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Abstract

In this work we investigate the problem of using public consensus networks – exemplified by systems
like Ethereum and Bitcoin – to perform cryptographic functionalities that involve the manipulation of
secret data, such as cryptographic access control. We consider a hybrid paradigm in which a secure
client-side functionality manages cryptographic secrets, while an online consensus network performs
public computation. Using this approach, we explore both the constructive and potentially destructive
implications of such systems. We first show that this combination allows for the construction of stateful
interactive functionalities (including general computation) from a stateless client-side functionality, which
can be implemented using inexpensive trusted hardware or even purely cryptographic functionalities such
as Witness Encryption. We then describe a number of practical applications that can be achieved today.
These include rate limited mandatory logging; strong encrypted backups from weak passwords; enforcing
fairness in multi-party computation; and destructive applications such as autonomous ransomware, which
allows for payments without an online party.

1 Introduction
Cryptography is a powerful tool for managing access to protected data. From disk encryption [Bla94, Bla93, The]
to modern database encryption [PRZB11], cryptography is often used to restrict which data objects can
be accessed by users. Many modern access control systems perform dynamic, or interactive cryptographic
access control: employing a trusted server or a local tamper-resistant module to store and selectively deliver
cryptographic keys to authorized clients when various conditions are met [Krs16,KRS+03].

These solutions have many advantages: they can enforce centralized logging and revocation, and can provide
assurances such as restricting the user to a limited of authentication attempts [App16, Sko16,Krs16, Pro].
Unfortunately, such dynamic access control systems have corresponding disadvantages: in the online case,
they require the construction of expensive centralized infrastructure that is vulnerable to remote attacks and
DoS. In the purely offline case (e.g., using trusted local hardware) it is challenging to enforce guarantees such
as mandatory file access logging, or to revoke stolen devices. Moreover, sophisticated attackers may be able
to “rewind” the non-volatile state of some inexpensive devices [Sko16], disabling security guarantees such as
passcode guessing limits.

In recent years a new class of distributed system has evolved. Loosely categorized as consensus networks
and exemplified by Bitcoin and Ethereum [Nak12, etha], these systems employ highly decentralized and
volunteer-run networks to evaluate public rules that manage access to various resources. The most famous of
these systems, Bitcoin [Nak12], uses consensus to enforce monetary payment rules. However, more recent
systems have been proposed for applications ranging from identity management [nam16,GGM13] to resource
management in distributed systems [JMH15,GRFJ14, BP15]. The benefits of using consensus networks are
twofold: (1) these volunteer-run networks are readily available and thus do not require the deployment of
expensive new infrastructure, and (2) compromising such networks often requires the attacker to deploy
significant resources, computational or otherwise.
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Figure 1: Custodian-Contract interaction. The Custodian interacts with a Contract functionality via a
(possibly adversarial) user. The Contract holds state and has access to a public input/output channel (e.g.,
an append-only blockchain ledger), while the Custodian is a local trusted functionality that holds secret data.

While public consensus networks have evolved to allow the execution of arbitrary user-defined programs
(called “smart contracts”) [etha], these networks have a critical limitation that restricts their usefulness for
certain interactive cryptographic protocols. Namely, public consensus systems do not provide the ability to
securely store and operate on secret data such as cryptographic keys. While hypothetically it might be possible
to upgrade these systems to incorporate secret storage, in practice this is challenging. It would require either
a large amount of trust to be placed in a small number of reliable nodes, or else it would necessitate new and
complex multiparty computation and proactive secret sharing protocols to distribute and verify trust across
the larger (and constantly churning) volunteer network. This challenge greatly limits the usefulness of these
networks in controlling access to certain types of encrypted data.

Our contributions. In this work we take a step towards addressing the management of secret data using public
consensus networks. The main building block in our proposals is a new paradigm we refer to Custodian-
Contract interaction. This proposal divides each interactive secret computation into a protocol run between
two parties: a stateless, client-side functionality called the Custodian that securely manages secrets, and
a Contract that enforces consensus rules in a public network. The Custodian may be implemented using
tamper-resistant hardware, or cryptographic obfuscation techniques. The Contract may be implemented
using a public online consensus network. The communication between each functionality is facilitated by a
possibly adversarial User, as shown in Figure 1.

We observe that this idea has some powerful implications. First, by instantiating the Contract on
a computationally-supported consensus network (e.g., a smart contract system that uses proof-of-work
blockchains to achieve consensus), we immediately obtain a means for the Custodian to cryptographically
validate the authenticity of decisions made by the consensus network. In this setting, the Custodian
functionality can, using only modest computational effort, verify a fragment of the blockchain to ensure
(with reasonable probability) that it is a legitimate consensus output.1 Under the economic assumption
that the consensus network possesses significantly more computational power than any likely adversary, this
ensures that interactions between the Contract and Custodian are authenticated.2 This holds even when the
adversary (i.e., the User) provides the communication channel between the two components.

Second, we observe that the combination of Contract and Custodian can achieve properties that may not
be achievable using trusted hardware alone. Interaction with a Contract provides the ability to condition
certain secret calculations on public actions taken on the consensus network. In particular, this allows us to
condition decryption operations on the publication of certain messages, including monetary payments made
to specific parties on the network. This enables practical applications such as enforced file access logging,
device revocation, and even the enforcement of payments in exchange for delivery of secrets. In malicious
hands, this raises the specter of autonomous ransomware that operates verifiably and without any need for a
C&C or secret distribution center. Finally, we show that these techniques can be used to facilitate enforced

1A similar idea was proposed for implementing “sidechains” in Bitcoin [BCD+14], and is related to Simplified Payment
Verification in Bitcoin clients.

2As an example of the viability of this assumption, we note that the current Bitcoin network executes approximately 270

SHA2 hashes every 10 minutes.



completion of multiparty computation (MPC), which provides a new solution to an well-known problem
related to fairness of MPC protocols [Cle86].

As a practical matter, we show that – given access to an appropriate smart Contract network – an
extremely lightweight and stateless Custodian (such as the hardware proposed in [NFR+17]) can now be used
to perform interactive and stateful calculations involving secret data. We show that in practice this simple
enhancement enables us to construct complex and access control policies that depend on state, such as limiting
the number of login attempts to a password-encrypted device – even when an attacker is able to modify and
rewind the contents of the Custodian’s local storage [Sko16]. This capability is particularly exciting when the
Custodian is implemented using purely software techniques, such as cryptographic obfuscation [BCP14, BR14]
or inexpensive stateless hardware co-processors [NFR+17,DMMQN11].

1.1 Applications
To motivate our techniques, we describe a number of useful applications that can be implemented using the
Custodian-Contract paradigm, including both constructive and potentially destructive techniques.

Limiting password guessing. Many cryptographic access control systems employ passwords to control
access to encrypted filesystems [App16, Pro] and cloud backup images (e.g., Apple’s iCloud Key-
chain [Krs16]). This creates a tension between the requirement to support easily memorable passwords
(such as device PINs), while simultaneously preventing attackers from simply guessing users’ relatively
weak passwords [Bon12,USB+15].3 One approach to addressing this is to incorporate tamper-resistant
hardware such as onboard co-processors [App16, Pro,ARM] and Hardware Security Modules [Krs16].
However, these systems are expensive (particularly in the online backup case [Krs16]) and may fail
catastrophically when an attacker can rewind state.4 We show that using our paradigm we can safely
enforce passcode guessing limits even when using inexpensive hardware that cannot guarantee immutable
state [Sko16].

Fairness in multi-party computation Multi-party computation (MPC) is a powerful cryptographic
primitive that allows many players to cooperatively compute arbitrary functionality without revealing
their individual inputs. A well known limitation of MPC protocols is that of ensuring fairness. When at
least half the players in a computation are malicious, an attacker may be able to abort the computation
before the honest parties learn the output [Cle86]. As a novel application of our technique, we construct
a new primitive called fair encryption, that ensures a ciphertext can be decrypted if and only if it has
been published on a blockchain. Using this primitive we show how to construct a new class of fair MPC
protocols in which the malicious party provably learns no output unless all parties learn the output of
the protocol. This advances a line of work on using blockchain-based protocols to penalize misbehaving
parties in MPC protocols [GK10,ADMM14].

Autonomous ransomware. Ransomware is a class of malware that encrypts a victim’s files, then demands
a monetary ransom in exchange for decryption. Modern ransomware platforms are tightly integrated
with cryptocurrencies such as Bitcoin, which act as both the ransom currency and a communication
channel to the attacker [Sin16]. Once a system has been infected, users must transmit a an encrypted
key package along with a ransom payment to the attacker, who responds with the necessary decryption
keys. The need to deliver secret keys is a fortunate weakness in the current ransomware paradigm,
as it is both costly and increases the probability that she will be traced by law enforcement [Goo13].
More critically, this makes ransom payment a risky proposition for the victim, who cannot verify a
priori that paying the ransom will restore access to data.5 In this work we remark on a potentially

3This is made more challenging due to the fact that manufacturers have begun to design systems that do not include a
trusted party – due to concerns that trusted escrow parties may be compelled to unlock devices [App].

4See [Sko16] for an example of how such systems can be defeated when state is recorded in standard NAND hardware, rather
than full tamper-resistant hardware.

5Indeed an emerging class of pseudo-ransomware has exploited this flaw to extort money without actually providing the
ability to decrypt the locked files (in some cases unintentionally [Tre16b,Cim15,Tre16a]).



destructive application of the Custodian-Contract paradigm: the creation of ransomware that operates
autonomously – from infection to decryption – with no need for remote parties to deliver secret keys.
This ransomware employs local trusted hardware or obfuscation to store a decryption key for a user’s
data, and conditions decryption of a user’s software on payments made on a public consensus network.

Mandatory logging for local file access. In some corporate and enterprise settings, clients must publish
access logs for sensitive files. This requires that each file access be recorded by some online system.
We propose to use a Custodian-Contract interaction to mandate logging of each file access before the
necessary keys for an encrypted file can be accessed by the user. In this setting, log entries may be
public (i.e., visible to all parties on the network) or they may be encrypted to a specific management
authority.

