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Abstract
In this work we investigate the problem of achieving secure computation by combining stateless trusted

devices with public ledgers. We consider a hybrid paradigm in which a client-side device (such as a
co-processor or trusted enclave) performs secure computation, while interacting with a public ledger
via a possibly malicious host computer. We explore both the constructive and potentially destructive
implications of such systems. We first show that this combination allows for the construction of stateful
interactive functionalities (including general computation) even when the device has no persistent storage;
this allows us to build sophisticated applications using inexpensive trusted hardware or even pure
cryptographic obfuscation techniques. We further show how to use this paradigm to achieve censorship-
resistant communication with a network, even when network communications are mediated by a potentially
malicious host. Finally we describe a number of practical applications that can be achieved today. These
include the synchronization of private smart contracts; rate limited mandatory logging; strong encrypted
backups from weak passwords; enforcing fairness in multi-party computation; and destructive applications
such as autonomous ransomware, which allows for payments without an online party.

1 Introduction
Computer scientists have long sought to render computer systems immune to physical and logical attacks.
Unfortunately, the high complexity of today’s general-purpose computing systems has kept this goal far out
of reach.

As a substitute, security engineers have focused on providing trustworthy computing for a limited portion of
the computing base. This trend encompasses devices such as Hardware Security Modules, smart cards [Pou01],
and “secure element” co-processors that have become ubiquitous in mobile devices [App16]. In a more general
manifestation of this approach, manufacturers have begun to deploy Trusted Execution Environment (TEE)
technology in commercial processors. This technology provides hardware and software support for isolated
computing environments that run within a general-purpose computer. These environments (frequently called
“enclaves”) are exemplified by Intel’s Software Guard Extensions (SGX) and ARM TrustZone [sgx,ARM17].
They are designed to remain secure even under conditions of total operating system compromise, and interact
dynamically with the host system through a restricted interface.

While each of the examples above relies on hardware to achieve security, it is conceivable that future
trusted enclaves may be implemented using pure software virtualization, general-purpose hardware obfusca-
tion [GGH+13,DMMQN11,NFR+17], or even cryptographic program obfuscation [LMA+16]. While trusted
execution environments have many applications in computing, they (and all secure co-processors) have
fundamental limitations. Even if the trusted component (“enclave”) operates perfectly, it remains dependent
on a potentially malicious host computer for essential functions such as persistent data storage and network
communication. This creates opportunities for a malicious host to manipulate the enclave and the enclave’s
view of the world. For example, such a host may:

1. Tamper with network communications, censoring certain inputs or outputs and preventing the enclave
from communicating with the outside world.
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2. Tamper with stored non-volatile data, e.g. replaying old stored state to the enclave in order to reset
the state of a multi-step computation.

We stress that these attacks may have a catastrophic impact even if the enclave itself operates exactly as
designed. For example, many interactive cryptographic protocols are vulnerable to “reset attacks”, in which
an attacker rewinds or resets the state of the computation [BFGM01, tpm,Gil15]. Moreover, state reset
attacks are not merely a problem for cryptographic protocols: they also affect common applications such as
limited-attempt password checking [Sko16].

When implemented in hardware, TEE systems such as Intel SGX can mitigate reset attacks by deploying
a limited amount of tamper-resistant non-volatile storage.1 However, such countermeasures are not available
to environments written purely in software; those using fixed-key hardware obfuscation [NFR+17]; or in
instances where multiple copies of the same enclave run on different host machines, as they do in private
smart contract systems [Hyp17]. Moreover, even hardware support cannot solve the problem of enforcing a
secure channel to a public data network.

A hypothetical solution to these problems is to delegate statekeeping and network connectivity to a
remote, trusted server or small cluster of peers, as discussed in [MAK+17]. These could keep state on behalf
of the enclave and would act as conduit to the public network. However, rather than solving the problem,
this approach simply moves it to a different physical location, which is itself vulnerable to the same attacks.
Moreover, provisioning and maintaining the availability of an appropriate server can be a challenge for many
applications, including IoT deployments that frequently outlive the manufacturer.

Combining trusted enclaves with Ledgers. In this work we consider an alternative approach to ensuring
the statefulness and connectivity of trusted computing devices. Unlike the strawman proposals above, our
approach does not require the enclave to have secure internal non-volatile storage, nor does it require a
protocol-aware external server to keep state.

Instead, we propose an alternative model in which parties have access to an append-only public ledger, or
bulletin board with certain properties. Namely, upon publishing a string S on the ledger, a party receives
a copy of the resulting ledger – or a portion of it – as well as a proof (e.g., a signature) to establish that
the publication occurred. Any party, including a trusted device, can verify this proof to confirm that the
ledger data is authentic and was published on the real ledger. The main security requirement we require
from the ledger is that its contents cannot be modified or erased, nor can a proof of publish be (efficiently)
forged. This model has been previously investigated independently in other works, notably in the context of
fair multiparty computation [CGJ+17,GG17a].

Our use of this model is motivated by the fact that viable implementations of public ledgers are already
available in practice. For example, our approach can be realized from existing centralized systems such
as Google’s Certificate Transparency project which logs issued certificates [cer18], or from distributed
blockchain systems such as Bitcoin [Nak08] and Ethereum [eth] that use proof-of-work [GKW+16] or proof-of-
stake [KRDO16] to achieve consensus. Because the latter systems are distributed and have no single operator,
they mitigate the risk of compromise that is inherent in any centralized system.

Our approach. In this work we propose a new general protocol, which we refer to as an Enclave-Ledger
Interaction (ELI). This proposal divides any multi-step interactive computation into a protocol run between
three parties: a stateless client-side enclave that contains a secret key; a ledger that logs posted strings and
returns a proof of publication; and a (possibly adversarial) host application that facilitates all communications
between the two preceding parties. Users may provide inputs to the computation via the host, or through the
ledger itself. We illustrate our model in Figure 1.

We assume that the enclave is a trustworthy computing “device”, such as a tamper-resistant hardware
co-processor, TEE enclave or a cryptographically obfuscated circuit [NFR+17, LMA+16]. Most notably, we
do not require the enclave to store persistent state, nor do we require it to possess a secure random number

1SGX provides approximately 200 monotonic counters implemented in internal NVRAM, and they have a limited update rate.
Moreover, the literature affords many examples of attackers bypassing such mechanisms [SA03,Kau07, Sko16] using relatively
inexpensive physical and electronic attacks.
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Figure 1: Two example ELI deployments. In the basic scenario (a) a single enclave (with a hard-coded secret
key K) interacts with a ledger functionality via a (possibly adversarial) host application. Program inputs
are provided by a user via the host machine. In scenario (b) multiple copies of the same enclave running on
different host machines interact with the ledger (e.g., as in a private smart contract system [Hyp17]), which
allows them to synchronize a multi-step execution across many different machines without the need for direct
communication. Program inputs and outputs may be provided via the ledger.

generator; we only require that the enclave possesses a single secret key K that is not known to any other
party. We similarly require that the host application can publish strings to the ledger; access the ledger
contents; and receive proofs of publication.

As a first contribution, we show how this paradigm can facilitate secure state management for randomized
multi-step computations run by the enclave, even when the enclave has no persistent non-volatile storage or
access to trustworthy randomness. Building such a protocol is non-trivial, as it requires simultaneously that
the computation cannot be rewound or forked, even by an adversarial host application that controls all state
and interaction with the ledger.

As a second contribution, we show that the combination of enclave plus ledger can achieve properties that
may not be achievable even when the enclave uses stateful trusted hardware. In particular, we show how the
combination of enclave plus ledger allows us to condition program execution on the publication of messages to
the ledger, or the receipt of messages from third parties. For example, we can build enclaves that will not
execute unless various outputs (or inputs) have been posted to the ledger.

As a third contribution, we describe several practical applications that leverage this paradigm. These
include private smart contracts, limited-attempt password checking (which is known to be difficult to enforce
without persistent state [Sko16]), enforced file access logging, and new forms of encryption that ensure all
parties receive the plaintext, or that none do. As a practical matter, we demonstrate that on appropriate
ledger systems that support payments, execution can be conditioned on other actions, such as monetary
payments made to the ledger. In malicious hands, this raises the specter of autonomous ransomware that
operates verifiably and without any need for a C&C or secret distribution center.

Concurrent work. Independently and concurrently with early drafts of this work [KMG17], other research
efforts have considered the use of ledgers to achieve secure computation. Independently, Goyal and Goyal
proposed the use of blockchains for implementing one time programs [GG17b] using cryptographic obfuscation
techniques. While our work has a similar focus, we aim for a broader class of functionalities and a more
practical set of applications. A collaboration of the current authors and Choudhuri et al. [CGJ+17] use
ledgers to obtain fairness for MPC protocols, an application that is discussed in later sections of this work.
Finally, in unpublished work, Bowman et al. of Intel Corporation [Bow17] independently proposed some
of the ideas in this work, and have begun to implement them in production smart contract systems. We
believe Bowman’s effort strongly motivates the formal analysis we include in this work. There have also been
a number of attempts to combine trusted execution environments and public ledgers, but aimed at slightly
different goals [KMS+16, JKS16, ZCC+16].



1.1 Intuition
We now briefly present the intuition behind our construction. Recall that our goal is to securely execute a
multi-step interactive, probabilistic program P : I × S → S ×O, which we will define as having the following
interface:

P (Ii,Si; r̄i)→ (Oi,Si+1)

At each step of the program execution, the program takes a user input Ii, an (optional) state Si from the
previous execution step, along with some random coins r̄i. It produces an output Oi as well as an updated
state Si+1 for subsequent steps. (Looking forward, we will add public ledger inputs and outputs to this
interface as well, but we now omit these for purposes of exposition.) For this initial exposition, we will assume
a simple ledger that, subsequent to each publication, returns the full ledger contents L along with a proof of
publication σ. (In later sections we will discuss improvements that make this Ledger response succinct.)

The initial challenge in our setting is to execute this multi-step computation securely within an enclave
that has only a single secret key K and no ability to persistently record state or communicate directly with
the ledger. As illustrated in Figure 1 we assume that program inputs come from the host or the ledger.

We now discuss several candidate approaches, beginning with some of the ideas that are obviously insecure,
and proceeding to a first version of our main construction.

Attempt #1: Encrypt program state. An obvious first step is for the enclave to simply encrypt each
output state using its internal secret key, and to send the resulting ciphertext to the host for persistent
storage. Assuming that we use a proper authenticated encryption scheme (and pad appropriately), this
approach should guard both the confidentiality and authenticity of state values even when they are held by a
malicious host.2

It is easy to see that while this prevents tampering with the contents of stored state, it does not prevent a
malicious host from replaying old state ciphertexts to the enclave along with new inputs. In practice, such an
attacker can rewind and fork execution of the program.

Attempt #2: Use the ledger to store state. A superficially appealing idea is to use the ledger itself to
store an encrypted copy of the program state. As we will show, this does not mitigate rewinding attacks.

For example, consider the following strawman protocol: after the enclave executes the program P on some
input, the enclave sends the resulting encrypted state to the ledger (via the host). The enclave can then
condition the next execution of P on receiving valid ledger contents L, as well as a proof-of-publication σ,
and then extracting the encrypted state from L.

Unfortunately this does nothing to solve the problem of adversarial replays. Because the enclave relies on
the host to communicate with the ledger, a malicious host can simply replay old versions of L (including the
associated proofs-of-publication) to the enclave, while specifying different program inputs. As before, this
allows the host to fork the execution of the program.

Attempt #3: Bind program inputs on the ledger. To address the replay problem, we require a
different approach. As in our first attempt, we will have the enclave send encrypted state to the host (and not
the ledger) for persistent storage. As a further modification, we will add to this encrypted state an iteration
counter i which identifies the next step of the program to be executed.

To execute the ith invocation of the program, the host first commits its next program input Ii to the
ledger. This can be done in plaintext, although for privacy we will use a secure commitment scheme. It
labels the resulting commitment C with a unique identifier CID that identifies the enclave, and sends the pair
(C,CID) to the ledger.

Following publication, the host can obtain a copy of the full ledger L as well as the proof-of-publication σ.
It sends all of the above values (including the commitment randomness R) to the enclave, along with the most
recent value of the encrypted state (or ε if this is the first step of the program). The enclave decrypts the
encrypted state internally to obtain the program state and counter (S, i).3 It verifies the following conditions:

2For the moment we will ignore the challenge of preventing re-use of nonces in the encryption scheme; these issues will need
to be addressed in our main construction, however.

3If no encrypted state is provided, then i is implicitly set to 0 and S = ε.



