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Abstract. One of the tasks in the iDASH Secure Genome Analysis Competition in 2016 was to
demonstrate the feasibility of privacy-preserving queries on homomorphically encrypted genomic
data. More precisely, given a list of up to 100,000 mutations, the task was to encrypt the data
using homomorphic encryption in a way that allows it to be stored securely in the cloud, and
enables the data owner to query the dataset for the presence of specific mutations, without
revealing any information about the dataset or the queries to the cloud. We devise a novel string
matching protocol that works particularly nicely with homomorphically encrypted data, and
show how it yields an efficient solution to the competition task. The protocol we describe is also
of independent interest to the homomorphic encryption community, as it can be applied just as
well to any kind of data.

1 Introduction

In 2015 and 2016, iDASH (integrating Data for Analysis, Anonymization, and Sharing) hosted
two international contests on Secure Genome Analysis. Teams from around the world partic-
ipated to test the limits of secure computation on genomic data, and benchmark solutions
on real data sets. Such contests serve to bring together experts in security, cryptography,
and bioinformatics to quickly make progress on interdisciplinary challenges. The task for out-
sourced storage and computation this year was to implement a method for private queries—
specifically string matching on encrypted genomic data.

1.1 Motivation

In recent years cloud storage and services have been developing rapidly. Enterprise customers
in the medical and financial sectors can potentially save money and streamline business pro-
cesses by outsourcing the storage and computation of their data to public storage clouds.
Instead of storing and managing a large amount of data locally, a medical center can utilize
cloud storage for electronic medical records or genomic data of patients. However, using public
storage clouds can potentially compromise the privacy and security of the data. One effective
way of addressing these concerns is to store private data in encrypted form in the public cloud.
Typical block ciphers do not allow data to be used in encrypted form, and meaningful com-
putation on the data would either require it to be returned to the customer for decryption, or
alternatively for the storage cloud to have access to the decryption key. A new way to solve
this problem is to instead encrypt it using a very special encryption scheme that is specifically
designed to allow for computations to be done in encrypted form. Such an encryption scheme
is called a homomorphic encryption scheme.

In this paper we focus on tasks related to string matching, which is motivated by the following
scenario. A medical center wants to outsource the storage of several VCF files (The Variant



Call Format Version 4.2) containing patients’ genomic data to a public cloud. In order to
protect the privacy of the patients, the medical center uploads the files in homomorphically
encrypted form. At a later date, the medical center needs to calculate the probability of certain
genetic diseases through matching a set of biomarkers to the encrypted genomes of patients.
These query biomarkers also need to be passed to the cloud in homomorphically encrypted
form to protect the privacy of the patients. The cloud then needs to match the biomarkers
in the encrypted query to those in the encrypted VCF file using a string matching algorithm
compatible with homomorphic encryption. This produces an encrypted result, which it can
then send back to the medical center for decryption and analysis.

In its most basic form, string matching on homomorphically encrypted data can be summa-
rized as follows. Suppose a string Q of length ` has been homomorphically encrypted. Now
consider another string X of the same length `. The task is to perform a comparison operation
that returns a ciphertext whose decryption reveals whether Q and X are the same string. The
decryption may or may not leak information about one or both of the strings Q, X. As a more
complicated example, consider a dataset of N homomorphically encrypted strings Q1, . . . , QN ,
all of length `. Now the task might be to query the entire dataset, and to return a ciphertext
whose decryption reveals whether a given query string X is present in the set. Again, the
decryption may or may not reveal information about one or more of the strings Qi, X. In
more complicated examples, one might want to accept partial matches, or strings within a
certain Hamming distance of the query string.

1.2 Summary of Results

In Section 2, we give background on homomorphic encryption and techniques for encoding
and batching ciphertexts. In Section 3, we explain various approaches for string matching on
homomorphically encrypted data. In Section 4 we employ hashing techniques from Private Set
Intersection protocols [32, 31] to obtain significant performance improvements to our basic
methods. We then focus on one particular method for string matching (the CAM method of
Section 3.3), and in Section 5 describe formally a practical and efficient protocol for using it
for privacy-preserving queries.

In Section 6, we apply our protocol to solve the homomorphic encryption challenge in the 2016
iDASH Secure Genome Analysis Competition. In this task, we are given a VCF file containing
a certain number of rows (each row corresponds to a mutation). From each row we extract 40
bits of relevant information, encrypt it using a homomorphic encryption scheme, and upload
it to a cloud server. A client queries the server for the presence of a particular mutation
(single query) or several mutations (multiquery) in the file. The server performs the query
matching homomorphically, and returns the encrypted result to the client. For homomorphic
encryption, our solution uses the Fan-Vercauteren scheme from [15], and the implementation
in the Simple Encrypted Arithmetic Library - SEAL [11]. We evaluated our solution on two
example VCF files, containing 10,000 rows and 100,000 rows, respectively. Table 4 summarizes
the performance of our solution.

Our solution to the iDASH competition task was selected as the winner at an associated
workshop held in Chicago, IL in November 2016.
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1.3 Related Work

Over the last 5 years, there have been a number of papers demonstrating computation on
homomorphically encrypted medical and genomic data, in a line of work starting with [29],
which showed how practical statistical tasks can be achieved by introducing a different way of
encoding data as polynomials to avoid deep circuits for simple multiplication of real numbers.
Other computational tasks that have been demonstrated to be viable on homomorphically en-
crypted data include heart attack risk prediction from encrypted health data [7], and genomic
computations such as Pearson Goodness-of-Fit test, Cochran-Armitage Test for Trend, mea-
sures of linkage disequilibrium, and Estimation Maximization algorithm for haplotyping [26].
Homomorphic computation of edit distance was one of the tasks for the 2015 iDASH compe-
tition, and was demonstrated to be possible by a number of submissions [35]. A proceedings
volume covering the submissions to the 2015 competition was published, including a paper
covering one of the winning submissions: an optimized implementation of the modified edit
distance algorithm [23, 12]. Several other works have focused on applications of homomorphic
encryption on evaluating machine learning models on encrypted data [22, 21].

In [5] Bedő et al. show how to perform very advanced string matching tasks—e.g. fuzzy
matching—on homomorphically encrypted data. Unfortunately, these techniques come with
a large computational and communication overhead, making them significantly less practical
than what we present here.

The homomorphic encryption library SEAL is described in [14, 11].

2 Homomorphic Encryption

Homomorphic encryption is a powerful cryptographic primitive that allows computation to
be performed on encrypted data. While the idea in principle is old [33], and many well-
known public-key cryptosystems (e.g. RSA, ElGamal, Paillier) already allow either additions
or multiplications to be performed on the ciphertext side, only very recently Craig Gentry
described the first fully homomorphic encryption scheme in the seminal paper [18], where the
encryption scheme respects both addition and multiplication. Since then, a vast amount of
both theoretical and practical implementation work has been done to improve the efficiency of
homomorphic encryption schemes [20, 10, 15, 9, 27, 6], and at this point researchers are starting
to see performance results that are good enough for carefully selected realistic applications [29,
19, 21].

While many of the techniques and algorithms presented in this paper are agnostic to the
exact homomorphic encryption scheme that is being used, for simplicity we will restrict to
Ring LWE -based cryptosystems using power-of-2 cyclotomic rings of integers [28]. In such
cryptosystems, the plaintext space is typically the polynomial quotient ring Zt[x]/(xn + 1),
and the ciphertext space the polynomial quotient ring Zq[x]/(xn+1), where n is a power of 2,
and t� q are positive integers. Here Zt and Zq denote integers modulo t and q, respectively.
Thus, it is customary to denote R = Z[x]/(xn+1), so that the plaintext and ciphertext spaces
become Rt = R/tR, and Rq = R/qR, respectively. We use this notation throughout the paper.
We note that in some schemes, such as the BGV scheme described in [9], the modulus q changes
throughout the homomorphic evaluation as a result of an operation called modulus switching,
but this fact has no consequences for our protocol, and the reader can safely ignore it. In our
experiments we use the Simple Encrypted Arithmetic Library - SEAL [11], which implements
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the Fan-Vercauteren (FV) scheme described in [15]. Thus, our notation and terminology most
closely follow [11] and [15], but the techniques apply trivially also to many other schemes.

2.1 Leveled Fully Homomorphic Encryption

Technically speaking, fully homomorphic encryption refers to an encryption scheme which
can evaluate any arithmetic circuit on encrypted inputs. In practice, this turns out to be too
much to ask. Instead, by restricting the multiplicative depth of the circuits to some bound L,
one can set the parameters of the encryption scheme to support only circuits up to depth L,
and obtain significantly better performance than what a true fully homomorphic encryption
scheme would give. Such schemes are called leveled fully homomorphic, and are typically
described by the following randomized algorithms:

• Setup(1κ, 1L): Given a security parameter κ and a parameter L ∈ Z+ (level), outputs a
set of encryption parameters parms.
• KeyGen(parms): Outputs a secret key sk and a public key pk. Optionally outputs one or

more evaluation keys evk.
• Encrypt(m, pk): Given message m ∈ Rt, outputs ciphertext c ∈ Rq.
• Decrypt(c, sk): Given ciphertext c ∈ Rq, outputs message m ∈ Rt.
• Evaluate(C, (c1, . . . , ck), evk): Given circuit f of depth at most L with k input wires, and

inputs c1, . . . , ck with ci → Encrypt(mi, pk), outputs a ciphertext c such that

Pr [Decrypt(c, sk) 6= f(m1, . . . ,mk)] = negl(κ) .

Moreover, we require that the size of the output of Evaluate is not more than polynomial
in κ independent of f (compactness), and independent of L (see e.g. [4]).

We say that a leveled fully homomorphic encryption scheme is secure if it is IND-CPA secure.
The reader is referred to [9] for more details.

2.2 Encoding

As we explained above, we restrict to homomorphic encryption schemes where the plaintext
space is the polynomial quotient ring Rt. Thus, when integers are to be encrypted, and integer
arithmetic performed on them in encrypted form, one needs to employ an encoding scheme
to convert integers into elements of Rt. There are many ways to do this (see e.g. [11]), but
we only need the simplest method in this work. Namely, given an integer m ∈ Z, we encode
it as the constant polynomial m ∈ Rt. Of course, this allows us to only encode integers
between 0 and t − 1, which gives a strict lower bound on the size of t that we can use. The
corresponding decoding function is equally trivial: interpret the constant polynomial as an
integer. As Zt is a subring of Rt, as long as we ensure that the underlying plaintext integers
that are encountered during the homomorphic evaluation never get reduced modulo t, we
can use the homomorphic encryption scheme to perform integer arithmetic. In practice, this
places a strong lower bound on the size of t, which subsequently necessitates the use of larger
n and q for technical reasons [11]. Unfortunately, increasing n and q can have a dramatic
adverse effect on performance, which is why it is crucial to choose t as small as possible. This
typically requires a detailed analysis of the computation that is to be performed on encrypted
data.
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2.3 Batching

Batching is a powerful technique that allows SIMD (Single Instruction, Multiple Data) oper-
ations to be performed on homomorphically encrypted data. We give a very brief explanation
here, and refer the reader to [19, 8, 34, 11] for more details.

The simple encoding scheme described in Section 2.2 is extremely wasteful, as it encodes only
one single integer modulo t into a plaintext polynomial with enough space to store thousands
of such integers. Indeed, recall that we use the ring R = Z[x]/(xn + 1) to construct both the
plaintext space (Rt) and the ciphertext space (Rq), and that n is always a power of 2.5 A
naive way to try to improve the situation by enabling SIMD operations would be to encode
one integer modulo t into each coefficient of the message polynomial. While such an encoding
would indeed work when the additive homomorphism is used (addition of polynomials in Rt is
done coefficient-wise), it would not work for multiplications. Instead, the standard approach is
to choose t such that the polynomial modulus xn+1 factors into n linear factors modulo t. This
is achieved by restricting t to be a prime such that 2n|(t− 1). This causes the plaintext space
Rt to split into a direct product as Rt ∼= Znt , where the isomorphism is an isomorphism of rings,
meaning it respects both additions and multiplications. Given a vector m ∈ Znt representing
the values in the individual slots, we denote its composition into a plaintext polynomial m ∈ Rt
by Compose(m). Similarly, given a plaintext polynomial m ∈ Rt, we denote its decomposition
into a vector m ∈ Znt representing the values in the individual slots by Decompose(m). An
explicit description of the isomorphism is given in the references mentioned above.

In computations where SIMD operations can be used, batching can provide an enormous
improvement in latency, and in other cases at least in throughput (see e.g. [19, 8, 34, 21]),
making it one of the most powerful and important concepts in homomorphic encryption.

3 String Matching

3.1 Setup

Suppose we are given a dataset D of distinct N `-bit strings Q(1), . . . , Q(N). We denote the

bits in Q(i) by Q
(i)
1 , . . . , Q

(i)
` , so the dataset can be organized into an N × ` matrix of bits:

D =

Q
(1)
1 · · · Q(1)

`
...

. . .
...

Q
(N)
1 · · · Q(N)

`


We need to homomorphically encrypt D to produce an encrypted dataset DEnc, and we explain
below how this is done. Likewise, given an `-bit query string X, we denote its bits by X1, . . . X`,
and explain below how to homomorphically encrypt it to yield an encrypted query XEnc. The
task is then to construct a low-depth arithmetic circuit fQuery, such that the result of the
homomorphic evaluation fQuery(DEnc, XEnc) decrypts and decodes correctly (recall Section 2)
to yield a plaintext, from which one can determine whether X matches any of the rows of D.

5 Typically n is at least 1024, and in some extreme examples as large as 65536. The size of q depends on n,
and ranges between 30 bits for n = 1024 to thousands of bits for n = 65536.
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3.2 Encrypting D and X

To encrypt the dataset, we use homomorphic encryption with batching. Suppose n is a power
of two, and t is a prime such that 2n|(t− 1). As was explained in Section 2.3, every plaintext
polynomial in Rt can now be considered as an n-tuple of slots, each containing an integer
modulo t.

If n - N , one can always add empty rows to extend the dataset to satisfy n|N . Thus, without
loss of generality, we will assume n|N . Let B = N/n be the batch count. We form a B × `
matrix D of plaintext polynomials

D =



Compose

Q
(1)
1
...

Q
(n)
1

 · · · Compose

Q
(1)
`
...

Q
(n)
`


...

. . .
...

Compose

Q
(N−n+1)
1

...

Q
(N)
1

 · · · Compose
Q

(N−n+1)
`

...

Q
(N)
`




,

which we encrypt entry-wise to form an encrypted matrix DEnc, whose i-th row D(i)
Enc is a

vector of length ` of ciphertext polynomials.

Given a query string X with bits X1, . . . , X`, we first form an `-dimensional vector of plaintext
polynomials as

X =

Compose

X1
...
X1

 · · · Compose
X`

...
X`


 =

(
X1 · · · X`

)
.

The second equality is due to the fact that Compose
[
a · · · a

]>
is equal to the constant poly-

nomial a ∈ Rt6, so we can directly take the query string bits and write them as the plaintext
polynomials (constant polynomials) to form the vector X. We then encrypt each of the poly-
nomials in X to form an encrypted query vector XEnc.

3.3 Compare-Add-Multiply

Our first approach is particularly good for scenarios where the strings are long, and there are
few batches (large `, small B). We homomorphically evaluate the function

CAM(DEnc, XEnc) =
B∏
i=1

∑̀
j=1

((
D(i)

Enc

)
j
−
(
XEnc

)
j

)2

, (1)

where (−)j denotes the j-th component of a vector.

Due to batching, each subtraction followed by squaring in (1) compares n bits (one bit per
one row in the original dataset D) to the corresponding bit position in the query string X.

6 This is not obvious, and requires one to know the explicit description of the isomorphism Rt ∼= Znt .
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Let i be the index of one of the B batches, and consider what happens in the sum for this
particular i. If the k-th row within the i-th batch—i.e. the (n(i−1)+k)-th row in D—matches
the query string X, then the sum will have value 0. Otherwise it will have a non-zero value
of at most `. Finally, evaluating the product results in a ciphertext with a 0 in the k-th slot
precisely when the query matched the (n(i−1)+k)-th row of D for at least one batch index i.

Note that we need the parameter t in the encryption scheme to be bigger than `. This is to
avoid false positives from appearing as a result of the sum wrapping around t. Note also that
we do not need to care about t being large enough to support multiplication over the batches,
because t being prime ensures that the product is 0 (mod t) precisely when one of the factors
is 0.

Evaluating the function CAM requires (2` − 1)B additions or subtractions, `B squarings, and
B−1 multiplications. It has multiplicative depth 1+dlog2Be, which is small when N is small,
and most importantly does not depend on `. It is in fact possible to evaluate CAM with only
a depth dlog2(B + 1)e circuit, but this is computationally less efficient, and less amenable to
multithreading.

Larger base. If the strings to be compared are long, much of the running time of CAM will be
spent performing the `B squarings. The situation can be significantly improved by reducing
the length ` of the rows of D by not representing them as strings of bits, but instead as strings
of base-b digits, where b > 2. Of course the same kind of representation has to be used for the
query string X. Nearly everything presented above still works, and in particular the function
CAM behaves analogously, i.e. it results in a ciphertext with a 0 in the k-th slot precisely when
the query matches the (n(i−1)+k)-th row of D for at least one batch index i. The only major
difference is that we must be very careful now not to wrap around t during the computation to
avoid false positives. The sums of squares of differences in (1) can now be as large as `b(b−1)2,
where `b is the length of the string when represented in base b. For example, if the rows are
`-bit integers, we can get `b = d`/ log2 be. Once again, since t is a prime, we do not need to
worry about the product.

To give some concrete numbers, consider bits strings of length 100. In the binary representation
it would suffice to take t > 100, but in base-16 we need t > 5625. Roughly estimating, this
increase in t can result in the ciphertext noise growing by 6 extra bits in each multiplication,
amounting to a total of 6 (1 + dlog2Be) bits more noise in the result, potentially prompting an
increase in the encryption parameters when B is large. Nevertheless, the number of squarings
is reduced by a factor of 4, so as long as the parameters do not need to be increased (at least
too much), the result can be a significant improvement in performance.

Other considerations. The CAM method is very efficient when the bit strings are long, and B
is not too large. The possibility of using a larger base for encoding the strings can help further
reduce their length, and increase the performance. The CAM method is also fully compatible
with all performance improvements described below in Section 4, making it significantly more
powerful than what is suggested by the above analysis.

The downside of the CAM method is that it only reports whether the query string X was found
in D or not. It is hard to see how it could be improved to support partial, or fuzzy queries,
or made to return some function of the rows that were found to match the query.
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3.4 Compare-Multiply-Add

Our second approach is particularly good for scenarios where the strings are short, and there
are many of them (small `, large N). We homomorphically evaluate the function

CMA(DEnc, XEnc) =

B∑
i=1

∏̀
j=1

[
1−

((
D(i)

Enc

)
j
−
(
XEnc

)
j

)2
]
. (2)

Due to batching, each subtraction followed by squaring in (2) compares n bits (one bit per one
row in the original dataset D) to the corresponding bit position in the query string X. Since
the result is subtracted from 1, a match is indicated by a resulting value of 1 rather than by a 0,
as was the case in the CAM method. As the comparison results of different bits are multiplied
together, a match of the entire string is indicated by a 1 (after the multiplication over the
index j), and a mismatch by a 0. Summing over the batch index i results in a ciphertext
with a positive entry in the k-th slot if the k-th row within the i-th batch for some i—i.e. the
(n(i− 1) + k)-th row in D—matches the query string X. Otherwise the value at the k-th slot
will be 0. Moreover, the number in the k-th slot will be precisely the sum of matches found in
the k-th slot of all batches, and the sum of the values in all slots will be precisely the number
of matches found.

Evaluating the function CMA requires (` + 1)B − 1 additions or subtractions7, `B squarings,
and (`− 1)B multiplications. It has multiplicative depth 1 + dlog2 `e, which is small when ` is
small, but does not depend on N . It is possible to evaluate CMA with only a depth dlog2(`+1)e
circuit, but this is computationally less efficient, and less amenable to multithreading.

Since the expression in the square brackets in (2) has always value either 0 or 1, the only
restriction on t is to take t > B to prevent modular reduction in the summation phase
(compare this to the bound t > ` in the CAM method).

Other considerations. The CMA method can be very effective when `, i.e. the length of
the strings, is short. In this case the multiplicative depth does not depend on the number
of rows in the dataset, which makes this method particularly suitable for situations where
level 1 + dlog2 `e circuits can be computed with reasonable parameters. Unfortunately, the
computational complexity and the multiplicative depth quickly become very high when `
grows.

Another significant advantage of the CMA approach is that the signal of success comes in a
much more useful form that in the CAM approach. For example, consider the case of only one
batch. If a match is found, the result of CMA is a ciphertext with a 1 exactly in the slot(s)
where the match occurred, and 0 elsewhere. Thus, the result of CMA can be used to perform
conditional computations depending on whether a match was found or not. Furthermore, CMA
always shows the exact number of matches that were found, which is in general not true
for CAM, although it will be when the methods of Section 4 are used.

Unfortunately, the CMA method does not support the larger base optimization to reduce the
length ` of the dataset strings.

7 We ignore the very cheap plain subtraction, where we subtract from an unencrypted number 1.
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3.5 Compare-Add

Consider the case where D has only one row, i.e. only one vertical batch per string bit is
needed. Let

CA(DEnc, XEnc) =
∑̀
j=1

((
D(1)

Enc

)
j
−
(
XEnc

)
j

)2

. (3)

The function CA has the very nice property that the k-th slot will end up containing the
Hamming distance between the query string and the k-th row of the dataset. Thus, a match
can be detected as a 0 in a particular slot. For this to work correctly, it is necessary to have
t > ` to prevent modular reduction from taking place in the summation.

Other considerations. This method is very fast and efficient at detecting partial matches.
Unfortunately, it only works when the batch count B is 1.

3.6 Message Expansion

Note that in all of the methods described above the query will have size 1/B of the size of
the entire encrypted dataset. The result always consists of one single ciphertext, which is
(1/`B)-th of the size of the entire encrypted dataset. Thus, when B is small, the large query
size can make it unreasonably inefficient to use the functions CAM, CMA, and especially CA. In
some cases the assumption is that several queries will be submitted to the encrypted dataset,
in which case only the amortized query size might matter. In Section 4.4 we discuss query
packing techniques that yield significantly improved amortized performance in such cases.

4 Hashing

In this section we show how a technique called permutation-based cuckoo hashing can be
used in various ways to improve the performance of the string matching algorithms. First,
it can be used to shorten the strings that need to be homomorphically compared, resulting
in overall better performance in the functions CAM, CMA, and CA. Second, it allows CAM to
always return the exact number of matches found. Third, when using CAM or CA, it allows us
to pack several queries together into so-called multiqueries, resulting in significantly improved
amortized performance in both query size and running time.

4.1 Permutation-Based Hashing

Permutation-based hashing [3] is a technique that has been used extensively to improve the
efficiency of modern Private Set Intersection (PSI) protocols (see e.g. [32, 31]), where two
distrusting parties both hold sets of bits strings, and want to find the intersection of their
sets without revealing anything else to each other. Permutation-based hashing can be used
to shorten the strings that need to be compared in these protocols, resulting in improved
performance. We employ the same trick.

Let X be an `-bit string, and split it into two parts as X = XL‖XR. Let `L be the bit-length
of XL, and `R the bit-length of XR. Let H : {0, 1}`L → {0, 1}`R be a hash function. We define
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the location of X as

Loc(X) = H(XL)⊕XR ,

where ⊕ denotes binary xor. Consider now a hash table with n bins, where n = 2`R , and
insert XL in the bin with index Loc(X).

Two different strings can never yield the same value in the same bin, because Loc(X) = Loc(Y )
(same bin) together with XL = YL (same value) imply immediately that X = Y . In some
sense permutation-based cuckoo hashing encodes a part of the string into the index of the
bin (location in the hash table). If we can make bin comparisons cheap (or free), the amount
of work that needs to be done in actual string comparison operations may be significantly
reduced. For this to work, we need each bin to contain at most one item, which depending
on the hash function H, the total number of strings, and the hash table size n may or may
not be likely to happen. The standard trick to make this happen is by using cuckoo hashing,
which is a hashing technique with a particularly high load factor.

4.2 Permutation-Based Cuckoo Hashing

In the above description of permutation-based hashing we assumed that each bin will end up
containing at most one value. This is not hard to achieve by taking the table to be much
larger than the number of possible strings to be inserted, but this is hugely wasteful. Instead,
we use a hashing technique known as cuckoo hashing [30, 13, 24, 16, 17], which uses several
hash functions to try to find a hashing scheme that gives as small of a hash table as possible,
while ensuring that each bin ends up with at most one item.

Cuckoo Hashing. Let n be the size of the hash table as in Section 4.1, and suppose we
have N items to be inserted. Let H0 and H1 be independent and random hash functions
{0, 1}`L → {0, 1}`R . We denote

Loci(X) = Hi(XL)⊕XR ,

where XL and XR are as in Section 4.1. The N items are inserted into the table as follows.
Given an item X, insert XL at Loc1(X). If this location was already occupied by X ′L for some
other item X ′ with Loci(X

′) = Loc1(X), then pop X ′L, and insert it at Loc1−i(X
′). Continue

in this way until the conflict is resolved, and until all items are inserted. This method can fail
due to an infinite loop of insertions occurring, but it is likely to succeed as long as n ≥ 2N .

A subtle issue with the approach above was pointed out in [31, 25]. Namely, when using more
than one hash function in permutation-based hashing, it is possible that two distinct items
hash to the same value in the same bin, breaking the nice property that the location and the
hash value uniquely describe the item. This problem can be fixed in a number of ways, e.g.
by appending the index of the hash function to the string stored in the bin, or to the bin
index. We choose to append it to the bin index. Thus, we take the size of the hash table to
be n = 2`R+1, and set

Loci(X) = i · 2`R + [Hi(XL)⊕XR] .

d-Cuckoo Hashing. The space-efficiency of cuckoo hashing can be significantly improved by
using more hash functions. The generalization which we call d-cuckoo hashing was described
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and analyzed in [16, 17]. Consider d independent and random hash functions

H0, . . . ,Hd−1 : {0, 1}`L → {0, 1}`R ,

and denote

Loci(X) = i · 2`R + [Hi(XL)⊕XR] .

N items are inserted into a hash table of size n = 2`R+dlog2 de using the random-walk method
of [17] as follows. To insert an item X, choose a random hash function index i, and insert
XL at Loci(X). If the location was already occupied by X ′L for some other item X ′ with
Locj(X

′) = Loci(X), then pop X ′L, randomly choose another hash function index j′ 6= j, and
insert X ′L at Locj′(X

′). Continue in this way until the conflict is resolved, and until all items
are inserted.

Success Probability. The probability that the method described above will fail due to an
infinite loop increases as N approaches the hash table size n. In practice, the random walk not
will not be able to find a valid configuration, where each item is mapped to a unique location.
While increasing the number of hash functions d increases the probability of finding a valid
configuration, the underlying problem of too many collisions Loci(X) = Locj(X

′) remains,
unless the ratio n/N is increased.

It is important to be able to estimate the failure probability for hashing the dataset. This is
because of our security model (see Section 5.2), which assumes that the dataset size is known
to the adversary. If the hashed dataset is unexpectedly large (resp. small), the adversary will
learn something about the dataset: it caused unusually many (resp. few) hash collisions. Thus,
for the security proof to go through, it is important to determine n and d before hashing the
dataset in such a way that the failure probability is at most 2−λ, where λ is the statistical
security parameter. This guarantees that the adversary will not learn any extra information,
except perhaps with probability at most 2−λ. Typically a λ of around 30 or 40 is deemed
sufficient.

Several works [16, 17, 32] have analyzed the failure probability of d-cuckoo hashing, both from
an asymptotic and a concrete perspective. While the asymptotic results can be informative,
they do not give concrete parameters for desired statistical security levels. We instead follow
the lead of [32], and empirically evaluate the failure probability by repeatedly constructing
more than 230 cuckoo tables, each with random hash functions. This allows us to observe the
empirical failure probability 2−λ for various values of d and e = n/N > 1. In particular, we
observe that for a fixed n and d ≥ 3 there is a linear—or nearly linear—relationship between e
and the statistical security parameter λ, and we interpolate the failure probability as a linear
function to obtain parameters when λ is greater than 30, due to the prohibitive amount of
time it would take to run d-cuckoo hashing significantly more than 230 times.

We provide an empirical analysis for n ∈ {4096, 8192, 16384}, and will see in Section 4.3 that
this is in fact sufficient to also treat huge datasets with N � n. Figure 1 shows the empirical
failure probability for d ∈ {3, 4, 5} and n = 4096 for a variety of expansion factors e = n/N .
The solid line indicates the regions where measured failure probabilities were obtained with
more then 230 trials, and the dotted lines denote results obtained by extrapolation. These
empirical results clearly show that for d ∈ {3, 4, 5} the security parameter scales linearly with
the expansion factor e.

11
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Fig. 1: Empirical (solid line) and extrapolated (dotted
line) failure probabilities of d-cuckoo hashing when
inserting N items into a table of size n = 4096.

Table 2 shows the complete set of interpo-
lated equations, which were obtained from
the empirical analysis with the parameters
in question. In general, we find that the re-
quired e to achieve a desired security level
increases as n becomes larger. For instance,
when considering d = 5 hash functions,
n = 4096 requires an e of approximately 0.01
smaller than n = 8192, for all measured λ.
However, this trend is weak, and may not
hold for much larger n as the asymptotic
analysis suggests. In addition, while d ≥ 3
yields a linear relationship with λ, the spe-
cial case of d = 2 scales exponentially in the
security parameter, as was also found by [32].
This is why we restrict to the much more efficient parameters of d ≥ 3. Moreover, because of
the diminishing returns that increasing d provides, we conclude that d = 4 provides the best
trade-off for the setting that we consider.

d
n

4096 8192 16384

3 λ = 120.5e− 138.1 λ = 122.5e− 141.5 λ = 123.3e− 143.5

4 λ = 126.2e− 136.3 λ = 128.2e− 139.6 λ = 127.5e− 140.0

5 λ = 126.1e− 134.0 λ = 121.3e− 129.7 λ = 121.5e− 130.8

Fig. 2: The linearly interpolated lines relating the statistical security parameter λ to the d-cuckoo hash table
expansion factor e, where N = n/e items are inserted to a table of size n ∈ {4096, 8192, 16384} using

d ∈ {3, 4, 5} hash functions.

4.3 Improved Exact String Matching

Single batch dataset. Suppose we are given a dataset D as in Section 3, and that the total
number of rows N < n so that the batch count B = 1. Instead of working with D directly, we
instead hash each row Q(1), . . . , Q(N) using permutation-based d-cuckoo hashing to produce a
hashed dataset H(D). The length of the rows Q(i) is ` = `R+`L, and n = 2`R+dlog2 de. Suppose
for now thatN is so much smaller than n that hashing succeeds with overwhelming probability.
Let H(D) denote the batching of the hashed dataset—analogous to D in Section 3.2—and let
H(D)Enc denote its encryption.

Given a query string X of length `, we need to apply permutation-based d-cuckoo hashing to
form a hashed query. In this case we hash only one item (namely X) into a table of size n,
and populate each of the d locations Loci(X) with XL. This is necessary, because we cannot
know into which of the d locations X eventually ended up when the dataset was hashed. Let
H(X) denote the hash table containing the hashed query string. Each row of the hash table
will have length `L bits, and we apply the Compose function exactly as in Section 3.2 to form
the batching of the hashed query H(X), and finally encrypt it to obtain H(X)Enc.

The comparison of H(X)Enc with H(D)Enc can be done using CAM, CMA, or CA, almost exactly
as in Section 3, but now the strings that need to be compared have length `L bits, which is
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`R = log2 n − dlog2 de bits fewer than the original ` bits. In an optimal case d is as small as
possible, and n as large as possible, but in practice n is bounded by performance restrictions
coming from homomorphic encryption (bigger n means worse performance).

Multiple batch dataset. When the total number of itemsN is very large, it is not realistic to
take n to be such that N < n, as this results in poor performance for homomorphic encryption.
Instead, we use the same approach as in Section 3.2, and break the dataset into several
(vertical) batches, each containing at most N ′ elements, where N ′ | N , such that N ′ < n. We
then use d-cuckoo hashing to hash each of the B = N/N ′ batches of items into B separate
hash tables of size n. As long N ′ is small enough, and d large enough, the probability of
d-cuckoo hashing succeeding for each of the B hash tables is good. It is necessary to use the
same set of hash functions for each of the hash tables. This technique works with both CAM

and CMA.

In our security model the size N of the dataset and the length ` of the strings are public infor-
mation. As is explained later in Section 5.2, we need to be able to fix a public predetermined
choice for B, and say that the probability of a hashing failure occurring for at least one of
these B batches is at most 2−λ. Building on the failure probability estimates of Section 4.2,
it is straightforward to adjust the bounds for this setting with B batches: instead of solving
the equations of Table 2 for a given λ, we must compensate for the fact that B such hash
tables are constructed. Thus, cuckoo hashing should be expected to fail at most once in every
2λB trials. Therefore, the left hand side of the equations of Table 2 should be λ + log2B;
e.g. for d = 3, n = 4096 the equation becomes λ + log2B = 120.5e − 138.1, when applied to
the multiple batch setting. Note that e = n/N ′, and the total number of items in the dataset
is N = BN ′ = Bn/e.

Larger base. In the CAM method we would still want to use larger base b > 2 for more compact
representation of the strings, and for better message expansion in encryption. The dataset and
query are hashed just as before, but the items in the bins that earlier were expressed as bit
strings of length `L are now instead expressed as base-b strings of length `L,b = d`L/ log2 be.

The problem of empty bins. There is one issue that we have ignored until now. The hash
tables in the hashed dataset will typically contain some number of empty bins, and the hashed
queries (which are also hash tables) will contain almost entirely empty bins. An empty bin
naturally results in a value of 0 in the corresponding slot after batching. These zeros will cause
false matches to occur, unless they are in some way invalidated.

This problem is easy to solve by writing an impossible value to the slots that correspond to
empty bins in the batched hashed query and dataset. Note that these impossible values do
also need to be different for the query, and for the dataset. Note that when using a base
b in decomposing the strings, after batching the values in all (non-empty) slots will be at
most b− 1.

For the CAM method we populate the empty bins of the hashed dataset with the value b, and
the empty bins of the hashed query with the value b + 1. As in the analysis of Section 3.3,
we conclude that the CAM method works as long as the homomorphic encryption parameter
t > `L,b(b + 1)2. It is in fact possible to do slightly better by simply invalidating the unused
bins for one of the `L positions, and require t to be such that (`L,b− 1)(b− 1)2 + (b+ 1)2 < t.
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For the CMA method the situation is a bit trickier. Suppose the batch count is B. Then the
party that encrypts the dataset includes with it B additional ciphertexts that contain masks
for the batches, invalidating (i.e. setting to zero) all locations that are empty in the hash
table. Likewise, the party that submits the query includes an extra ciphertext that encrypts
a mask that invalidates all locations that are empty in the query hash table. So instead of the
usual CMA, we now evaluate

CMA(H(D)Enc, H(X)Enc)

= Mask(H(X))

B∑
i=1

Mask(H(D))i ·
∏̀
j=1

[
1−

((
H(D(i))Enc

)
j
−
(
H(X)Enc

)
j

)2
] ,

where Mask(H(D))i is a batched ciphertext that has a 1 in each slot that corresponds to a
non-zero hash table bin in H(D(i)), and a 0 in the rest of the slots, and Mask(H(X)) is a
batched ciphertext that has a 1 in the slots that correspond to non-empty bins, and a 0 in
other slots. The masks will now automatically invalidate all rows that are not supposed to be
included in the comparison by setting them to zero.

4.4 Multiqueries

Suppose the dataset has been hashed and encrypted as in Section 4.3, and instead of one query
X, consider submitting k queries X(1), . . . , X(k). Naively, the performance and communication
cost is k-fold compared to submitting a single query. Alternatively, we could try to use the
same hash table when hashing each of the k queries, cutting down the performance to (1/k)-th
of that of the naive approach. This will work as long as for each of the d location functions
the locations Loc(X(j)) are distinct. In case there is overlap in the locations, we need to split
the multiquery into two or more parts. More precisely, if BX denotes the size of the largest
bin after inserting all k items with all d hash functions, then we need to break the multiquery
up into BX hash tables, each of which will be batched and encrypted separately.

Success probability. We assume the number of k of concurrent queries (k-multiqueries)
to be public information. For security reasons, we need to be able to predetermine a value
for BX that is exceeded with probability at most 2−λ, where again λ is the statistical security
parameter. Then we always submit BX separate queries, because otherwise someone observing
the queries can tell whether hash collisions occurred more or less than expected, which leaks
information.

Distinct location functions are constructed to map values to non-overlapping regions in the
hash table. Each such region has size n/d. Thinking of balls and boxes, we need to first
determine how likely it is that when placing k balls into n/d boxes the largest box has size at
most BX :

Pr[at least one box contains more than BX balls]

≤n
d
· Pr[first box contains more than BX balls]

=
n

d

k∑
i=BX+1

(
k

i

)(
d

n

)i(
1− d

n

)k−i
.
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To fail, this must occur in at least one of the d regions. Therefore,

Pr[multiquery packing failure] ≤ n
k∑

i=BX+1

(
k

i

)(
d

n

)i(
1− d

n

)k−i
.

A few examples are presented in Table 1 (for λ = 30) and Table 2 (for λ = 40).

Table 1: Some parameters with multiquery failure probability ≈ 2−30.

n d k BX

4096 3 4 3
4096 3 13 4
4096 3 35 5
4096 3 76 6
8192 3 5 3
8192 3 20 4
8192 3 59 5
8192 3 134 6

n d k BX

4096 4 10 4
4096 4 27 5
4096 4 57 6
8192 4 4 3
8192 4 16 4
8192 4 45 5
8192 4 102 6

Table 2: Some parameters with multiquery failure probability ≈ 2−40.

n d k BX

4096 3 5 4
4096 3 13 5
4096 3 30 6
8192 3 7 4
8192 3 21 5
8192 3 52 6

n d k BX

4096 4 10 5
4096 4 23 6
8192 4 6 4
8192 4 16 5
8192 4 39 6

Furthermore, if more than one multiquery is performed over the lifetime of the data, it might
be necessary to adjust the success probability to ensure that the failure probability is negligible
even when performing some predetermined number M of k-multiqueries. Namely, we should
select BX in such a way that on expectation at most one of every 2λM k-multiqueries fails.
For simplicity, we ignore this correction for now on, and assume M = 1.

It is also possible to ignore this information leak, and simply submit a k-multiquery in as
few batches as possible. The information leak resulting from this seems very difficult for an
adversary to use, in particular if it does not know the hash functions used by the location
functions. Nevertheless, our proof of security (Section 5.2) requires the number BX to be
determined beforehand, and that the multiquery size does not depend on the individual query
strings themselves.

5 Our Protocol

In this section we describe in detail our protocol for querying an encrypted dataset using
the CAM method with d-cuckoo hashing for multiqueries, as was described at a high level in
Section 4.3. Protocols for using CMA and CA are similar, and we omit their formal descriptions.
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5.1 Formal Protocol Description

We consider two parties:

– The server who stores the encrypted dataset and evaluates the string matching func-
tion CAM.

– The client who owns the encrypts the dataset, submits encrypted queries to the server,
owns the secret key, and obtains the results of the queries.

It is easy to extend our protocol to work instead with a dataset owner who is different from
the client, and uses only the client’s public key to encrypt its dataset. Indeed, the protocol
would be nearly identical, except that the server would have to randomize the non-zero slots
in the output of CAM to not leak extra information about the dataset to the client. We have
chosen to restrict to the two-party version of the protocol to make the security model, and
the description of the protocol simpler.

We assume that the size N of the dataset D, the length ` of the strings, and the number
of k of queries are public information. A formal description of our protocol ΠCAM is given in
Figure 3.

Input

Size N of dataset D, length ` of dataset strings, number k of concurrent queries (performing k-
multiqueries), statistical security parameter λ, computational security parameter κ.

Setup

The client chooses parameters (n, q, t, b, d, B,BX), where (n, q, t) are parameters for a leveled fully
homomorphic encryption scheme with κ bits of security such that n is a power of 2, and t is a prime
such that 2n | (t − 1). B is an integer such that d-cuckoo hashing the dataset into B batches fails
with probability at most 2−λ (Section 4.3). BX is an integer such that k-multiqueries can be hashed
into BX queries except with probability at most 2−λ (Section 4.4). b denotes the base that is used
for the encoding. Finally, we require that t > `L,b(b + 1)2 (Section 4.3), and that the encryption
scheme is able to evaluate circuits of depth at least 1 + dlog2Be.

Data upload

The client d-cuckoo hashes, batches into B batches, and encrypts its dataset D as described in
Section 4.3 and Section 3.2, resulting in an encryption H(D)Enc consisting of B`b ciphertexts. It

sends H(D)Enc to the server for long-term storage.

Multiquery

The client hashes and encrypts k queries as described in Section 4.3 and Section 3.2, resulting in an
encryption H(X)Enc consisting of BX`b ciphertexts. It sends H(X)Enc to the server, who evaluates

CAM(H(D)Enc, H(X)Enc), as described in Sections 3.3, and 4.3, and sends the result (consisting of
BX ciphertexts) back to the client.

The client decrypts the ciphertexts, and reads the slots (Section 2.3). For each slot that contains a
value 0, it outputs MATCH, and the query string that it hashed to the slot where there zero occurred.
It outputs NO MATCH for the remaining query strings.

Fig. 3: Protocol ΠCAM
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5.2 Security

Our protocol works in the semi-honest setting, where the client can have complete knowledge
of the dataset and queries. As such, we need not consider whether additional information is
revealed to them. The server, on the other hand, should only learn the size of the dataset, and
the number of queries that are made. At the core of the security argument is a reduction to
the underlying homomorphic encryption scheme, and the fact that hashing failures occur with
negligible probability for the parameters used. Even though we only presented a protocol for
using CAM, a similar type of protocol works with CMA and CA, and the proof of security does
not depend in a significant way on which string matching method is used.

First, let us consider the setup phase where the encrypted dataset is constructed. When
constructing the hashed dataset H(D), failing to construct the B cuckoo hash tables obtained
within it may reveal to the server that a certain number of hash collisions occurred while
hashing the dataset. As such, we must ensure that the probability of this event is negligible
in the statistical security parameter λ. The analysis in Sections 4.2 and 4.3 shows how the
public parameters n, d, and B can be chosen to have this property. Such a choice is made
in protocol ΠCAM (Figure 3). Once the hashed dataset H(D) is constructed, it is encrypted
with homomorphic encryption according to the description in Sections 3.2 and 4.3, the exact
details depending on whether CAM, CMA, or CA is used. The encrypted dataset is then uploaded
to the server.

Later, a query of size k is made. The exact details depend slightly on whether CAM, CMA, or
CA is used, as described in Sections 3.2 and 4.3. However, in all cases the query is encrypted
using homomorphic encryption. Moreover, the size of the query is a function of the public
parameters k,N, `, and b. A full simulation of the protocol can therefore be obtained by
replacing D and the query with uniformly sampled ones of the same size. This change is
computationally indistinguishable by a straightforward reduction to the indistinguishability
property of the homomorphic encryption scheme.

6 Applications

In this section we will give an example application that was one of the problem tracks in the
iDASH Secure Genome Analysis Competition in 2016. Track number 3 in the competition—
Testing for Genetic Diseases on Encrypted Genomes—can be described as follows:

Problem description. Consider a setup with a client (or possibly several clients), and a
server. Initially the client holds genomic data in VCF files in plaintext form. It encrypts the
files using homomorphic encryption, and uploads them to the server for long-term storage.
At a later point the client wishes to query the server for the presence of a particular entry
(line) in the encrypted data. The query will also be encrypted using homomorphic encryption
to prevent the server from learning any of the client’s private data from it. More generally,
the client can issue multiqueries, in which several entries are queries at once. After the client
gets an encrypted result back from the server, it decrypts and decodes it to learn a Boolean
result: MATCH or NO MATCH (or k Boolean results for a k-multiquery).

We consider two scenarios. In the first one we assume that the VCF files contain up to 104

rows, and in the second one up to 105 rows. We present separate parameters optimized for
both scenarios.
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Parsing the files. The client starts with parsing the VCF files as follows. It reads in a
line, and outputs #CHROM (chromosome number), POS (position), the last entry in the
string REF (one of {A,C,G, T, empty}), the last entry in the string ALT (similarly one of
{A,C,G, T, empty}), and one bit representing whether SVTYPE=SNP. We encode the sym-
bols in REF and ALT using numbers as

{A = 0, C = 1, G = 2, T = 3, empty = 0} .

The empty symbol appears for example when SVTYPE=DEL. Substitutions (SVTYPE=SUB)
and insertions (SVTYPE=INS) are ignored to obtain better performance, and because the
competition problem description allowed it. This is why we only care about the last (and
only) symbol in the REF and ALT strings. While our implementation only supports querying
entries with SVTYPE=SNP, but it is possible—and easy—to generalize our solution to sup-
port more general queries at the price of only slightly reduced performance. This is because
the CAM function behaves very nicely with increasing string length.

After each row has been represented as integers in this way, we convert it to binary repre-
sentation. Since #CHROM is an integer between 0 and 22, or a symbol X or Y , we need
5 bits to represent it. Since POS is an integer of length at most 9 decimal digits, we need
30 bits to represent it. Since we only encrypt homomorphically the last symbol of the REF
and ALT strings, we need 2 bits for both. Finally we need one bit to represent whether SV-
TYPE=SNP. In total, our encoding of each row has length ` = 40 bits. For each row we will
encrypt homomorphically only these 40 bits.

Thus, we encode an entry of the VCF file into 40 bits (to be homomorphically encrypted) as
follows:

x = x1 . . . x5︸ ︷︷ ︸
Chromosome number

‖ x6 . . . x35︸ ︷︷ ︸
Starting position

‖ x36x37︸ ︷︷ ︸
Reference

‖ x38x39︸ ︷︷ ︸
Alternative

‖ x40︸︷︷︸
Is SNP?

Encrypting the dataset. In order to reduce the bit length of the inputs, we use permutation-
based 4-cuckoo hashing (Section 4.2). We use n = 8192, and N ′ = 7700. We consider two types
of situations, where in the first one N = 104 (so B = 2), and in the second one N = 105 (so
B = 13). Now, d = 4, so `R = log2 n − dlog2 de = 11, and `L = ` − `R = 29. The location
functions are

Loci(x) = i · 211 + [Hi(xL)⊕ xR]

for i ∈ {0, . . . , 3}. With table size this much larger than the number of items inserted in
each table, 4 hash functions suffices to obtain a good probability of succeeding in the hashing
process. Each data entry (also each query) is represented by 40 bits, which hashing reduces
to `L = 29 bits. We use a block size b = 210 to get `L,b = 3. Thus, we need t > `L,b(b+ 1)2 =
3151875. In our first example with N = 104 and B = 2 this results in an encrypted dataset
consisting of B`L,b = 6 ciphertexts. Similarly, in our second example with N = 105 and B = 13
we obtain an encrypted dataset consisting of B`L,b = 39 ciphertexts.

For the sake of performance, in our example we ignore the possibility of a (very) minor
information leak due to a small but non-negligible hash failure probability. Considering the
case of B = 13, to instead obtain a statistical security level of λ = 30, it suffices to use the
same parameters but to restrict the VCF files with at most 78781 rows (N ′ ≈ 6060). To
obtain a statistical security level of λ = 40, the VCF files should have no more than 74483
rows (N ′ ≈ 5729).
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Encrypting multiqueries. We restricted to multiqueries of size at most 5 due to the specifi-
cations of the competition problem description. Again, we ignored potential information leaks
from hash failures, in all examples producing only a single set of `L,b ciphertexts (BX = 1).
Indeed, for n = 213, and d = 4, packing a 5-multiquery into one succeeds with probability ap-
proximately 0.98. Thus, in our implementation, the 5-multiqueries consist of only BX`L,b = 3
ciphertexts. The amortized size of each query is therefore (3/5)/39 = 1/65 of the size of the
encrypted dataset.

Even if a hash collision would occur, and the multiquery would have to be split up, it is very
hard to see how an adversary could use this information, since typically it would not even
know what the hash functions are. Nevertheless, to instead obtain a statistical security level of
λ = 40 would require taking BX = 4. Alternatively, BX = 4 allows for up to 16-multiqueries
while still achieving a statistical security level of λ = 30.

6.1 Implementation and Performance

For homomorphic encryption we use the Simple Encrypted Arithmetic Library - SEAL [11],
which implements the Fan-Vercauteren encryption scheme [15]. Table 3 summarizes the SEAL
encryption parameters that we used. In fact, we used two sets of parameters: one for our smaller
example (N = 104), and another one for the larger one (N = 105). Note that both parameter
sets use the same n (exponent in poly_modulus), but the smaller parameters have a much
smaller q (coeff_modulus). The larger parameters are estimated to have a computational
security level κ ≈ 100 bits [2], and the smaller parameters have a significantly higher security
level, which we did not explicitly estimate.

SEAL parameter Value

poly_modulus x8192 + 1
coeff_modulus 2155 − 225 + 1
plain_modulus 3686401
decomposition_bit_count 78

SEAL parameter Value

poly_modulus x8192 + 1
coeff_modulus 2253 − 221 + 5 · 214 + 1
plain_modulus 3686401
decomposition_bit_count 52

Table 3: SEAL encryption parameters for N = 104 (left) and N = 105 (right).

The results of our experiments are presented in Table 4. The experiments were ran on an
Intel Xeon E5-1620 v3 @ 3.50 GHz, with 16 GB of RAM installed. Our implementation used
8 threads to speed up the evaluation of CAM. For homomorphic encryption we used SEAL v2.1.

7 Conclusions

Our results in Table 4 demonstrate that homomorphic encryption can be practical for out-
sourcing data storage, and enabling privacy-preserving queries on the encrypted data with
realistic performance. Message expansion due to homomorphic encryption is not prohibitively
big (10–12x based on Table 4), and we certainly expect the situation to improve during the
next few years as a result of new innovations in cryptography and encoding techniques. Com-
putational performance is already surprisingly good, and could easily be improved further
by using a homomorphic encryption library that has a stronger emphasis on performance
optimizations, such as FV-NFLlib [1]. We were only concerned about simple set membership
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Operation Time (ms)

Encoding dataset 115
Encrypting dataset 120
Encoding 5-multiquery 9
Encrypting 5-multiquery 60
Evaluating CAM 225
Decrypting response 15

Operation Time (ms)

Encoding dataset 1098
Encrypting dataset 956
Encoding 5-multiquery 9
Encrypting 5-multiquery 75
Evaluating CAM 2003
Decrypting response 19

Data Size (KB)

Original VCF 557
Parsed VCF 196
Encrypted dataset 2305
Encrypted 5-multiquery (BX = 1) 1158
Encrypted response (BX = 1) 386

Data Size (KB)

Original VCF 5490
Parsed VCF 1920
Encrypted dataset 19971
Encrypted 5-multiquery (BX = 1) 1545
Encrypted response (BX = 1) 515

Table 4: 5-multiquery performance results with N = 104 (left) and N = 105 (right).

queries in this work, and it remains a challenge to create efficient protocols that allow more
flexible types of queries.

We demonstrated our techniques in the context of querying SNPs in encrypted (parsed) VCF
files of up to 105 rows. By increasing the homomorphic encryption parameters it becomes
possible to query also much larger files (millions of rows).

Our protocol relies heavily on the semi-honest security model, which is a standard assumption
to make due to the often huge performance benefits it yields over protocols secure under
stronger security models, where the parties behavior is not necessarily restricted to follow the
protocol description. Nevertheless, it is an interesting direction for future research to extend
this work to the malicious security model—or perhaps some slightly weaker model—without
too much performance overhead. This can be challenging, because the server needs to prove
that it performed the correct computations on the client’s data.
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