1.2 Intuition
We now briefly present the intuition behind our construction. Recall that the goal is to perform interactive
computation on secret data, using a stateless but trustworthy computing environment (the Custodian) in
combination with a stateful smart contract. For some secret data s, we will model the desired computation
as a probabilistic reactive functionality of the form:

NextSteps(Inputi,STi−1; r)→ (Outputi‖Pi,STi)

On user input Inputi, previous state STi−1, and random coins r this function produces a user output Outputi,
and new state STi. (For some applications described later in this work, we subdivide the output into a user
output for private delivery to the user, and a public output Pi that is intended to be broadcast to a network.)

In our model a (possibly adversarial) User is responsible for invoking each round of computation. A key
distinction from previous work (e.g., [NFR+17]) is that the user adaptively selects the input to each round of
the computation, possibly as a function of previous outputs.6 We do not require that the User completes a
given computation. Instead we seek to achieve the following intuitive properties: (1) for each round, the user
learns only the output, but no intermediate function of the computation, and (2) the user cannot rewind
the functionality or access the state held in between rounds. We seek to achieve these goals even in settings
where the Custodian has no secure means to keep state between rounds of computation, and must outsource
this function to the User. Finally, as a third goal, we wish to construct a means to condition computation on
the public broadcast of certain outputs to a consensus network.

Using the contract to keep state. A first idea behind our first construction is to use the Contract as a means to
enforce the order of a computation on the (stateless) Custodian; this prevents the adversary from rewinding
and executing earlier rounds of the functionality on alternative inputs. As an auxiliary benefit, the Contract
provides a relatively censorship-resilient channel that the Custodian may access use to receive or transmit
data for public consumption. This allows the Custodian to condition operation on network broadcasts as well
as other types of public transaction supported by the Contract, such as monetary payments.

A protocol sketch. We begin with a simplified version of our main construction. This approach divides
the computation into two portions: one executed by the Custodian and the other by the Contract. Our
protocol operates under the key assumption that Contract outputs can be authenticated, e.g., by verifying a
proof-of-work chain produced by a consensus network. The User acts as a communication channel between
the parties, and is responsible for both selecting the input to each round of computation and invoking the
Custodian and Contract on specific values. We assume a trusted setup in which the Custodian is provisioned
with a computation secret s as well as an additional secret key S sampled uniformly from {0, 1}λ, while the
Contract state is initialized to be empty. Let C0 ← ε, STenc0 ← ε.

For i ≥ 1, we execute the ith round of the computation as follows:
6We remark that this is the only appropriate model for a dynamic cryptographic access system, given that the identity of

each file to be accessed may depend on the result of previous file accesses.



1. The user first commits to the messages (Inputi, Ci−1) using a secure commitment scheme, where Inputi
is the user’s chosen input to the ith round of computation and Ci−1 is the commitment generated
during the previous round of the protocol (or ε initially).

2. The user transmits the resulting commitment Ci to the smart Contract.7 The smart Contract records
the commitment Ci and accesses its local state to obtain the commitment Ci−1 that the user transmitted
during the previous call to the Contract (or C0 = ε at the first round). It then returns the pair (Ci−1, Ci)
to the User, along with an authenticator πi that verifies the provenance of the returned pair. In a
private consensus network, this authenticator might be a signature calculated over the returned value.
In a public consensus network, the authenticator may comprise a proof-of-work computed over the
resulting transaction and some number of subsequent blocks.

3. To complete this round of the calculation, the user now invokes the Custodian on the tuple (Ci−1, Ci)
and πi, as well as Inputi and the commitment randomness used to formulate Ci. The user also provides
the Custodian with an encrypted state ciphertext STenci−1 that was produced during the previous call
to the Custodian (or ε on the first round).

4. The Custodian verifies the commitment Ci using the given inputs and random coins. It then uses its
internal secret S as the key for a pseudorandom function PRF, in order to derive the following three
intermediate secrets. These secrets are defined as follows:

(a) A decryption key for the previous state ciphertext STenci−1 is derived using PRFS on input Ci−1.
(b) An encryption key for the new state ciphertext STenci is derived using PRFS on input Ci.
(c) A set of random coins ri for the computation is derived by keying a second pseudorandom generator

on S and STenci.

The Custodian decrypts the previous state ciphertext, and if this succeeds it invokes the NextStep
function on the given input, coins and state. Finally, the Custodian encrypts the new state STi using
the newly generated key. The Custodian outputs Outputi and STenci to the user, or the distinguished
symbol ⊥ if any operation fails.

Our main observation is that if the Custodian is honest, then each pair (Ci−1, Ci) can be viewed as a
commitment to an entire computational trace, including user inputs, random coins and state. Provided that
it is infeasible to “forge” an authenticator tag πi, then the user can replay specific inputs to the Custodian
(to receive the same output), but can never rewind and execute the Custodian on new inputs. Success
in this would require the user to forge the authenticator tag πi produced by the Contract, or to defeat a
cryptographic primitive such as the commitment scheme or authenticated encryption.

Finally, we remark that the protocol above achieves only one of our stated goals: ensuring that the
stateless Custodian can perform stateful interactive computation. However, it does not allow the Custodian
to publish outputs via the Contract. Adding this capability is simple: we simply create a new field for the
Custodian’s output Pi, and require that this output be presented to the Contract along with the commitment
to the next round’s input. The Contract response is simply updated to include the published value. An
adversarial user can still censor or even forge the outputs from this Contract; however, from this point she
loses the ability to continue the computation.

How to instantiate the Custodian? Thus far we have discussed several mechanisms for instantiating
the smart contract. However, the Custodian is more exotic, as it must be capable of securely performing
secret computations without revealing any intermediate function of the computation to the user.

In §5 we discuss two main approaches to constructing a viable Custodian functionality. The first, and
most practical approach is to use secure hardware. We stress that, as the requirements on the Custodian

7In this example we will assume that the User possesses a means to authenticate herself to the Contract. In practice, existing
smart Contract systems such as Ethereum provide this natively, by allowing a User to instantiate contracts that embed specific
public keys. The User may hold the corresponding signing key.



are relatively simple, the necessary hardware may be surprisingly inexpensive. In particular, this hardware
merely needs to embed a single unchanging secret that can be installed at the factory, and requires no ability
to retain immutable state between round. Indeed, stateless hardware designs have been widely deployed by
manufacturers such as Apple for the purpose of cryptographic file encryption [App16], and these systems
have also been shown to be vulnerable to attacks that roll back program state [Sko16].

A more intriguing possibility is that the Custodian might be instantiated using purely software techniques.
A promising candidate technology for this approach is witness encryption (WE) [GGSW13,GKP+13a] as well
as a more powerful variant known as functional witness encryption (FWE) [BCP13]. There are many caveats
to using these techniques, and we offer them only as a conjecture. We explore this area more fully in §5.

1.3 Outline of this paper
The remainder of this paper proceeds as follows. In §2 we define a Custodian-Contract scheme (CCS) and
present security definitions for the primitive. In §3 we present our main construction. In §4 we describe
several applications of the CCS primitive, including several related to cryptographic access control and MPC
fairness, and in §5 we discuss practical instantiations of the CCS components. In §6 we implement our
proposals and present experimental results. Finally, §7 surveys related work.

2 Definitions

Notation: Let λ be a security parameter. Let ` be a non-negative integer polynomial in λ and let ν(·)
indicate a negligible function. We use the notation A

c
≈ B to denote that the distributions A and B are

computationally indistinguishable.

Protocol Parties. A Custodian-Contract Interaction is a protocol between three parties: the custodian
functionality C, the contract functionality N , and a user U . We now describe the operation of these two
elements.

The contract N . The trusted contract functionality models a smart contract system. This can be viewed
as a stateful functionality that initializes with state z0 = ε. For i ≥ 1, the ith round of computation is
invoked on an input selected by the user U and previous zi−1 stored by the contract. If the computation
is successful, the contract records a new internal zi and returns Outputi along with a publicly-verifiable
authentication tag πi. We require that N has access to a trustworthy broadcast output path, e.g.,
that once invoked it can broadcast data reliably to the network. We recall that N does not possess
cryptographic secrets, i.e., all of its state is public.

The custodian C. The trusted custodian models a cryptographic obfuscation system or a piece of stateless
secure hardware hardwired with a deterministic functionality and is initialized with a pair of secrets s, S.
When the custodian is invoked on by the user U , it calculates an output the result (or a distinguished
error symbol ⊥). We require that the description of C’s operations are public , and that the adversary
views (and controls) only the inputs and outputs.

The user U . The user is a (possibly adversarial) party that invokes both the custodian and the contract
functionalities. The user selects the inputs to each round of computation and receives the user outputs.
It provides a communication channel between the other parties.

The functionality F . For flexibility we define a slightly more robust computing functionality than the
one given in the intuition for this paper. This definition breaks the computation into two distinct algorithms:
a secret portion NextStep and a public algorithm DoContract that can be run by the contract.8 This more
complete definition allows us to implement functionalities that require additional capability, such as the

8In practice, functionalities may employ a “dummy” contract routine that simply publishes and outputs its inputs.



ability to collect public data (as in [ZCC+16]), or to interface with other smart contracts running on the
same contract platform.

More formally, we define the computing functionality F as a pair (NextStep,DoContract) where each
algorithm is deterministic and has the input/output interface described below:

NextSteps(Inputi,STi−1; ri)→ (Outputi‖Pi,STi). On input a user input Inputi, a previous state STi−1, and
random coins ri, this algorithm produces a user output Outputi (including an optional public output Pi)
and new state STi.

DoContract(Pi−1, Ui, zi−1) → (Di, zi). On input a previous custodian’s public output zi−1 and previous
contract state zi−1, outputs a result Di and updated contract state zi.