1. σ is a valid proof-of-publication for L.
2. The ledger L contains exactly i tuples (·,CID).
3. The most recent tuple embeds (C,CID).
4. C is a valid commitment to the input I using randomness R.

If all conditions are met, the enclave can now execute the program on state and input (S, I). Following
execution, it encrypts the new output state and updated counter (Si+1, i+1) and sends the resulting ciphertext
to the host for storage.

Remark. Like our previous attempts, the protocol described above does not prevent the host from replaying
old versions of L (along with the corresponding encrypted state). Indeed, such replays will still cause the
enclave to execute P and produce an output. Rather, our purpose is to prevent the host from replaying old
state with different inputs. By forcing the host to commit to its input on the ledger before L is obtained, we
prevent a malicious host from changing its program input during a replay, (hopefully) ensuring that the host
gains no new information from such attacks.

However, there remains a single vulnerability in the above construction that we must still address.

Attempt #4: Deriving randomness. While the protocol above prevents the attacker from changing the
inputs provided to the program, there still remains a vector by which the malicious host could fork program
execution. Specifically, even if the program input is fixed for a given execution step, the program execution
may fork if the random coins provided to P change between replays. This might prove catastrophic for certain
programs.4

To solve this problem, we make one final change to the construction of the enclave code. Specifically,
we require that at each invocation of P , the enclave will derive the random coins used by the program in a
deterministic manner. Fortunately, this can be done quite simply. For example, after verifying the checks
described above, the enclave computes per-execution random coins as r̄ ← PRFK(C‖i).5 This approach fixes
the random coins used at each computation step and effectively binds them to the ledger and the host’s
chosen input.

While the above construction provides an intuition for our ideas, our main construction includes a number of
additional features and optimizations. We discuss several of these below.

Extension #1: Adding public input and output. A goal of our project is to allow the program to
condition its execution on inputs and outputs drawn from (resp. sent to) the ledger. Fortunately, this task is
made easier due the fact that at each execution of the above protocol the host provides the enclave with a
complete and authenticated copy of L. This allows the enclave (and P ) to condition its operation on e.g.,
messages or public payment data found on the ledger.

To enforce public output, the program P can output a “public output string” as part of its output to
the host, and can record this string within its encrypted state. By structuring the enclave code (or P )
appropriately, the program can require the host to post this string to the ledger as a condition of further
program execution. Of course, this is not an absolute guarantee that the host will publish the output string.
That is, the enclave cannot force the host to post such messages. Rather, we achieve a best-possible guarantee
in this setting: the enclave can simply disallow further execution in the host does not comply with the
protocol.

Extension #2: Specifying the program. In the pedagogical presentation above, the program P is
assumed to be fixed within the enclave. As a final extension, we note that the enclave can be configured
to provide an environment for running arbitrary programs P , which can be provided as a separate input at
each call. Achieving this involves recording (a hash) of P within the encrypted state, although the actual
construction requires some additional checks to allow for a security proof. We include this capability in our
main construction.

4For example, many interactive identification and oblivious RAM protocols become insecure if the program can be rewound
and executed different randomness.

5In later sections of this paper we will consider a more robust approach that bases the random coins used at step i on all
previous steps in the computation. This prevents certain attacks that occur if the host can forge a small number of ledger proofs.



Extension #3: Reducing Ledger bandwidth. As discussed above, the pedagogical protocol above
requires the host and enclave to parse the entire ledger L on each execution step. This is obviously undesirable,
as it requires the Enclave to (potentially) parse large amounts of data at each execution step. Moreover, it
exposes the system to denial of service attacks in the event that an attacker can inject large amounts of
superfluous data onto the Ledger. In our main construction we show that these issues can be addressed if the
Ledger is given modest additional capabilities: namely (1) the ability to organize posted data into sequences
(or chains), where each posted string contains a unique pointer to the preceding post, and (2) the ability for
the Ledger to calculate a collision-resistant hash chain over these sequences. As we discuss in §2.2 and §5.2,
these capabilities are provided by many candidates Ledger systems such as public (and private) blockchain
networks.

Limitations of our pedagogical construction. The construction above is intended to provide an intuition, but
is not the final protocol we describe in this work. An astute reader will note that this pedagogical example
has many limitations, which must be addressed in order to derive a practical ELI protocol.

Finally, there exist subtle vulnerabilities in settings where an attacker can forge a small number of ledger
proofs, as may be the case in proof-of-work blockchains where unforgeability guarantees are essentially
economic in nature. Our main construction achieves these guarantees.

1.2 Applications
To motivate our techniques, we describe a number of practical applications that can be implemented using
the ELI paradigm, including both constructive and potentially destructive techniques.

Synchronizing private smart contracts. Smart contract systems [Eth17,Hyp17] comprise a set of
volunteer nodes that interact with a ledger to perform a multi-step interactive computation (a “contract”). In
these systems, each computing step is typically performed by a different node, while the remaining nodes
verify the correctness of resulting state transition as recorded on the ledger. Some production systems [Hyp17]
have recently proposed to use TEEs to execute private contracts, where individual nodes (with pre-positioned
shared secrets) perform the computation within an enclave, and output an attestation to the correctness of
the output. A key challenge in these systems is the need to synchronize state as the computation migrates
from node to node, and to ensure that each step correctly updates the correct ledger state. Motivated by
an independent effort of Bowman et al. [Bow17] we show that our ELI paradigm achieves the necessary
guarantees for security in this setting.

Limiting password guessing. Many cryptographic access control systems employ passwords to con-
trol access to encrypted filesystems [App16, Pro17] and cloud backup images (e.g., Apple’s iCloud Key-
chain [Krs16]). This creates a tension between the requirement to support easily memorable passwords
(such as device PINs) while simultaneously preventing attackers from simply guessing users’ relatively weak
passwords [Bon12,USB+15].6 One approach to addressing this is to incorporate tamper-resistant hardware
such as onboard co-processors [App16, Pro17,ARM17] and Hardware Security Modules [Krs16]. However,
these systems are expensive (particularly in the online backup case [Krs16]) and may fail catastrophically
when an attacker can rewind state.7 We show that using our paradigm we can safely enforce passcode guessing
limits even when using inexpensive hardware that cannot guarantee immutable state [Sko16].

Mandatory logging for local file access. In some corporate and enterprise settings, clients must publish
access logs for sensitive files. This requires that each file access be recorded by some online system. We
propose to use the ELI protocol to mandate logging of each file access before the necessary keys for an
encrypted file can be accessed by the user. In this setting, log entries may be public (i.e., visible to all parties
on the network) or they may be encrypted to a specific management authority.

6This is made more challenging due to the fact that manufacturers have begun to design systems that do not include a
trusted party – due to concerns that trusted escrow parties may be compelled to unlock devices [App17].

7See [Sko16] for an example of how such systems can be defeated when state is recorded in standard NAND hardware, rather
than full tamper-resistant hardware.



Fairness. Choudhuri et al. [CGJ+17] proposed the use of ledgers as a way to ensure fairness in multi-party
computation (MPC) protocols.8 Their technique is to encrypt the output of an MPC execution, and require
parties to post this ciphertext to a ledger before it can be decrypted. We first show that this technique can
be constructed from an ELI, and further generalize the technique to construct fair encryption, that ensures a
ciphertext can be decrypted if and only if it has been published on a ledger.

Autonomous ransomware. Ransomware, first formally examined in [YY96], is a class of malware that
encrypts a victim’s files, then demands a monetary ransom in exchange for decryption. Modern ransomware
platforms are tightly integrated with cryptocurrencies such as Bitcoin, which act as both the ransom currency
and a communication channel to the attacker [Sin16]. Once a system has been infected, users must transmit
an encrypted key package along with a ransom payment to the attacker, who responds with the necessary
decryption keys. The need to deliver secret keys is a fortunate weakness in the current ransomware paradigm,
as it is both costly and increases the probability that she will be traced by law enforcement [Goo13]. More
critically, this makes ransom payment a risky proposition for the victim, who cannot verify a priori that
paying the ransom will restore access to data.9 In this work we note a potentially destructive application of
the ELI paradigm: the creation of ransomware that operates autonomously – from infection to decryption –
with no need for remote parties to deliver secret keys. This ransomware employs local trusted hardware or
obfuscation to store a decryption key for a user’s data, and conditions decryption of a user’s software on
payments made on a public consensus network.

2 Definitions
Protocol Parties. A Enclave-Ledger Interaction is a protocol between three parties: the enclave function-
ality E , the ledger L, and a host application H. We now describe the operation of these components.

The ledger L. The ledger functionality provides a public append-only ledger for storing certain public
data. Our key requirement is that the ledger is capable of producing a publicly-verifiable authentication
tag σi over the entire ledger contents, or a portion of the ledger.

The enclave E. The trusted enclave models a cryptographic obfuscation system or a trusted hardware
co-processor configured with an internal secret key K. The enclave may contain the program P , or this
program may be provided to it by the host application. Each time the enclave is invoked by the host
application H, it calculates and returns data to the host.

The host application H. The host application is a (possibly adversarial) party that invokes both the
enclave and the ledger functionalities. The host determines the inputs to each round of computation –
perhaps after interacting with a user – and receives the outputs of the computation from the enclave.

2.1 The Program Model
Our goal in an ELI is to execute a multi-step interactive computation that runs on inputs that may be chosen
adaptively by an adversary. We define this program as a single function P : I × S ×R → O×P ×S that has
the following input/output interface:

P (Ii, Si; r̄i)→ (Oi,Pubi, Si+1). On input a user input Ii, the current program state Si, and random coins r̄i,
this algorithm produces a program output Oi, as well as an optional public broadcast message Pubi
and new state Si+1.

8This technique was in fact first proposed in an earlier public draft of this manuscript, but was developed more thoroughly
in [CGJ+17].

9Indeed an emerging class of pseudo-ransomware has exploited this flaw to extort money without actually providing the
ability to decrypt the locked files (in some cases unintentionally [Tre16b,Cim15,Tre16a]).



In our main construction, we will allow the host application to specify the program P that the enclave will
run. This is useful in settings such as smart contract execution, where a given enclave may execute multiple
distinct smart contract programs. As a result of this change, we will assume that P is passed as input to
each invocation of the enclave.

Maximum program state size and runtime We assume in this work that the runtime of each P can
be upper bounded by a polynomial function of the security parameter. We also require that for any program
P used in our system there exists an efficiently-computable function Max(·) such that Max(P ) indicates the
maximum length in bits of any output state Si produced by P , and that Max(P ) is polynomial in the security
parameter.

One-Time vs. Multi-Use Programs In this work we consider two different classes of program. While
all of our programs may involve multiple execution steps, one-time programs can be initiated only once by
a given enclave. Once such a program has begun its first step of execution, it can never be restarted. By
contrast, multi-use programs can be executed as many times as the user wishes, and different executions may
be interwoven. However each execution of the program is independent of the others, receives different random
coins and holds different state. In our model, an execution of a program will be uniquely identifier by a
session identifier, which we denote by CID. Thus, the main difference between a one-time and many-time
program is whether the enclave will permit the re-initiation of a given program P under a different identifier
CID.

We note that it is possible to convert any multi-time program to a one-time program by having the enclave
generate the value CID deterministically from its internal key K and the program P (e.g., by calculating
a pseudorandom function on these values), and then to enforce that each execution of the program P is
associated with the generated CID. This enforcement algorithm can be instantiated as a “meta-program” P ′
that takes as input a second program P and is executed using our unmodified ELI protocol.

While our pedagogical example in the introduction discussed one-time programs, in the remainder of this
work we will focus on multi-use programs, as these are generally sufficient for our proposed applications in §4.

2.2 Modeling the Ledger
The ledger models a public append-only bulletin board that allows parties to publish arbitrary strings. On
publishing a string S to the ledger, all parties obtain the published string (and perhaps the full ledger
contents) as well as a publicly-verifiable authentication tag to establish the string was indeed published. For
security, we require that the authentication tags follow a standard notion of unforgeability, which we will
discuss below.

In our pedagogical example earlier in this paper, we employed a naïve model of the ledger in which the
enclave obtained the entire ledger contents L along with a publicly verifiable “authentication tag” σ subsequent
to every post. However, relying on this form of ledger interaction can be quite bandwidth-intensive for the
parties involved, as the ledger may incorporate posts from many different users. In our main constructions
we will assume a ledger with some enhanced capabilities, including the ability to reference specific chains of
posts made as part of a related execution, and to compute a collision-resistant hash chain over the posted
strings. (Later in this section we will demonstrate that this interface can be constructed locally given access
to a naïve ledger that returns the full ledger contents. As such we are not truly adding new requirements.)

