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Abstract. In this paper, we introduce the notion of attribute-based concurrent signatures. This 
primitive can be considered as an interesting extension of concurrent signatures in the 
attribute-based setting. It allows two parties fairly exchange their signatures only if each of 
them has convinced the opposite party that he/she possesses certain attributes satisfying a 
given signing policy. Due to this new feature, this primitive can find useful applications in 
online contract signing, electronic transactions and so on. We formalize this notion and 
present a construction which is secure in the random oracle model under the Strong 
Diffie-Hellman assumption and the eXternal Diffie-Hellman assumption. 
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1. Introduction 

1.1 Motivation 
Fair exchange of digital signatures is a fundamental problem in E-commerce, and concurrent 
signatures, introduced by Chen, Kudla and Paterson [1], provide a novel solution to this 
problem. This signature scheme allows two parties named as an initial signer and a matching 
signer to produce and exchange two ambiguous signatures until an extra piece of information 
(called keystone) is released by one of two parties. More specifically, before the keystone is 
released, two signatures are ambiguous in the sense that, from a third party’s point of view, 
each signature may be generated by either of two parties. Once the keystone is released, 
however, both signatures are binding to their respective signers concurrently, and anybody can 
publicly verify who signed which signature.  

In some applications, it is preferred that both sides of exchange possess certain attributes, 
such as title, age and nationality, in order for the exchange to occur correctly. We will illustrate 
this by following two exemplary scenarios. 

Online contract signing. Suppose Company A wants to sign an agreement with Company B for 
software development. Company A requires the signer from Company B has to be either a senior 
manager within the development department or, at a minimum, a junior manager in the cryptography 
team. Meanwhile, Company B requires the signer from Company A must be the financial executive. 

Electronic transactions. Broker Bob wants to sell a restricted class game to Customer Carl. 
According to relevant laws, Bob should be a licensed retailer for the U.S. market, while Carl must be 
over 18 years old and reside in U.S. [2].  

Unfortunately, existing concurrent signature schemes do not take into account signers’ 
attributes, hence can not be applied directly in above scenarios. A trivial solution would be that, 
prior to the exchange, two parties run an attribute-based authentication protocol [3] to confirm 
that they fulfill the attribute requirements. However, this solution is not only inefficient but 
also vulnerable to collusion attacks, that is, an unqualified signer may be able to produce and 
exchange a signature after the authentication protocol has been executed by his/her partner, 
who posseses enough attributes to fulfill the policy.  

1.2 Contribution 
In this paper, we introduce the notion of attribute-based concurrent signatures (ABCS) as a 
practical solution to aforementioned scenarios. It can be thought as an interesting extension of 
concurrent signatures in the attribute-based setting. In ABCS, every user obtains a set of 
attributes from the authority. To start an exchange, both parties define signing policies which 
the opposite side should satisfy. Then each of them can produce an anonymous signature if 
his/her attributes satisfy the signing policy. Anonymity is a stronger security notion than 
ambiguity, since it could be produced by anyone, not just limited to both parties of exchange. 
After two anonymous signatures have been exchanged, the release of a keystone can 
concurrently convert them to ordinary signatures such that they can be publicly verified.  

We formalize this notion and present a formal security model for ABCS. We also present a 
construction which is secure in the random oracle model under the Strong Diffie-Hellman 
assumption [4] and the eXternal Diffie-Hellman assumption [5].  



1.3 Technical Approach 

We start from the attribute-based group signature scheme due to Khader [6], which provides 
the basis for our ABCS scheme in terms of the anonymity and utility of attribute validation. 
We also use a bottom-up approach presented by Emura and Miyaji [7] to efficiently construct 
dynamic access trees. The main challenge is how to maintain the anonymity when we extend it 
to concurrent signatures. Most concurrent signatures schemes [1, 8-12] are constructed from 
Schnorr-based ring signatures [14] where the ring consists of the involved two parties. 
Because of the anonymity and unforgeability of ring signatures, this kind of constructions 
provides a natural way to obtain ambiguity and fairness for concurrent signatures. Given such 
a ring signature, any third party can not tell which party of the ring is the signer, but the 
opposite party surely know who produces the signature. If we add such a ring in our ABCS 
scheme, however, the ambiguity may be compromised, since the signing policy attached with 
the signature may help a third party to deduce the signer’s identity, especially when the signing 
policy is only fulfilled by one party.  

In [15], Nguyen proposed a method to construct concurrent signatures which is 
independent of the ring signature concept. In this method, promises of signatures are used as 
concurrent signatures. A promise of signature is anonymous because it could be produced by 
anyone using solely public information, but the release of the keystone will convert it to an 
ordinary signature. His signature scheme is asymmetric in the sense that different signature 
schemes, namely the Schnorr signatures and the Schnorr-like signatures, have to be used for 
the initial signer and the matching signer, respectively, so that the matching signer is also able 
to produce a promise of signature even without the knowledge of the keystone. Although this 
method provides proper anonymity which meets the requirement of our ABCS scheme, we can 
not directly apply it to our construction since its Schnorr-like signatures can not be used to 
generate a SPK of the discrete logarithms for a public key which has the form of y = 1 2

1 2
x xg g  . 

We address this limitation by presenting a new variant of Schnorr signatures (see Sect. 2.2). 
This signature scheme is quite suitable for our construction since it has the same form of 
responses as Schnorr signatures. 

1.4 Related Work 
Several concepts are  related to ours ABCS. We briefly review them as follows.  
Concurrent signatures. Chen, Kudla and Paterson [1] introduced the notion of concurrent 
signatures in Eurocrypt 2004. This primitive has been considered to be more practical than 
some other fair exchange techniques, such as gradual secret releasing [16] or optimistic fair 
exchange (OFE) [17], since it does not rely on a highly interactive protocol or a (semi-trusted) 
third party. In ICICS 2004, Susilo, Mu and Zhang [8] introduced the notion of perfect 
concurrent signatures in order to strengthen the ambiguity of concurrent signatures. 
Unfortunately, their scheme was shown to have a flaw in fairness by Wang, Bao and Zhou [9], 
and thus a modified construction was presented. Subsequently, various efforts have been made 
to add new features to concurrent signatures or strengthen their security. For example, 
Sherman, Chow and Susilo [10] presented the first generic construction of identity-based 
perfect concurrent signatures. Tonien, Susilo and Safavi-Naini [11] extended concurrent 
signatures to the multi-party setting. Yuen et al. [12] added a feature of negotiable binding 
control into concurrent signatures, and Tan, Huang and Wong [13] presented the first 
concurrent signature scheme secure in the standard model.  

Most concurrent signature schemes are based on Schnorr-based ring signatures [14], except 



the asymmetric concurrent signatures of Nguyen [15], where promises of Schnorr signatures 
and Schnorr-like signatures are used as concurrent signatures.  
Attribute-based signatures. Maji, Prabhakaran and Rosulek [18] presented the first 
attribute-based signatures (ABS) in 2008. This primitive allows a signer to convince a verifier 
that he/she holds a set of attributes satisfying a given signing policy and has endorsed the 
message. Since their construction is only secure in generic group model, several ABS schemes 
[19-21] were presented that are secure in the standard model. However, they are only 
selectively secure, a weaker notion of unforgeability than adaptive security. Maji, Prabhakaran 
and Rosulek [22] presented the first ABS which is adaptively secure in the standard model, but 
their scheme is much less efficient in signature size since it employed the Groth-Sahai NIZK 
system as building blocks. Okamoto and Takashima [23] presented the first ABS which allows 
non-monotone predicates to express signing policies. They further extended their ABS to the 
multi-authority setting [24]. 
Attribute-based group signatures. The notion of attribute-based group signatures (ABGS) 
was first introduced by Khader [6]. This primitive can be considered as an extension of group 
signatures such that a group member can produce a signature if he/she holds sufficient 
attributes satisfying a given signing policy. Subsequently, Emura, Miyaji and Omote [7] 
presented a dynamic ABGS which is efficient when access trees have to change frequently. 
Ali and Amberker [25] presented the first ABGS which is secure in the standard model. They 
also addressed the issue of attribute anonymity, which may be desirable in some applications. 
Attribute-based optimistic fair exchange. Wang, Au and Susilo [2] have identified the 
necessity of attributes in the area of fair exchange of signatures, and introduced the notion of 
attribute-based optimistic fair exchange (ABOFE) to address this issue. As an extension of 
optimistic fair exchange [17], ABOFE allows each party of exchange to obtain the full 
signature from the opposite side only if he/she holds sufficient attributes satisfying a given 
signing policy. They also presented a generic construction of ABOFE from OFE and 
ciphertext-policy attribute-based encryption (CP-ABE). The intuition behind their 
construction is quite simple: prior to the exchange, each party encrypts his/her signature by 
CP-ABE so that the opposite party can decrypt the signature only if he/she posseses sufficient 
attributes. Since ABOFE is built on OFE, one of its problems is the requirement for a dispute 
resolving third party, which may be undesirable in some applications. More seriously, their 
construction is vulnerable to collusion attacks, that is, an unqualified user could have the 
signature decrypted by his/her qualified partner. Hence, our ABCS scheme can be considered 
as an improvement of ABOFE in terms of  applicability and security. 

The remainder of the paper is organized as follows. In Section 2, we review some 
definitions and complexity assumptions.  We also present a variant of Schnorr signature 
scheme which serve as basic building block in our ABCS scheme. Section 3 defines ABCS 
and formulizes its security. In Section 4, we present our construction of ABCS and prove its 
security. Finally, Section 5 concludes the whole paper. 

2. Preliminaries 

2.1 Bilinear Groups and Complexity Assumptions 
Definition 1 (Bilinear group): Consider two (multiplicative) cyclic groups G1 and G2 of 
prime order p where 

1g  and 
2g  are respective generators of G1, G2. We say G1 and G2 are 



bilinear groups if there exist a group GT and an efficiently computable function 1 2ˆ :e G G×  → 
TG  with the following properties: 

(1) For 1u G∀ ∈ , 2v G∀ ∈  and , pa b∀ ∈Z , ˆ( , )a be u v = ˆ( , )abe u v . 
(2) 1 2ˆ( , )e g g is a generator of GT. 

Additionally, we require a computable isomorphism ψ from G2 to G1, with 1g = ψ(g2). 

The security of our construction relies on the Strong Diffie-Hellman assumption [4] and the 
eXternal Diffie-Hellman assumption [5]. They have been used to construct anonymous 
authentication [26], group signature [27], anonymous credentials [28], zero-knowledge proof 
system [29], to name a few. We briefly review them as follows. 

Assumption 1 (q-SDH). The q-Strong Diffie-Hellman problem in (G1, G2) is defined as 
follows: On input of a (q + 2)-tuple 〈 1g , 2g , 2gγ , 2( )

2g γ ,…, ( )
2

qg γ 〉∈ 1
1 2

qG G +× , output a pair 
〈 1/( )

1
xg γ + , x〉∈ 1 pG ×Z . We say that the q-SDH assumption in (G1, G2) holds if no PPT algorithm 

has non-negligible probability in solving the q-SDH problem.  
Given a q-SDH instance 〈 1g , 2g , 2gγ , 2( )

2g γ ,…, ( )
2

qg γ 〉, by applying the Boneh-Boyen’s 
Lemma in [4], we can obtain 〈 1g , 2g , w = 2gγ 〉 and ( 1q − ) SDH pairs (Ai, xi) such that 

2ˆ( , )ix
ie A wg = 1 2ˆ( , )e g g . Any SDH pair besides these ( 1q − ) ones can be transformed into a 

solution to the original q-SDH instance. 

Assumption 2 (XDH). Given bilinear groups (G1, G2) with a computable isomorphism ψ 

from G2 to G1 and 
1g = ψ(g2). We say that the eXternal Diffie-Hellman assumption holds if the 

DDH problem is hard in G1. 

2.2 Access Tree and the bottom-up approach 
Definition 2 (Access Tree [30]): An access tree is a tree structure representing an (monotone) 
access structure, where threshold gates are defined on each interior node, and each leaf is 
associated with an attribute.  

An access tree is originally built from top to down. This approach has a drawback that it is 
impossible to build a new access tree from an existing one. In [7], Emura and Miyaji proposed 
a bottom-up approach which allows dynamic access tree construction. In this approach, a 
central access tree is built first and secret values are assigned to attributes associated with 
leaves. Then different access trees can be obtained by simplifying the central access tree, and 
these secret values need not to be updated. As a result, it is not necessary to re-issue attribute 
public keys whenever access structures change. 

Our ABCS scheme uses this bottom-up approach to build an access tree, and we denote 
these two steps by following two algorithms 

–BuildCTree(Att). Takes the universe of attributes Att as input, outputs a central access 
tree CT and some secret values. 

–SimplifyCTree(CT, φ). Take as input a central tree CT and an attribute set φ ∈ Att, 
outputs an access tree T where attributes in φ are leaves.  

We refer to Appendix A for a self-contained presentation of these two algorithms. 

2.3 A variant of Schnorr signature scheme and promises of signatures 



Our ABCS scheme uses Schnorr signatures to produce promises of initial signatures. We also 
need a signature scheme to produce promises of matching signatures such that they can be 
produced without the knowledge of keystones. We present as follows a variant of Schnorr 
signature scheme for this purpose. 

–Setup. Choose primes p, q of appropriate size such that q | p − 1, and let g be the generator 
for the subgroup in *pZ  of order q. Choose a hash function *:{0, 1}H → qZ . 

–Key Generation. Pick random x∈ qZ  and set z = 1/ xg . The public key is 〈p, q, g, z〉 and the 
secret key is x. 

–Sign. Pick random 
qr ∈Z  and compute c = ( , )rH M z , s = r cx+ . The signature is 〈c, s〉. 

–Verify. Check c = ( , )s cH M z g− . 
Different from the Schnorr-like signature scheme presented in [15], Our Schnorr-like 

signature scheme has the same form of response (i.e. s) as the original Schnorr signature 
scheme. This feature is critical to our ABCS construction since it allows generating a SPK of 
discrete logarithms for a public key with the form of y = 1 2

1 2
x xg g . Using essentially the same 

method for the original Schnorr signature scheme [31], we can prove the following lemma. 
Lemma 1. This Schnorr-like signature scheme is existentially unforgeable against adaptive 
chosen message attacks in random oracle model, under the Discrete Logarithm assumption.  
Definition 3 (promises of signatures [15])). Let func be some cryptographic function. The 
value σ = 〈s, ρ〉 is said to be a valid promise of signature ω = 〈k, ρ〉 on some message M if the 
following conditions hold: 

–Publicly Verifiable: given σ, everyone is convinced that if there exists k = 1func− (s) then 
ω = 〈k, ρ〉 is a valid ordinary signature.  

–Anonymity: without the knowledge of k = 1func− (s), σ is indistinguishable from random 
elements of the signature space. 

Given a value f = kg , we can obtain a promise of signature σ  = 〈 'f , c, s1〉 by picking random 

qr ∈Z  and computing 'f = 1/ xf = kz , c = H(M, 'rz f ), s1 = r cx+ . This promise of signature can 
be verified by checking c = H(M, 1 's cz g f− ), and the release of k can convert it to an ordinary 
Schnorr-like signature ω = 〈c, s1 + k 〉.  
Lemma 2. Let ω = 〈c, s〉 be a Schnorr-like signature. The value σ = 〈 'f , c, s1〉 is a valid 
promise of the signature ω, where c = H(M, 1 's cz g f− ) and 'f = kz  for some k. 
Proof. Given the value k = 'log z f , from c = H(M, 1 's cz g f− ) we have c = 1( , )s k cH M z g+ − . It 
implies that ω = 〈c, s1 + k〉 is a valid Schnorr-like signature. In addition, the verification of c = 
H(M, 1 's cz g f− ) requires only public information. Hence the publicly verifiable condition is 
satisfied. 

To prove that this promise of signature is anonymous, we first show that it could be 
simulated by using any public key: given any public key z, the simulator picks random r, 1s , 
computes c = H(M, 1r sz z ) and sets 'f = c rg z . We have a promise of signature σ = 〈 'f , c, s1〉 
where c = H(M, 1 's cz g f− ) holds.  

Next we prove that, in the random oracle model and under the DDH assumption, this 
simulated promise of signature is indistinguishable from an honestly-generated promise of 
signature.  



Given a DDH instance 〈g, 1ag , 2ag , 3ag  〉, we set f = 1ag , z = 2ag , 'f = 3ag . Then we pick 
random c, 1s , set c = H(M, 1 's cz g f− ) and return the simulated promise of signature σ = 〈 'f , c, 
s1〉. If a1a2 = a3, we have k = a1, x = 21/ a , 'f = 1az  and r =s1 − cx, thus σ is an honestly-generated 
promise of signature. Otherwise, σ is a simulated promise of signature. If there exists an 
algorithm can distinguish an honestly-generated promise of signature from a simulated 
promise of signature with non-negligible advantage, clearly it could be used to solve the DDH 
problem. 

3. Formal Definitions of ABCS 
In this section, we presents the formal definition of ABCS and a concrete protocol to carry out 
this signature scheme. We also present the security model for ABCS by adapting the 
concurrent signatures model to the attribute-based setting. 

3.1 Attribute-based concurrent signatures 
Definition 4 (ABCS): An attribute-based concurrent signature scheme among an authority 
and a set of users U = {1, …, n} is a signature scheme consisted of following algorithms.  
–Setup(1λ). On input security parameter 1λ, this algorithm defines the keystone space K, the 
keystone fix space F and a universe of attribute Att. It also runs the algorithm BuildCTree(Att) 
to build a central access tree. Finally, it outputs a master secret key MSK for the authority and 
some public parameters PK. 
–KeyGen(i, atti, MSK, PK). This algorithm takes as input a user index i∈U, an attribute set 
atti ⊆ Att possessed by the user, MSK and PK, outputs a public/secret key pair 〈 iupk , iusk 〉. 
–KfGen(k). This algorithm takes as input a keystone k ∈K , outputs a keystone fix f ∈ F . 
–KfTran( f , iusk ). This algorithm takes as input a keystone fix f ∈ F  and a secret key iusk , 
outputs a new keystone fix 

if ∈ F . 

–KfVer(k, if , iupk ).Takes as input a keystone k∈K, a public key iupk  and a keystone fix 
if ∈F 

output by KfTran, this algorithm outputs accept if 
if  is valid or reject otherwise. 

–Isign( iupk , iusk , Ti, PK, Mi,). This algorithm takes as input a public/secret key pair, an access 
tree Ti, PK and a message Mi, outputs a promise of initial signature σi = 〈 f , ρi〉 and a keystone 
k∈K where f = KfGen(k). 

–IVerify(σi, iupk , Ti, PK, Mi). This algorithm takes as input a promise of initial signature σi on 
a message Mi, a public key iupk , an access tree Ti and PK, outputs accept if σi is valid or reject 
otherwise. 
–Msign( f , jupk , jusk , Tj, PK, Mj). This algorithm takes as input a keystone fix f , a 
public/secret key pair, an access tree Tj, PK and a message Mj, outputs a promise of matching 
signature σj = 〈 jf , sj, ρj〉 where 

jf = KfTran( f , jusk ). 

–MVerify(σj, jupk , Tj, PK, Mj). This algorithm takes as input a promise of matching signature 
σj on a message Mj, a public key jupk , an access tree Tj and PK, outputs accept if σj is valid or 
reject otherwise. 



–Verify(k, σi, iupk , Ti, PK, Mi). This algorithm takes as input a keystone k, a promise of 
signature σi = 〈 f , ρi〉 or 〈 if , si, ρi〉 on a message Mi, a public key 

iupk , an access tree Ti and PK. 
Depending on the type of σi, it outputs accept if either of the following two cases hold: 

(1) If σi = 〈 f , ρi〉, f = KfGen(k) ∧ IVerify(σi, iupk , Ti, PK, Mi) = accept,  or 

(2) If σi = 〈 if , si, ρi〉, KfVer(k, if , iupk ) = accept ∧ MVerify(σi, iupk , Ti, PK, Mi) = accept. 

3.2 A Signature Exchange Protocol 
Given an attribute-based concurrent signature scheme, we define a signature exchange 
protocol between an initial signer Alice and a matching signer Bob. Before the exchange phase, 
The authority runs Setup(1λ) to establish the system and a central tree CT. It also runs 
KeyGen to generate public/secret key pairs for Alice and Bob, respectively. Then the protocol 
works as follows: 

(1) Alice and Bob select attribute sets φB and φA that the opposite side should satisfy. Then 
they run the algorithm SimplifyCTree(CT, φB), SimplifyCTree(CT, φA), respectively, and 
output access trees TB and TA. 

(2) Alice produces a promise of initial signature σA = 〈 f , ρA〉 = Isign( Aupk , Ausk , AT , PK, 
MA) on a message MA and a keystone k such that f = KfGen(k). Alice sends σA to Bob. 

(3) Bob validates σA by checking IVerify(σA, Aupk , AT , PK, MA) = accept. If not, Bob aborts 
the protocol. Otherwise, Bob produces a promise of matching signature σB = Msign( f , 

Bupk , Busk , BT , PK, MB) on a message MB and sends it to Alice. 

(4) Upon receiving σB = 〈 Bf , sB, ρB 〉 from Bob, Alice checks KfVer(k, Bf , Bupk ) = accept 
and MVerify(σB, Bupk , BT , PK, MB) = accept. If so, Alice forwards the keystone k to Bob.  

(5) Using the keystone k, Alice and Bob convert σB and σA to ordinary signatures as ωA = 〈 k, 
ρA〉, ωB = 〈 sB + k, ρB 〉. 

3.3 Security Model 
Unforgeability, anonymity and fairness are three security properties that our ABCS scheme 
should satisfy. The unforgeability states that an adversary, without the knowledge of a signer’s 
secret key, can not provide a keystone and a promise of signature, such that it can be converted 
to an ordinary signature for this signer. Formally, it is defined in the following game between 
an adversary A and a challenger C. 
–Setup. C runs Setup(1λ) to generate the public parameters PK and the master secret key MSK. 
C sends PK to A.  
–Query. A can adaptively make following types of queries to C: 

(1) PubkeyGen. A requests the public key 
iupk  for a user index i∈U. 

(2) SecKeyGen. A requests the secret key pair 
iusk  for a public key 

iupk  and an attribute set 
atti. 

(3) BuildTree. A requests an access tree Ti on an attribute set φi. 
(4) Isign. A requests a promise of initial signature by inputting a user index i, an access tree 



Ti and a message Mi. 
(5) Msign. A requests a promise of matching signature by inputting a user index i, an access 

tree Ti, a message Mj and a keystone fix f. 
(5) KsReveal. A requests the keystone k ∈K  for a keystone fix f ∈ F  which is an output of 

previous Isign queries. 
–Output. A outputs a keystone k  and a promise of signature σi = 〈 f , ρi〉 or 〈 if , si, ρi〉 on a 
message Mi, such that Verify(k, σi, iupk , Ti, PK, Mi) = accept. A  succeeds if all of following 
conditions hold: 

(1) No SecKeyGen query has made on the public key 
iupk . 

(2) No Isign query on 〈i, Ti, Mi〉 or Msign query on 〈 f , i, Ti, Mi 〉 has made. 
(3) No KsReveal query has made on f . 

Definition 5 (Unforgeability). An attribute-based concurrent signature scheme is 
existentially unforgeable against adaptive chosen message attacks if the success probability of 
any PPT adversary in the above game is negligible. 

The anonymity states that, without the knowledge of the keystone, an adversary can not 
determine the identity of the signer from a promise of signature. Formally, it is defined in the 
following game between an adversary A and a challenger C. 
–Setup. It is the same as the unforgeability game. 
–Query Phase 1. It is the same as the Query phase in the unforgeability game. 
–Challenge. A provides two indices 

0i , 1i , an access tree Ti and a message Mi such that both 0i  
and 1i  have secret keys satisfying Ti. Since there are two types of promises of signatures, we 
consider following two cases. 

(1) C returns a promise of initial signature 
biσ = Isign( biupk , biusk , Ti, PK, Mi) for a random b 

∈{0, 1}. 
(2) A also provides a keystone fix f, with the restriction that f should be an output of 

previous Isign queries and no KsReveal query has made on it. C returns a promise of matching 
signature 

biσ = Msign( f , biupk , biusk , Ti, PK, Mi) for a random b ∈{0, 1}. 
–Query Phase 2. It is the same as Query Phase 1 except that no KsReveal query has made on 
f. 
–Output. Finally, A outputs a guess 'b  of b. A wins the game if 'b = b. 

Definition 6 (Anonymity). An attribute-based concurrent signature scheme is anonymous if 
the advantage of any PPT adversary A in the above game is negligible, where the advantage of 
A is defined as Pr[ ' ] 1/ 2b b= − . 

The fairness states that, given an initial signer A and a matching signer B, B can not provide 
a keystone k and a promise of initial signature such that it can be converted to an ordinary 
signature for A, or A can not release a keystone k such that the promise of matching signature is 
converted to an ordinary signature for B while the promise of initial signature still keeps 
anonymous. Formally, it is defined in the following game between an adversary A and a 
challenger C. 



–Setup. It is the same as the unforgeability game. 
–Query. It is the same as the Query phase in the unforgeability game. 
–Output. A outputs a keystone k and a promise of signature σi such that they are accepted by 
Verify and no SecKeyGen query has made on 

iupk . A wins the game if either of following two 
conditions holds:  

(1) σi = 〈 f , ρi〉, and no KsReveal Query has made on f  or, 
(2) σi = 〈 if , si, ρi〉, and C also outputs a promise of signature σj = 〈 f , ρj〉 such that it is 

accepted by IVerify and 
if = KfTran( f , jusk ) but σj and k are rejected by Verify. 

Definition 3. An attribute-based concurrent signature scheme is fair if the success probability 
of any PPT adversary in the above game is negligible.  

4. Construction and Security Proofs 

4.1 Construction 
We present our construction of ABCS as follows.  
– Setup(1λ).  The algorithm performs the following steps: 

(1) Generate a bilinear group ( 1G , 2G ) of prime order p, with a computable isomorphism ψ: 

2G → 1G . Select a random generator 
2g  in 

2G , and set 
1g = ψ(g2). Select random 

1,u v G∈  and a 
hash function *:{0, 1}H  → *pZ . Define the keystone space and the keystone fix space as K = *pZ , 
F = 1G . 

(2) Define a universe of attributes Att = {1,…, |Att|}. Run BuildCTree(Att) to obtain the 
central access tree and secret values { }l l Attt ∈ , { }l l Dumd ∈ , where Dum is the set of dummy nodes. 

(3) Compute 2
ltg  and lv = ltv  for each attribute l Att∈ . Compute 2

ldg  for each dummy node 

l Dum∈ . 
(4) Select random *pγ ∈Z  and output MSK = 〈 γ , 1t ,…, | |Attt 〉. 

(5) Output PK = 〈 1G , 2G , 1g , 2g , w = 2gγ , u , v , 1
2
tg ,..., | |

2
Atttg , 1v ,..., | |Attv , 1

2
dg ,..., | |

2
Dumdg 〉. 

–KeyGen(i, atti, MSK, PK). The algorithm picks random *i px ∈Z , computes 
iA = 1/( )

1
ixg γ + , 

iy = 1
ixg , iz = 1/

1
ixg and ,i lT = lt

iA  for each attribute 
il att∈ . It outputs 

iupk = 〈 iy , iz 〉, iusk = 〈 iA , ix , 
,1iT ,…, ,| |ii attT 〉. 

–KfGen(k). The algorithm outputs f = 1
kg . 

–KfTran( f , iusk ). The algorithm outputs if = 1/ ixf . 

–KfVer(k, if , iupk ). The algorithm outputs accept if 
if = k

iz . 
–Isign( iupk , iusk ,Ti, PK, Mi). The algorithm performs the following steps: 

(1) Let φi be the attribute set in Ti.  Compute l  for each il φ∈  and set  B = 2( )l l
i

t
l gφ∈∏ . 

(2) Pick random *, pα β ∈Z  and encrypt 
iA  and 

,i lT  as:  
C1 = uα , C2 = iA vα , C3 = 2g β , C4 = Bβ , CTl = ,( )i l lT vα β , il φ∈ . 



(3) Set δ = ix α  and compute 
1{( , , , ) : ix

i iSPK x  y gα β δ = 2 2 1 2

2 2

ˆ ˆ( , ) ( , )
ˆ ˆ ˆ( , ) ( , ) ( , )

xie C g e g g
e v g e v w e C wδ α∧ = 3 2C g β∧ =  

4C Bβ∧ = 2 3

2 4 4

ˆ ˆ( , ) ( , )

ˆ ˆ( , ) ( , ) }( )
l l

l ll li i
e CT  g e v  C

ie C  C e v  C M
α

φ φ
α

∈ ∈∏ ∏∧ = . Concretely, it picks random 
ir , rα , rβ , rδ *p∈Z , and 

computes: 
1R = 1

irg , 2R = ru α , 3R = 1
ir rC u δ− , 4R = 2 2 2ˆ ˆ ˆ( , ) ( , ) ( , )ir r re C g e v w e v gα δ− −  

5R = 2
rg β , 6R = rB β , 7R = 3 4ˆ ˆ( ( , ) / ( , ))l

i
r

l le v C e v C αφ∈∏ . 
c = H( iM , iupk , 1C , 2C , 3C , 4C , 1CT ,…, | |iCTφ , 1R ,..., 7R ). 
is = ( )i ir cx+ , sα = ( )r cα α+ , sβ = ( )r cβ β+ , sδ = ( )r cδ δ+ . 

 f = KfGen( is ) = 1
isg . 

(4) Output k = is , σi = 〈 f , Ti, iupk , C1, C2, C3, C4, 1CT ,..., | |iCTφ , c, sα , sβ , sδ , 1
isC , 2

isC 〉. 

–IVerify(σi, iupk , Ti, PK, Mi). This algorithm performs the following steps:  
(1) Compute B = 2( )l l

i

t
l gφ∈∏ from Ti. 

(2) Compute: 
1R = c

ify− , 2R = 1
csu Cα − , 3R = 1

is sC u δ−               (1−3) 

4R = 2 2 2 1 22ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( ( , ) / ( , ))is s s ce C g e v w e v g e C w e g gα δ− −     (4) 

5R = 2 3
s cg Cβ − , 6R = 4

csB Cβ −                 (5−6) 

7R = 3 4 2 4 2ˆ ˆ ˆ ˆ( ( , ) / ( , )) ( ( , ) / ( , ))l l
i i

s c
l ll le v C e v C e C C e CT gαφ φ∈ ∈∏ ∏    (7) 

(3) Output accept if c = H( iM , iupk , 1C , 2C , 3C , 4C , 1CT ,…, | |iCTφ , 1R ,…, 7R ). 
–Msign( f , jupk , jusk , Tj, PK, Mj). This algorithm performs the following steps:  

(1) Compute B = 2( )l l
j

t
l gφ∈∏ , where φj is the attribute set in Tj. 

(2) Pick random *, pα β ∈Z  and encrypt 
jA  and 

,j lT  as:  
C1 = uα , C2 = jA vα , C3 = 2g β , C4 = Bβ , CTl = ,( )j l lT vα β , jl φ∈ . 

(3) Compute 
jf = KfTran( f , jusk ) = 1/ jxf . 

(4) Set δ = jx α  and compute 1/
1{( , , , ) : jx

j jSPK x  z gα β δ = 2 2 1 2

2 2

ˆ ˆ( , ) ( , )
ˆ ˆ ˆ( , ) ( , ) ( , )

x je C g e g g
e v g e v w e C wδ α∧ = 3 2C g β∧ =  

4C Bβ∧ =  
2 3

2 4 4

ˆ ˆ( , ) ( , )

ˆ ˆ( , ) ( , ) }
l l

l ll lj j
e CT  g e v  C

e C  C e v  C

α
φ φ

α

∈ ∈∏ ∏
∧ = (Mj). To do so, it picks random jr , rα , rβ , rδ *p∈Z , and 

computes:  
1R = jr

jjz f , 2R = ru α , 3R = 1
jr rC u δ− , 4R = 2 2 2ˆ ˆ ˆ( , ) ( , ) ( , )jr r re C g e v w e v gα δ− −  

5R = 2
rg β , 6R = rB β , 7R = 3 4ˆ ˆ( ( , ) / ( , ))l

j
r

l le v C e v C αφ∈∏ . 
c = H( jM , jupk , 1C , 2C , 3C , 4C , 1CT ,…, | |jCTφ , 1R ,…, 7R ). 

js = ( )j jr cx+ , sα = ( )r cα α+ , sβ = ( )r cβ β+ , sδ = ( )r cδ δ+ . 
(5) Output σj = 〈 jf , js , Tj, jupk , C1, C2, C3, C4, 1CT ,..., | |jCTφ , c, sα , sβ , sδ 〉. 

–MVerify(σj, jupk ,Tj, PK, Mj). This algorithm performs the following steps:  

(1) Compute B = 2( )l l
j

t
l gφ∈∏ from Tj. 

(2) Compute: 
1R = 1

js c
jjz g f− , 2R = 1

csu Cα − , 3R = 1
js sC u δ−             (8−10) 

4R = 2 2 2 2 1 2ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( ( , ) / ( , ))js s s ce C g e v w e v g e C w e g gα δ− −               (11) 



5R = 2 3
s cg Cβ − , 6R = 4

csB Cβ −             (12−13) 

7R = 3 4 2 4 2ˆ ˆ ˆ ˆ( ( , ) / ( , )) ( ( , ) / ( , ))l l
j j

s c
l ll le v C e v C e C C e CT gαφ φ∈ ∈∏ ∏              (14) 

(3) Output accept if c = H(Mj, jupk , 1C , 2C , 3C , 4C , 1CT ,…, | |jCTφ , 1R ,…, 7R ). 

–Verify(k, σi, iupk , Ti, PK, M). Given a keystone k and a promise of initial signature σi (or a 
promise of matching signature σi), the algorithm outputs accept if IVerify(σi, iupk , Ti, PK, Mi) 
= accept and f = KfGen(k) (or MVerify(σi, iupk , Ti, PK, Mi) = accept and KfVer(k, jf , jupk ) = 
accept). 

4.2 Unforgeability 

Theorem 1 (Unforgeability). Suppose there exists an adversary A that can break the 
unforgeability of our ABCS scheme with a non-negligible probability ε. Then, in the random 
oracle model, we can build an algorithm B that has advantage at least 2( / 1/ ) / (16 )Hn q qε −  in 
breaking the q-SDH assumption, where qH is the number of hash function queries made by A. 
Proof. We first consider the case where σi is a promise of initial signature. We show how to 
build the algorithm B as follows. 

–Setup. Given a q-SDH instance, B can obtain a tuple of ( 1g , 2g ,w = 2gγ ) and a list of 1q −  

SDH pairs 〈 iA , ix 〉 where 
iA = 1/( )

1
ixg γ + . We will instantiate q as 1n +  or n for different types of 

forgeries. In the case where q = n, B obtains an additional pair by picking random 〈 *iA , *ix 〉 
∈ *1 pG ×Z  for a random * {1,..., }i n∈ . Then B setups the system in the same way as the algorithm 
Setup(1λ), except that it implicitly sets γ as the part of MSK. Finally, B sends PK to A. 

–PubkeyGen Queries. Given a user index i, B chooses the pair 〈 iA , ix 〉 from the list and 
returns iupk  = 〈 iy = 1

ixg , iz = 1

1
ixg − 〉.  

–SecKeyGen Queries. Given a public key iupk  and an attribute set atti, B returns 
iusk = 〈 iA , ix , 

,1iT ,…, ,| |ii attT 〉 if i ≠ *i . Otherwise it aborts because 〈 *iA , *ix 〉 is not a valid SDH pair. 

–BuildTree. Given an attribute set φi, B returns Ti = SimplifyCTree(CT, φi). 

–Hash Queries. Given a tuple of 〈 iM , iupk , 1C −C4, 1CT − | |iCTφ , R1−R7〉, B returns a random 

*pc ∈Z and saves it in hash table incase the same query is requested again.  

–Isign Queries. If i ≠ *i , B returns a promise of signature 
iσ  by running Isign. Otherwise, it 

has to simulate 
*iσ . It first picks random *, pα β ∈Z  and sets C1 = uα , C2 = *iA vα , C3 = 2g β , C4 

= Bβ , CTj = 2( ) jtC β  for j = 1,…, *| |iφ . Then it picks random c, si, sα, sβ, sδ
 *p∈Z , sets f = 1

isg , and 
computes 1R − 7R  using equations (1) − (7). It is easy to see that 

*iσ  can be accepted by IVerify 
and it is indistinguishable from the output of Isign. We ignore the probability that the choice of 
c could cause a collision in the hash table since it is obviously negligible. 
–Msign Queries. If i ≠ *i , B returns a promise of signature 

iσ  by running Msign. Otherwise, B 
simulates *iσ  in the similar way as in the Isign queries except that it sets 

if = 1
*i

xf −  and 
computes 

1R − 7R  using equations (8) − (14). 



–KsReveal Queries. Given a keystone fix f  produced in Isign queries, B returns k = si. 

–Output. We divide A into two types of forgers. A type I forger outputs a forgery 
iσ  such that 

we can obtain a new SDH pairs 〈 iA , ix 〉 for i∉ {1,…, n}. A type II forger outputs a forgery 
iσ  

such that we can obtain a new SDH pairs 〈 iA , ix 〉 for i = *i . We treat them in different way.  
(1) For a type I forger, we instantiate q as 1n + . Since B has n valid SDH pairs, it can 

perfectly simulate the challenger C to interact with A, and thus we obtain a Type I forgery with 
probability ε. 

(2) For a type II forger, we instantiate q as n. Since B has only 1n −  valid SDH pairs, it will 
abort when a SecKeyGen query is made on *i . However, it will not abort for a Isign/Msign 
query on *i , since it can simulate a signature which is indistinguishable from the output of 
Isign/Msign. So we obtain a type II forgery with probability ε/n. 

Given a forged promise of initial signature σi and the corresponding keystone k = si, since 
they are accepted by Verify and 

1
isC , 2

isC  can be computed from C1, C2, k, we rewrite σi as 
〈Ti, iy , C1, C2, C3, C4, 1CT ,..., | |iCTφ , c, k, sα , sβ , sδ 〉. This signature has the right structure for the 
application of the fork lemma [31]. Hence, by rewinding B and A, we can obtain the second 
forged signature 'iσ = 〈Ti, iy , C1, C2, C3, C4, 1CT ,..., | |iCTφ , 'c , 'k , 'sα , 'sβ , 'sδ 〉 on the same message 
Mi, with probabilities at least  2( 1/ ) / (16 )Hq qε −  or 2( / 1/ ) / (16 )Hn q qε −  for type I and type II 
forgers, respectively. Let c = 'c c−  and similarly for k , sα , sβ

 and sδ . We show as 
follows how to extract a new SDH pair from these two forgeries. 

–Compute 
1R − 4R  and '1R − '4R  using equation (1) – (4).   

–Compute '1 1/R R  to obtain 
iy = 1

ixg  where ix = /k c .  
–Compute '2 2/R R  to obtain 

1C = uα  where α = /s cα . 
–Compute '3 3/R R  to obtain 1

kC = su δ . It implies sδ = kα  from 
1C = uα . 

–Compute '4 4/R R  to obtain 
1 2 2ˆ ˆ( ( , ) / ( , )) ce g g e C w = 2 2 2ˆ ˆ ˆ( , ) ( , ) ( , )k s se C g e v w e v gα δ− − . 

By substituting 
ix = /k c ,α = /s cα , sδ = kα  and rearranging the last equation, we 

have 
2 2ˆ( , )ixe C v wgα− = 1 2ˆ( , )e g g , so 〈 iA = 2C v α− , ix 〉 is a new SDH pair. 

For the case where σi is a promise of matching signature, we let B interact with A just in the 
same way and from the fork lemma we also obtain two forgeries σi, 'iσ  on same message Mi. 
Since they are produced from same input of f = 1

kg  and 
iz = 1/

1
ixg , we know 

if = 'if = k
iz . By 

rewriting them as σi = 〈 if , Ti, iz , C1, C2, C3, C4, 1CT ,..., | |iCTφ , c, is k+ , sα , sβ , sδ 〉, 'iσ = 〈 if , Ti, 
iz , C1, C2, C3, C4, 1CT ,..., | |iCTφ , 'c , 'is k+ , 'sα , 'sβ , 'sδ 〉, and performing similar computation, we 

can also extract a new SDH pair as 〈 iA = 2C v α− , ix = /is c 〉.  

4.3 Anonymity 
Theorem 2. Under the XDH assumption, our ABCS scheme is anonymous in the random 
oracle model.  
Proof. We prove the anonymity by contradiction. Suppose there exists an adversary A that 
wins the anonymity game with a non-negligible advantage ε, we can build an algorithm B that 



has advantage ε/2 in breaking the XDH assumption. We first consider the case where A is 
challenged by a promise of initial signature. 

Given a XDH instance 〈 1g , 1
1
ag , 2

1
ag , 3

1
ag 〉 4

1G∈ , B setups the system in the same way as the 
algorithm Setup(1λ), except that it picks random r, β ∈ *pZ  and sets u = 1

rg , v = 1
1( )a rg . Since B 

knows MSK, it can perfectly simulate the challenger C to interact with A. In the challenge 
phase, when receiving 〈 0i , 1i , Ti , Mi 〉 from A, B sets C1 = 2 11( )a rg , C2 = 3 11( )b

a riA g , C3 = 2g β , C4 
= Bβ , CTl = 2( ) ltC β . If a3 = a1a2, it is a valid ElGamal encryption of 

biA  with the implicit setting 
of α = a2 and v = 1au . Otherwise it is encryption of a random message. Then B completes the 
simulation by choosing random 

is , sα , sβ , sδ , c *p∈Z  and a random public key 
jy  for j ≠ 0i , j 

≠ 1i , computing 
1R − 7R  using equations (1) − (7) and computing 1

isC , 2
isC  from C1, C2 and 

is . 
Clearly, the resultant signature can be accepted by IVerify. 

Finally, A outputs its guess 'b . If 'b = b, B returns 1 indicating that a3 = a1a2. Otherwise it 
returns 0 indicating that a3 ≠ a1a2. It’s easy to see that the advantage of B in solving the XDH 
problem is Pr[ 'b b= | 3 1 2a a a= ] + Pr[ 'b b= | 3 1 2a a a≠ ] = (1/ 2 ) / 2 (1/ 2) / 2ε+ + = ε/2. 

In the case where A is challenged by a promise of matching signature, B produces the 
challenging signature in the similar way except that it picks two random values in 

1G  as the 
public key 

iz  and the keystone fix 
if , and computes 

1R − 7R using equations (8) − (14). From 
Lemma 2 we know that, from A’ point of view, the tuple 〈f, iz , if 〉 is indistinguishable from an 
honestly-generated one under the XDH assumption. Hence, by using the advantage of A, B 
can also obtain an advantage of ε/2 in breaking the XDH assumption. 

4.4 Fairness 
Theorem 3. Our ABCS scheme is fair in the random oracle model.  
Proof. Suppose our ABCS scheme is not fair, by the definition we know that one of two 
conditions must hold. We will reduce either of cases to a forgery of our ABCS, which 
contradicts to Theorem 1. 

Case 1. Since A has never made a KsReveal query on f , from the Discrete Logarithm 
assumption we know that A must generate the keystone k by itself.  Hence such k and σi lead to 
a forgery of our ABCS. 

Case 2. If A produces the signature σi = 〈 if , si, ρi〉 by itself, it immediately implies a forgery 
of our ABCS. If A receives σi from C, it means C must have obtained a promise of initial 
signature σj = 〈 f , ρj〉 from A. Since k and σi are accepted by Verify, we have 

if = k
iz = 1/

1( ) ik xg , 
and from the condition if = KfTran( f , jusk ) we further have f = 1

kg . Since σj = 〈 f , ρj〉 is 

accepted by IVerify, k and σj must be accepted by Verify, which contradicts the second condition 
in the definition.  

5. Conclusion 



We recognize the importance of attributes in the area of fair exchange of digital signatures, and 
introduce the notion of attribute-based concurrent signatures. As an an interesting extension of 
concurrent signatures in the attribute-based setting, this primitive allows two parties fairly 
exchange their signatures only if each of them can convince the opposite party that he/she 
possesses certain attributes satisfying a given signing policy.  We formalize this notion and 
present a construction which is secure in the random oracle model under the Strong 
Diffie-Hellman assumption and the eXternal Diffie-Hellman assumption. 

The security of our construction relies on the random oracle model. As denoted in [32], 
some popular cryptosystems previously proved secure in the random oracle model are actually 
provably insecure when the random oracle is instantiated by any real-world hashing functions. 
So it is desirable to construct an ABCS in the standard model for more reliable security. We 
left it as an interesting open problem. 
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Appendix A 

For an access tree, let index(x) be a function which returns the index of a node x.  For an interior node x, 
let lx be the number of its children and kx (0 < kx ≤ lx) be the threshold value on node x. We also use 
child(x) and dum(x) to denote the set of attribute children and dummy children of x, respectively. 
–BuildCTree(Att). Takes Att = {1,…, |Att|} as input, this algorithm build a central access tree by 
performing following steps. 

(1) Build a tree CT where each attribute in Att is a leaf node. 
(2) For an interior node x, add lx − kx dummy nodes as its children, and change its threshold value 

from kx to lx.  Let Dum be the set of all dummy nodes. 
(3) Assign a unique index for each node in this tree. 
(4) Assign a secret value *l pt ∈Z  for each attribute leaf l Att∈ , and a secret value *l pd ∈Z  for each 

dummy node l Dum∈ . 
(5) For an interior node x, select a polynomial qx of degree lx − 1 such that it passes though (index(l), 

lt ) for each attribute l ∈ child(x). Set ld = qx(index(l)) for each dummy node l ∈ dum(x). Finally, pick a 
random xr *p∈Z  and set qx(0) = xr . 

(6) Repeat the step (5) up to the root node, and output CT and { }l l Attt ∈ , { }l l Dumd ∈ . 

–SimplifyCTree(CT, φ). Take as input the central tree CT and an attribute set φ ∈ Att, this algorithm 
returns a simplified access tree by performing following steps.  

(1) Delete the set of attributes { }l Attl φ∈ −  from CT. 
(2) Delete an interior node x along with x’s descendants if it has children less than the threshold value 

lx . Let T be the resultant access tree and ϕ be the set of dummy nodes in T. 
(3) For all nodes x in of T except the root, compute Lx as follows, where cx is the set of leaves in the 

depth 2 subtree with x as leaf node.  

   Lx = \{ } ( )x

k
k c x index x k

−
∈ −∏  

 (4) For each leaf node l∈φ∪ϕ, compute l =
l nodenode path L∈∏ , where Pathl = {l, parent1, . . . , parentn 

= rootT} be the set of nodes that appears in the path from l to root node of T. 
(5) Output T and { }l l φ∈ , { }l l ϕ∈ . 

Given an access tree T, we can compute the value r of the root node as: 
    r = l l l ll lt dφ ϕ∈ ∈+∑ ∑  
 