2.1 Custodian-Contract Scheme
A Custodian-Contract scheme Σccs consists of a tuple of algorithms (SetupF ,ExecuteCustodianS,F ,ExecuteContractF ,
ExecuteUserF ). The interface to these algorithms is given in Figure 2.

SetupF (1
λ). On input a security parameter λ and a functionality F , outputs the secrets (S, s) for the custodian

and initializes STenc0 ← C0 ← ε.

ExecuteCustodianS,s,F (Inputi,STenci−1, ri, Oi, πi). This deterministic algorithm is parameterized by the secrets
(S, s) and a functionality F . At the ith round, this algorithm takes a program input Inputi and an encrypted
program state STenci−1 along with the commitment randomness ri and an output from the contract (Oi, πi).
It outputs a new encrypted state along with user and public outputs (STenci,Outputi, Pi)

ExecuteContractF (Ci, Ui, Pi−1, zi−1). This algorithm is parameterized by a functionality F . At the ith round,
this algorithm takes a commitment Ci, an optional user input to the contract Ui, and a previous custodian
output Pi−1 from the user along with previous contract state zi−1. It outputs a tuple (Oi, πi).

ExecuteUserF (Inputi, Ci−1, ri). This algorithm is parameterized by a functionality F . At the ith round, this
algorithm takes a value Inputi produced by the user, and outputs a string Ci.

Figure 2: Definition of a Custodian-Contract scheme (CCS).

The Custodian-Contract protocol. A Custodian-Contract scheme is used to instantiate an interactive
protocol between the Custodian, User and Contract. Figure 4 illustrates a single round of this protocol. To
initialize each interactive computation, a trusted party first runs Setup on input the functionality F and a
security parameter, to generate the secrets (S, s) used by the custodian. The contract and custodian previous
states are initialized to ε. For each round i ≥ 1 the protocol now proceeds as follows:

1. The user U first runs the algorithm ExecuteUser on a first input Inputi, to produce a commitment Ci.

2. The user then invokes the contract functionality ExecuteContract on Ci, their own input Ui, and a
previous custodian output Pi−1 (if available), to produce the tuple (Oi, πi).

3. To complete the round of computation, the user now invokes ExecuteCustodian on the program input,
previous encrypted state (if available) and the output of the contract functionality.

2.2 Correctness and Security

Correctness. Intuitively, correctness for a Custodian-Contract scheme is defined in terms of the parameterized
functionality F . At each step of the Custodian-Contract interaction, the contract and custodian should
output the same outputs as an oracle implementing F .



Security. We define security for a Custodian-Contract interaction using a real/ideal-world definition. This
definition specifies two experiments: a Real experiment in which the adversarial user interfaces with oracles
that implement the custodian and contract functionalities respectively, and an Ideal experiment that models
the correct and stateful operation of the underlying functionality F . Because we plan to implement the
contract functionality on the blockchain, the authenticity of contract outputs are protected economically. In
this setting it is possible that a powerful attacker will succeed in forging a small number of contract calls, each
one at a great expense. Because we cannot prevent these forgeries altogether, we require that the security of
a scheme minimally degrades “gracefully” in the face of such forgeries. We address this using following “best
possible” definition. An attacker who forges qforge separate contract outputs obtains the same utility as an
attacker who is able to rewind and execute the NextStep algorithm exactly qforge times.

Intuitively, our goal is to ensure that even an adversarial user U , with oracle access to a forgery oracle F ,
operating the custodian and contract cannot learn any information beyond their normal, expected inputs
and outputs. The forgery oracle will output a validating authenticator for π on up to qforge inputs from the
user. We define security using a simulation-based definition: we require that for all p.p.t. adversaries U in
the Real experiment, there exists a simulator SOF,S,F (·) that plays the Ideal experiment, such that no p.p.t.
algorithm can distinguish the output of U from the output of S (See Appendix A for formal definitions of
both experiments).

With these considerations in mind, we now present our main security definition:

Definition 2.1 (Simulation security) We say that a Custodian-Contract scheme Σccs is simulation secure
for functionality F if ∀ p.p.t. real-world adversarial users U and ∀ non-negative integers q, qforge, there exists
a p.p.t. ideal-world user SOF,S,F (·) such that Real(Σccs,F ,U , q, qforge) is computationally indistinguishable
from Ideal(F ,SOF,S,F (·), q, qforge).

Privacy against third parties. The definitions above address the security of a Custodian-Contract
Interaction scheme against a dishonest user. However, we must also provide privacy for an honest user against
third parties who may have read access to the blockchain. We address this using a separate user privacy
definition. Intuitively, under the assumption of an honest contract and user, we require that a third party
should learn nothing from the inputs and outputs of the contract beyond what the user would normally learn
from the public outputs of the computation. We address this more fully in Appendix A.1.



3 Our Construction

Algorithm 1: Setup

Data: Input: 1λ

Result: Output: Secret S
s

$← {0, 1}m, S $← {0, 1}`, C0 ← ε,STenc0 ←
ε, zi−1 ← ε

pp← CSetup(1λ)
Output pp, s, S, C0,STenc0, zi−1

Algorithm 2: ExecuteUser

Data: Input: (Inputi, Ci−1, ri)
Result: Output: Ci
// Commit to the user input and previous
commitment
Ci ← Commit(pp, Inputi‖Ci−1; ri)
Output Ci

Algorithm 3: ExecuteContract

Data: Input: (Ci, Pi−1, Ui), State:
(Ci−1, zi−1)

Result: Output (Oi, πi) or ⊥
(Di, zi)← DoContract(Pi−1, Ui, zi−1)
Oi ← (Ci−1‖Ci‖Di‖Pi−1)
Compute πi over Oi
Output (πi, Oi)

Algorithm 4: ExecuteCustodian

Data: Input: (STenci, Inputi, ri, [πi, Oi]),
Secrets: S, s, Max state length: n

Result: Output: (STenci,Outputi) or ⊥
Assert(Verify(Oi, πi) = 1)
Parse Oi → (C ′i−1‖C ′i‖Di‖Pi−1)
Assert(C ′i = Commit(pp, Inputi‖Ci−1; ri))
if STenci−1 6= ε then

ki−1 ← PRFS(“enc”‖C ′i−1)
STi−1 ← Unpad(Decrypt(ki−1,STenci−1))

else
if Ci−1 = ε then

STi−1 ← ε

else
Halt and Output ⊥

// Perform the computation
ri ← PRG(PRFS(“rand”‖C ′i)) ;
(Outputi,STi, Pi)← NextSteps(Inputi‖Di‖
Pi−1,STenci−1; ri) ;
ki ← PRFS(“enc”‖C ′i)
STenci ← Encrypt(ki,Padn(STi))
Output (STenci,Outputi, Pi)

Figure 3: Our main construction Σccs.

In this section we present a specific construction of a Custodian-Contract scheme. Our construction makes
use of the following cryptographic primitives. In addition to the standard cryptographic primitives, we define
an abstract “authenticator” primitive that will be used to authenticate the validity of a consensus transcript.
We discuss this final primitive in more detail below.

Commitment schemes. Let Σcom = (CSetup,Commit) be a commitment scheme where CSetup generates
public parameters pp. The algorithm Commit(pp,M ; r) takes in the public parameters, a message M , along
with random coins r, and outputs a commitment C 6= ε which can be verified by re-computing the commitment
on the same message and coins.

Authenticated symmetric encryption. We require a symmetric encryption scheme consisting of the
(possibly probabilistic) algorithms ΣAE = (Encrypt,Decrypt) where each accepts a key uniformly sampled
from {0, 1}`. We require a scheme that meets the AE definition of Rogaway [Rog02]. This requires that
a ciphertext is indistinguishable from a random bitstring even in a model where the attacker can query
encryption and decryption oracles. We also employ a padding scheme (Padn,Unpad) that pads a plaintext to
some chosen bitlength n.

Pseudorandom Functions and Generators. Our construction uses a pseudorandom function family
(PRF) PRF that in input a seed and some value in {0, 1}∗ outputs a string in the range {0, 1}` as well as a
pseudorandom generator (PRG) that on input a seed in {0, 1}` outputs a stream of pseudorandom bits.



Contract authenticators. Finally, we employ a primitive that we refer to as a contract authenticator. An
authenticator is a publicly verifiable authentication primitive that allows any party to verify the authenticity
of a message issued by the contract.9 In public consensus networks, the authenticator may be constructed
using a computational proof-of-work (see §5) computed over each contract output. We require that it is
difficult to forge a pair a new pair (m,π) even when the attacker is given access to an oracle for authenticating
chosen messages. We refer to this definition as SUF-AUTH (this is analogous to the SUF-CMA definition used
for signatures). We also consider a variant of this definition called qforge-SUF-AUTH in which the adversary is
allowed to produce at most qforge forged messages.

Custodian User Smart Contract

Ci, Pi−1, Ui

ExecuteContract(·)
πi, Oi

(STenci, Inputi, ri, [πi, Oi])

ExecuteContract(·)
STenci+1,Outputi‖Pi

ExecuteUser(·)
Ci+1, Pi, Ui+1

Figure 4: Illustration of a single round of a Custodian-Contract interaction. The User runs the ExecuteUser
algorithm on a computation input Inputi and random coins ri, then invokes the Contract on the resulting
commitment Ci−1, their own input Ui, and an (optional) previous Custodian public output Pi−1. The contract
returns an authenticator/output pair (πi, Oi). The User now invokes the Custodian on all of the above values
as well as a previous encrypted state STenci−1 to produce a user output Outputi, a new public output Pi,
and a new encrypted state STenci.

3.1 Main Construction
We now present our main construction for a Custodian-Contract scheme (CCS) and address its security.
Recall that a CCS consists of four algorithms with the interface described in 2. We present each of these
algorithms in Figure 3.

We address the correctness of the scheme in Appendix B. We now proceed to our main security theorem.