The Ledger Interface Our model will assume an ideal ledger that posts an arbitrary strings S as part
of specific a chain of posted values. For the purposes of our Ledger abstraction, we will require each post
to identify a chain identifier CID. While the host may generate many such identifiers (and thus create an
arbitrary number of distinct chains), in our abstraction will assume that other parties (e.g., other host
machines) will not be allowed to post under the same identifier. (The exact nature of the identifier CID
depends on the specific Ledger instantiation, which we discuss in detail in §5.2).



The advantage of our interface is that similar checks and hash calculations are natural properties to achieve
when using blockchain-based consensus systems to instantiate the ledger, since many consensus systems can
perform the necessary checks as part of their consensus logic. Indeed, we note that many real-world ledger
systems, including Bitcoin and Ethereum, provide these capabilities already, as we discuss in §5.2. By using
these implementations, we can significantly reduce the cost of deploying our system.

We now define our ledger abstraction, which has the following interface.10 Let HL be a collision-resistant
hash function:

• Ledger.Post(Data,CID)→ (post, σ).

When a party wishes to post a string Data onto the chain identified by CID, the ledger constructs a
data structure post by performing the following steps:

1. It finds the most recent postprev on the Ledger that is associated with CID (if one exists).
2. If postprev was found, it sets post.PrevHash← postprev.Hash.

Otherwise it sets post.PrevHash← (Root: CID), where this labeling uniquely identifies it as first
post associated with CID.

3. It sets post.Data← Data.
4. It sets post.Hash← HL(post.Data‖post.PrevHash).
5. It records (post,CID) on the public ledger.

The ledger computes an authentication tag σ over the entire structure post and returns (post,σ).

• Ledger.Verify(post, σ)→ {0, 1}.
The verify algorithm is a public algorithm that will return 1 only if the authenticator σ was authentically
generated by the ledger over that specific post. In general, this can be viewed as analogous to the
verification algorithm of a digital signature scheme.11

For some applications it may also be desirable for third parties to possess an interface to read data from
the ledger. We omit this interface for simpicity of exposition, although we stress that the ledger is public and
hence such a functionality is implicit.

Remark. We note that the functionality of the above ledger can be simulated locally by an enclave that
receives the full ledger contents L. Specifically, on receiving the full contents of a ledger L can construct our
abstraction by e.g., setting CID to be the public key of a digital signature scheme, and signing each message;
it can then scan the full ledger to compute Hashi−1 and Hashi locally.

Security of the Ledger. Informally, we require that it is difficult to construct a new pair (S, σ) such that
Ledger.Verify(S, σ) = 1 except as the result of a call to Ledger.Post, even after the adversary has received
many authenticator values on chosen strings. Intuitively we refer to this definition as SUF-AUTH. This
definition is analogous to the SUF-CMA definition used for signatures.12 We note that in our proofs we will
assume an oracle that produces authentication tags, optionally without actually posting strings to a real
ledger. For example, in a ledger based on signatures, our proofs might assume the existence of a signing
oracle that produces signatures on chosen messages.

Concrete realizations of the Ledger. In Section 5.2 we discuss several concrete realizations of this ledger
abstraction, using Certificate Transparency, Bitcoin-style networks, smart contract systems, and private
blockchains.

10We omit the ledger setup algorithm for this description, although many practical instantiations will include some form of
setup or key generation.

11We require that it is difficult to construct a pair (S, σ) such that Ledger.Verify(S, σ) = 1 except as the result of a call to
Ledger.Post. Intuitively we refer to this definition as SUF-AUTH. This definition is analogous to the SUF-CMA definition used for
signatures. Indeed, looking forward, these signatures will be one of the techniques used to construct the authentication tag.

12Indeed, in many practical instantiations of ledgers, these signatures will be one of the techniques used to construct the
authentication tag.



Setup(1λ) → (K, pp). This trusted setup algorithm is executed once to configure the enclave. On input a security
parameter λ, it samples a long-term secret K which is stored securely within the enclave, and the (non-secret)
parameters pp which are provided to the enclave and the host.
ExecuteApplication(pp, P ). This algorithm is run on the host. It proceeds in an infinite loop, invoking the ledger
operations and enclave operations. In each iteration of the loop, the user selects a step input, commits to it and
posts it to the ledger. It then sends that input and the Ledger’s output into the enclave to actually execute the
next step.
ExecuteEnclaveK,pp((P, i,Si, Ii, ri, σi, posti)) → (Si+1,Oi,Pubi). This algorithm is run by the enclave, which is
configured with K, pp. At the ith computation step it takes as input a program P , an encrypted previous state Si,
a program input Ii, commitment randomness ri, a ledger output posti and a ledger authentication tag σi. The
enclave invokes P and produces a public output Oi, as well as a new encrypted state Si+1 and a public output
Pubi.

Figure 2: Definition of an Enclave Ledger Interaction (ELI) scheme.

2.3 Enclave-Ledger Interaction
An ELI scheme consists of a tuple of possibly probabilistic algorithms (Setup,ExecuteEnclave,ExecuteApplication).
The interface for these algorithms is given in Figure 2.

2.4 Correctness and Security

Correctness. Correctness for an ELI scheme is defined in terms of the program P . Intuitively, at each
step of execution, an honest enclave (operating in combination with the an honest host and ledger) should
correctly evaluate the program P on the given inputs.

2.4.1 Simulation Security

We define security for a Enclave-Ledger interaction using a real/ideal-world definition. We formalize this
definition below.

Intuition. Our main definition of ELI security considers the resilience of the protocol against a malicious
host that controls the communication between an honest enclave and ledger, and can invoke each party on
chosen messages. This definition is simulation-based, and requires us to define the following two experiments.
In the first experiment, which we term the Real experiment, we consider an interaction where an adversarial
host user H interacts with an honest ledger and honest enclave to execute the ELI protocol. These interfaces
are provided to the host in the form of oracles that the host may call repeatedly.

In the Ideal experiment, we consider an adversarial ideal host Ĥ that interacts with a trusted functionality.
At each step of the experiment, this functionality takes as input a program, a program input, and a “session
ID” provided by Ĥ, and runs the program using real random coins and with the most recent program state it
has associated with this session ID. The trusted functionality stores the resulting state internally, records the
public outputs on a table available to all parties, and returns both outputs to the user. This ideal model
intuitively describes what we wish to accomplish from a secure multi-step interactive computing system.

Our security definition requires that for every p.p.t. adversarial real-world hosts H, there must exist
a p.p.t. ideal-world host Ĥ that does “as well” in the ideal experiment as the real host does in the real
experiment. More formally, we define this last notion via an indistinguishability-based definition: we require
that the output distributions of H and Ĥ are computationally indistinguishable between the two experiments.

What if the ledger is forgeable? In some of our proposed instantiations, the ledger authentication tags
are economically secure, rather than cryptographically secure. In this setting we must contemplate the
possibility that an attacker might be able to forge a small number of authentication tags, at a high cost.



Naturally such forgeries will result in a deviation from our ideal protocol. However, it is reasonable to consider
how security degrades in the face of these forgeries.

For example, it is easy to imagine some ELI protocol that operates securely when forgeries are infeasible,
but that becomes catastrophically insecure when the enclave is presented with a single forged authentication
tag. For example, a contrived ELI protocol might be constructed to reveal a share of the secret K with
each output, such that a single adversarial rewind allows the adversary to obtain K. This would clearly be
catastrophic for the security of an ELI! While we cannot prevent an attacker from obtaining some advantage
using forgeries, we wish to more clearly bound the attacker’s capability in this setting.

Our approach to this problem is to extend both the Real and Ideal experiments with an additional
capability. In the Real experiment, the adversary H is permitted to query a Forgery oracle that, on input a
string S, provides a valid pair (S, σ) but does not update the ledger. In the Ideal experiment we provide a
Fork oracle that allows the ideal adversary Ĥ to run a single step of the computation using an older state
(of their choosing). In each experiment, the adversaries are restricted to querying these respective oracles
a maximum of qforge times, where qforge is a parameter provided as input to the experiment. To model the
special case where the ledger is not forgeable, we can simply set qforge = 0.

Intuitively, this extended definition models the ability of an attacker to rewind a single step of the
computation (per forgery) but without giving this attacker the ability to catastrophically break the security
of the system, or even to run additional legitimate execution steps from this execution step. We stress that
this definition represents a form of best possible security in our model, when forgeries are allowed.

Formal definitions. We now formally describe the experiments and present our definition of security.

The Real experiment. The real-world experiment is parameterized by a security parameter λ, an adversarial
host H and a non-negative integer qforge. At the start of the experiment, compute (K, pp)← Setup(1λ) and
output pp to H. Subsequently, the adversary H is given access to three oracles: an enclave oracle; a ledger
oracle, and a forgery oracle. The adversary can make an unlimited number of calls to the first two oracles,
but is restricted to making at most qforge queries to the forgery oracle. The oracles operate as follows:

The Ledger Oracle. The ledger oracle honestly implements the ledger interface used in the real protocol
(see §2.2).

The Enclave Oracle. The enclave oracle is initialized with the secret K and parameters pp. Each time the
user executes this oracle on some input (P, i,Si, Ii, ri, σi, posti), the oracle runs ExecuteEnclaveK,pp(P, i,Si,
Ii, ri, σi, posti). It returns the resulting output to H.

The Forgery Oracle. This special oracle allows up to qforge queries by H. On input a string S, the forgery
oracle computes a valid ledger authenticator σ over S but does not place this data on the ledger. It
returns (S, σ).

At the conclusion of the experiment, the adversary produces an output. This output is the result of the
experiment.

The Ideal experiment. This experiment is parameterized by a security parameter λ, an ideal-world adversarial
host Ĥ and a non-negative integer qforge. The adversary is given access to two oracles: a Compute oracle and
a Fork oracle. The oracles share a single table that is initially empty, and records tuples of the following
structure:

(j, Pj , l ∈ {compute, fork},Sj ,CID)

For i = 1 to q, the adversary Ĥ calls the oracles as follows.

The Compute Oracle. On input (Pi, Ii,CID), the oracle first checks an internal table to find the most
recent entry labeled with compute and CID. If one is found, it obtains the tuple (j, Pj , compute, Sj ,CID)
where j has the highest value of all matching tuples in the table. If Pj 6= Pi it aborts. If no tuple is
found, it sets Sj ← ε. Now it samples the coins r̄i uniformly at random and computes:

(O,Pub,S′)← Pi(Ii,Sj ; r̄i)



The oracle stores (i, Pi, compute,S′,CID) in its internal table, places Pub on a list of “public outputs”
and returns (O,Pub) to the caller.

The Fork Oracle. This oracle may be called by Ĥ at most qforge times. It operates similarly to the
Compute oracle, except that it allows the caller execute the program on any any past state recorded
by either oracle. When Ĥ makes the ith query on input (Pi, Ii,CID, j), this oracle first looks up (j,CID)
in the table to obtain the tuple (j, Pj , l ∈ {compute, fork},Sj ,CID) in the Compute oracle’s internal
table. If no match is found, or if Pi 6= Pj it aborts. It now samples random coins r̄i and computes:

(O,Pub,S′)← Pi(Ii,Sj ; r̄i)

The oracle now stores (i, Pi, fork,S′,CID) in its internal table. It returns (Pub,O) to the caller.

At the conclusion of the experiment, the adversary Ĥ produces an output, which is the output of the
experiment.

With these considerations in mind, we now present our main security definition:

Definition 2.1 (Simulation security for ELI) An ELI scheme Π = (ExecuteApplication,ExecuteEnclave)
is simulation-secure if for every p.p.t. adversary H, sufficiently large λ, and non-negative qforge, there exists a
p.p.t. Ĥ such that the following holds:

Real(H, λ, qforge)
c
≈ Ideal(Ĥ, λ, qforge)

Discussion. The Forgery and Fork oracles in the experiments above have similar purposes. Each is designed
to mimic the degradation in security that occurs in the event of a ledger forgery. If qforge = 0, neither oracle
may ever be called; this allows us to model the case where the ledger operates perfectly. If qforge > 0 then
we wish our ELI protocol to minimize the damage caused by such forgeries. In the ideal world, we define
that damage as the ability to execute one additional computation on pre-existing state, without updating
the current state (or producing a public output). An important implication of this definition is that the
resulting output states produced by the Fork oracle may not be fed to the Compute oracle. This prevents
the attacker from spawning an entirely new execution branch from a single forgery.

2.4.2 Third Party Privacy

Our main security definition above considers the integrity of ELI computations in the face of an adversarial
host application. However, because an ELI ledger involves an interaction with a public ledger, this raises an
additional privacy concern: it is possible that a third party may try to recover sensitive, non-public program
input by observing the ledger. To this end we propose a second security definition that ensures this leakage is
limited only to the public information that such an eavesdropper will inevitably receive – namely, public
program outputs and the existence of transactions.

Intuitively, we capture this definition by requiring that for every set of (adaptively chosen) program
inputs given to an honest host and enclave, an adversary who sees the ledger output learns essentially “no
more” information than is revealed by the explicit public outputs of the program. In practice we address this
property via a second real/ideal world definition:

In the real-world experiment, the adversarial third-party takes on the role of an honest-but-curious ledger L.
It is provided with an oracle that allows it to request that the host run an instance of a chosen program
P on a given input and identity CID. The host then runs the normal ELI protocol using the ledger and
enclave to compute an output. The adversary receives all data posted to the ledger.



Algorithm 1: Setup

Data: Input: 1λ

Result: Secret K for the enclave and public commitment parameters pp

K
$← {0, 1}λ

pp← CSetup(1λ)
Output (K, pp)

Algorithm 2: ExecuteApplication

Data: Input: pp, P
// Set the initial counter to 0 and the initial state to ε
S0 ← ε
i← 0
Pub0 ← ε
// Loop and run the program
while true do

Obtain Ii from the user
if Ii = ⊥ then

Terminate

ri
$← {0, 1}`

Ci ← Commit(pp, (i, Ii,Si, P ); ri)
(σi, posti)← Ledger.Post ((Pubi, Ci))
(Si+1,Oi,Pubi)← ExecuteEnclave(P, i,Si, Ii, ri, σi, posti)
Output (Oi,Pubi) to the user
i← i+ 1

Figure 3: Setup and ExecuteApplication algorithms for our main construction.

In the ideal-world experiment, we assume a trusted party that receives the same inputs directly from the
adversary, and executes the program internally – producing only the public output (or ε if there is none).
Our security notion is captured as follows: we require that for all real-world adversaries L (playing the
real experiment), there must exist an ideal-world adversary L̂ (playing the ideal experiment) such that
the output distributions of L̂ and L are computationally indistinguishable.

We formalize this definition in Appendix A.

3 Our Construction
In this section we present a specific construction of an Enclave-Ledger Interaction scheme. Our construction
makes black box use of commitment schemes, authenticated symmetric encryption, collision-resistant hash
functions and pseudorandom functions.

Notation: In our constructions we define Verify(·) as a primitive that verifies a statement, and aborts the
program (with output ⊥) if the statement evaluates to false. Let (Pad,Unpad) be a padding algorithm that,
on input a program P , pads a series of inputs to the maximum length of the provided data.

Commitment schemes. Let Σcom = (CSetup,Commit) be a commitment scheme where CSetup generates
public parameters pp. The algorithm Commit(pp,M ; r) takes in the public parameters, a message M , along
with random coins r, and outputs a commitment C 6= ε which can be verified by re-computing the commitment
on the same message and coins.



Algorithm 3: ExecuteEnclave

Data: Input: (P, i,Si, Ii, ri, σi, posti)
Internal values: K, pp

Result: (Si+1,Oi,Pubi) or ⊥
// Verify and parse the provided inputs
Assert (Ledger.Verify(posti, σi))
Assert(posti.Hash = HL(posti.Data‖posti.PrevHash))
Parse (Pubi−1, Ci)← post.Data
Assert(Ci = Commit(pp, (i, Ii,Si, P ); ri))
// Compute the ith state encryption key using a PRF on posti.PrevHash
(ki, ·)← PRFK(posti.PrevHash)
if Si = ε then

// First execution step. Verify that the counter i = 0 and set the state to ε.
Assert(i = 0)
Si = ε

else
// Not the first execution step. Decrypt previous state.
(Si, HP )← Unpad(Decrypt(ki,Si))
// Ensure that decryption was successful, and check the public output, counter and

program
Assert((Si, HP ) 6= ⊥)
Assert(HP = H(P‖i‖Pubi−1))

// Compute new state encryption key and randomness
(ki+1, r̄i)← PRFK(posti.Hash)
// Run the program and abort if it fails
(Si+1,Pubi,Oi)← P (Si, Ii; r̄i)
Assert((Si+1,Pubi,Oi) 6= ⊥)
// Encrypt the resulting state, along with the hash of i+ 1, P and Pubi
M ← PadP (Si+1,H(P‖i+ 1‖Pubi))
Si+1 ← Encrypt(ki+1,M)
Output (Si+1,Pubi,Oi)

Figure 4: ExecuteEnclave algorithm for our main construction. The Assert(·) primitive terminates execution
and outputs ⊥ if the provided statement evaluates to false.

Deterministic authenticated encryption. We require a symmetric authenticated encryption scheme
consisting of the algorithms (Encrypt,Decrypt) where each accepts a key uniformly sampled from {0, 1}κ. It
is critical that both algorithms are deterministic. This does not require strong assumptions, as we will use
Encrypt at most once for any given key; hence standard AE modes can be used if they are configured with a
fixed nonce. For simplicity we further assume the specialized algorithm Encryptn will pad the plaintext to
length n bits prior to encrypting it, and that Decrypt removes this padding.

Pseudorandom Functions. Our construction uses a pseudorandom function family PRF : {0, 1}λ ×
{0, 1}∗ → {0, 1}2` that on input a key k and some string, outputs a 2`-bit pseudorandom string.

Collision-resistant hashing. Our schemes rely on two collision-resistant hash functions HL : {0, 1}∗ →
{0, 1}` and H : {0, 1}∗ → {0, 1}` where ` is polynomial in the scheme’s security parameter. For simplicity we
do not specify a key for these functions, and we will instead assume that any attack on the scheme implicitly
results in the extraction of a hash collision (see e.g., [Rog06]).



3.1 Main Construction
We now present our main construction for a Enclave-Ledger Interaction scheme and address its security.
Recall that an ELI consists of the two algorithms with the interface described in Figure 2. We present
pseudocode for each of these algorithms in Figures 3 and 4.

Discussion. The scheme we present in this section differs somewhat from the pedagogical scheme we discussed
in the introduction. Many of these differences address minor details that affect efficiency or simplify our
security analysis: for example we do not encrypt state directly using the fixed key K, but instead derive a
unique per-execution key k using a pseudorandom function (PRF). This simplifies our analysis by allowing us
to instantiate with a single-message authenticated encryption scheme (e.g., an AE scheme with a hard-coded
nonce) without concerns about how to deal with encrypting multiple messages on a single key.

A second modification from our pedagogical construction is that we evaluate this pseudorandom function
on the hash of the structure returned by the ledger. The intuition is that this data structure enforces a hash
chain over all previous transactions; as a result this ensures that all random coins and keys are themselves a
function of the full execution history of the program. This ensures that an attacker – even a powerful one
that can forge some ledger outputs – cannot use the state resulting from those forgeries to continue normal
execution via the real ledger, since the execution history on the real ledger will not contain these forgeries.

We remark again that this more powerful ledger abstraction does not truly represent a stronger assumption
when compared to our pedagogical construction, since the more powerful ledger can be “simulated” by enclave
itself, provided the enclave has access to the full contents of a simple ledger.

Security We now present our main security theorem.

Theorem 3.1 Assuming a secure commitment scheme, a secure authenticated encryption scheme (in the
sense of [Rog02]); that H and HL are collision resistant; PRF is pseudorandom; and that ledger authentication
tags are unforgeable,13 then the scheme Π = (Setup,ExecuteEnclave,ExecuteApplication) presented in Figures 3
and 4 satisfies Definition A.1.

We present a proof of Theorem 3.1 in Appendix B.

4 Applications
We now describe several applications that use Enclave-Ledger Interaction and present the relevant implemen-
tations for each. Each application employs the main construction we presented in §3 to implement a specific
functionality. Except where explicitly noted, these applications are implemented as many-time execution
programs: this means the host can re-launch the same program P many times, but each execution thread is
independent and threads do not share state.

4.1 Private Smart Contracts
Smart contract systems comprise a network of volunteer nodes that work together to execute multi-step
interactive programs called contracts. These systems, which are exemplified by Ethereum and the Hyperledger
platforms [eth,Hyp17] maintain a shared ledger that records both the previous and updated state of the
contract following each execution of a contract program. These platforms are designed for flexibility: they
are capable of executing many different contracts on a single network.

Smart contract systems come in two varieties: public contract networks (exemplified by Ethereum [eth]),
where all state and program code is known to the world; and private contract systems where some portion of
this data is held secret. In both settings the computation (and verification) is conducted by a set of nodes
who are not assumed to always be trustworthy. In the public setting (e.g., [eth]) a single node performs each
contract execution, and the remaining nodes simply verify the (deterministic) output of this calculation. This

13We discuss this property in Appendix 2.2.



approach does not work in the private setting, where some of the program inputs are unknown to the full
network.

Platforms such as Hyperledger Sawtooth [Int] have sought to address this concern by employing trusted
execution technology [Hyp17]. In these systems, contract code executes within a trusted enclave on a single
node, and the TEE system generate public attestation signatures proving the correctness of the resulting
output. The network then verifies the attestation to ensure that the execution was correct. A challenge
in these systems is to ensure that a smart contract remains synchronized, despite the fact that execution
migrates from one host to another between steps. A secondary challenge is to ensure that the enclave only
executes contract code on valid inputs from the ledger, and cannot be forced to run on arbitrary input or
perform additional steps by a malicious host.

Bowman et al. of Intel corporation [Bow17] independently proposed a solution reminiscent of an ELI for
securing contracts in this setting.14 (Figure 1 presents an illustration of this model.) This setting is also a
natural solution for our ELI system, given that the contract system – with many distinct enclave copies – can
be viewed as merely being a special case of our main construction.

To instantiate an ELI in this setting, we require the contract author to pre-position a key K within each
enclave.15 Encrypted state outputs can now be written to the ledger as a means to distribute them. Given
these modifications, each enclave can simply read the current state from the ledger in order to obtain the
most recent encrypted state and commitment to the next contract input (which may be transmitted by
users to the network).16 Other enclaves can verify the correctness of the resulting output state by either (1)
verifying an attestation signature, or (2) deterministically re-computing the new state and comparing it to
the encrypted state on the ledger.

4.2 Logging and Reporting
Several cryptographic access control systems require participants to actively log file access patterns to a
remote and immutable network location [Fou]. A popular approach to solving this problem in cryptographic
access control systems, leveraged by systems like Hadoop [Fou], is to assign a unique decryption key to each
file and to require that clients individually request each key from an online server, which in turn logs each
request. This approach requires a trusted online server that holds decryption keys and cannot be implemented
using a public ledger.

In place of a trusted server, we propose to use ELI to implement mandatory logging for protected files.
In this application, a local enclave is initialized (in the first step of a program) and stores (or generates) a
master key for some collection of files, e.g., a set of files stored on a device.17 The enclave then employs the
public output field of the ELI scheme to ensure that prior to each file access the user must post a statement
signaling that the file is to be accessed.18 The logging program is presented as Algorithm 4 and consists of
three phases. When the program is launched, the enclave generates a keypair for a public-key encryption
scheme (PKKeyGen,PKEnc,PKDec) and outputs the public key.19 Next the user provides a filename they
wish to decrypt, and the program encrypts this filename using a hard-coded public key for an auditor. When
the user posts this key to the ledger, the program decrypts the given file.

14At present the Bowman et al. solution is unpublished, but Bowman informs the authors that Intel is developing it internally
as a product. Intel has not performed formal analysis of their solution.

15This can be accomplished using a broadcast encryption scheme or peer-to-peer key sharing mechanism.
16We assume that the ledger is authenticated using signatures. Systems such as Hyperledger propose to use TEE enclaves to

construct the ledger as well as execute contracts; in these systems the ledger blocks are authenticated using digital signatures
that can be publicly verified.

17If the Enclave is implemented using cryptographic techniques such as FWE, a unique Enclave can be shipped along with the
files themselves. If the user employs a hardware token, the necessary key material can be delivered to the user’s Enclave when
the files are created or provisioned onto the user’s device.

18To provide confidentiality of file accesses, the enclave may encrypt the log entry under the public key of some auditing party.
19Here we require the encryption scheme to be CCA-secure.



Algorithm 4: File Access Logging Plogging
Data: Input: Ii ,Si; Constants: pk auditor

Parse (phase, sk , CT, filename)← Si
if Si = ε then // Generate master keypair

(pk , sk)← PKKeyGen(1λ)
Si+1 = (PUBLISH, sk , ·, ·)
(Pubi+1,Oi+1)← (ε, pk)

else if phase = PUBLISH then // Send filename
Parse filename ← Ii
CTauditor ← PKEnc(pk auditor, filename)
Si+1 ← (DECRYPT, sk , CT, Ii)
(Pubi+1,Oi+1)← (CT, post)

else // Decrypt a given file
Parse C ← Ii
(filename′,M)← PKDec(sk , C)
if filename = filename′ then

Si+1 = (PUBLISH, sk , ·, ·)
(Pubi+1‖Oi+1) = (ε‖M)

else
Abort and output ⊥.

output (Si+1,Pubi+1,Oi+1)

4.3 Limited-attempt Password Guessing
Device manufacturers have widely deployed end-to-end file encryption for devices such as mobile phones
and cloud backup data [App16,And]. These systems require users to manage their own secrets rather than
trusting them to the manufacturer.

Encryption requires high-entropy cryptographic keys, but users are prone to lose or forget high-entropy
passwords. To address this dilemma, manufacturers are turning to trusted hardware, including on-device
cryptographic co-processors [App16]. trusted enclaves [ARM17], and cloud-based HSMs [Las17,Krs16] for
backup data. A user authenticates with a relatively weak passcode such as a PIN and the hardware will
release a strong encryption key. To prevent passcode guessing attacks, this stateful hardware must throttle or
limit the number of login attempts.20

Enclave-Ledger Interaction provides an alternative mechanism for limiting the number of guessing attempts
on password-based encryption systems. A manufacterer can employ an inexpensive stateless hardware token
to host a simple enclave, with an internal (possible hard-wired) secret key K. In the initial step, the enclave
takes in a password uses the random coins to produce a master encryption key kenc that it outputs to the user.
The Enclave is constructed to release kenc only when it is given the proper passcode and the step counter
is below some limit. Note that if the host restarts the execution, this simply re-runs the setup step which
will generate a new key unrelated to the original. Rate limiting can be accomplished if the ledger has some
approximation of a clock, like number of blocks between login attempts in Bitcoin. In practice the decryption
process in such a system can be fairly time consuming if the ledger has significant lag. This system may be
useful for low frequency applications such as recovering encrypted backups or emergency password recovery.

20This approach led to the famous showdown between Apple and the FBI in the Spring of 2016. The device in question used a
4-character PIN, and was defeated in a laboratory using a state rewinding attack, and in practice using an estimated $1 million
software vulnerability [Pal15,Wea15].



Algorithm 5: Ransomware Pransomware
Data: Input: Ii ,Si;Randomness ri;
Parse (K,R, pk)← Si
if Si = ε then // Generate Key, Set Ransom

Parse (R, pk)← Ii
K ← KDF(ri)
output Si+1 ← (K,R, pk)

else // Release Key on Payment
Parse (t, σ)← Ii
if (BlockchainVerify(t, σ) = 1) then

if (t.amount > R and t.target = pk) then
output Oi = K

output Oi = ⊥

4.4 Paid Decryption and Ransomware
ELI can also be used to condition program execution on payments made on an appropriate payment ledger
such as Bitcoin or Ethereum. Because in these systems payment transactions are essentially just transactions
written to a public ledger, the program P can take as input a public payment transaction and condition
program execution on existence of this transaction. This feature enables pay-per-use software with no central
payment server.

Not all of the applications of this primitive are constructive. The ability to condition software execution on
payments may enable new types of destructive application such as ransomware [Zet16]. In current ransomware,
the centralized system that deliver keys represent a weak point in the ransomware ecosystem. Those systems
exposes ransomware operators to tracing [Tec16]. As a result, some operators have fled without delivering
key material, as in the famous WannaCry outbreak [Kan17].

In the remainder of this section we consider a potential destructive application of the ELI paradigm: the
development of autonomous ransomware that guarantees decryption without the need for online C&C. We
refer to this malware as autonomous because once an infection has occurred it requires no further interaction
with the malware operators, who can simply collect payments issued to a Bitcoin (or other cryptocurrency)
address.

In this application, the malware portion of the ransomware samples an encryption key K ∈ {0, 1}` and
installs this value along with the attackers public address within a Enclave. The Enclave will only release
this encryption key if it is fed a validating blockchain fragment containing a transaction paying sufficient
currency to the attacker’s address. Algorithm 5 presents a simple example of the functionality.

We note that the Enclave may be implemented using trusted execution technology that is becoming
available in commercial devices, e.g., an Intel SGX enclave, or an ARM TrustZone trustlet. Thus, autonomous
ransomware should be considered a threat today – and should be considered in the threat modeling of trusted
execution systems. Even if the methods employed for securing these trusted execution technologies are robust,
autonomous ransomware can be realized with software-only cryptographic obfuscation techniques, if such
technology becomes practical [LMA+16].

This application can be extended by allowing a ransomware instance to prove to a skeptical victim that it
contains the true decryption key without allowing the victim to regain all their files. The victim and the
ransomware can together select a random file on the disk to decrypt, showing the proper key is embedded.
Additionally, the number of such files that can be decrypted can be limited using similar methodology as in
Section 4.2.



4.5 Fair Encryption and MPC
In collaboration with the current authors [CGJ+17], Choudhuri et al. explore a similar model to ELI
to acheive fair multiparty computation without requiring an honest majority of parties. Fundemental to
acheiving their goal is constructing an encryption in which a verifiable public deloration acts as a decryption
key. They accomplish this goal in a theoretical result using Extractable Witness Encryption and reduce it to
prace using Intel SGX. This work represents a single specific application of the significantly more powerful
Enclave-Ledger Interaction.

We generalize this notion as Fair Encryption. Intuitively, this primitive ensures that if one authorized
decryptor can decrypt a ciphertext, then all authorized decryptors may do so as well. We accomplish this
by constructing an enclave that will decrypt a CCA2-secure ciphertext if and only if a valid ciphertext has
been placed on the public consensus network transcript by a Ledger. The details of constructing such an
encryption scheme can be found in [CGJ+17], but the applications of such a primative apply well beyond
multi-party computation. For instance consider a program that requires a broadcast channel. Because the
broadcast channel is mediated by a malicious user, an unflattering message may be blocked. A ciphertext
that can only be decrypted when it becomes public circumvents the tampering of the user.

5 Realizing the Enclave and Ledger
In this section we turn to the matter of instantiating the enclave and ledger components of a real ELI system.

5.1 Realizing the Enclave
Trusted cryptographic co-processors. The simplest approach to implement the enclave is using a secure
hardware or trusted execution environment such as Intel’s SGX [sgx] or ARM Trustzone [ARM17]. When
implemented using these platforms, our techniques can be used immediately for applications such as logging,
fair encryption and ransomware.

While these environments provide some degree of hardware-supported immutable statekeeping, this
support is surprisingly limited. For example, Intel SGX-enabled processors provide approximately 200
monotonic counters to be shared across all enclaves. On shared systems these counters could be maliciously
reserved by enclaves such that they are no longer available to new software. Finally, these counters do not
operate across enclaves operating on different machines, as in the smart contract setting.

Many simpler computing devices such as smart cards lack any secure means of keeping state. In our
model, even extremely lightweight ASICs and FPGAs could be used to implement the enclave for stateful
applications using our ELI constructions. Along these lines, Nayak et al. [NFR+17] recently showed how to
build trusted non-interactive Turing Machines from minimal stateless trusted hardware. Such techniques
open the way for the construction of arbitrary enclave functionalities on relatively inexpensive hardware.

Software-Only Options. A natural software-only equivalent of the enclave is to use pure-software tech-
niques such as virtualization, or cryptographic program obfuscation [BGI+01]. While software techniques
may be capable of hiding secrets from an adversarial user during execution, interactive multi-step obfuscated
functionalities are implicitly vulnerable to being run on old state. Unfortunately, there are many negative
results in the area of program obfuscation [BGI+01], and current primitives are not yet practical enough
for real-world use [LMA+16]. However, for specific functionalities this option may be feasible: for example,
Choudhuri et al. [CGJ+17] and Jager et al. [Jag15] describe protocols based on the related Witness Encryption
primitive. New developments in this area could make practical constructions feasible in the next several years.

5.2 Realizing the Ledger
There are many different systems that may be used to instantiate the ledger. In principle, any stateful
centralized server capable of producing SUF-CMA signatures can be used for this purpose. There are a number



properties we require of our ledgers: (1) the unforgeability of the authentication tags, (2) public verifiability
of authenticators, and (3) in our more efficient instantiations, the ability to compute and return transaction
hashes. We describe four potential realizations in detail: unstructured public ledgers such as Certificate
Transparency [cer18], proof of work blockchains like Bitcoin, smart contract systems like Ethereum, and
private blockchains.

Remark: Recall that in our setting, the Post algorithm is run by the host, and the Verify algorithm is executed
by the Enclave. We assume that an honest host can keep state locally, although the security of an ELI scheme
does not assume an honest host. In the presentation below, we modify the Ledger Post interface by adding
an additional argument aux. This argument contains additional state stored by the host. We note that this
does not change the functioning of the algorithm or the security of the system, but does require the host to
record and store this data.

Certificate Transparency A number of browsers have begun to mandate Certificate Transparency (CT)
proofs for TLS certificates [cer18]. In these systems, every CA-issued certificate is included in a public log,
which is published and maintained by a central authority such as Google. Every certificate in the log is
included as a leaf in a Merkle tree, and the signed root and associated membership proofs are distributed by
the log maintainer.

Provided that the log maintainer is trustworthy, this system forms a public append-only ledger with strong
cryptographic security. The inclusion of a certificate can be verified by any party who has the maintainer’s
public key, while the tree location can be viewed as a unique identifier of the posted certificate. Because
many certificate authorities support CT, the ability to programmatically submit certificate signing requests
allows us to use CT as a log for any arbitrary data that can be incorporated into an X.509 certificate.21 In
our presentation we implicitly assume that the Enclave can verify CT inclusion proofs from a specific log i.e.,
that it has been provisioned with a copy of the log maintainer’s public verification key.

A limitation of the CT realization is that, to implement our Ledger functionality of §2.2, we require
a way to ensure that the PrevHash field of each record truly does identify the previous entry in the log.
Unfortunately, the current instantiation of CT does not guarantee this; instead, the enclave must read the
entire certificate log to verify that no interceding entries exist. This makes CT less bandwidth-efficient than
the other realizations.

We can use Certificate Transparency as the ledger for an ELI construction as follows. We modify the Post
algorithm to take in an additional argument aux that contains metadata for use in posting. This data is
provided by the host.

• CT.Post(Data,CID, aux)→ (post, σ, aux′).

1. Parse CID as vk , where vk is the public key of an SUF-CMA signature scheme.
2. Parse aux as (sk , indexprev) where sk is the corresponding secret key for vk , and indexprev is the

index into the log of the most recent certificate posted under CID. If no previous index exists, set
indexprev ← ⊥.

3. Query the CT log to obtain the certificate Certprev located at index indexprev.
4. Generate a new X.509 certificate Cert embedding the public verification key vk , along with the

following custom X.509 fields:22

(a) Cert.Data← Data.
(b) Cert.indexprev ← indexprev.
(c) If indexprev 6= ⊥ then set Cert.PrevHash← HL(Certprev.Data‖Certprev.PrevHash).
(d) If indexprev = ⊥ then set Cert.PrevHash← Root : vk .

5. Sign the certificate using sk .
6. Post Cert to the CT ledger. Obtain the resulting log index index.

21This can be done at no cost and with no manual interaction using e.g., the free LetsEncrypt CA.
22In practice this data can be encoded in any fashion within the certificate, including as strings within standard fields.



7. Set post.Data← Cert.Data.
8. Set post.PrevHash← Cert.PrevHash.
9. Set post.Hash← HL(post.Data‖post.PrevHash).
10. Obtain all certificates (Cert1, . . . ,Cert`) representing the entire CT log, along with the cor-

responding inclusion proofs (σ̄1, . . . , σ̄`). Set σ ← (vk , index,Cert1, . . . ,Cert`, σ̄1, . . . , σ̄`). Set
aux′ = (sk , index).

Output (post, σ).

• CT.Verify(post, σ)→ {0, 1}.

1. Parse σ as (vk , index,Cert1, . . . ,Cert`, σ̄1, . . . , σ̄`).
2. Verify each inclusion proof σ̄1, . . . , σ̄` against the corresponding certificate in Cert1, . . . ,Cert`.

Abort and output 0 if any certificate fails to verify, or if the list contains any gaps (i.e., missing
certificates).

3. Scan the list Cert1, . . . ,Cert` and verify that there is exactly one index i where Certi.PrevHash =
Root : vk . If no such certificate exists, or if multiple matching certificates are found, abort and
output 0.

4. Beginning with the index i discovered above, repeat the following steps:
(a) Verify that Certi embeds the public key vk , and that it has a valid signature under vk . If

either condition is false, abort and output 0.
(b) Beginning with Certi, scan forward to find every index j > i where (1) Certj .indexprev = i and

(2) Certj embeds vk and (3) the certificate contains a signature that verifies using vk . If two
such certificates are found, abort and output 0.

(c) If no satisfying j is found, and i 6= index then abort and output 0.
(d) If no satisfying j is found, and i = index then exit this loop and continue with the next step.
(e) Verify that Certj .PrevHash = HL(Certi.Data‖Certi.PrevHash). If this check does not succeed,

abort and output 0.
(f) Set i← j and go back to step 4a.

5. Verify that Certindex.Data = post.Data.
6. Verify that Certindex.PrevHash = post.PrevHash.
7. Verify that post.Hash = HL(post.Data‖post.PrevHash).
8. If all the above checks pass, output 1.

Discussion. The construction above is similar to the pedagogical description given in the Introduction, with
some changes required to satisfy the Ledger interface given in 2.2. The main difference in this construction is
that the host signs each certificate with a signing key it generates, to ensure that only the host can submit
certificates as part of a chain. To facilitate this, the “chain identifier” CID is a set to be the verification key
for an SUF-CMA signature scheme and generated by the host. The enclave simply validates locally that only
one matching chain exists, that the chain does not contain forks, and that all hashes are correctly computed;
it can do this because it receives the full contents of the CT ledger.

Bitcoin and Proof-of-work Blockchains Public blockchains, embodied most prominently by Bitcoin,
are designed to facilitate distributed consensus as to the contents of a ledger. In these systems, new blocks
of transactions are added to the ledger each time a participant solves a costly proof of work (PoW), which
typically involves solving a hash puzzle over the block contents. These PoW solutions are publicly verifiable,
and can be used as a form of “economic” authentication tag over the block contents: that is, while these tags
can be forged, the financial cost of doing so is extremely high. Moreover, because blocks are computed in
sequence, a sub-chain of n blocks (which we refer to as a “fragment”) will include n chained proofs-of-work,
resulting in a linear increase in the cost of forging the first block in the fragment.

The remaining properties of our ledger are provided as follows: in Bitcoin, transactions are already uniquely
identified by their hash, and each transaction (by consensus rules) must identify a previous transaction



hashes as an input. Similarly, due to double spending protections in the consensus rules, there cannot be two
transactions that share a previous input. Finally, we can encode arbitrary data into the transaction using the
OP_RETURN script [opr18]. In this description, we will assume that the Bitcoin transaction

We define the interface as follows:

• Bitcoin.Post(Data,CID, aux)→ (post, σ, aux′).

1. Parse CID as the transaction identifier of a Bitcoin transaction. Parse aux as BTX′ and a bitcoin
secret key, where BTX′ is the most recent in the chain of transactions rooted at transaction ID
CID.

2. Construct a new Bitcoin transaction BTX such that:
(a) BTX.vout[0] spends most of the output to an address owned by the user.
(b) BTX.vout[1]← (OP_RETURN Data).
(c) BTX.vin[0] spends BTX′.vout[0].
(d) The transaction is correctly signed with the user’s secret key.

3. Now send BTX to the Bitcoin network and receive a block B containing BTX as well as b subsequent
blocks.

4. Let post represent the appropriate subset of BTX.
5. Output BTX and the secret key.

The ledger sets σ to be the block B containing BTX and the subsequent b blocks referencing B.
Implicitly we treat B as the transaction post, where post.Hash is the SHA256 transaction hash of BTX,
post.PrevHash is the SHA256 hash of BTX′, and post.Data is the contents following the OP_RETURN field
in BTX.vout[1].

Note that the consensus rules will not allow the network to accept the transaction BTX if the preceding
transaction BTX′ is already spent.

• Bitcoin.Verify(post, σ)→ {0, 1}.

1. Verify that post contains the appropriate fields of BTX.
2. Parse post and σ as BTX, B and b subsequent confirmation blocks.
3. Verify that the transaction BTX is well formatted as above and contained within B.
4. Verify that the proof of work on the block B is valid and verify that the proof of work on each of

the b confirmation blocks is valid.23. If not, return 0. Otherwise return 1.

Analyzing the cost of forging blockchain fragments. Proof-of-work blockchains do not provide a cryptographic
guarantee of unforgeability. To provide some understanding of the cost of forging in these systems, we can
examine the economics of real proof-of-work blockchains. We propose argue that the cost of forging an
authenticator can can be determined based on from block reward offered by a proof-of-work cryptocurrency,
assuming that the market is liquid and reasonably efficient.

In currencies such as Bitcoin, the reward for producing a valid proof-of-work block is denominated in the
blockchain currency, which has a floating value with respect to currencies such as the dollar. Critically,
because each instance of a PoW puzzle in the real blockchain is based on the preceding block, an adversarial
miner must choose at mining time if they want to mine on the blockchain or attempt to forge a block for use
in the ELI scheme; their work cannot do double duty. Thus we can calculate the opportunity cost of forgoing
normal mining in order to attack an ELI system: the real cost of forging a block is at least the value of a
block reward. Similarly, the cost of forging a blockchain fragments of length n is at least n times the block
reward. At present, the cost of forging a fragment of length 7 would be 87.5 BTC.

Remark. This simple analysis ignores that a single blockchain fragment may be used by multiple instances
of a given enclave. This admits the possibility that an attacker with significant capital might amortize this

23We abstract away the implementation detail of block difficulty. The validation algorithm can require a minimum difficulty.



cost by spreading it across many instances. Indeed, if amortized over a sufficient number of forged ledger
posts, this fixed cost could be reduced. For scenarios where we expect sufficient instances for this attack to
be practical, it is necessary to rate limit the number of ledger posts included in a given block that the enclave
will accept results from.

Ethereum and Smart Contract Systems. A very natural realization of our ledger system is a smart
contract systems such as Ethereum [Nak08, eth]. Smart contract systems enable distributed public computation
on the blockchain. Typically, a program is posted to some specific address on the blockchain. When a user
submits a transaction to the associated address, the code is executed and appropriate state is updated. As
noted previously, our system allows for smart contracts with private data, which is impossible on current
implementations of smart contract system. We define the interface of a smart contract ledger as follows:

• Ethereum.Post(Data,CID)→ (post, σ).

1. Parse CID as contract_address, a contract address in the Ethereum system.
2. Initiate a contract call to the contract contract_address on argument Data.
3. The contract at contract_address must maintain a state variable PrevHash that contains the

hash of the last message it received (or Root : CID for the first call).
4. The contract embeds Data into its output along with the previous message hash.
5. The contract updates PrevHash← HL(PrevHash‖Data)

The ledger computes an authentication tag σ the contract’s response using the proof-of-work consensus
mechanism and confirmation blocks. The ledger returns (post,σ).

• Ethereum.Verify(post, σ)→ {0, 1}.

1. Verify the proof-of-work and confirmation blocks, and ensure that the contract contains the correct
program. Return 1 if and only if all the verification passes.

Remark: While our construction, as mentioned in Section 2, is sufficient for the creation of multi-use programs,
the protocol in Section 3 is unable to realize the stronger notion of one-time programs. Intuitively this is
because a host can invoke a first step - that is a step without any previous ciphertext - on a fresh CID and the
enclave will be unable to detect this action. Smart contract systems allow a clean solution to this problem.
We add a single check to the enclave execution algorithm: the enclave checks that the contract address is
output of the PRF evaluated on some special value. If the enclave will only accept transaction to a particular
address, the host is unable to restart computation on a different CID, so the program can only be run once.

Private Blockchains. Many recent systems such as Hyperledger [Hyp17] implement private smart contracts
by constructing a shared blockchain among a set of dedicated nodes. In some instantiations, the parties forgo
the use of proof-of-work in favor of using digital signatures and trusted hardware to identify the party who
writes the next block [Int]. Private blockchains represent a compromise between centralized systems such as
CT and proof-of-work blockchains. They are able to use digital signatures to produce ledger authentication
tags so the security is not economic in nature. Moreover, the ledger can be constructed to provide efficient
rules for ledger state updates, which enables an efficient realization of our model of §2.2.

6 Prototype Implementation
To validate our approach we implemented our ELI construction using Intel SGX to implement the enclave,
and the Bitcoin blockchain to implement the ledger.24 For details on the SGX computation model we refer
the reader to [sgx,MAB+13, JSR+16,AGJS13,Rao16, Int16, B16].

24The source code can be found at https://github.com/JHU-ARC/state_for_the_stateless/



In our system, the host application communicates with a local Bitcoin node via RPC to receive blockchain
(ledger) fragments for delivery to the enclave, and to sends transaction when requested by the enclave. To
verify blockchain fragments and verify proof-of-work tags – which we use as our authentication tags for the
ledger – the enclave requires an independent (partial) Bitcoin implementation. We based this on the C++
SGX-Bitcoin implementation in the Obscuro project [TLK+17].

We require a language for describing the program P . For this purpose we embedded a lightweight
Javascript engine called Duktape [duk18] into our enclave. While this is prototype code and not designed for
production security, the use of an interpreted language protects the integrity of the SGX Enclave. Executing
arbitrary C code inside an enclave might allow for secret exfiltration. Hypothetically, Javascript code can
executed safely inside of a sandbox.25

At startup, the host application loads the Javascript program from a file, initializes the protocol values
as in Figures 3 and 4 and launches the SGX enclave. At first initialization the enclave generates a random
long term master key K, which can be sealed to the processor using SGX’s data sealing interface, protecting
the key from power fluctuations. In each iteration of the protocol, the untrusted application code prompts
the user for the next desired input. It then generates a transaction T using bitcoin-tx RPC. The first
“input” T.vin[0] is set to be an unspent transaction in the local wallet. The first “output” T.vout[0] spends the
majority of the input transaction to a new address belonging to the local wallet. The second output T.vout[1]
embeds SHA256(i‖Ii‖Si‖P‖CID‖ri) in an OP_RETURN script. The third output T.vout[2] embeds the public
output Pub emitted by the previous step. This transaction is signed by a secret key in the local wallet and
submitted for confirmation.

The host application now monitors the blockchain until T has been confirmed by 6 blocks.26 The host
then formats the input structures:

• posti.Data← T.vout

• posti.PrevHash← T.vin[0].Hash

• posti.CID← chain of transactions from T back to the transaction with hash post0.PrevHash

• posti.Hash← T.Hash

• σi ← 6 blocks confirming T

The host then submits (posti, σi) to the enclave which then performs the following checks: (1) verifies that
σi is valid and has sufficiently high block difficulty (2) the blocks in σi are consecutive (3) T.vout[0], T.vout[1]
embed the correct data and (4) the transactions in posti.CID are well formatted.

If i = 0 and there is no input state, the enclave generates a zero initial state. Otherwise it generates the
decryption key as described in the protocol using C-MAC to implement the PRF. The state along with the
inputs and random coins are passed to the Javascript interpreter. All hashes computed in the enclave are
computed using SHA256. One note is that instead of hashing all of CID into the ciphertext, we include only
post0.PrevHash, which keeps CID constant throughout the rounds.

Measurements To avoid spending real money on the Bitcoin main network, we tested our implementation
on a private regression regtest. This also allows us to control the rate at which blocks are mined. The
most time-consuming portion of an implementation using the mainnet or testnet is waiting for blocks to be
confirmed; blocks on the main bitcoin network take an average of 10 minutes to be mined, or an average of 70
minutes to mine a block and its 6 confirmation blocks. If an application requires faster execution, alternative
blockchains can be used, such as Litecoin (2.5 minutes per block) or Ethereum (approximately 10-19 seconds).

25A hardened implementation might separate the ELI protocol code (and key k) from the Javascript interpreter by placing
these into two separate enclaves and using Intel’s intra-enclave communication features.

26In general, six blocks is considered sufficiently safe for normal Bitcoin payment operations; however the number of
confirmations blocks can be tweaked as an implementation parameter.



Computation Section Running Time Percentage
Bitcoin Operations 7764 µs 100%

Proof Preparation 7094 µs 92.8%
Proof Verification 550 µs 7.2%

Protocol Operations 2006 µs 100%
Ciphertext Decryption 4 µs 0.2%
Javascript Invocation 1920 µs 95.7%
Ciphertext Encryption 82 µs 4.0%

SGX Overhead 1153348 µs 100%
Enclave Initialization 1153308 µs 100.0%
Ecall Entry and Exit 40 µs 0.0%

Figure 5: Measured computation overhead for different elements of our ELI experiment using a simple string
concatenation program P . Because SGX does not support internal time calls, these times were measured by
the application code. The table above shows averaged results over 100 runs on the Bitcoin regtest network,
and isolates just the computing time of each step individually.

Our experiments used a trivial string concatenation program P . For our experiments we measured three
specific operations: (1) the execution time of the Bitcoin operations (on the host, enclave and regtest network,
(2) ELI protocol execution time, (3) the time overhead imposed by Intel SGX operations. Figure 5 shows the
running times of these parts of our implementation. It is worth noting that SGX does not provide access to a
time interface, and there is no way for an SGX enclave to get trustworthy time from the operating system.
The times in Figure 5 were measured from the application code.

Discussion. Note that initializing an SGX enclave is a one-time cost that must be paid when the enclave is
first loaded into memory. It is a comparatively expensive operation because the SGX driver must verify the
code integrity and perform other bookkeeping operations. An additional computationally expensive operation
is obtaining the proof-of-publication to be delivered to the enclave. This process relies on bitcoin-cli to
retrieve the proper blocks, which can be slow depending on the status of the bitcoind daemon. We note
that these tests were run using the regression blockchain regtest, and retrieving blocks from testnet or mainnet
may produce different results.

7 Conclusion
In this work we considered the problem of constructing secure stateful computation from limited computing
devices. This work leaves several open questions. First, while we discussed the possibility of using cryptographic
obfuscation schemes to construct the enclave, we did not evaluate the specific assumptions and capabilities of
such a system. Additionally, there may be other capabilities that the enclave-ledger combination can provide
that are not realized by this work. Finally, while we discussed a number of applications of the ELI primitive,
we believe that there may be many other uses for these systems.
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A Third-Party Privacy
We now provide a formal definition of third-party privacy. This definition is based on the following two
experiments. In each experiment, we assume an honest enclave and an honest host, both configured via an
execution of Setup (to obtain pp and K).

The third-party Privacy Real experiment (RealTPP). This experiment is parameterized by a p.p.t. adversary
L and an integer q. For i = 1 to q, the adversary L queries an oracle on a chosen program and user input
(Pi, Ii). The oracle implements an honest host application combined with an honest enclave (both correctly
configured with Setup), and for each distinct program Pi runs one step of the ExecuteApplication algorithm
on the given input. The oracle provides L with the resulting data sent to the ledger. At the conclusion of the
execution, the adversary L produces an output. This is the output of the experiment.

The third-party Privacy Ideal experiment (IdealTPP). This experiment is parameterized by a p.p.t. adversary
L and an integer q, as well as a p.p.t. simulator algorithm S. The experiment proceeds as follows. For
i = 1 to q, the adversary L queries an oracle on chosen inputs (Pi, Ii). As in the Real experiment, the oracle
implements an honest host application combined with an honest enclave and executes both functions on
the given inputs. However, following the execution of the ExecuteApplication algorithm, the oracle runs the
simulator S on input the public values (pp,Pubi). The output of S is provided to L. At the conclusion of the
experiment, L produces an output. This is the output of the experiment.

Definition A.1 (Third party privacy) We say that a Enclave-Ledger scheme Σeli is third party private
if ∀ p.p.t. real-world adversaries L and ∀ non-negative integers q, there exists a p.p.t. simulator S such that:

RealTPP(Σeli,L, q)
c
≈ IdealTPP(Σeli,L,S, q)



Remark. Note that this experiment implicitly provides privacy for user inputs, for the following reason. In
the ideal-world experiment, the simulator S does not receive the user’s input, output or the program P , and
only takes the public output of the execution as input. Thus, if the two distributions are indistinguishable,
the real protocol does not reveal more information than would naturally be revealed to the simulator by the
public output.

Discussion. Although we do not present a complete security proof for the third party privacy of our main
construction, here we present a brief intuition. Intuitively, note that each post made by the host application
to the ledger consists of a commitment C embedding a user input. Assuming that the commitment scheme is
computationally hiding, then no adversary will learn the contents of these commitments except with negligible
advantage. This protects the confidentiality of user inputs against third parties.

B Proof of Theorem 3.1
Let H be an adversarial host that plays the Real experiment. We now construct an ideal-world adversarial
host Ĥ such that Real(H, λ, qforge)

c
≈ Ideal(Ĥ, λ, qforge) for sufficiently large λ and all non-negative qforge.

Proof. To prove this statement, we first describe the operation of Ĥ. We then proceed to demonstrate that
if there exists a p.p.t. distinguisher algorithm that distinguishes the output of the two experiments with
non-negligible advantage, then one or more of the following are true: (1) there exists an adversary that breaks
the SUF-AUTH security of the ledger authentication tags, (2) there is an attack on the binding property of
the commitment scheme, (3) there exists a distinguisher for the pseudorandom function PRF, (4) there is an
adversary that succeeds against the authenticated encryption scheme, or (5) there exists an attacker that
breaks the collision-resistance of a hash function.

The operation of Ĥ. The ideal-world adversary Ĥ runs the real adversary H internally, and simulates for
it the oracles of the Real experiment. We will assume that Ĥ also has access to an oracle that simulates
the real ledger and produces authentication tags, in addition to a ledger forgery oracle that allows for the
production of “forged” ledger signatures (see §2.2 for a discussion of this model.)
Ĥ runs the Ideal experiment. Internally, it maintains the tables Tenclave, and Tforge as well as a view of

the ledger L. The table Tenclave contains entries of the following form:

(P, i, Ii, ri,Sin,Sout, post,O,Pub,CID)

At the start of the experiment, our simulation generates pp← CSetup(1λ). Each query H makes to the Real
oracles is handled as follows:

The Ledger Oracle. When H queries the ledger oracle on (Data,CID), Ĥ executes Ledger.Post algorithm
(see §2.2). It stores (Data,CID, σ) in a table, and returns (post, σ) to H. If two distinct outputs share
the same value post.Hash, the simulation aborts with an error.

The Forgery Oracle. This oracle responds to at most qforge queries made by H. When H queries on an
arbitrary string S, Ĥ queries the authentication oracle for a tag σ and records the pair (S, σ) in Tforge.

The Enclave Oracle. When H queries the enclave oracle on input (P, i,Si, Ii, ri, σi, posti), Ĥ performs
the following steps:

1. It performs all of the publicly-verifiable checks in the ExecuteEnclave algorithm (i.e., all checks
that do not rely on the secret K.) It will abort and output a defined error message if H outputs
an authenticator/message pair that was not produced by the Ledger or Forgery oracles, a hash
collision in H or HL, or a collision in the commitment scheme. Eventhashcoll.

2. It verifies that (post, σ) has either been posted to the ledger L, or exists in Tforge.
3. If Si = ε it looks up CID in the table Tenclave and aborts if any matching entry is found.



4. It searches Tenclave for an entry where S∗out = Si and aborts if no result is found. Otherwise it
obtains the tuple (P ∗, i∗, I∗i , ri

∗,S∗in,S∗out, post∗,O∗,Pub∗,CID∗) in Tenclave where S∗out = Si.
5. It checks that i = i∗ + 1.
6. It checks that CID = post.CID = post∗.CID.
7. It checks that post.PrevHash = post∗.Hash.
8. It checks that post.Pub = Pub∗.
9. It checks that P = P ∗.

If any of the above checks fail, Ĥ aborts and outputs ⊥ to H.

10. Ĥ first samples ki+1 ← {0, 1}` uniformly at random, and computes a “dummy” ciphertext
S ′out ← Encrypt(ki+1, (1

Max(P ), 1`)).

Ĥ now selects one of the following three cases. The first case handles repeated inputs that have
already been previously seen. The second case handles inputs that contain valid authenticators from
the Ledger oracle. The final case handles inputs that have been authenticated by the Forge oracle.

11. Process repeated program inputs. Whenever Ĥ receives an input, it searches its table for
any entry that matches (P, i, Ii,Si, posti). (Note that we explicitly exclude σi from this check.27)
If a matching entry exists, it obtains (O,Sout,Pubout) from the same entry in the table and outputs
the tuple (Sout,O,Pubout) to H and halts.

12. Process new, and unforged inputs. Otherwise, if (posti, σi) is contained within the table
maintained by the Ledger oracle, then Ĥ looks up posti.Hash in the Ledger’s table to obtain
CID. If this produces multiple possible matches, it aborts and outputs Eventledgerrepeat.
Next, Ĥ calls the Compute oracle on (P, Ii,CID) to obtain (O′,Pub′). Ĥ now stores (P, i, Ii, ri,
Si,S ′out, post,O′,Pub′) in Tenclave. It returns (S ′out,O′,Pub′) to H.

13. Process new, forged inputs. Otherwise, if (post, σ) is contained within Tforge, then Ĥ identifies
the call j at which this value was added to the table, and calls the Fork oracle on input (P, I,CID, j)
to obtain (O′,Pub′). As in the previous step, it stores (P, i||j, Ii, ri,Si,S ′out, post,O′,Pub′,CID) in
Tenclave. It returns (S ′out,O′,Pub′) to H.

Discussion. Note that there are three main cases in the simulation above. Whenever the adversary queries
the enclave on an state/counter that has previously been queried, Ĥ simply returns the same output as it did
during the previous query (this occurs at step 11). This is possible because the output of the enclave in the
protocol is determined solely by the given inputs (if all public checks pass), and thus repeated inputs cause
the enclave to produce the same behavior.

When the adversary queries on a new input that has been posted to the ledger, Ĥ queries the ideal
Compute oracle to obtain the appropriate output, and generates a simulated (“dummy ciphertext”) encrypted
state to return to H. Similarly, when H queries the enclave on a forged (but otherwise correct) ledger output,
Ĥ queries the Fork oracle to obtain the correct output and also returns a dummy ciphertext to H.

Indistinguishability of Ĥ’s simulation. Let D be a p.p.t. distinguisher that succeeds in distinguishing
Ĥ’s output in the Ideal experiment from H’s output in the Real experiment with non-negligible advantage.
We now show that such an adversary violates one of our assumptions above. The proof proceeds via a series
of hybrids, where in each hybrid H interacts as in the Real experiment. The first hybrid (Game 0) is
identically distributed to the Real experiment, and the final hybrid represents Ĥ’s simulation above. For
notational convenience, let Adv [Game i ] be D’s absolute advantage in distinguishing the output of Game i
from Game 0, i.e., the Real distribution.

Game 0. In this hybrid, H interacts with the Real experiment.
27Recall that our simulation has already verified that σi passes the value passes the check Assert (Ledger.Verify(posti, σi)).

Provided that this check succeeds, it is easy to see that the value σi has no further influence on the output of ExecuteEnclave.



Game 1 (Abort on [adversary-]forged authenticators.) This hybrid modifies the previous as follows:
in the event thatH queries theEnclave oracle on any pair (post, σ) such that (1) Ledger.Verify(post, σ) =
1, and yet (2) the pair was not the input (resp. output) of a previous call to either the Ledger or
Forgery oracles, then abort and output Eventforge. We note that if H causes this event to occur with
non-negligible probability, then we can trivially use H to construct an attack on the SUF-AUTH security
of the contract authenticator with related probability. Since by assumption the probability of such an
event is negligible, we bound Adv [Game 1 ] ≤ ν1(λ).

Game 2 (Abort on hash collisions.) This hybrid modifies the previous as follows: if at any point during
the experiment H causes the functions H,HL to be evaluated on inputs s1 6= s2 such that H(s1) = H(s2)
or HL(s1) = HL(s2), then abort and output Eventhashcoll. Under the assumption that the hash functions
H,HL are collision-resistant, we have that |Adv [Game 2 ]−Adv [Game 1 ]| ≤ ν2(λ).

Game 3 (Abort on commitment collisions.) This hybrid modifies the previous as follows: in the event
that H queries the Enclave oracle at steps i, j where Ci = Cj = Commit(pp, (i, Ii,Si, P, posti.CID); ri) =
Commit(pp, j‖Ij‖Sj‖posti.CID; rj) and yet (i, Ii,Si, Pi, posti.CID) 6= (j, Ij ,Sj , Pj , postj .CID), then abort
and output Eventbinding. We note that if the commitment scheme is binding, this event will occur with
at most negligible probability, hence |Adv [Game 3 ]−Adv [Game 2 ]| ≤ ν3(λ).

Game 4 (Duplicate Enclave calls give identical outputs.) This hybrid modifies the previous as
follows: when H queries the Enclave oracle repeatedly on the same values (Pi, i, Ii,Si, posti) (here we
exclude σi) and the oracle (as implemented in the previous hybrid) does not output ⊥, replace the
response to all repeated queries subsequent to the first query with the same result as the first query.
Recall that by definition the Enclave oracle’s ExecuteEnclave calculation is deterministic and solely
based on the inputs provided above. Thus, repeated queries on the same input will always produce the
same output. Hence by definition |Adv [Game 4 ]−Adv [Game 3 ]| = 0.

Game 5 (Abort on colliding ledger hashes.) This hybrid modifies the previous as follows: when H
calls the Enclave oracle on two distinct inputs (Pi, i, Ii,Si, posti, σi) and (Pj , j, Ij ,Sj , postj , σj), and if
the two inputs do not represent repeated inputs (according to Game 4), then: if both (posti, σi) and
(postj , σj) are valid outputs of the Ledger oracle and yet posti.Hash = postj .Hash then abort and output
Eventledgercoll. By Lemma B.1 this event will occur with at most negligible probability if HL is collision-
resistant and the ledger is implemented correctly. This bounds |Adv [Game 5 ]−Adv [Game 4 ]| ≤
ν4(λ).

Game 6 (Ĥ can always uniquely identify CID.) This hybrid modifies the previous as follows: if at step i
the adversary H calls the Enclave the oracle (as implemented in the previous hybrid) and (1) the oracle
does not return ⊥, (2) the inputs to the two calls are not identical (this would be excluded by the earlier
hybrids), and (3) the pair (posti, σi) are in the Ledger table, and (4) posti.Hash matches two distinct
entries in the Ledger table, then abort and output Eventledgerrepeat. By Lemma B.2 this event will occur
with at most negligible probability. This bounds |Adv [Game 6 ]−Adv [Game 5 ]| ≤ ν5(λ).

Game 7 (Replace the session keys and pseudorandom coins with random strings.) This hybrid
modifies the previous as follows: if Enclave does not abort or is not called on repeated inputs, then the
pair (ki+1, r̄i) is sampled uniformly at random and recorded in a table for later use. Recall that in the
preceding hybrid, this pair is generated as (ki+1, r̄i)← PRFK(posti.Hash) where (by the previous hybrids)
posti.Hash is guaranteed not to repeat. Similarly, the output of each call (ki, ·)← PRFK(posti.PrevHash)
is also replaced with a random value when the input posti.PrevHash has not been queried to PRFK
previously, or the appropriate value (drawn from the table) when this value has been previously queried.
If PRF is pseudorandom then if |Adv [Game 5 ] − Adv [Game 4 ]| is non-negligible, then we can
construct an algorithm that succeeds in distinguishing the PRF from a random function. This bounds
|Adv [Game 7 ]−Adv [Game 6 ]| ≤ ν6(λ).



Game 8 (Reject inauthentic ciphertexts.) This hybrid modifies the previous as follows: if H queries the
Enclave oracle on an input Si 6= ε such that (1) the oracle does not reject the input, (2) Decrypt(ki,Si)
does not output ⊥, and yet (3) the pair (Si, ki) was not generated during a previous query to Enclave,
then abort and output Eventauth. We note that that in the previous hybrid each key ki is generated at
random, and only used to encrypt one ciphertext. Thus if H is able to produce a second ciphertext
that satisfies decryption under this key, then we can construct an attacker that forges ciphertexts in the
authenticated encryption scheme with non-negligible advantage. Because we assumed the AE scheme
was secure, we have that |Adv [Game 8 ]−Adv [Game 7 ]| ≤ ν7(λ).

Game 9 (Abort if inputs are inconsistent.) This hybrid modifies the previous as follows: on H’s
the ith query to the Enclave oracle, when the input Si 6= ε, let (post.CID′, P ′, i′,Pubi−1

′) be the
inputs/outputs associated with the previous Enclave call that produced Si. If (1) the experiment has
not already aborted due to a condition described in previous hybrids and (2) if the Enclave oracle
as implemented in the previous hybrid does not reject the input, and (3) any of the provided inputs
(post.CID, P, i− 1,Pubi−1) 6= (post.CID′, P ′, i′,Pubi−1

′) differ from those associated with the previous
call to the Enclave, abort and output Eventmismatch. By Lemma B.3 we have that |Adv [Game 9 ]−
Adv [Game 8 ]| = 0.

Game 10 (Replace ciphertexts with dummy ciphertexts.) This hybrid modifies the previous as
follows: we modify the generation of each ciphertext S ′out to encrypt the unary string (1Max(P ), 1`). We
first note that the length of the (padded) plaintext is identical between this and the previous hybrid,
by the definition of the padding function. Thus if H’s output is significantly different between this
and the previous hybrid, we can construct an attacker that succeeds against the confidentiality of the
authenticated encryption scheme. By the assumption that the AE scheme is secure, we have that
|Adv [Game 10 ]−Adv [Game 9 ]| ≤ ν8(λ).

We note that Game 10 is distributed identically to the simulation provided to H by Ĥ. By summation over
the hybrids we have that Adv [Game 9 ] ≤ ν1(λ) + · · ·+ ν8(λ) and thus is also negligible in λ. This implies
that no p.p.t. distinguisher can distinguish the output of Real and Ideal experiments with non-negligible
advantage.

�

Lemma B.1 (Uniqueness of Ledger Identifiers) If HL is collision resistant and the ledger operates as
described in §2.2, then for non-repeated inputs (those not caught in Game 4) with all but negligible probability
no two calls i 6= j to the Enclave oracle in Game 5 will have posti.Hash = postj .Hash.

Proof. Let us imagine that with some non-negligible probability ε, H is able to play Game 5 such that
two distinct calls i 6= j to the Enclave oracle have posti.Hash = postj .Hash and yet the two calls were not
identified as repeated inputs (according to the conditions of Game 4). We show that this implies a collision
in the hash function HL.

Let (Pj , j, Ij ,Sj , postj), (Pi, i, Ii,Si, posti) be the inputs to the Enclave oracle (we exclude σ). Let
(Datai,CIDi, posti.Hash), (Dataj ,CIDj , postj .Hash) represent H’s input (resp. output) from the distinct calls
to the Ledger oracle. We now show that if two such calls produce identical posti.Hash, then the inputs to
HL are not equal with probability related to ε.

If the two calls to Enclave are not repeated inputs, then for i 6= j it holds that:

(Pj , j, Ij ,Sj , postj) 6= (Pj , j, Ij ,Sj , postj)

Recall as well that:

posti.Hash = HL(posti.Data‖posti.PrevHash) and postj .Hash = HL(postj .Data‖postj .PrevHash)

And:
posti.Data = Commit(pp, (i, Ii,Si, Pi); ri) and postj .Data = Commit(pp, (j, Ij ,Sj , Pj); rj)



Thus note that if posti.Hash = postj .Hash then this would imply that the simulation would abort with either
Eventhashcoll or Eventbinding. Since this has not occurred, then the probability of such a collision is 0. �

Lemma B.2 (No duplicate Ledger identifiers) If HL is collision-resistant, then for allH, Pr [ Eventledgerrepeat ] ≤
ν6(λ).

Proof. Let us assume by contradiction that H is able to query the Ledger oracle on two distinct inputs
such that the oracle returns (and records in its table) two distinct transactions posti and postj such that
posti.Hash = postj .Hash. Then we construct a second adversary A that outputs a collision in the hash
function HL. A conducts the experiment of Game 6 with H.

Let i, j be any two integers. If at any point H, at the jth call to the Ledger oracle, submits a pair
(Data,CID) such that postj .Hash = posti.Hash, then A terminates and outputs the collision pair (posti.Data‖
posti.PrevHash), (postj .Data‖postj .PrevHash).

Clearly if postj .Hash = posti.Hash and yet (posti.Data‖posti.PrevHash) 6= (postj .Data‖postj .PrevHash)
then A has identified a collision in HL. It remains only to show that when H succeeds in triggering this event,
the latter inequality must hold. Our proof proceeds inductively.

1. If j = 0 then this condition cannot occur, as there is no previous entry in the table.
2. If j > 0 then there are two subconditions:

(a) If H has not previously called the Ledger oracle on CID then postj .PrevHash is set to a unique
identifier based on CID. Because there has been no previous call on input CID, there cannot exist
a second value posti.PrevHash in the table that shares the same value. Thus ∀i it holds that
postj .PrevHash 6= posti.PrevHash and thus the main inequality holds.

(b) IfH has previously called the Ledger oracle on input CID, then (by the definition of the Ledger inter-
face) there must exist some i such that postj .PrevHash = posti.Hash = HL(posti.Data‖posti.PrevHash).
We now consider two subcases:
i. If the ith call to the Ledger oracle was the first call made on input CID, then by definition

posti.PrevHash 6= postj .PrevHash because as the root of a new chain, posti.PrevHash has a
special structure and cannot be equal to the output of HL.

ii. If the ith call to Ledger was not the first call on input CID, and if postj .PrevHash =
posti.PrevHash, then by definition there must exist a third integer k < j such that the
kth call to the Ledger oracle was also on input CID and posti.PrevHash = postk.Hash =
HL(postk.Data‖postk.PrevHash). However, this event cannot occur, as this would imply that
posti.Hash = postk.Hash and thus A would have already terminated and output a collision
prior to reaching this point.

In all of the above cases it holds that (posti.Data‖posti.PrevHash) 6= (postj .Data‖postj .PrevHash) and
so if H triggers this condition, then A finds a collision in HL. Because we assume that HL is collision-
resistant, we can bound the probability of Eventledgerrepeat to be negligible in λ.

�

Lemma B.3 (Consistency of encrypted state) It holds that for all p.p.t. H, Pr [ Eventmismatch ] = 0.

Proof. For Eventmismatch to occur, one of the following conditions must occur. First, it must be the case
that H has previously called Enclave on a set of values (post.CID′, P ′, i′,Pubi−1

′), which produced a state
ciphertext S that embeds HP = H(post.CID′‖P ′‖i′‖Pub′i−1). And simultaneously it must be the case that,
on input the state ciphertext S, the assertion Assert(HP = H(CID‖P‖i‖Pubi−1)) would not fail and cause the
oracle to return ⊥.

However, for this event to occur, it would require one of the following to be true: either the state ciphertext
would have to be inauthentic, resulting in a previous abort Eventauth (or another abort). Or the hash function
would have to include a collision, resulting in Eventhashcoll. Since we require that the simulation would abort
on these other events before it aborts with Eventmismatch, this event can never occur. �



Lemma B.4 (Uniqueness of PRF inputs) No adversary playing Game 5 will (with non-negligible prob-
ability) call the Enclave oracle at steps i, j that (1) the oracle does not return ⊥ or the experiment aborts
in one of the calls, (2) the input values (P1, i, I1,S1,CID1) and (P2, j, I2,S2,CID2) to the two oracle calls
are distinct, and (3) during these invocations the evaluation PRFK(posti.Hash) and PRFK(postj .Hash) uses
posti.Hash = postj .Hash.

Proof. Let H′ be an adversary that succeeds in triggering the above condition with non-negligible probability
ε. We now show this violates one of the assumptions given above.

Let us define the two (partial) input tuples provided to the Enclave oracle as Input1 = (P1, i, I1,S1,CID1)
and Input2 = (P2, j, I2,S2,CID2) where Input1 6= Input2 (we also separately define post1, post2 as inputs to the
oracle.) Recall that in the first instance, PRF is evaluated on (K, posti.Hash) and in the second it is evaluated
on (K, postj .Hash). We now argue that if the oracle does not output ⊥ (and the experiment itself has not
aborted), and if Inputi 6= Inputj then this must imply that posti.Hash 6= postj .Hash.

Note that each of the fields post1.Data, post2.Data embeds a commitment computed on (I1, i,S1, P1,CID1),
(I2, j,S2, P2,CID2) respectively. If the Enclave oracle does not abort and the experiment does not abort,
then if (I1, i,S1, P1,CID1) 6= (I2, j,S2, P2,CID2) then it must hold that (1) post1.Data 6= post2.Data (if this
were not the case then it would imply a violation of the binding property of the commitment scheme, and
hence an abort with Eventbinding), or (2) post1.Hash 6= post2.Hash (because each Hash is computed by applying
HL to the Data field, and a collision in these values would imply an abort with Eventhashcoll).

Since we required that these aborts do not occur, it must hold that if (I1, i,S1, P1,CID1) 6= (I2, j,S2, P2,CID2)
then posti.Hash 6= postj .Hash. This concludes the proof. �


