
Linear Cryptanalysis Using Low-bias Linear
Approximations
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Abstract. This paper deals with linear approximations having absolute
bias smaller than 2−n

2 which were previously believed to be unusable for a
linear attack. We show how a series of observations which are individually
not statistically significant can be used to create a χ2 distinguisher. This
is different from previous works which combined a series of significant
observations to reduce the data complexity of a linear attack. We test
the distinguisher on a real-world cipher and show that it can be used to
improve previous results.
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1 Introduction

Linear cryptanalysis is one of the most powerful cryptanalytic methods. De-
veloped in [26], linear cryptanalysis deals with approximating the non-linear
behavior of a cryptographic primitive in a linear way. Through ample research,
the understanding of the attack had been improved [24, 27, 28, 30], and it was
extended and generalized in many subsequent works [8, 12,18,20,21].

Generally speaking, an adversary using linear cryptanalysis uses a linear
approximation linking the input bits, output bits, and key bits with some prob-
ability. The quality of the approximation is usually measured through its “bias”
or “correlation” and it is evaluated using a large amount of pairs of plaintexts
and ciphertexts.

The amount of pairs required for the attack to succeed determines the data
complexity and several works analyzed it in order to estimate this quantity [24,
28, 30]. The common wisdom is that for a linear attack using an approximation
with bias satisfying ε = p − 1

2 , the data complexity of the order of ε−2, which
is usually interpreted as the number of pairs the adversary needs to observe.
As the number of possible pairs in a block cipher with a block size n is 2n,
this essentially limits the possible approximations to ones with bias |ε| ≥ 2−n/2,
which often puts an upper limit on the number of rounds an approximation can
cover. It is worth noting that although the mechanism of linear cryptanalysis is



well understood, the problem of obtaining the exact bias (or a good estimation
of it) is still an open one as we discuss later.

One of the extensions proposed for linear cryptanalysis is Multiple Linear
cryptanalysis by Kaliski and Robshaw [25]. Originally, the extension was limited
to approximations involving the same key bits, but this restriction was later
lifted by Biryukov et al. in [8] where it was only required that the set of ap-
proximations would be linearly independent. Another progress was made when
Hermelin et al. presented Multidimensional Linear cryptanalysis in [21] where
the approximations need not be linearly independent. However, the focus of all
these works was always on reducing the data complexity of the attack, and all
approximations used had biases satisfying |ε| ≥ 2−n/2. Moreover, it seems that
many believe that approximations with bias |ε| < 2−n/2 can never be used to
attack a block cipher via a linear attack; see e.g., [1, 7, 8, 14, 16, 22, 25, 31]. This
belief has reached the point where it is taken as an assumption, and is used to
“prove” the resistance of new designs against linear cryptanalysis. In light of the
results presented in this paper, such proofs should be reconsidered, especially
for lightweight ciphers which often offer only small security margins.

1.1 Our Contributions

In this paper we show that contrary to common belief, approximations with
bias |ε| < 2−n/2 (which we refer to as “low-bias approximations”) can be used
for a linear attack. This is done by employing the χ2 distinguisher [31] which
can capture the statistical difference between a set of approximations with low
biases and a set of random approximations. The implication of this observation
is that security arguments based on counting S-boxes and showing an upper
bound on the bias of the best approximation should be re-evaluated. Moreover,
using low-bias approximations, linear distinguishers can cover additional rounds,
thus extend previous attacks.

As a second contribution, we present a set of low-bias linear approximations
for Speck32/64, and conjecture that our method can be used to extend the best
known distinguisher from 9 to 10 rounds. To confirm this hypothesis, we conduct
several experiments and employ statistical tests to show that the results are
statistically significant. These experiments serve two purposes as they confirm
our theory as well as improve the state of the art cryptanalysis with respect to
Speck32/64, which is an important cipher.

2 Preliminaries and Notation

We present the tools and notations used throughout the paper. The space of
n-dimensional binary vectors is denoted by Vn. A boolean vector x ∈ Vn is
composed of a string of n bits x = (xn−1, . . . , x0) where x0 is the least significant
bit. A boolean function f is a function taking a vector of size n and outputting
a single bit, i.e., f : Vn → V1. For two vectors x, y ∈ Vn we define the inner
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product · as x · y =
⊕n−1

i=0 xi ∧ yi where ⊕ stands for addition modulo 2 (XOR)
and ∧ is the AND operation between two bits.

A block cipher is a function E : Vn × Vk → Vn taking a plaintext P and
converting it using a key K to a ciphertext C. An iterative block cipher is a
block cipher composed of a relatively simple round function R(ki, xi) = Rki(xi)
that takes a subkey and the round input and returns the round output. The
block cipher is then constructed from multiple applications of the round function
R with different subkeys obtained through a key-schedule algorithm from the
master key K.

A linear approximation ψ for a function R(k,X) is a tuple (α, β) evaluating
the equation α · X ⊕ β · R(k,X) = 0 for some given X and k. Each linear
approximation is associated with a probability p, which measures the probability
that ψ holds for a uniformly chosen X. The bias εψ of a linear approximation is
defined as εψ = p− 1

2 .

A linear trail is a sequence of m linear approximations ψ0, . . . , ψm−1 that cov-
ers a set of consecutive rounds R0, . . . , Rm−1 in such a way that ψi corresponds
to Ri and the output mask of ψi−1 is equal to the input mask of ψi. The bias of a
linear approximation can be obtained through the Piling Up Lemma and is equal
to 2m−1 ·∏m−1

i=0 εi where εi is the bias associated with ψi. The masks for a linear
trail are sometimes written as a tuple (α, β, γ) to indicate the key involvement,
and the approximation is then evaluated as α ·X ⊕ β ·R(k,X)⊕ γ · k = 0.

A linear hull with masks (α, β) is the collection of all linear trails with input
mask α and output mask β, keeping all intermediate values as free variables.
The bias of the hull is the sum of biases for the composing trails. Although
often treated as such, the bias of a linear hull is not a fixed value but rather
key-dependent, and we elaborate on that in Section 2.1. The term linear approx-
imation is used to describe both trails and hulls, and the respective masks will
be clear from the context.

In the sequel we denote random variables by boldface, capital letters X,Y,Z.
A random variable X is associated with a probability distribution Px = (p0, . . . , p`)
where each value pi is the probability that X takes the value i, i.e., Pr[X = i] =
pi. In places where it is clear which random variable is considered, we simply
write P instead of Px. To denote a specific value X,Y,Z took, we use X̂, Ŷ , Ẑ. In
the sequel, random variables are used to model the fact that the bias is a prob-
ability distribution rather than a fixed value (i.e., key dependent). To avoid the
complication of estimating the bias through a sample of the data (i.e., through
the empirical bias), we will only consider in this paper the case where the entire
codebook is used. The extension to cases where only a sample of the codebook
is used (e.g., due to a larger block size) can be readily obtained using the same
methods as [3, 10,13].

The normal distribution is an important distribution defined by two param-
eters, the mean and the variance. We denote by X ∼ N (µx, σ

2
x) the fact that

the random variable X follows a normal distribution with mean µx and variance
σ2
x. When µx = 0, and σ2

x = 1 we call the resulting distribution the standard
normal distribution, and say that X is a standard normal random variable. It is
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possible to convert any normal random variable X ∼ N (µx, σ
2
x) into a standard

normal variable Y by setting Y = X−µx

σx
.

Another important distribution we use is the χ2 distribution with k degrees
of freedom. We write Z ∼ χ2

k to say that the random variable Z follows the χ2

distribution with k degrees of freedom. It is known that if X ∼ N (0, 1) then
X2 ∼ χ2

1, and that the sum of m squared standard normal variables follows the
χ2
m distribution.

In what follows, the goal of the adversary is to distinguish a block cipher
Ek from a random permutation. This can be done through hypothesis testing.
The adversary collects some information that could come from either a random
permutation or a block cipher, and uses it to calculate a test statistic. We derive
the expected behavior of the test statistic when the underlying data comes from
a random permutation, and build a confidence interval for its distribution. If
the test statistic falls inside the interval, we determine that the data came from
a random permutation, otherwise, we determine that it came from the block
cipher. It is interesting to see that by taking this approach, we make a generic
observation, independent of any specific application of the method. When ex-
ecuting the attack, the statistical distance, hence the advantage, are determined
by the specific block cipher being attacked and the quality of the approximations
used. This approach is useful in many real life scenarios when it is hard to obtain
a good estimate for the bias for reasons discussed in the next subsection.

2.1 A Note on Bias Estimation and the Required Data Complexity

It is important to note that the problem of obtaining the right value for the bias
ε is still open. The essence of the problem lies in the fact that although in many
cases it is easy to calculate the probability of a specific linear trail directly from
the cipher’s structure, this bias remains impossible to measure unless the key is
already known. On the other hand, the bias of the linear hull, which is easy to
measure, is hard to compute theoretically. To better understand this, it is useful
to consider the values the bias can take. When a single trail is considered, the
magnitude of its bias is fixed, and the key only affects the sign. However, since
an adversary has access only to the input and output of the cipher (and not to
intermediate rounds), the bias can only be measured over the linear hull, which
is composed of an unknown number of trails.

In Matsui’s original paper [26], he presented a single trail and used its bias for
the attack. This approach worked in the case of DES because the corresponding
linear hull consisted only of one significant trail. However, in other ciphers, the
fact that the hull may be composed of multiple trails leads to an under- or
overestimation of the bias. A counterexample to the case of DES was presented
in [4, 5], showing how such an erroneous estimation of the hull’s bias through a
single trail affects the success probability of the attack.

Another important aspect of bias estimation is the influence of the key. In
the case of a linear trail, the magnitude of the bias is known and only the sign is
affected by the key. The bias is therefore a random variable that can take only
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two values. The actual value is determined by a subset of key bits.3 However,
in the case of a linear hull the bias is the sum of multiple biases coming from
the underlying trails. Each of these underlying biases is a random variable with
different values coming from different distributions, and resulting in a probability
distribution rather than a single value for the hull’s bias. Generally, the nature
of this distribution is cipher-dependent. For real-life ciphers, the distribution
is hard to derive due to the large number of involved trails, and is therefore
unknown to the adversary. The probabilistic nature of the bias was discussed
in [1]. In practice, many works simply use the mean of the absolute bias in place
of the actual distribution for attacks, which is generally insufficient.

In a private communication with Kaisa Nyberg, the authors received a soon
to be published manuscript of [11], which constitutes an attempt to address these
concerns through an estimation of the ELP. The idea behind their approach is
to split the involved linear trails into two groups Q and R representing the
dominating trails and the “rest”. Once the set of dominating trails is properly
accounted for, the “rest” can be modeled as random noise. However, this ap-
proach simplifies the problem only slightly. First, it assumes that the adversary
can find all dominating trails, which again requires sieving through the space
of all possible ones. Second, even if a certain set is already given, it is required
that it be exhaustive, which is again hard to verify in practice. Finally, although
it can readily be shown that the estimation error of the bias decreases with the
number of known trails, this is not reflected in [11], which always models R as
random noise, regardless of the set’s size.

Interestingly, [11] also mentions (independently of us) that linear approxi-
mations with low bias can be used for an attack through the variance of the
distribution. However, they discuss this in the context of a key recovery attack
using a single approximation. While theirs is an interesting observation, it still
relies on several unrealistic assumptions. First, it assumes that sufficient knowl-
edge of the ELP is given, which again implies that all the most dominant trails
are known, if not the full distribution. More importantly, it assumes that the
ELP is always larger than the bias variance of a random approximation, which
allows them to define an interval [−Θ,Θ] and claim that keys outside this in-
terval are more likely to be right keys. As can be seen in the example we use in
Section 4, this is not always the case, which means that in some cases (a-prioi
unknown due to the difficulty to calculate the ELP), keys inside the interval
[−Θ,Θ] are actually more likely to be the right keys.

A recent paper [29] takes a different approach for obtaining the distribution
of biases, by trying to bound them. They explicitly criticize prevailing methods
using order statistics, due to the reliance of such methods on assumptions re-
garding the distribution of the bias. As a result, they question the applicability
of formulas formerly used to derive the data complexity. Clearly, [11] and [29]
(as well as others) are in disagreement as to some fundamental aspects of lin-
ear cryptanalysis. In spite of that, progress in the practical application of linear
cryptanalysis is still often based on common wisdom (and hence stands on un-

3This is the property exploited when using Matsui’s Algorithm 1.
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stable ground). For example, papers which follow the evolution of linear trails
either manually [2] or using automated tools [9,32] are still published, suggesting
that an attack can be leveraged using such trails. Similarly, papers ignoring the
key dependency [15] are being published, then improved [33], criticized [10, 23],
then salvaged [11].

This discussion makes it apparent that there is still much more work to be
done before ciphers’ security against linear cryptanalysis is understood. With-
out taking a stance in the ongoing discussion about bias’ distribution, we wish
to highlight a different aspect of linear cryptanalysis that was overlooked. In
this paper, we show that contrary to what seems to be an almost undisputed
axiom, linear approximations with bias smaller than 2−n/2 can be used for lin-
ear cryptanalysis. To avoid the minefield that bias estimation seems to be, we
take an approach that is based on what is the foundation of statistical crypt-
analysis, namely, the behavior of random oracles. Our null hypothesis is that
a set of observations came from a random oracle, and we use a statistical test
that does not require an alternative hypothesis. In doing so, we avoid the need
to obtain information about the bias distribution of the specific cipher under
consideration.

This is not to say that obtaining the bias distribution is unimportant. When
the distribution is known it allows to calculate the ELP, which can then be used
to calculate the data requirement and the advantage of an attack. However,
being independent to the bias estimation problem, our approach has merits in
real world scenarios, even if the bias is unknown. Since both parameters are not
required a-priori to execute the attack, an adversary can simply test the attack
offline (e.g., in a lab), establish that they hold enough approximations given the
data complexity they tried, then execute it on an online target. For example, a
corrupt cipher designer can ensure that one linear approximation out of all 22n

has a low absolute bias but a distinct distribution before releasing the cipher.
Such a backdoor will be practically impossible to find due to the difficulty to
obtain this distribution, nonetheless to check the distributions for each of the
22n possible approximations.

3 Using Hypothesis Testing for Linear Cryptanalysis

In this section we present the tools used in linear cryptanalysis and those we use
later in Section 4 for distinguishing low-bias linear approximations. We stress
that the methods presented in this section are mostly repeating previous results.
Viewing linear cryptanalysis as a hypothesis testing problem was already con-
sidered in [28] and the χ2 distinguisher was previously presented in [31] where
it was shown to be as efficient as the standard distinguisher. The novelty of the
paper starts in the next section where we show that due to the differences be-
tween the distinguishers, the χ2 distinguisher can be used to detect statistical
differences between sets of approximations each with a low bias.
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Let π be a random permutation of n bits, and let ψ be a linear approximation.
We denote by X a counter for the number of times ψ is satisfied over all 2n

possible inputs. The behavior of X is given by the following Lemma:

Lemma 1. For π, ψ, and X as before

X ∼ N (2n−1, 2n−2) (1)

Proof. We define X|ε = 2n ·ε to be the number of times the linear approximation
was satisfied over all possible inputs once the permutation was chosen and ε was
fixed. Substituting ε with [17]’s random variable ε yields the random variable X
and completes the proof.

Since we only consider the case where the full codebook is used, X is obtained
by a simple translation of the bias distribution into a distribution on the pairs
of plaintexts and ciphertexts. In cases where a sample of the codebook is used,
the distribution of X should be adapted accordingly.

The random variable X can be converted into a standard normal variable
by setting X−2n−1

2n/2−1 . Furthermore, knowing that the square of a standard normal
variable follows the χ2

1 distribution, we obtain the following corollary:

Corollary 1. Let π, ψ, and X as before, then

Y = (
X− 2n−1

2n/2−1
)2 ∼ χ2

1 (2)

Let E be a family of block ciphers with block size n, and Ek a member of
this family characterized by a key k. Further, let ψ be a linear approximation
that is biased when applied to a member of E. We define a counter T̂ to count
the number of times ψ is satisfied after observing 2n pairs of plaintexts and
ciphertexts. As ψ is biased when applied to Ek, so is T̂ and the value Pr[X = T̂ ]
is small. On the other hand, when applied to a permutation that is not a member
of E (i.e., random permutation), T̂ follows Lemma 1 and hence Pr[X = T̂ ] is
large. The goal of the adversary upon receiving T̂ is to decide if it was obtained
by applying ψ to a member of E or to a random permutation.

In the classical linear attack, the adversary would normally use T̂ to calculate
an empirical bias ε̂ and compare it to some threshold. For example, an adversary
may decide to use ±2−n/2, meaning that he returns “random permutation” if
−2−n/2 ≤ ε̂ ≤ 2−n/2; “a member of E” otherwise.

This procedure can be viewed as a form of hypothesis testing. The null
hypothesis H0 is that T̂ was generated through a random permutation. The
alternative hypothesis, namely H1, is that it was generated using a block ci-
pher. The adversary constructs a confidence interval for H0, and rejects the
null hypothesis if the test statistic falls outside of it. According to [17], ε, the
bias of a random permutation, has a normal distribution with mean 0 and
standard deviation 2−n/2−1, which means that in the above example, 2−n/2

is 2 standard deviations away from the mean, yielding a confidence interval of
α = Φ(2) − Φ(−2) = 0.95449. Using this interval means that the distinguisher
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Table 1. The linear approximations used to verify the equivalence between the classical
linear distinguisher and the χ2 distinguisher. The difference between the trail bias
predicted by [32] and the measured bias is due to the linear hull effect. All masks are
reported in hexadecimal notation.

No. rounds Input mask Output mask Trail bias Measured bias
(left,right) (left,right) reported in [32]

6 (000D, 56E0) (0800, 0800) 2−8 2−10

7 (000D, 56E0) (2040, 2050) 2−10 2−12

8 (000D, 56E0) (0083, 80C3) 2−13 2−15

9 (000D, 56E0) (170B, 130A) 2−15 2−15.98

reports 1 − α ≈ 4.5% of the values coming from a random permutation incor-
rectly, and thus, it gives an advantage when the probability to correctly identify
the block cipher, namely β, is high enough such that β − (1− α) > 0.

Note that this procedure does not require much knowledge about the bias.
It is sufficient that the underlying key-dependent bias be large enough, and that
the data complexity is sufficient to give a good estimation of the bias for the
attack to work.

3.1 The χ2 Distinguisher

We now present the χ2 distinguisher and demonstrate that in the classical set-
ting (i.e., for a high-bias approximations) this distinguisher is as efficient as the
classical linear distinguisher.

Recalling Corollary 1, we can convert the normal variable X into a χ2
1 vari-

able. The [−2−n/2, 2−n/2] interval which was 2 standard deviations from the
mean to each direction now becomes a [0, 4] interval. Computing Fχ2

1
(4) =

0.95449 where Fχ2
1

is the Cumulative Distribution Function of the χ2
1 distri-

bution shows that the two intervals cover area of the same size.

We have also verified this equivalence empirically, using versions of Speck32/64
reduced to 6–9 rounds. The linear approximations we used were first published
in [32]. However, [32] only reports the bias of a single linear trail found using
their automated tools (i.e., they suggest that the bias of a single trail can be
used in place of the bias of the respective hull, and ignore the key dependency).
We present these approximations in Table 1, and report the average absolute
bias of the hull which we have obtained empirically.

In each experiment we used 211 random keys to encrypt 232 plaintexts for 6–9
rounds and applied the respective linear approximations from Table 1. For each
key we computed the empirical bias, and used both the classical distinguisher and
the χ2 distinguisher. For the classical distinguisher, we checked how many of the
211 experiments have an absolute bias larger than 2−16. For the χ2 distinguisher,
we checked how many times the test statistic was smaller than 4. Table 2 reports
the results, which expectedly show that the two distinguishers are the same.
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Table 2. Comparing the two distinguishers: we show that the two distinguishers pro-
duce exactly the same results and are in fact equivalent.

No. rounds Bias No. Successes for the
classical Linear distinguisher χ2 distinguisher

6 2−10 2048 2048
7 2−12 2048 2048
8 2−15 1900 1900
9 2−15.98 1020 1020

4 Linear Cryptanalysis Using Multiple Low-bias
Approximations

In the previous section we presented a distinguisher using the χ2 distribution
in the classical setting. One limitation of the classical normal distinguisher is
that it cannot use biases which are too small. This is often used to “prove” the
resistance of new designs against linear cryptanalysis by claiming that since no
linear approximations with a bias larger than 2−n/2 exists, no attack can be
mounted with a non-negligible success probability.

Recall that Corollary 1 allows to convert a counter T̂ following a normal dis-
tribution into a χ2

1 variable. Then, since the sum of m independent χ2
1 variables

is distributed according to χ2
m, we get the following lemma:

Definition 1. Let X0, . . . ,Xm−1 be normal random variables with

X0, . . . ,Xm−1 ∼ N (2n−1, 2n−2).

Then a test statistic T defined as

T =

m−1∑
i=0

(
Xi − 2n−1

2n/2−1
)2 (3)

follows the χ2
m distribution.

Noting that N (2n−1, 2n−2) is exactly the distribution of the counters ob-
tained using random approximations, we can use the χ2 distinguisher in two
scenarios which we soon describe. The intuition in both cases is that although
the statistical distance is insufficient to distinguish a single biased distribution
from a random one, this distance increases when multiple observations are con-
sidered. In other words, we use a series of insignificant observations to create a
significant one. This is different from previous works which combined a series of
significant observations to reduce the data complexity.

4.1 The Multi-key Setting

The first case we consider is the multi-key scenario. In this setting, data is
encrypted using the same family of block ciphers by using multiple indepen-
dent keys k0, . . . , km−1. Under our assumption of using the entire codebook, this
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means that each key is used to encrypt 2n plaintexts, using m different keys.
This results in a set of m counters, T̂0, . . . , T̂m−1, where each counter T̂i counts
the number of times the same linear approximation ψ holds for data encrypted
under ki. The goal of the adversary is to distinguish between this case and a
case where the data was obtained using m independent random permutations.

Claim 1 Let π0, . . . , πm−1 be a set of m random permutations, ψ a linear ap-
proximation, and T̂0, . . . , T̂m−1 a set of counters such that T̂i counts the number
of times ψ was satisfied when applied to πi after using the entire codebook. Then,
the test statistic T which is defined as

T =

m−1∑
i=0

(
T̂i − 2n−1

2n/2−1
)2 (4)

has a χ2
m distribution.

The reason T is modeled as a random variable is that in both cases, the counters
T̂0, . . . , T̂m−1 follow a certain distribution. In the case of a set of random per-
mutations, each value is drawn according to Lemma 1. Similarly, for the case of
a block cipher, each counter T̂i is drawn according to the unknown distribution
governing the bias.

With that in mind, we can build a confidence interval of size α for χ2
m and use

it for hypothesis testing. An adversary receives a set of counters T̂0, . . . , T̂m−1

and needs to decide if they were obtained from a set of random permuta-
tions π0, . . . , πm−1 or from a family of block ciphers with m different keys, i.e.,
Ek0 , . . . , Ekm−1 . The adversary builds a test statistic T according to Claim 1
and checks if it falls inside the confidence interval. The null hypothesis H0 is
that the counters were obtained using m random permutations, and therefore
T ∼ χ2

m. The alternative hypothesis H1 is that they were not. The adversary
builds a confidence interval [a, b] of size α for χ2

m, meaning that if H0 is true,
then Pr[a ≤ T ≤ b] = α. As is inherent in any attack using confidence intervals
(such as the classical linear attack), the rate of false positives is 1− α.

The fact that we use the χ2 distribution has major benefits over the classical
distinguisher. Firstly, by squaring, it avoids sign considerations that are inherent
to classical linear cryptanalysis. Moreover, since the average bias of a random
permutation as well as a biased one is 0, using more approximations in the
classical setting only make it more similar to the random case. When using the
χ2 distribution, the mean of the distribution increases with more degrees of
freedom (i.e., when more counters are used), while a test statistic coming from a
block cipher tends to the second moment of the unknown distribution, i.e., since
the mean is 0, to its variance.

As an instructive example, we define a toy cipher, Pitz, and use it to test the
distinguisher. In Section 5 we test this distinguisher for a real block cipher.

Example 1. Pitz is an 8-bit block cipher using a balanced Feistel structure. Given
two 4-bit inputs xi and yi, and a subkey ki, the round function is

(xi+1, yi+1) = Rki(x, y) = ((xi � yi)⊕ ki, xi+1 ⊕ (yi≫ 1)) (5)
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where � is modular addition, ⊕ is bitwise addition, and≫ is a cyclic shift right.
The block cipher is composed of only three rounds, i.e.,

(x3, y3) = E(k0, k1, k2, x, y) = Rk3(Rk2(Rk1(x, y))).

Let us now investigate a linear approximation with input mask (Fx, Fx) and
output mask (ax, 0). Testing this approximation over all keys, we see that there
are 4 possible biases: {−2−7,−2−5.415, 2−5.415, 2−7}, which consist the support
of the distribution. The distribution has respective probabilities { 38 , 18 , 18 , 38} sug-
gesting that the average absolute bias over all keys is E[|ε|] = 2−6.415 with vari-
ance 2−12.415. Note that the traditional belief would set the data complexity to
E−2[|ε|] = (2−6.415)−2 = 212.83 and would conclude that this approximation can-
not be used for a linear attack. Recently, Ashur and Rijmen showed in [5] that
knowledge of the full distribution allows to refine the data complexity require-
ments, but even they argue that at least (2−5.415)2 = 210.83 pairs are needed,
which are not available in an 8-bit block cipher.

Indeed, when we build a confidence interval of size α = 0.95 and try to apply
our distinguisher with m = 1, the test statistic never falls outside of it. This is
also the case for m = 2. However, when m = 4, the test statistic falls outside the
confidence interval 306 times out of 1024, for m = 8 and m = 16 the number of
times is 905 and 1024, respectively. The probability that a random variable with
probability 0.05 would fall outside the test interval more than 305, 904, or 1023
times out of 1024 trials is Φ( 305−51.2

6.97 ) ≈ Φ( 904−51.2
6.97 ) ≈ Φ( 1023−51.2

6.97 ) ≈ 0. We see
that the more keys we consider, the better the distinguisher performs.

4.2 Using Multiple Linear Approximations

the same arguments in favor of the χ2 distinguisher that were presented in the
previous section can be made for using multiple linear cryptanalysis with low-
bias approximations. However, in this case, we need to slightly modify Claim 1
as follows:

Claim 2 Let π be a random permutation, and let ψ0, . . . , ψm−1 be a set of m
linear approximation, and T̂0, . . . , T̂m−1 a set of counters such that T̂i counts
the number of times ψi was satisfied when applied to π after using the entire
codebook. Then, the test statistic T which is defined as

T =

m−1∑
i=0

(
T̂i − 2n−1

2n/2−1
)2 (6)

has a χ2
m distribution.

We can again use Pitz to exemplify this.

Example 2. We now investigate the behavior of multiple linear approximations.
We look into several linear approximations, all having the same input mask
(fx, fx), and output masks: (8x, 0x), (9x, 0x),(ax, 0x), (bx, 0x), (cx, 0x), (dx, 0x),
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(ex, 0x), and (fx, 0x), with average absolute biases of 2−6.0, 2−5.830, 2−6.415,
2−6.415, 2−6.415, 2−6.678, 2−6.093, 2−5.912, respectively. Note that these masks
are not linearly independent. For example, fx = 8x ⊕ 9x ⊕ ex. When applying
our distinguisher to these approximations (i.e., m = 8), we get that in 1024 ex-
periments, the test statistic falls outside the confidence interval 368 times (36%).
The probability that a random variable would fall outside a confidence interval
of size 0.95 more than 367 times in 1024 experiments is Φ( 367−51.2

6.97 ) ≈ 0.

5 Experimental Verification

In this section we present an experimental verification of our distinguisher. We
use Speck32/64 to present several linear distinguishers for 9 and 10 rounds. We
start by presenting Speck, and then move to verify our results.

5.1 SPECK

Speck is a family of lightweight block ciphers designed by the NSA in 2013 [6].
A member of the family is denoted by Speck2n/mn, where the block size is 2n
for n ∈ {16, 24, 32, 48, 64}, and the key size is mn for m ∈ {2, 3, 4}, depending
on the desired security.

�

�

�

�

o ⇣1

�

�
n ⇣2

xi�1 yi�1

xi yi

ki�1li�1lili+1

o ⇣1

n ⇣2

i � 1

Fig. 1. One round of Speck

The round function of Speck receives two words xi and yi, and a subkey ki,
all of size n, and outputs two words of size n, xi+1 and yi+1, such that

(xi+1, yi+1) = Fki(xi, yi) = (fki(xi, yi), fki(xi, yi)⊕ (yi≪ ζ1)),
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Table 3. The 9-round linear approximations used in our experiments.

No. rounds Trail number Input mask Output mask Trail bias
(left,right) (left,right) reported in [32] Measured bias

9 1 (000D, 56E0) (170B, 130A) 2−15 2−15.98

9 2 (000D, 56E0) (1D0B, 1B0A) 2−15 2−15.97

where fki(·, ·) is

fki(xi, yi) = ((xi≫ ζ0)� yi)⊕ ki.

The Speck key schedule algorithm uses the same round function to generate
the subkeys. Let K = (lm−2, ..., l0, k0) be a master key for Speck2n, where
li, k0 ∈ F2n . The sequence of subkeys ki is generated as

ki+1 = fct(li, ki)⊕ (ki≪ ζ1)

for

li+m−1 = fct(li, ki),

with ct = i the round number starting from 0.

The rotation offsets (ζ0, ζ1) are (7, 2) for Speck32 and (8, 3) for the larger
versions. A single round of Speck with m = 4 is depicted in Figure 1. For more
details, we refer the interested reader to the original report [6].

In ISC 2015, Yao et al. [32] used an automatic tool to find the longest linear
trail for Speck32/64 using Matsui’s Branch-and-Bound framework. As a result,
they obtained a 9-round linear trail with bias of 2−15 which is guaranteed to
be the longest possible trail, and the one with the largest bias among all 9-
round trails. This result was later verified using a MILP model developed by
Fu et al. in [19]. For differential cryptanalysis, Biryukov et al. presented in [9] a
distinguisher also covering 9 rounds with probability 2−30.

We see that the longest distinguishers for Speck32 cover 9 rounds to-date.
In the sequel we present 10 round distinguishers forming, to the best of our
knowledge, the best distinguishers for Speck32, while also validating our results.

5.2 Multi-key Distinguishers for Speck

We start discussing our results with a sanity check. In addition to the 9-round
linear trail presented by Yao et al., we found another trail of the same length and
the same bias. Both trails are presented in Table 3. We conducted 2048 experi-
ments with each of the trails, using a confidence interval of α = 0.9. A success in
a single experiment is defined to be “the test statistic falls outside the confidence
interval” which, for a random variable, should happen with probability 0.1.4

4Note that the difference from Table 2 is due to the different size of the confidence
interval.
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Table 4. Results of the multi-key distinguisher for 9 rounds. The probability reported
inside the parentheses is the probability that a binomial random variable will have the
reported number of successes or more. We see that the success rate of the distinguisher
improves as we consider more approximations obtained using different keys.

m No. of Trail No. of successes (prob.)
Experiments

1 2048 1 1069 (< 2−53)
2048 2 1104 (< 2−53)

2 1024 1 749 (< 2−53)
1024 2 740 (< 2−53)

When using a single key with a single trail, the number of successes in 2048
experiments is 1069 for Trail 1 and 1104 for Trail 2, corresponding to 52.2% of
the experiments and 53.9%, respectively.

When setting m = 2 and creating a distinguisher based on multiple keys by
combining the i key with the i+ 1 key, we get that the number of successes (out
of 1024) is 749 for Trail 1 and 740 for Trail 2 corresponding to 73.1% of the
experiments and 72.3%, respectively.

For completeness, we model the expected number of successes in a random
permutation over N experiments where the success probability is 0.1 (corre-
sponding to the false positive rate) by

W ∼ B(N, 0.1).

Fixing N , we can compute the probability that W takes a value which is the
number of successes xi or higher, i.e., p = Pr[W ≥ xi]. The results are summa-
rized in Table 4.

We now turn to present our 10-round distinguisher based on multiple keys.
Using the 9-round trails as a basis, we extended each of them into 128 10-
round trails (i.e., the total number of trails we have is 256, divided into two
sets, based on the 9-round distinguisher they were extended from). We first
start by applying the distinguisher to each of the approximations independently,
and check if it falls inside the confidence interval induced by χ2

1. The result
over 2048 · 256 = 524, 288 experiments is, not surprisingly, 52,215 successes,
corresponding to 10%, which is the expected false positive rate. We therefore see
that each individual approximation cannot be distinguished from a random one.

When setting m = 256 (i.e., each approximation is evaluated against data
from 256 different keys), the number of successes over 2048 experiments is 224
corresponding to 10.9% of the experiments. The probability that a random bi-
nomial variable with probability 0.1 will have 224 or more success in N = 2048
experiments is given by

W ∼ B(2048, 0.1)

Pr[W ≥ 224] = 0.085
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Table 5. Results of the multi-key distinguisher for 10 rounds. The probability reported
inside the parentheses is the probability that a binomial random variable will have the
reported number of successes or more. We see that each individual approximation is
insufficient for constructing a linear distinguisher, but that a collection of 256 is.

m No. of Trail No. of successes (Prob.)
Experiments

1 524,288 1 + 2 52,215 (= 0.838)

256 2048 1 + 2 224 (= 0.085)

The results are summarized in Table 5.

We see that the success rate of the distinguisher improves as we consider
more approximations obtained using different keys.

5.3 Multiple Linear Cryptanalysis Using Low-Bias Approximations

We now present a way to use our distinguisher for multiple approximations,
where all the approximations have a bias smaller than 2−n/2. As before, we
start with a sanity check using our 9-round linear approximations. As we saw
on Section 5.2, when using α = 0.9 and m = 1, the success rate is 1069 for
Trail 1 and 1104 for Trail 2, corresponding to 52.2% of the experiments and
53.9%, respectively.5 When combining both trails, i.e., settingm = 2, the number
of successes in 2048 experiments increases to 1429, corresponding to 69.8% of
the experiments. The results, as well as the probability to have this number of
successes are presented in Table 6.

For a 10-round distinguisher for Speck32 based on multiple linear approxi-
mations we extended each of the 2 trails into 128 10-round trails. Setting α = 0.9
and m = 128 we get that the number of successes in 2048 experiments is 232
when using Trail 1, and 222 when using Trail 2, corresponding to 11.3% and
10.8%, respectively.

Interestingly, when setting m = 256 and using the test statistic over all 256
linear approximations, the obtained result is 223 (10.9%), which is an improve-
ment, but is not as significant as the theory predicts. We conjecture that this
behavior is due to the different distributions of the underlying biases for the
9-round linear approximations and leave it for future research.

Instead, we build two test statistics T1, and T2, for each group of 10-round
linear approximations, and consider the experiments successful if either of the
statistics falls outside the confidence interval. We get that when using this test
for Speck32, the number of successes in 2048 experiments is 438 (21.4%), wheres
the expected false positive rate in this case is 0.1+0.1−0.12 = 0.19. A summary
of these results is presented in Table 6.

5These numbers are the same as in Section 5.2 as they describe the same experiment.
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Table 6. Results of a distinguisher using multiple approximations for 9 and 10 rounds.
The probability reported inside the parentheses is the probability that a binomial
random variable will have the reported number of successes or more.

No. Rounds m No. of Trail No. of successes (Prob.)
Experiments

9 1 2048 1 1069 (< 2−53)
2048 2 1104 (< 2−53)

9 2 2048 1+2 1429 (< 2−53)

10 1 524,288 1 + 2 52,215 (= 0.838)

10 128 2048 1 232 (= 0.026)
2048 2 222 (= 0.110)

10 256 2048 1 + 2 223 (= 0.097)
10 128+128 2048 1 or 2 438 (= 0.004)

6 Conclusion

In this paper we showed how to use a χ2 distinguisher to detect biases smaller
than 2−n/2 which were previously believed to be unusable. We successfully tested
the distinguisher in two settings: the multi-key setting and the multilinear set-
ting. All the results in this paper have been verified experimentally. We showed
that in addition to providing a general observation about linear cryptanalysis
using low-bias approximations, we can improve the success probability of the
previously presented 9-round distinguishing attack in both the multi-key and
the multiple approximations scenarios. We were further able to construct sev-
eral 10-round distinguishers in both settings, which are the longest distinguishers
for Speck32/64 to-date.

Since we use a fairly small amount of approximations, future research should
be able to further increase the successes probability of the 10-round distinguish-
ers, or extend them to cover even more rounds. In Section 2.1 we discussed
related problems in linear cryptanalysis such as getting a good estimation of the
bias, and properly deriving the data complexity. We showed that these problems
are inherent to all linear attacks, and are independent of our results. In future
works we plan to try addressing these related problems. We also plan to refine
the way we aggregate counters coming from different distributions. As for a key
recovery, while it seems that Matsui’s Algorithm 2 can be implemented over the
multiple approximations distinguisher as it only uses a single key, it is unclear
how a key recovery attack can be implemented in the case of multiple keys. In
both cases, more work is required. Naturally, another research direction is to
apply our technique to other block ciphers.
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