Theorem 3.1 If Σcom is a secure commitment scheme; ΣAE satisfies the strong AE definition of [Rog02];
PRF and PRG are each pseudorandom; and contract authenticators are qforge-forgeable, then for all allowed
functionalities F and qforge ≥ 0 the scheme Σ = (Setup,ExecuteCustodian,ExecuteContract,ExecuteUser)
presented in Figure 3 satisfies Definition A.1.

We present a proof of Theorem 3.1 in Appendix B.

4 Applications
We now describe several applications that use Custodian-Contract Interaction, and present the relevant
implementations for each. Each proposed application employs the main construction we presented in §3
(depicted in Figure 3) to implement a specific functionality. We present algorithms of the functionality F =
(NextStep,DoContract) required to implement the specific applications.

9Indeed, in private consensus networks the authenticator may be constructed using an SUF-CMA digital signature scheme
with some pre-generated keypair (pk , sk) specific to the contract.



4.1 File Access Logging
Some cryptographic access control systems require participants to actively log file access patterns to a remote
and immutable network location [Fou]. A popular approach to solving this problem in cryptographic access
control systems, leveraged by systems like Hadoop [Fou], is to assign a unique decryption key to each file, and
to require that clients individually request each key from an online server, which in turn logs each request.
This approach requires a trusted online server that holds decryption keys, and cannot be implemented using
a public consensus network.

In place of a trusted server, we propose to use CCS to implement mandatory logging for protected files.
In this application, a local Custodian stores a master key for some collection of files, e.g., a set of files stored
on a device.10 The Custodian then employs the public output property of the consensus network to ensure
that prior to each file access the contract must write a public log identifying the file access to the network.
To provide confidentiality of file accesses, the Custodian may encrypt the log entry under the public key of
some auditing party and will only release the decryption once this ciphertext is published.11 We present the
NextStep and DoContract algorithms for a simple two-phase version of this proposal in Algorithms 5 and 6.

4.2 Strong Encrypted Backups from Weak Passwords
In the past several years, device manufacturers have widely deployed end-to-end file encryption for devices
such as mobile phones [App16, Pro] and cloud backup data [Las,Krs16]. Increasingly, these systems require
users to hold their own secrets rather than trusting them to the manufacturer.

Implementing end-to-end encryption systems at scale poses a dilemma for system designers. Encryption
systems require high-entropy cryptographic keys, but users are prone to lose or forget high-entropy passwords.
To address this tension, manufacturers have increasingly turned to the use of trusted hardware such as
on-device cryptographic co-processors [App16,ARM] and cloud-based HSMs [Krs16] for backup data. In this
model a user may authenticate using a relatively weak device passcode such as a PIN, and the hardware will
then release a strong encryption key. To prevent passcode guessing attacks, this stateful hardware throttles or
limit the number of login attempts.12

A Custodian-Contract Scheme provides an alternative mechanism for limiting (or throttling) the number
of guessing attempts on password-based encryption systems. A user can employ an inexpensive USB drive or
an extremely low-cost embedded chip with no requirement to keep state (e.g., an FPGA) to host a simple
Custodian, with an internal secret key K. The custodian is constructed to release K only when it sees the
proper output of a smart contract on the ledger and receives a valid input. The smart contract in turn may
limit the number of guesses an adversary can make within a given period. This Custodian and Contract
functionalities required to enable this functionality are relatively simple, under the assumption that the
Contract has access to a clock equivalent.13 For reasons of space we do not formally define the functionality
F required to implement this application; it is very similar to the functionality of §4.1.

We remark that in practice the decryption process in such a system can be fairly time consuming, due
to the need to interact with the consensus network and obtain a number of blocks of valid output prior
to running the Custodian. This system may be useful for low frequency applications such as recovering
encrypted backups or emergency password recovery.
4.3 Autonomous Ransomware
Ransomware is increasingly becoming a problem in hospitals and other corporate environments [Zet16].
These systems consist of a malware payload that encrypts user files, and an online C&C system that delivers

10If the Custodian is implemented using cryptographic techniques such as FWE, a unique Custodian can be shipped along with
the files themselves. If the user employs a hardware token, the necessary key material can be delivered to the user’s Custodian
when the files are created or provisioned onto the user’s device.

11The corresponding decryption key may be held offline.
12This approach led to the famous showdown between Apple and the FBI in the Spring of 2016. The device in question used a

4-character PIN, and was defeated in a laboratory using a state rewinding attack, and in practice using an estimated $1 million
software vulnerability [Pal15,Wea15].

13In the case of a public consensus network such as Ethereum or Bitcoin, this clock can be implemented by requiring at least
K empty blocks between each transaction.



Algorithm 5: File Access Logging (NextStep)
Data: Input: Inputi (filename),STi−1, Di, Pi−1; ri; Secret: PRF Key K; Constants: pk auditor

Result: Outputi or ⊥
Parse STi−1 as (phase, CT, filename)
if phase = 2 then

Phase 2: Verify contract response
if Di = ( “Allow" ‖ CT ) then

// Output a decryption key for filename
STi = (1, ·, ·)
output (Outputi‖Pi) = (PRFK(filename)‖ε)

else
// Failure
output ⊥

else
// Phase 1: Encrypt the filename to be logged
CT ← PKEnc(pk auditor, Inputi)
STi ← (2, CT, Inputi)
output (Outputi‖Pi) = (ε‖CT )

Algorithm 6: File Access Logging (DoContract)
Data: Input: (Ci, Pi), Constants: R
Result: Di

write Pi as public contract output
output Di = "Allow"‖Pi



decryption keys to customers who pay a ransom – typically in a cryptocurrency such as Bitcoin. In current
ransomware, the system that deliver keys represents a weak point in the ransomware ecosystem. This delivery
exposes ransomware operators to tracing [Tec16]. As a result, some operators have fled without key material,
or have deployed non-functional “dummy” ransomware.

We now consider a potential destructive application of the CCS paradigm: the development of autonomous
ransomware that guarantees decryption without the need for any online C&C. We refer to this malware as
autonomous because, once an infection has occurred, it requires no further interaction with the malware
operators, who can simply collect payments issued to a Bitcoin (or other cryptocurrency) address.

In this application, the malware portion of the ransomware samples an encryption key K ∈ {0, 1}` and
installs this value within a Custodian. To activate the ransomware, the user runs the Contract portion of the
malware on a payment network such as Bitcoin or Ethereum, passing as input the identity of a valid payment
transaction to the ransomware operator’s address. The Custodian then validates the result and authenticator
returned by the Contract – which in this case comprises a chain of computationally expensive proofs of work –
and delivers the key K if this proof is valid. Algorithms 7 and 8 present a simple example of the functionality.

We note that the Custodian may be implemented using trusted execution technology that is becoming
available in commercial devices, e.g., an Intel SGX enclave, or an ARM TrustZone trustlet. Thus, autonomous
ransomware should be considered a threat today – and should be considered in the threat modeling of trusted
execution systems (see §6 for more discussion). Even if the methods employed for securing these trusted
execution technologies are robust, autonomous ransomware can be realized with software-only cryptographic
obfuscation techniques, if such technology becomes practical.14

Algorithm 7: Ransomware (NextStep)
Data: Input: Inputi,STi−1, Di, Pi−1; ri, Secret: Key k
Result: Outputi or ⊥
if Di = "Decrypt" then

output Outputi = k;

else
output ⊥;

Algorithm 8: Ransomware (DoContract)
Data: Input: (Ci, Ui), Constants: address, amount
Result: Di

parse Ui to obtain TransID
// Use the following call to verify the payment
if ValidatePayment(TransID, amount, address) = 1 then

output Di = "Decrypt";
else

output Di = "Invalid";

4.4 “Fair Encryption” and MPC
Multi-party Computation (MPC) [Yao86,GMW87] guarantees that parties 1, . . . , n can run a function f
on private inputs x1, . . . xn without revealing the inputs (or any intermediate function) to the other parties.
A known limitation of general MPC is the difficulty of obtaining fairness when at least half of the parties
are malicious [Cle86]: intuitively, the malicious parties may abort the protocol after learning the result, but

14See Lewi et al. for a survey on the current practical limitations of this technology [LMA+16].



before the honest parties have learned it. This can be catastrophic in applications such as financial trading.
Efforts to address this problem have led to relaxations in security properties [GK10, Pin03, BLOO11].

Recently Gordon [GK10] et al. and Andrychowicz et al. [ADMM14] proposed a partial solution that uses
consensus networks to penalize users who abort. This approach assumes that the parties can correctly select a
penalty that will compensate the honest users for the protocol failure. Unfortunately, choosing such a penalty
may not be feasible in practice: for example, if the utility of malicious behavior is difficult to calculate, or if
the capital required to participate in the protocol exceeds any party’s resources. In these cases it would be
preferable if the consensus network could actually force the protocol to complete.

Fair encryption. As a building block for solving this problem, we propose fair encryption. Intuitively, this
primitive ensures that if one authorized decryptor can decrypt a ciphertext, then all authorized decryptors
may do so as well. We accomplish this by constructing a custodian that will decrypt a CCA2-secure ciphertext
if and only if a valid ciphertext has been placed on the public consensus network transcript by a Contract.

Algorithm 9: Fair Encryption (NextStep)
Data: Input: Inputi,STi−1, Di, Pi−1; ri, Secret: Key k. Constants: Ciphertext hash H
Result: Outputi or ⊥
if Inputi = “GenKey” then

(pk , sk)← PKMGen(1λ)
STi ← sk
output Outputi = pk

else if Inputi = “Decrypt”‖CT AND STi−1 6= ε then
Parse STi−1 as sk
M ← PKMDec(sk , CT )
output M

Algorithm 10: Fair Encryption (DoContract)
Data: Input: (Ci, Pi, Ui). Contants: pkmpc, pk0, pk1 . . . pkn−1. Init: Set S ← φ, Hash H ← ε
Result: Di

write Pi as public contract output
output Di = "Decrypt"‖Pi

As a building block, fair encryption requires a multi-key public key encryption system (PKMGen,PKMEnc,
PKMDec) with the following properties. Given n public keys pk1, . . . , pkn, the encryption routine produces a
ciphertext that can be decrypted using any one of the corresponding secret keys. The resulting ciphertext
must be non-malleable, i.e., the (honest) decryption routine must output ⊥ on input any valid secret key
and a mauled version of the ciphertext. Such a scheme can be easily built using common techniques; for
completeness we include one such construction in Appendix C.

To use a fair encryption scheme, each party configures an honest instance of the custodian. At setup time,
each Custodian outputs a public key pk for the encryption scheme above. To produce a ciphertext for all
parties, the sender encrypts a single message to all public keys in the set pk1, . . . , pkn.15 On receiving the
resulting ciphertext CT , a receiving User must invoke the Contract, which in turn places CT onto the public
transcript produced by the consensus network (subsequent users may simply provide a reference to the first
publication). When the User obtains the authenticated result, she presents it to her Custodian which verifies

15This scheme requires a non-malleable ciphertext that encrypts to any set of public keys pk1, . . . , pkn and allows decryption
with any one of the corresponding secret keys. The scheme must also be non-malleable, so that an attacker cannot maul the
ciphertext so that only a subset of the honest decryptors will be able to decrypt it correctly.



the integrity of the ciphertext and Contract output before decrypting using sk .16 We present an instantiation
of the functionality in Algorithms 9 and 10.

MPC from Fair Encryption. To achieve fairness in an MPC protocol, each party configures an honest
Custodian and generates a public key pk . Rather than computing a function f(x1, . . . , xn) directly, the
parties collaborate to compute FairEncryptpk1,...,pkn

(f(x1, . . . , xn)). At the conclusion of this protocol, each
party submits the resulting ciphertext CT to the Contract in order to obtain its decryption. Even if the
resulting MPC computation is unfair, a malicious party will be forced to transmit their result to the Contract
prior to learning the output of the computation. Because this transmission produces a public record on the
consensus transcript, all parties will necessarily learn the result.

We observe that if the Custodian is implemented using a form of (Extractable) Witness Encryption (WE)
as in [Jag15], the protocol is simpler in that there need be only one Custodian and one “public key”: the relation
encoding the consensus authenticator verification statement. Even when the Custodian is implemented in
trusted hardware (such as Intel SGX enclaves) the resulting construction still does not significantly relax the
underlying security of the MPC protocol. In this case, the Custodian is trusted only with the fairness of the
protocol: a fully corrupted custodian cannot violate either correctness or input privacy.

5 Realizing the Custodian and Contract
In this section we turn to the matter of instantiating the custodian and contract components of a real system.

5.1 Realizing the Custodian
Trusted cryptographic co-processors. The simplest approach to implement the custodian is using
secure hardware or trusted execution environment such as Intel’s SGX [sgx] or ARM Trustzone [ARM]. When
implemented using these platforms, our techniques can be used immediately for applications such as logging,
fair MPC and (unfortunately) ransomware.

While each of the environments above provides immutable statekeeping, a key feature in our proposal
is that our approach does not require a secure means for recording state within the Custodian. (Indeed,
historically some access control systems have failed because they admitted state rollback attacks [Sko16].)
This may enable the construction of stateful functionalities using relatively inexpensive secure hardware,
such as a processor with an embedded decryption key, or even using FPGAs as a building block. Along
these lines, Nayak et al. [NFR+17] recently showed how to build trusted non-interactive Turing Machines
from minimal stateless trusted hardware. Such techniques open the way for the construction of arbitrary
Custodian functionalities on relatively inexpensive hardware.

Witness encryption. Witness encryption (WE), first proposed by Garg, Gentry, Sahai, andWaters [GGSW13],
allows for the encryption of of data such that it can only be opened if the decryptor knows a witness to the
statement. Witness encryption defined for an NP language L and witness relation R. It allows a user to
encrypt a message m under a instance x. Decryption of the resulting ciphertext is possible only if x ∈ L and.
It can be built from Indistinguishability Obfuscation [GGH+13].

Witness Encryption seems an obvious candidate for constructing the Custodian, at least for some
functionalities. The limitation of WE is that this construction only guarantees the ciphertext is secure in
the case where x /∈ L i.e. there is no witness. Of course, when considering proof-of-work consensus systems
there is always a valid proof of work, it is merely computationally difficult to build it. To address this we
require a stronger notion of extractable witness encryption (EWE) which requires that anyone decrypting the
ciphertext actually know the witness, not merely that such a witness exist. Goldwasser et al. conjecture
that the original WE construction of Garg et al. may possess this property under stronger cryptographic
assumptions [GKP+13b].

16This scheme requires a non-malleable ciphertext that encrypts to any set of public keys pk1, . . . , pkn and allows decryption
with any one of the corresponding secret keys. The scheme must also be non-malleable, so that an attacker cannot maul the
ciphertext so that only a subset of the honest decryptors will be able to decrypt it correctly.



Functional witness encryption (FWE). FWE [BCP13,ABG+13] is a more powerful conjectured primi-
tive in which the decryption of a ciphertext is not simply a message m, but f(m,ω) where ω is a witness and
f is a function chosen by the encryptor. Using this primitive, we can construct powerful Custodians. However,
FWE requires exists under stronger cryptographic assumptions, and the literature contains implausibility
results [GGHW13] similar to the impossibility results known for Virtual Black Box obfuscation [BGI+01].
But in both cases, the impossibility results stem from malicious auxiliary input and “contrived” functions.
It remains an open question if these results disqualify the existance of FWE for realistic and practical
functions; Virtual black box obfuscation, from which FWE can be built, is still an ongoing active research
area [BGK+13, BR13].

5.2 Realizing the Contract
A number of different systems may be used to instantiate the Contract. In principle, any stateful functionality
capable of producing SUF-CMA signatures can be used for this purpose, including trusted servers and “private
blockchains” consisting of a small quorum of servers. However in this work we focus primarily on public
consensus networks, which are primarily implemented using blockchains.17

Security of the contract. An obvious solution for instantiating the Contract is to use a public cryptocur-
rency (or smart contract) such as Bitcoin or Ethereum. This avoids the need for any globally trusted third
party. The limitation of this approach is that these systems cannot offer cryptographic authentication of
Contract outputs. Instead, the guarantee provided is economic in nature: since these networks authenticate
legitimate blocks by attaching computationally-expensive proofs of work, the cost of forgery may be high.
The exact details of this cost depend on the application and, crucially, the number of simultaneous instances
of the system sharing a single consensus network. In the following section we briefly address this analysis.

Forging blockchain fragments. Blockchains such as Ethereum and Bitcoin employ hash-based proofs of work to
authenticate blocks. Since these proofs of work are also used for currency “mining”, a simple way to judge the
cost of forging a block is to evaluate the financial opportunity cost of spending hashpower on such forgeries
rather than on mining.

As of early 2017, forging a single Bitcoin block represents an opportunity cost of at least $12,500 USD in
forgone block reward [coi]. Since a Contract may be authenticated by a chain of such blocks (where each block
implicitly hashes the previous block), forging a chain of approximately 24 hours worth of block confirmations
represents a forgone mining cost of approximately $1.8M USD.

The challenge in this simple analysis is that a single blockchain fragment may be used by multiple instances
of a given Contract. This admits the possibility that an attacker with significant capital might amortize this
cost by spreading it across many instances. Indeed, if amortized over a sufficient number of forged contracts,
this fixed cost could be negligible. For scenarios where we expect sufficient instances for this attack to be
practical, it is necessary to rate limit the number of contracts included in a given block that the custodian will
accept results from.For example, to lower-bound the cost of such an amortization attack to $1000 USD per
instance, it is necessary to limit the number of transactions to 1800 such transactions per day. This may be
sufficient protection for applications such as ransomware, where the ransom itself can be priced significantly
lower. In the full version of this work we include a more complete economic analysis.

6 Prototype Implementation

To validate our approach we implemented a Custodian-Contract scheme using Intel SGX as a custodian
and the Ethereum smart contract system as our ledger. Due to its ubiquity in newer Intel processors, SGX
represents a secure computation technology that is both practical and available today. Realizing the Custodian
effectively in SGX provides a means for this paradigm to be quickly adopted.

17For more background on this technology, see e.g., [TS15, BMC+15].



Intel SGX 
Enclave

User 
Computer

Ethereum 
Smart Contract 

Main Ethereum 
blockchain 

maintains state

Figure 5: Our prototype implementation of the Custodian-Contract Interaction

To implement the Custodian, we adapted the verification and parsing subset of the C++ Ethereum client [cpp]
to work within an SGX enclave running on Linux. Due to limitations placed on code that runs within an
SGX enclave, this adaptation was non-trivial. It required the removal of all input/output and downgrading
the C++11 client to use the adapted C++03 standard library supplied by the SGX software development
kit. This downgrade process was replicated for the subset of Boost on which the Ethereum client relies. The
Ethereum client also uses cryptopp to perform SHA3 computations; we chose to replace cryptopp with a
simpler but less efficient standalone implementation of SHA3. Because SGX does not natively support public
key cryptography, we also integrated the standalone TweetNacl library [Twe]. Finally, SGX does not support
copying C++ objects between userland and a secure enclave, so all input data had to be serialized into byte
streams. We built a thin wrapper around the serialization format supported by Ethereum, called Recursive
Length Prefix.

We implemented three SGX enclaves: (1) a generic blockchain verifier, (2) a sample ransomware enclave,
and (3) a guaranteed logging enclave. We made a number of application-specific optimizations for each
enclave that allowed us to omit parts of the protocol in §3. Each enclave was hardcoded a genisis block as
ground truth. Finally, we included the capability for the enclave to verify the blockchain fragments passed in
by a user against a “genesis block” used as a trusted ground truth. We also provide a trusted construct call
to allow the party configuring the enclave to set a more recent block as ground truth. In the ransomware
application, having the ability to set ground truth at the time of infections allows for faster blockchain
verification and as protects against amortization attacks described in §5.2.

Ethereum supports a fast-sync protocol which allows new nodes to quickly download the blockchain by
choosing to check the proof of work only on random blocks. We borrowed this protocol for our enclaves and
enforced that when a single block fails the proof of work verification, the enclave will reject the fragment.
Because the cost of forging a transaction is proportional to the number of blocks that follow it and their
difficulties, it is also not particularly important to verify each block preceding the block with the contract
ouput. Thus, our enclave simply verifies the proof of work on every block following that block and ensures
that the block difficulty is sufficiently high. 18

Measurements and Test Cases While the Bitcoin proof of work can be verified using only two SHA2565
operations per block, verifying Ethereum’s proof of work is an extremely computationally expensive operation
that necessitates many SHA3 calls. Modern Ethereum clients alleviate this problem by constructing large
RAM caches to amortize this computation cost over many blocks in the chain. Because our implementation is
a prototype that is constrained by SGX’s 128MB memory limit, we did not to optimize our implementation
in this way. This leaves our prototype slower than normal Ethereum clients. Figure 6 shows the running
times of various parts of our implementation. In addition to the timing results we gathered from running our
enclaves, we also implemented and benchmarked SHA256 in SGX to estimate the block verification time a
custodian would take if we had instead used Bitcoin.

18The difficulty is a variable field that determines the complexity of the proof of work required for each block. Since this
field can change we require our blockchain verifier to adjust the number of blocks required for a proof of work, to avoid forged
fragments that claim an artificially low difficulty.



Computation Section Running Time Percentage
Verification (Prototype SHA) 18.35s 100%

SHA3-512 18s 98.8%
Hash Memory Managment 14.62ms 0.0%

Other Computation .22s 1.1%
Verification (Cryptopp) 2.27s 100%

SHA3-512 2.14s 94.2%
Hash Memory Managment 7.5ms 0.0%

Other Computation .13s 5.8%
SGX Overhead 1.87s 100%

Enclave Setup 1.80s 96.3%
Deserialization .07s 3.7%

Verification (Bitcoin) 1.6µs 100%

Figure 6: Table showing the computation times of custodian code. Verification times shown are for a single
block

We emphasize that our implementation is a prototype; the difficulties of engineering under the limitations
of the current SGX system led to design choices which are not optimal.

7 Related Work

Intel’s SGX. Intel’s Software Guard Extensions (SGX) allow for the creation of enclaves, a trusted execution
environment [sgx,MAB+13]. These enclaves can be statically disassembled, but are opaque while running.
Enclaves can also attest to their current state, proving correct execution [JSR+16,AGJS13]. SGX can
cryptographically seal data to be used across multiple invocations – corresponding to the encrypted state
used in our protocol. Data can either be sealed to the owner of the enclave or just to the specific enclave
instance [AGJS13,B16]. Production enclaves can only be produced by obtaining a production license and
signing key from Intel, which whitelists licensee’s key [Rao16, Int16].

Ethereum and smart contracts. Ethereum is a modern blockchain technology, built on a P2P network, that
supports both traditional payment applications as well as distributed consensus computing. Transactions can
be direct at users or at smart contracts, in which case miners will run the functionality within the contract.
For the output to be saved, each miner runs the function until its termination, consuming gas for each
instruction executed. If all miners reach a consensus on the function output, the output and state is saved.
In any other situation, including insufficient gas, the miners terminate and return the contract to its previous
state. Ethereum and other smart contract systems contain many more features which we do not describe, but
can be found in [Ethb].

Other applications of smart contracts. Smart contracts are small programs executed autonomously by the
blockchain. Examples include Town Crier [ZCC+16] which leverages Intel’s SGX to provide an authenticated
data feed which can bridge the gap between already existing websites and smart contracts. In [TZL+17],
Tramer et al. create the notion of a sealed-glass proof, which leverages Intel’s SGX to provide confidentiality
and integrity assurances even in the face of side-channel leakage. In a more nefarious setting, Juels et al.
introduce the concept of a criminal smart contract which could help enable the (anonymous) commission of a
wider range of criminal acts [JKS16].

Ransomware. Ransomware is a class of malware that encrypts data on a victim’s system, offering decryption
in exchange for payment of a monetary ransom. First proposed by Young et al. in 1996 [YY96], as of 2016
ransomware infections have produced an estimated $1 billion in direct and indirect costs [FG16]. The idea of
malware and trusted hardware is not a new one. In 2011 Dunn et al. [DHWW11] proposed the idea of hiding
malware using a trusted platform module (TPM).



Distributed logging. Secure, distributed logging is an important area of systems research that has been active
for a long time [SK98, PPW13,VWGP12,GMMP12]. Of particular note to our work is the commerical
product Guardtime [Gua] based on Keyless Signatures’ Infrastructure [BKL13]. This project uses ledgers to
record events and is able to similarly record log statements.
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A Security and Correctness definitions for Custodian-Contract In-
teraction

We now present a formal simulation-based definition of security for a custodian-contract interaction protocol.

The Real experiment. The real-world experiment is parameterized on (Σ,F ,U , q, qforge). Let U be an adversary
playing the role of the user. First, run SetupF to create the secret S. Next, initialize z0 ← ε, STenci−1 ← ε
and TPub ← ε. For i = 1 to q, the adversary U may issue the following queries:

Query to the contract functionality. When U submits (Ci, Pi−1, Ui), run ExecuteContractF (Ci, Ui, zi−1).
Append the public output to TPub, record the new state zi, and return all outputs to U .

Query to the custodian functionality. When U submits (STenci, Inputi, ri, [πi, Oi]), run ExecuteCustodianF
on the provided inputs and secret S. Return the output to U .

Query the forgery oracle. U may query the forgery oracle F up to qforge times through the protocol.
When U querys F on [Cf‖Cf−1‖Df‖Pf ], generate a validating authenticator πf .

Let Uq be the adversary’s output following the qth oracle query. Let TPub be the transcript of all outputs
produced by the contract. The output of the Real experiment is defined as (Uq‖TPub).

The Ideal experiment. This experiment is parameterized on (F ,S, q). Let S be an ideal-world adversary
that conducts the following experiment. First, run SetupF to obtain S. Set STi ← ε. For i = 1 to q, the
ideal-world adversary S may query an oracle OF,S,F . When S submits Inputi, Ui to this oracle, the oracle
performs the following steps:

1. Compute Di+1 ← DoContract(Pi−1, Ui, zi) and append the public output to TPub.

2. Uniformly sample r ∈ {0, 1}`.

3. Compute (Outputi‖Pi,STi)← NextStep(S, i, Inputi,STi−1, Di, r)).



Let Sq be the ideal-world adversary’s output following the qth oracle query. The output of the Ideal
experiment is defined as (Sq‖TPub), where Pq is the public output of the contract. We are now ready to
formalize the definition of simulation security for a Custodian-Contract scheme. Our definition of security
requires that for all p.p.t. real-world adversaries U there must exist an ideal-world adversary SOF,S,F (·) such
that the distribution of outputs produced U at the conclusion of the real-world experiment is indistinguishable
from that of the ideal-world adversary S at the conclusion of the ideal-world experiment.

A.1 Third Party Privacy
Our main security definition (Definition A.1) considers the integrity of CCS computations in the face of an
adversarial User. However, a useful Custodian-Contract scheme must also address the privacy of a honest
User against curious third parties, who may eavesdrop on (public) consensus transactions in order to recover
non-public User inputs or outputs. We address this concern via a separate security experiment that models
an honest Custodian, an honest User and an honest-but-curious Contract who acts as the observer, and may
read any protocol messages sent to or from the Contract. Intuitively we wish to ensure that for each of our
protocols, the curious Contract cannot learn the input Inputi. We address this property via a real/ideal
world definition. In the real-world experiment, the adversary A is provided with an oracle that allows her
to request the User run the computation on a given set of inputs. A receives each input and output from
the ExecuteContract call that results from this computation. In the ideal-world experiment, we require the
existence of a simulator S that, on input a valid query from A (i.e., a query that would otherwise produce a
valid output from ExecuteUser), makes the necessary query to ExecuteContract. The key in this definition is
that S does receive A’s input (or any previous output). Our definition requires that no p.p.t A can distinguish
the two experiments.

The third-party Privacy Real experiment (RealTPP). The experiment proceeds as follows. For i = 1 to q,
the adversary A may query an oracle on tuples of the form (Inputi, Ui, C

′). In response the oracle samples
random coins ri and returns Ci ← ExecuteUserF (Inputi, Ci−1, ri). The oracle then completes the protocol of
§2.1 by running ExecuteContract and ExecuteCustodian on the resulting outputs, and finally provides A with
all input/output values sent to the Custodian and the Contract:

(Ci, Ui, Pi−1, zi−1, Oi, πi,STenci,STenci−1,Outputi, Pi)

The third-party Privacy Ideal experiment (IdealTPP). This experiment is parameterized by a probabilistic

simulator algorithm SF that does not have access to the computing secrets S, s. It operates identically to the
Real experiment except that in addition to running the protocol as described above, the oracle also runs SF
with no user inputs to produce an output C ′i, then calls a second instance of the Contract oracle to produce
(Oi, πi). The oracle provides A with the tuple:

(C ′i, Ui, Pi−1, zi−1, Oi, πi,STenci,STenci−1,Outputi, Pi)

In both cases the adversary A outputs a bit b.

Definition A.1 (Third party privacy) We say that a Custodian-Contract scheme Σccs is third party
private for functionality F if ∀ p.p.t. real-world adversarial users A and ∀ non-negative integers q, qforge,
there exists a p.p.t. simulator SF such that Pr [RealTPP(Σccs,F ,A, q) ]−Pr

[
IdealTPP(F ,SF , q)

]
≤ ν(λ).

