← bi−directional

4 Set IDint ←{0,1}k

5 Send (h f ‖IDint‖Data) to the mix server

Game 3
1 π3

V : Upon Receiving a request R = (h f ‖IDint‖Data) at the mix
server side
begin

2 D←mix server(h f) (the Protocol 4 for the mix server)
3 Send D to Ch

14.5 Analysis of hybrid games
Lemma 1. Assume that πI and πV established a secure
channel in TUC (i.e., TLS in the real implementation).8

8Formally, a functionality FSCS, as in the UC framework, but secure
in TUC (see Appendix 14.1).

22

Assume that all cryptographic primitives in πV and πI
and secure in the TUC framework. Let πI +Γ be some
protocol that behaves just like πI , except that it incurs
additional delays, which add up to Γ. Then, there is a Γ

such that πI +Γ and πV are indistinguishable in the sense
of Definition 1 with a δ = µ for a function µ that is neg-
ligible in the security parameter. Moreover, the timing
leakage of πI +Γ and πV is 0 for any sampling rate.

Game 0 is defined as Ch(πI , tnet , tuser) which is the
challenger choosing protocol with only feed capabil-
ity (no interactive capability supported). Where as
Ch(πV , tnet , tuser) is the challenger who picks protocol in-
stance supporting interactive communication (browsing
and chatting). We assume that the operation that per-
forms on RequestQueue introduces ∆0 delay. Reading
of bi-directional data from the external application im-
poses ∆1 delay and modifying variables in the request
payload introduces ∆2 delay. We define Si to be the num-
ber of operation executed in game i and Pr[Si] denotes
the probability that an attacker can distinguish game i by
observing the total execution time.

Game 1-3 introduce small modification over base pro-
tocol, i.e., the broadcast channel. Every game add some
small timing delay ∆ to the previous game which is the
only information available to A . Henceforth we define
the following notations

Notation 1.

Pr[Si +∆] := Pr[0← 〈A | Game i with delay ∆〉]

Notation 2.

Pr[Si−∆] = Pr[S j] :⇐⇒ Pr[Si] = Pr[S j +∆]

We have also used the following relation throughout
our proof which can be proved easily.

Pr[S j] = Pr[Si +∆]∧Pr[Si] = Pr[Sk +∆
′]

⇐⇒ Pr[S j] = Pr[Sk +∆+∆
′]

Pr[Si +∆] = Pr[S j +∆+∆
′]

⇐⇒ Pr[Si] = Pr[S j +∆
′] (trivial using Notation 2)

14.5.1 Game 0 and Game 1

Game 1 only include one operation on RequestQueue

which imposes ∆0 timing delay. Hence

Pr[S1] = Pr[S0 +∆0].

Pr[S0]

Pr[S1]
=

Pr[S0]

Pr[S0 +∆0]

14.5.2 Game 1 and Game 2

Game 2 adds the request intercept which executes in the
browser extension at client side. This includes one call
to readBiDirectionalData() method which reads
bi-directional data sent by the external application.
This incurs ∆1 timing delay. Moreover Game 2 adds
statements which modify the payload content such
as the header h f to bi−directional and data field to
the bi-directional request. This introduce ∆2 timing
delay. Remember that ll the communications are done
via a secure channel, and all the modification of the
packet data ensures constant data size. Hence we can en-
sure indistinguishability in spite of the data modification.

Pr[S2] = Pr[S1 +∆1 +∆2].

Pr[S1]

Pr[S2]
=

Pr[S1]

Pr[S1 +∆1 +∆2]
=

Pr[S1]

Pr[S0 +∆0 +∆1 +∆2]

14.5.3 Game 2 and Game 3

In Game 3 all the statements remain same, only the
parameter to the reactive machine mix server(h f)
changes as the Ch now sends bi−directional as the
packet header. As mix server(h f) guarantees constant
time execution irrespective of the input parameter, Game
3 does not introduce any additional timing delay.

Pr[S3] = Pr[S2 +∆1 +∆2].

Pr[S2]

Pr[S3]
=

Pr[S2]

Pr[S2 +∆1 +∆2]
=

Pr[S2]

Pr[S0 +∆o +∆1 +∆2]

Proof. Game 3 adds total ∆1 + ∆2 delay (cu-
mulative from Game 1 to 3) to Game 0 or
Ch((πI),noise,Tuser,Tnet). Hence

Pr[S3] = Pr[S0 +∆0 +∆1 +∆2] (eq 2)

holds from eq 1

Lemma 2. Game 3 is equivalent to the challenger
Ch(πV ,Tuser,Tnet) who picks the CoverUp instance with
covert communication mode.

Pr[S3] = Pr[0← 〈A |Ch(πV , tuser, tnet)]

Proof. From Lemma 1 we get Pr[S6] = Pr[S0+∆0+∆1+
∆2]

S0 = Step(φ +πV) = Step(πV)

S3 = Step(π3
I) = Step(πV)+∆0 +∆1 +∆2

Pr[S3] = Pr[S0 +∆0 +∆1 +∆2] (from eq 2)

23

Pr[S3] = Pr[0← 〈A | Game 3〉]
= Pr[0← 〈A | Game 0+∆0 +∆1 +∆2〉]
= Pr[0← 〈A | Game 0+∆〉]
= Pr[0← 〈A |Ch(πI , tuser, tnet)+∆〉]
= Pr[0← 〈A |Ch(π3

I , tuser, tnet)〉]
= Pr[0← 〈A |Ch(πV , tuser, tnet)]

15 Statistical distance and the optimal at-
tacker

Definition 2 (Discrete distributions over finite domains).
A discrete distribution X is a discrete distribution over
a finite domain if there is a natural number n such that
|supp(X)| = n, supp denotes the support. For pair X ,Y
of discrete distributions over finite domains, the join do-
main ΩX ,Y (abbreviated as Ω if uniquely determined in
the context) be defined as ΩX ,Y := supp(X)∪ supp(Y).

Definition 3 (Negligible leakage against unbounded at-
tackers). Let X ,Y be two families of discrete distribu-
tions over a finite domain with a joint Domain Ω. Then,
the X and Y have negligible leakage against unbounded
attackers if there is a negligible function µ such that for
all Turing machines A and sufficiently large η ∈ N we
have

|Pr[b = 1 : b← A(w),w← Xη]

−Pr[b = 1 : b← A(w),w← Yη]| ≤ µ(η)

Definition 4 (Statistical distance over finite domain). Let
X ,Y be two discrete distributions over a finite domain
with a joint Domain Ω. Then, the statistical distance d of
X and Y is defined as

d(X ,Y) :=
1
2 ∑

a∈Q
(|pX (a)− pY (a)|)

Definition 5 (Statistical indistinguishability). Let X ,Y
be two families of discrete distributions over a finite do-
main with a joint Domain Ω. X and Y are statistically
indistinguishable if there is a negligible function µ such
that for sufficiently large η ∈N the statistical distance of
Xη and Yη is negligible in η , i.e., d(X ,Y)≤ µ(η).

Lemma 3 (Definition 3⇔Definition 5). Let X ,Y be two
discrete distributions over a finite domain with a joint
Domain Ω. Then, X ,Y have negligible leakage against
unbounded attackers if and only if X ,Y are statistically
indistinguishable.

Proof. If X and Y have negligible leakage against un-
bounded attackers, then X and Y are statistically indistin-
guishable. Otherwise, an unbounded attackers could just
check for each sample w that it receives whether pXη

(w)
or pYη

(w) is large, and output 1 in one case and 0 in the
other case. The resulting advantage is exactly the statis-
tical distance, which contracts the assumption that X and
Y are not statistically indistinguishable.

For the converse direction (statistical indistinguisha-
bility implies negligible leakage against unbounded at-
tackers), we assume that statistical indistinguishability
holds and there is an unbounded attacker A such that (for
infinitely many η)

|Pr[b = 1 : b← A(w),w← Xη]

−Pr[b = 1 : b← A(w),w← Yη]| ≥ p(η)

for some polynomial η . For the proof, we use the more
general definition of statistical distance9

d(Xη ,Yη) := max
S⊆Ω

|Pr[w ∈ S : w← Xη]

−Pr[w ∈ S : w← Yη]|

Statistical indistinguishability and the finiteness of the
domain then implies (for some negligible function µ) for
sufficiently large η that there is a set S′ such that

|Pr[b = 1 : b⇔ (w ∈ S′),w← Xη] (2)
−Pr[b = 1 : b⇔ (w ∈ S′),w← Yη]| ≤ µ(η) (3)

We observe, however, that the attacker A also gives rise
to a set SA := {w | A(w) = 1}. Then, we have

|Pr[b = 1 : b⇔ (w ∈ Sw),w← Xη]

−Pr[b = 1 : b⇔ (w ∈ Sw),w← Yη]| ≥ p(η)> µ(η)

Which contradicts (1), since S′ was assumed to be the set
that maximizes |Pr[w∈ S : w←Xη]−Pr[w∈ S : w←Yη]|
and already for S′ we have

|Pr[w ∈ S : w← Xη]−Pr[w ∈ S : w← Yη]| ≤ µ(η)

for sufficiently large η , however, for the set SA we have

|Pr[w∈ S : w←Xη]−Pr[w∈ S : w←Yη]| ≥ p(η)> µ(η)

16 Composition theorem

We recall a known result for the statistical distance of
two product distributions Di

0 and Di
1 with finite domains.

9For a proof of the equivalence to Definition 4 can be found here:
https://wiki.cc.gatech.edu/theory/images/b/b2/Lec5.

pdf

24

Lemma 4. Let D0 and D1 a pair of distributions with
finite domains and a statistical distance (i.e., total vari-
ance) of δ . Let product distributions Di

0 := D0×·· ·×D0
and Di

1 := D1× ·· · ×D1 be the respective product dis-
tributions, resulting from i iterative self-compositions.
Then, for all i ∈ N the statistical distance of Di

0 and Di
1

is given by the following recursive formula:

δ0 := δ

δi := δi−1 +(1−δi−1) ·δ

Proof. Recall the definition of statistical distance from
the proof of Lemma 3

SD(Di
0,D

i
1)
∣∣Pr[x ∈ S : x← Di

0]−Pr[x ∈ S : x← Di
0]
∣∣

We will show that SD(Di
0,D

i
1)≤ δi−1 +(1−δi−1) ·δ for

all i > 1. By induction, the statement of the lemma then
follows.

Pr[x ∈ S︸︷︷︸
=:E i

0

: x← Di
0︸ ︷︷ ︸

=:Ωi
0

]

(1)
= Pr[E i−1

0 ∨ (¬E i−1
0 ∧E0) : Ω

i
0]

=Pr[E i−1
0 : Ω

i−1
0]+ (1−Pr[E i−1

0 : Ω
i
0]) ·Pr[E0 : Ω0]

−Pr[E i−1
0 ∧ (¬E i−1

0 ∧E0)] : Ω
i
0︸ ︷︷ ︸

=0

⇒|Pr[E i
0 : Ω

i
0]−Pr[E i

0 : Ω
i
1]|

=
∣∣Pr[E i−1

0 : Ω
i−1
0]+ (1−Pr[E i−1

0 : Ω
i
0]) ·Pr[E0 : Ω0]

−Pr[E i−1
0 : Ω

i−1
1]− (1−Pr[E i−1

0 : Ω
i
1]) ·Pr[E0 : Ω1])

∣∣
=
∣∣Pr[E i−1

0 : Ω
i−1
0]−Pr[E i−1

0 : Ω
i−1
1]+

(1−Pr[E i−1
0 : Ω

i
0]) ·Pr[E0 : Ω0]

− (1−Pr[E i−1
0 : Ω

i
1]) ·Pr[E0 : Ω1])

∣∣
≤δi−1 +δ −|Pr[E i−1

0 : Ω
i
0]) ·Pr[E0 : Ω0]

−Pr[E i−1
0 : Ω

i
1]) ·Pr[E0 : Ω1]|

(1) holds since Di
b is a product distribution.

Let a := Pr[E i−1
0 : Ω

i−1
0], b := Pr[E0 : Ω0], c :=

Pr[E i−1
0 : Ω

i−1
1], and d := Pr[E0 : Ω1]. Assume w.l.o.g.

that b≥ d holds. Then, also a ·b≥ c ·d and a≥ c holds.
Since a> c holds, ab−cd ≥ a(b−d). Since b> d holds,
|ab−cd| ≥ |a(b−d)|. Again since a > c holds, we have
a(b−d)≥ |a− c| · |b−d|, and thus

|ab− cd| ≥ |a− c| · |b−d|= δi−1 ·δ

An analogous argumentation holds for the other case,
i.e., d > b. Since |ab− cd|< δi−1 +δ , we get

δi−1 +δ−
|Pr[E i−1

0 : Ω
i
0]) ·Pr[E0 : Ω0]−Pr[E i−1

0 : Ω
i
1]) ·Pr[E0 : Ω1]|︸ ︷︷ ︸

≥δi−1·δ

≤ δi−1 +(1−δi−1)δ = δi

25