Remark. We note that this experiment provides privacy for the user inputs because in the ideal-world
experiment, the simulator S does not receive the User input Inputi or random coins specified by the User.

B Proof of Theorem 3.1
We now present a proof of Theorem 3.1. We briefly recall our two experiments, Real and Ideal from
Appendix A. In Real, the protocol is run as described in Section 2.2, with A allowed to make up to qforge



queries to the forgery oracle F . This oracle takes as input Of = [Cf‖Cf−1‖Df‖Pf ] from the adversary
and outputs the authenticator πf (note that we assume it is impossible for AF to forge an authenticator
idependantly). In the Ideal experiment there exists an ideal oracle that runs the program functionality and
maintains its own state. Additionally, in the ideal experiment we give S access to up to qforge calls to Single
Step Oracles. After each run of the real ideal functionality, the ideal oracle outputs an encrypted checkpoint
that can only be used by the single step oracles. These oracles can run exactly one step of the function
NextStep from a supplied start point and then can never run anything again.

We prove that there exists a simulator S such that no p.p.t. adversary AF can distinguish the distribution
of outputs from the Real and Ideal experiment with non-negligible probability. To prove this statement, we
first describe the operation of the simulator S. We then proceed to demonstrate that if there exists a p.p.t
AF that distinguishes the output of the experiments, then one or more of the following are true: (1) there
exists an adversary that breaks the EU-CMA security of the authenticator, (2) an attack on the binding
property of the commitment scheme, or (3) a distinguisher for the pseudorandom function PRF. We will now
describe the operation of the simulator S.

The operation of S. The simulator S interacts with the real-world adversary AF using the interface
described in the real-world experiment. The simulator also has oracle access to the ideal functionality (which
cannot be rewound) as well as an authenticator oracle Π that will produce a valid authenticator π for chosen
messages. Finally, the simulator has oracle access to a forgery oracle F and qforge Single Step Oracles, as
described above. S maintains three tables, Tcon, Tcus, and Tforge. Each query AF makes to the various
oracles is stored in the appropriate table. Queries to OContract are stored in Tcon, queries to OCustodian are
stored in Tcus, and queries to F are stored in Tforge. For example the ith row of Tcon contains

(Ci, Uiπi, Oi)

Similarly, Tcus stores all the queries and responses A makes and receives to OCustodian. The ith row contains:

(STenci, Inputi, ri, πi, Oi,Outputi, Pi,STenci+1)

and Tforge contains the following in the ith row:

(πi, Oi)

All tables are initialized to be empty. S receives and processes queries from AF as follows. When A attempts
to the query the contract oracle on Ci, Ui, the simulator does the following:

1. S calls ODoContract to generate Di

2. S finds Ci−1 in Tcon and generates Oi = [Ci‖Ci−1‖Di‖Pi]. S then queries the signing oracle Π on Oi
and receives πi. S adds the entry (Ci, πi, Oi) to Tcon.

3. S returns (πi, Oi) to A.

When A attempts to query the custodian oracle on (STenci, Inputi, ri, πi, Oi), the simulator does the following:

1. S checks Tcus for any previous entries matching the query. If there are any, S returns (STenci+1,Outputi)
from that table entry.

2. S checks if the πi is in Tforge. If it is, S runs (STenci+1,Outputi) ← SingleStep(STenci, Inputi). S
halts and outputs (STenci+1,Outputi).

3. S looks up πi, Oi in the ith row of Tcon and makes sure they match some entry. Otherwise, S halts and
returns ⊥.

4. S parses Oi = [Ci‖Ci−1‖Di‖Pi] and checks that Ci = Commit(Inputi, Ci−1; ri). Otherwise, S halts and
returns ⊥.

5. If STenci = ε, S checks that Ci−1 = ε. If it does not, S halts and returns ⊥.
6. S checks that STenci is in row i− 1 of Tcus. Otherwise, S halts and returns ⊥
7. S calls ODoWork on Inputi and receives Outputi.



8. S samples STenci+1
$← {0, 1}` and appends (STenci, Inputi, ri, Oi,Outputi,STenci+1) to Tcon.

9. S returns Outputi,STenci+1 to A.

When A attempts to query F on (Cf , Cf−1, Df‖Pf ), the simulator does the following:

1. S simulates the forgery oracle F and generates πf
2. S appends (πf , Of ) to Tforge

Let A be an adversarial user that succeeds in distinguishing the output of the Ideal and Real experiments.
We now show that such an adversary violates one of our assumptions above. The proof proceeds via a series
of hybrids, where the first hybrid (Game 0) is identically distributed to the Real experiment, and the final
hybrid represents the Ideal experiment instantiated with the simulator S described above. For notational
convenience, let Adv [Game i ] be A’s advantage in distinguishing the output of Game i from Game 0,
i.e., the Real distribution.

Game 0. In this hybrid, S responds to queries as in the Real experiment.

Game 1. In this hybrid, we modify S to abort and output Eventforge in the event that A queries OCustodian

on input (STenci, Inputi, ri, [πi, Oi]) for any valid authentication tag (πi, Oi) that was not supplied by
a previous oracle call to S. We note that if A succeeds in producing this event with non-negligible
probability, then we obtain a trivial attack on the SUF-AUTH of the contract authenticator. Since by
assumption the probability of such an event is negligible, we bound Adv [Game 1 ] ≤ ν1(λ).

Game 2. In this hybrid we modify the operation of S such that it aborts and outputs Eventcollision in
the event that A queries OCustodian twice with commitment inputs Ci = Cj and two valid distinct
commitment openings (Inputi, Ci, ri) 6= (Inputj , Cj , rj). By Lemma B.1 we prove that this event occurs
with at most negligible probability, hence Adv [Game 2 ]−Adv [Game 1 ] ≤ ν2(λ).

Game 3. In this hybrid we modify S to generate each state encryption key ki by sampling uniformly at
random from {0, 1}`. Recall that in the preceding hybrid, each ki is generated as PRFS(“enc”‖Ci).
Note as well that if the Simulator has not aborted, then each Ci is unique. Thus if there exists an
attacker that distinguishes Game 3 from Game 2 with non-negligible advantage, then we can trivially
construct a distinguisher that distinguishes the output of PRFS (evaluated on unique inputs) from
that of a random function. Thus under the assumption that PRF is pseudorandom we have that
Adv [Game 3−Game 2 ] ≤ ν3(λ).

Game 4. In this hybrid we modify the operation of S such that it aborts and outputs Eventauth in the event
that A queries OCustodian on valid input STenci−1, where STenci was not supplied as an output from a
previous call to this oracle (excepting the special case where STenci−1 = Ci = ε). By Lemma B.2 we
have that Adv [Game 4−Game 3 ] ≤ ν4(λ).

Game 5. In this hybrid we modify the operation of S so that each ciphertext STenci is replaced with a
random string of equivalent length. By Lemma B.3, Adv [Game 5−Game 4 ] ≤ ν5(λ).

Game 6. In this hybrid we modify the operation of S such that when A queries the custodian repeatedly
on the same tuple (STenci, Inputi, ri, [πi, Oi]), all queries subsequent to the first query return the same
result as the first query. Recall that by definition the ExecuteCustodian algorithm is deterministic;
thus, repeated queries on the same input will always produce the same output. Hence by definition
Adv [Game 6−Game 5 ] = 0.

The advantage gained by the adversary in distinguishing between the Real experiment and the Ideal
experiment is bounded by the negligible function ν1(λ) + · · ·+ ν5(λ) + 0. Thus by the hybrid lemma, the
distributions of Game 6 and Game 0 are computationally indistinguishable.

We now conclude with the following Lemmas.



Lemma B.1 (Input Commitments are Unique) If the commitment scheme Σcom is binding, then
Adv [Game 2 ]−Adv [Game 1 ] ≤ ν2(λ).

Proof. Let (C0, . . . , Ck) be the sequence of valid commitments provided to the Custodian after the kth
successful invocation (i.e., those commitments for which A has provided a correct opening tuple). Recall that
for i ≥ 0 each commitment is computed as Ci = Commit(Inputi‖Ci−1; ri) with the special case that the initial
commitment C0 = ε. For the abort condition of Game 2 to occur, there must be at least two duplicate
commitments in the list above, and argue that this event will occur with at most negligible probability if the
commitment scheme is binding. We proceed using induction.

Let us consider only a prefix of the list that consists of the commitments (C0, . . . , Cj) for some j ≥ 0.
Clearly there can be no duplicate commitments if j ≤ 1. This would imply that there is either a single
commitment, or that C1 = C0 = ε which is not possible by our definition of the commitment scheme. Now
let us consider the inductive case. Let j > 1 be an integer such that (C0, . . . , Cj−1) contains no duplicate
commitments, but Cj = Cl for some 0 < l < j.19 Then we have two cases. In the first case if (Inputj , Cj−1, rj)
= (Inputl, Cl−1, rl) then we have Cj−1 = Cl−1. However this violates our initial assumption that there
are no duplicates in the set (C0, . . . , Cj−1). This leaves only the second case where the two input tuples
are not equal, yet the resulting commitments are identical. If A causes this to occur with non-negligible
probability, we can use A to construct an attacker that violates the binding property of the commitment
scheme with identical probability. Thus, under the assumption that commitments are binding, we have that
Adv [Game 2−Game 1 ] ≤ ν2(λ). �

Lemma B.2 (Unforgeability of State Ciphertexts) If the authenticated encryption scheme ΣAE satis-
fies the AE definition, then Adv [Game 3−Game 2 ] ≤ ν3(λ).

Proof. If Adv [Game 3−Game 2 ] is non-negligible, this implies that A induces Eventauth with non-
negligible probability. We show that such an adversary can be used to construct an adversary B that has
a non-negligible advantage against the authenticity definition of Rogaway [Rog02]. Let q be the maximum
number of Custodian oracle calls that can be made by A. B runs A internally. It first samples an integer
j ∈ [0, q) and runs the protocol of Game 3. For each query i 6= j, runs the protocol as usual. At the jth
query, B uses the AE challenge oracle to produce the output ciphertext STencj using the correct input and a
0 message (of the same length) as the challenge pair. If A submits a forged value STencj+1 6= STencj then
B sends this value to the decryption oracle to learn the bit b. If A succeeds with probability ε, then B will
succeed with advantage ε/q. Since A can forge the state ciphertext with at most negligible probability, then
Adv [Game 3−Game 2 ] ≤ ν3(λ). �

Lemma B.3 (Indistinguishability of State Ciphertexts) If the authenticated encryption scheme ΣAE

satisfies the AE definition, then Adv [Game 5−Game 4 ] ≤ ν5(λ).

Proof. We assume ΣAE schemes satisfy the random ciphertext model of security: formally Advpriv
Π (A) =

Pr
[
K

$← K : AEK(·,·) = 1
]
− Pr

[
A$(·,·) = 1

]
. Let k be a random encryption key. We show that if A

can distinguish the distribution of Game 4, where STenci is a valid encryption of a state value, and
Game 5 where STenci is a random string of the same language, we can construct an adversary B such that
Advpriv

Π (B) > ν5(λ)/q. B samples a value j ∈ [1, q) and runs the protocol of Game 4. To answer A’s jth
query, B queries the encryption oracle and returns the result as STencj . Note that if the result is a correct
encryption of the message, the distribution is as in Game 4. If the result is a random string, then the
distribution is as in Game 5. If A distinguishes the two distributions with non-negligible advantage, then B
uses A’s output to obtain a non-negligible Advpriv

Π (B). Since we assume that the AE scheme is secure, this
produces a contradiction. Thus Adv [Game 5−Game 4 ] ≤ ν5(λ). �

19We ignore the case where Cl = C0 = ε, since this cannot occur by definition.



C A Multiparty Public Key Encryption Scheme
In this section we sketch a construction for the multi-party public key encryption scheme we use in §4.4.
While the techniques used to construct this scheme are not novel, we include them for completeness. First,
we briefly define multi-party public key encryption.

C.1 Multiparty Public Key Encryption (MPKE)
LetM be a message space. A multiparty public key encryption (MPKE) scheme consists of three possibly
probabilistic algorithms (PKMGen,PKMEnc,PKMDec) with the following description:

PKMGen(1λ)→ (pk , sk). On input a security parameter, the key generation algorithm outputs a public and
secret key.

PKMEnc(pk1, . . . , pkn,m)→ CT . On input a set of n public keys and a messagem, the encryption algorithm
outputs a single ciphertext CT .

PKMDec(pk , sk , CT )→ m′. On input a single public and secret key as well as a ciphertext CT , outputs a
decrypted message or the distinguished error symbol ⊥.

Correctness. Intuitively, a MPKE scheme is correct if ∀m ∈ M, integers n > 0 and 0 < j ≤ n, and key
vectors (pk1, . . . , pkn) where each (pk i, sk i) ∈ PKMGen(1λ), the following relation holds with probability
≥ 1− ν(λ) over the random coins of the experiment:

PKMDec(pk j , sk j ,PKMEnc(pk1, . . . , pkn,m)) = m.

Security. Let the random variable IND-MPKE-CCAnb (Π,A, λ) where b ∈ {0, 1}, integer n > 0, A = (A1,A2)
and λ ∈ N denote the result of the following probabilistic experiment:

IND-MPKE-CCAnb (Π,A, λ)
(pk1, sk1)← PKMGen(1λ), . . . , (pkn, skn)← PKMGen(1λ)

(m0,m1, z)← AOdec(·,·)
1 (pk1, . . . , pkn) s.t. m0,m1 ∈M

y ← PKMEnc(pk1, . . . , pkn,mb)

B ← AOdec(·,·)
2 (y, z)

Output B

We define Odec(i, CT ) to be a decryption oracle that, on input an integer i and a ciphertext CT outputs
PKMDec(pk i, sk i, CT ) if CT 6= y, and otherwise outputs ⊥.

An MPKE scheme Π is IND-MPKE-CCA-secure for keysets of size n if ∀ p.p.t. algorithms A the following two
ensembles are computationally indistinguishable:{

IND-MPKE-CCAn0 (Π,A, λ)
}
λ

c
≈
{
IND-MPKE-CCAn1 (Π,A, λ)

}
λ

Remark. We note that the decryption oracle Odec operates over a single public key pki and does not take
as input the remaining public keys. Our definition requires that decryption oracle operates correctly even
without access to this additional information.

C.2 An MPKE scheme from TBE
We now describe one exemplary construction of an MPKE scheme. The key ingredient in our construction
is a Tag-Based Encryption (TBE) scheme [MRY04]. TBE is a form of public-key encryption in which the
encryption and decryption algorithm take an additional input called a tag, drawn from an exponentially-sized



tag space. TBE schemes are known from a variety of underlying assumptions in the standard model, including
DDH in cyclic groups [CS04] and well-studied bilinear assumptions [Kil06].20

Tag-based Encryption. A TBE scheme consists of three (possibly probabilistic) algorithms (TBEKG,
TBEEnc,TBEDec). Key generation operates identically to a public key encryption scheme. On input a public
key, a message m and a tag T , TBEEnc produces a ciphertext CT . Similarly, on input a public and secret
key, a ciphertext and a tag T , TBEDec outputs a message m′ or ⊥.

We require a TBE that provides selective tag CCA security (IND-sTBE-CCA). Intuitively this definition
is a variant of the classical IND-CCA2 definition, in which the adversary has access to a decryption oracle
that, on input a tag T and a ciphertext CT , provides the decryption of CT with tag T under the following
restriction: the attacker may not query the decryption oracle on the specific tag T ∗ that was used to formulate
the challenge ciphertext. In the selective tag model the attacker selects the tag T ∗ but must do so at the start
of the experiment, prior to receiving any public keys or parameters. See [Kil06, §3.2] for a formal definition
of the experiment.

The MPKE construction. Using TBE as a building block, we now describe our main construction of
MPKE. This approach employs the TBE-to-PKE construction independently proposed by MacKenzie et
al. [MRY04] and Boneh et al. [CHK04]. LetM be the message space of the underlying TBE scheme, and let
T be the scheme’s exponentially-sized tag space. We additionally require a SUF-CMA one-time signature
scheme OTS = (OTSKG,OTSSign,OTSVerify) where the public keyspace for the OTS is included in (or can
be mapped to) T .

PKMGen(1λ). Output (pk , sk)← TBEKG(1λ).

PKMEnc(pk1, . . . , pkn,m)→ CT . First, sample a keypair for the one-time signature (svk , ssk)← OTSKG().
Let p represent a mapping between public keys and ciphertexts. Now for i = 1 to n compute
Ti ← svk and Ci ← TBEEnc(pk i, Ti,m) and σ ← OTSSign(svk , ssk , (p, C1, . . . , Cn)). Finally, output
CT ← (p, C1, . . . , Cn, σ).

PKMDec(pk , sk , CT ) → m′. First parse CT as (p, C1, . . . , Cn, σ). Now verify the signature σ using
OTSVerify(svk , (p, C1, . . . , Cn), σ). If this check outputs 0, return ⊥. Otherwise use p to identify
the ciphertext Ci corresponding to pk (if none is found, output ⊥). Set Ti ← svk and output
m′ ← TBEDec(pk , sk , Ti, Ci).

Security. We leave correctness as an exercise for the reader, and proceed with a brief sketch of the security
argument for the above scheme, which proceeds nearly identically to the arguments of [MRY04,CHK04].

Proof sketch. Let A be an adversary that succeeds with non-negligible advantage in the IND-MPKE-CCA
experiment against the MPKE scheme. We construct a second adversary B that succeeds with non-negligible
advantage in the IND-sTBE-CCA experiment for the TBE scheme. At the start of the experiment, B generates
a keypair (svk∗, ssk∗) for the OTS, and selects T ∗ = svk . When B receives pk from the TBE challenger,
it selects a random integer j ∈ [n] and sets pk j ← pk . For k = 1 to n, k 6= j it computes (pkk, skk)

← PKMGen(1λ) and retains the secret key. B now runs A on input (pk1, . . . , pkn). Whenever A queries the
decryption oracle on (CT, i) where svk = T ∗ B returns ⊥. Otherwise B first verifies the attached signature
and outputs ⊥ on failure. If the signature verifies and i = j, B queries the TBE decryption oracle on Ci and
returns the result. If i 6= j then B computes the decryption using the known secret key. To produce the
challenge ciphertext y, B transmits (m0,m1) to the TBE challenge oracle and sets Cj to be the result. B
samples a random bit b′ and for k = 1 to n (and k 6= j) computes Ck ← TBEEnc(pk i, T

∗,mb) and then signs
the resulting vector (p, C1, . . . , Cn) using ssk to produce y. When A outputs a guess B, B outputs B as its
guess.

20Moreover, if TBE schemes are not available, then Identity-Based Encryption schemes can be used for TBE. This implies a
much wider range of assumptions from which these schemes may be constructed.



We argue that with probability 1/2 A will select b′ such that b′ = b, and thus the distribution of y will be
identical to that of the real protocol. We further argue that in this case all outputs from the decryption oracle
Odec are distributed identically to the real protocol, which the exception of the case where svk = T ∗ and
CT 6= y. In that one case, however, it is easy to show that B’s simulation will differ from the real experiment
if and only if A is able to produce a new pair (σ,m) not signed by B such that this pair validates using svk .
We argue that if A succeeds in this with non-negligible probability, that would imply a successful adversary
against the SUF-CMA property of the OTS. Therefore this condition must occur with at most negligible
probability. Hence if A succeeds in the IND-MPKE-CCA experiment with advantage ε then B succeeds in the
IND-sTBE-CCA experiment with advantage at least ε/2− ν(λ). �


