
Cryptanalysis of PMACx, PMAC2x, and SIVx
Kazuhiko Minematsu1 and Tetsu Iwata2

1 NEC Corporation, Japan
k-minematsu@ah.jp.nec.com

2 Nagoya University, Japan
tetsu.iwata@nagoya-u.jp

Abstract. At CT-RSA 2017, List and Nandi proposed PMACx and PMAC2x which
are variable input length pseudorandom functions (VO-PRFs) that use a tweakable
block cipher (TBC) as the underlying primitive. These schemes are provably secure
up to the query complexity of 2n, where n denotes the block length of the TBC. In
this paper, we falsify the provable security claims by presenting concrete attacks. We
show that with the query complexity of O(2n/2), i.e., with the birthday complexity,
PMACx and PMAC2x are both insecure. Furthermore, we consider a deterministic
authenticated encryption scheme called SIVx. This scheme is built on PMAC2x, and
is provably secure up to the query complexity of 2n. However, we show a birthday
complexity attack against it.
Keywords: Cryptanalysis · PMACx · PMAC2x · SIVx · provable security

1 Introduction
There are several ways to construct a message authentication code (MAC), a pseudorandom
function (PRF), or an authenticated encryption with associated data (AEAD) scheme,
and a block cipher like AES has been used as one of the main building blocks. In other
words, MACs, PRFs, and AEAD schemes can be constructed as a mode of operation of
a block cipher. A tweakable block cipher (TBC), put forward by Liskov, Rivest, and
Wagner [LRW11], is a generalization of a block cipher that takes additional input called a
tweak. It turns out that a TBC is a useful building block to design efficient MACs, PRFs,
and AEAD schemes that have high security, particularly in light of the recent development
of efficient TBCs as a primitive [JNP14, BJK+16].

Let n be the block length in bits of a block cipher or a TBC. A MAC, a PRF, or an
AEAD scheme that are secure up to the 2n/2 query complexity are often called to be upBB
(up to the birthday bound) secure, while a scheme that remains secure beyond 2n/2 query
complexity is often called to have BBB (beyond the birthday bound) security.

At CT-RSA 2017, List and Nandi proposed variable input length PRFs (VO-PRFs)
called PMACx and PMAC2x [LN17], based on the work of Naito [Nai15]. These PRFs
use a TBC as the underlying primitive, and are provably BBB secure up to the query
complexity of 2n. The output length of PMAC2x is 2n bits and that of PMACx is n bits.
Based on PMAC2x, List and Nandi also proposed a provably BBB secure deterministic
AEAD scheme (DAE) called SIVx [LN17].

In this paper, we show that with the query complexity of O(2n/2), PMACx, PMAC2x,
and SIVx are all insecure, falsifying the provable security claims. We show that there exist
distinguishing attacks against them. We also show that there exist forgery attacks against
SIVx. Our attacks on PMACx and PMAC2x exploit the fact that two different tweak
values are used to process the last input block depending on its length. In PMACx and
PMAC2x, the input is padded if the length is not a positive multiple of n bits, otherwise

mailto:k-minematsu@ah.jp.nec.com
mailto:tetsu.iwata@nagoya-u.jp

2 Cryptanalysis of PMACx, PMAC2x, and SIVx

Table 1: Summary of our results. In the table, n is the block length of the underlying
TBC, and q is the number of queries.

Scheme Type Provable security bound Attack complexity

PMACx PRF O(q2/22n + q3/23n) [LN17] q = O(2n/2) [Sect. 3.2]
PMAC2x PRF O(q2/22n + q3/23n) [LN17] q = O(2n/2) [Sect. 3.1]
SIVx DAE O(q2/22n + q3/23n) [LN17] q = O(2n/2) [Sect. 5]

it is not padded. To differentiate the two cases, two different tweak values are used, and
this contributes to minimize the number of TBC calls.

While conceptually similar techniques have been employed in upBB-secure block cipher-
based MACs [BR00, IK03], for the case of PMACx and PMAC2x, this creates security
issues that allow the birthday complexity distinguishing attack. The same distinguishing
attack applies to SIVx, and the distinguishing attack can be translated into a forgery
attack. Furthermore, we point out that SIVx allows more flexible attacks. See Table 1 for
the summary of our results.

We note that other related schemes like PMAC_Plus [Yas11], PMAC_TBC1k [Nai15],
and PMAC_TBC3k [Nai15] do not use this type of padding method and do not have a
security issue presented in this paper.

2 PMACx and PMAC2x
We first fix notation. Let {0, 1}∗ be the set of all finite bit strings, and for an integer i ≥ 0,
let {0, 1}i be the set of all bit strings of i bits. We write {0, 1}≤n to denote ∪i=1,...,n{0, 1}i

and ({0, 1}n)+ to denote the set of all finite bit strings of length positive multiple of n.
For a bit string X, let |X| be its length in bits. We write ε for the empty string. Let
n be a block length and let Ẽ : K × T × {0, 1}n → {0, 1}n be a tweakable block cipher
(TBC), where K is a non-empty set of keys and T is a non-empty set of tweaks, and
for any (K, T) ∈ K × T , Ẽ(K, T, ·) = ẼT

K(·) is a permutation over {0, 1}n. We assume
that T = {0, 1, 2, 3} × {0, 1}t for t = n − 2, and for instance we write C ← Ẽ0,i

K (M) to
mean C is a ciphertext block of M under key K and tweak (0, i), where i is naturally
encoded as a t-bit string. Let 0i ∈ {0, 1}i be the i-bit string of all zero, and for two
bit strings X and Y , let X ‖Y or simply XY be their concatenation. For a bit string
X, let (X[1], . . . , X[m]) n← X be a parsing operation into n-bit blocks. If X 6= ε, then
X[1], . . . , X[m] are unique bit strings such that X[1] ‖ · · · ‖X[m] = X, |X[i]| = n for
1 ≤ i ≤ m− 1, and 1 ≤ |X[m]| ≤ n. If X = ε, then we let X[1] n← X where X[1] = ε. The
set of n-bit strings {0, 1}n is regarded as the finite field with 2n elements GF(2n), and for
two elements X, Y ∈ GF(2n), X · Y denotes their multiplication with some irreducible
polynomial. We often consider the case X is a generator X = 2, i.e., 2 · Y . For a bit string
X s.t. 0 ≤ |X| ≤ n−1, we define the one-zero padding function as ozp(X) = X ‖ 10n−|X|−1.
For X ∈ {0, 1}n and integer 0 ≤ i ≤ n, let msbi(X) denote the first (leftmost) i bits of X
and lsbi(X) denote the last (rightmost) i bits of X.

With the above notation, PMACx is a keyed function that uses Ẽ as the underlying
primitive. Let PMACx[Ẽ] : K × {0, 1}∗ → {0, 1}n be PMACx with Ẽ. It takes arbitrary
length M ∈ {0, 1}∗ as input, and outputs an n-bit string T . We write T ← PMACx[ẼK](M)
instead of T ← PMACx[Ẽ](K, M). Similarly, let PMAC2x[Ẽ] : K × {0, 1}∗ → {0, 1}2n be
PMAC2x with Ẽ. It takes M ∈ {0, 1}∗ as input and outputs a 2n-bit string (U, V), and
we write (U, V)← PMAC2x[ẼK](M). They are defined in Fig. 1 and illustrated in Fig. 2
and in Fig. 3.

Kazuhiko Minematsu and Tetsu Iwata 3

Algorithm PHASHx[ẼK](M)

1. X[0]← 0n, Y [0]← 0n

2. (M [1], . . . , M [m]) n←M

3. for i = 1 to m− 1 do
4. Z[i]← Ẽ0,i

K (M [i])
5. X[i]← X[i− 1]⊕ Z[i]
6. Y [i]← 2 · (Y [i− 1]⊕ Z[i])
7. if |M [m]| = n then
8. Z[m]← Ẽ0,m

K (M [m])
9. else

10. Z[m]← Ẽ1,m
K (ozp(M [m]))

11. X ← X[m− 1]⊕ Z[m]
12. Y ← 2 · (Y [m− 1]⊕ Z[m])
13. return (X, Y)

Algorithm PMAC2x[ẼK](M)

1. (X, Y)← PHASHx[ẼK](M)
2. X̂ ← msbt(X)
3. Ŷ ← msbt(Y)
4. U ← Ẽ2,Ŷ

K (X)
5. V ← Ẽ3,X̂

K (Y)
6. return (U, V)

Algorithm PMACx[ẼK](M)

1. (U, V)← PMAC2x[ẼK](M)
2. T ← U ⊕ V

3. return T

Figure 1: Definitions of PMAC2x and PMACx

T

M [2]

Ẽ2,Ŷ
K

Ẽ3,X̂
K

2 2

M [1]

0n

2

Z[1]

0n

X[1]

Y [1]

msbt

msbt

U

V

M [m] ‖ 10∗

Ẽ0,1
K Ẽ0,2

K Ẽ1,m
K

Z[2]

X[2]

Y [2]

Z[m]
X

Y

Figure 2: PMACx

3 Attacks against PMACx and PMAC2x
3.1 Attack against PMAC2x
We first present our attack against PMAC2x. Let O be an oracle which is either
PMAC2x[ẼK] or a random function oracle, which we write $-oracle, that always returns
a 2n-bit random string. According to [LN17], these two oracles are hard to distinguish
unless the number of queries is close to 2n. However, we show that with a high probability,
the adversary can distinguish between PMAC2x[ẼK] and $-oracle with 2n/2 queries.

For a set of bit strings {X1, . . . , Xq} for some q ≥ 1, where Xi ∈ {0, 1}∗, we say that
{X1, . . . , Xq} is distinct to mean Xi 6= Xj holds for all 1 ≤ i < j ≤ q.

Now let Q = 2n/2−1, and let M1, . . . , MQ be arbitrarily bit strings such that |Mi| = n
for all 1 ≤ i ≤ Q and {M1, . . . , MQ} is distinct. Similarly, let M ′

1, . . . , M ′
Q be arbitrarily

bit strings such that 1 ≤ |M ′
j | < n for all 1 ≤ j ≤ Q and {M ′

1, . . . , M ′
Q} is distinct. Our

adversary works as follows. See also Fig. 4.

4 Cryptanalysis of PMACx, PMAC2x, and SIVx

M [2]

Ẽ2,Ŷ
K

Ẽ3,X̂
K

2 2

M [1]

0n

2

Z[1]

0n

X[1]

Y [1]

msbt

msbt

M [m] ‖ 10∗

Ẽ0,1
K Ẽ0,2

K Ẽ1,m
K

Z[2]

X[2]

Y [2]

Z[m]
X

Y

U

V

Figure 3: PMAC2x

M ′
j ‖ 10∗

Ẽ1,1
K

X ′
j

Y ′
j

U ′
j

V ′
j

0n

2

0n

msbt

msbt

Ẽ
3,X̂′

j

K

Ẽ
2,Ŷ ′

j

K

Mi

0n

2

0n

msbt

msbt

Ẽ0,1
K

Xi

Yi

Ui

Vi

Ẽ2,Ŷi

K

Ẽ3,X̂i

K

Figure 4: Our attack against PMAC2x

1. For i = 1, . . . , Q, query Mi to O and obtain (Ui, Vi)← O(Mi).

2. For j = 1, . . . , Q, query M ′
j to O and obtain (U ′j , V ′j)← O(M ′

j).

3. Search for a collision between {(U1, V1), . . . , (UQ, VQ)} and {(U ′1, V ′1), . . . , (U ′Q, V ′Q)}.

4. If a collision is found, i.e., if (Ui, Vi) = (U ′j , V ′j) holds for some (i, j) ∈ {1, . . . , Q}2,
then O is PMAC2x[ẼK]. Otherwise O is $-oracle.

We next show that the above attack succeeds in distinguishing between PMAC2x[ẼK]
and $-oracle with a high probability.

Case O = $-oracle. In this case, for each (i, j) ∈ {1, . . . , Q}2, we have Pr[(Ui, Vi) =
(U ′j , V ′j)] = 1/22n and the probability to find a collision in Step 3 is negligibly small, which
is Θ(Q2/22n) = Θ(1/2n).

Kazuhiko Minematsu and Tetsu Iwata 5

Ẽ1,2
K

X ′
j

Y ′
j

2

msbt

msbt

Ẽ
3,X̂′

j

K

Ẽ
2,Ŷ ′

j

K

Z ′
j [2]

T ′
j

M [1]

0n

2

Z[1]

0n

Ẽ0,1
K

M ′
j [2] ‖ 10∗

2

msbt

msbt

Ẽ0,2
K

Xi

Yi

Ẽ2,Ŷi

K

E3,X̂i

K

M [1]

0n

2

Z[1]

0n

Ẽ0,1
K

Mi[2]

Ti

˜

Zi[2]

Figure 5: Our attack against PMACx

Case O = PMAC2x[ẼK]. In this case, for Mi and M ′
j , let

Xi = Ẽ0,1
K (Mi),

Yi = 2 ·Xi,

X ′j = Ẽ1,1
K (ozp(M ′

j)), and
Y ′j = 2 ·X ′j .

We have (Xi, Yi) = PHASHx[ẼK](Mi) and (X ′j , Y ′j) = PHASHx[ẼK](M ′
j). See Fig. 4.

Now we assume that ẼK is perfectly secure, i.e., it behaves ideally. This implies that
X1, . . . , XQ are non-repeating random n-bit strings, as they are outputs of a random
permutation over {0, 1}n specified by the tweak (0, 1). Similarly, X ′1, . . . , X ′Q are non-
repeating random n-bit strings which are outputs of a random permutation specified by the
tweak (1, 1). Then the folklore result states that the probability of collision Xi = X ′j for
some Xi ∈ {X1, . . . , XQ} and X ′j ∈ {X ′1, . . . , X ′Q} is at least 0.6 ·Q2/2n. For completeness,
we recall this fact in Appendix A.

Once Xi = X ′j holds for some (i, j) ∈ {1, . . . , Q}2 we also have Yi = Y ′j , and thus
(Ui, Vi) = (U ′j , V ′j) holds as well.

Therefore, the attack succeeds with a high probability.

3.2 Attack against PMACx
We next consider PMACx. Let O be an oracle which is either PMACx[ẼK] or $-oracle,
where this time $-oracle always returns an n-bit random string. The above attack cannot
be directly applied on PMACx, since the probability of a collision for $-oracle is not small
for 2n/2 queries. However, we can generalize the above attack to break PMACx as follows.

Let Q = 2n/2−1, and we fix M [1] and M ′[1] s.t. M [1] 6= M ′[1] and |M [1]| = |M ′[1]| = n
arbitrarily. Let M1[2], . . . , MQ[2], M ′

1[2], . . . , M ′
Q[2] be arbitrarily bit strings s.t. |Mi[2]| = n

for all 1 ≤ i ≤ Q, {M1[2], . . . , MQ[2]} is distinct, 1 ≤ |M ′
j [2]| < n for all 1 ≤ j ≤ Q, and

{M1[2], . . . , MQ[2]} is distinct. Now our adversary works as follows. See Fig. 5.

1. For i = 1, . . . , Q, query Mi = (M [1], Mi[2]) to O and obtain Ti ← O(Mi).

2. For j = 1, . . . , Q, query M ′
j = (M [1], M ′

j [2]) to O and obtain T ′j ← O(M ′
j).

6 Cryptanalysis of PMACx, PMAC2x, and SIVx

3. Search for a collision between {T1, . . . , TQ} and {T ′1, . . . , T ′Q}.

4. Suppose that a collision is found, and suppose that Ti = T ′j holds for (i, j) ∈
{1, . . . , Q}2.

5. For (i, j) found in Step 4, query MQ+1 = (M ′[1], Mi[2]) and M ′
Q+1 = (M ′[1], M ′

j [2])
to O, and obtain TQ+1 ← O(MQ+1) and T ′Q+1 ← O(M ′

Q+1).

6. If TQ+1 = T ′Q+1, then O is PMACx[ẼK]. Otherwise O is $-oracle.

We show that the above attack succeeds in distinguishing between PMACx[ẼK] and
$-oracle.

Case O = $-oracle. In this case, with a high probability, we find (i, j) ∈ {1, . . . , Q}2 in
Step 4, but for the corresponding TQ+1 and T ′Q+1 in Step 5, we have Pr[TQ+1 = T ′Q+1] =
1/2n.

Case O = PMACx[ẼK]. We follow the notation in Fig. 5, i.e., for Mi and M ′
j , let

Z[1] = Ẽ0,1
K (M [1]),

Zi[2] = Ẽ0,2
K (Mi[2]), and

Z ′j [2] = Ẽ1,2
K (ozp(M ′

j [2])).

Let (Xi, Yi) = PHASHx[ẼK](Mi) and (X ′j , Y ′j) = PHASHx[ẼK](M ′
j). Then we have

Xi = Z[1]⊕ Zi[2], Yi = 4 · Z[1]⊕ 2 · Zi[2], X ′j = Z[1]⊕ Z ′j [2], and Y ′j = 4 · Z[1]⊕ 2 · Z ′j [2].
Then it holds that

PHASHx[ẼK](Mi)⊕ PHASHx[ẼK](M ′
j) = (Zi[2]⊕ Z ′j [2], 2 · (Zi[2]⊕ Z ′j [2])).

Z1[2], . . . , ZQ[2] are non-repeating n-bit random strings, and Z ′1[2], . . . , Z ′Q[2] are also
non-repeating n-bit random strings. Then with the same argument to the attack against
PMAC2x, with a high probability, we have (i, j) ∈ {1, . . . , Q}2 such that Zi[2]⊕Z ′j [2] = 0n,
in which case we have PHASHx[ẼK](Mi) ⊕ PHASHx[ẼK](M ′

j) = (0n, 0n). We see that
changing M [1] to M ′[1] does not prevent having a collision, and we always have TQ+1 =
T ′Q+1 in Step 7.

Therefore, the attack succeeds with a high probability.

3.3 Remarks on the Attacks against PMACx and PMAC2x
3.3.1 M [1] and M ′[1] Can Be Longer

We first remark that M [1] and M ′[1] in the attack of PMACx can be longer. Specifically,
we can fix M [1], . . . , M [m−1] ∈ {0, 1}n arbitrarily, and then perform Steps 1–4 in Sect. 3.2
using Mi = (M [1], . . . , M [m− 1], Mi[m]) and M ′

j = (M [1], . . . , M [m− 1], M ′
j [m]) to find

a collision, and then substitute M [1], . . . , M [m − 1] with M ′[1], . . . , M ′[m − 1], where
(M [1], . . . , M [m− 1]) 6= (M ′[1], . . . , M ′[m− 1]), to perform Steps 6 and 7.

The same is true for PMAC2x. We may fix M [1], . . . , M [m− 1] ∈ {0, 1}n arbitrarily,
and then perform Steps 1–4 in Sect. 3.1 using Mi = (M [1], . . . , M [m − 1], Mi[m]) and
M ′

j = (M [1], . . . , M [m− 1], M ′
j [m]) to find a collision.

Kazuhiko Minematsu and Tetsu Iwata 7

3.3.2 Almost Universal Forgery

The above remark about PMACx suggests that an almost universal forgery is possible.
Here the almost universal forgery is a type of forgery where the adversary is given
M∗ ∈ {0, 1}∗, and the goal is to output (M∗ ‖S, T ∗) for some S ∈ {0, 1}∗, where T ∗ =
PMACx[ẼK](M∗ ‖S), without making a query M∗ ‖S, i.e., the adversary is requested to
produce a correct output for an input that has M∗ as the prefix.

This is possible simply by using ozp(M∗) as M ′[1], . . . , M ′[m− 1] in the above remark,
where we define ozp(X) = X ‖ 10n−(|X| mod n)−1 when |X| ≥ n. Specifically, after obtaining
colliding Mi[m] and M ′

j [m] in Steps 1–4, the adversary makes a query ozp(M∗) ‖Mi[m] to
obtain TQ+1, and the forgery is (ozp(M∗) ‖M ′

j [m], TQ+1). Since |ozp(M∗)| is a multiple
of n, Mi[m] and M ′

j [m] are again used as the last input blocks, and thus the forgery is
always accepted.

It is straightforward to see that the almost universal forgery is possible against
PMAC2x by following the attack mentioned in Sect. 3.3.1 that uses a collision of Mi =
(M [1], . . . , M [m− 1], Mi[m]) and M ′

j = (M [1], . . . , M [m− 1], M ′
j [m]) for m ≥ 2.

3.3.3 More Colliding Input Pairs

In the attack against PMACx in Sect. 3.2, once we obtain a colliding input pair Mi =
(M [1], Mi[2]) and M ′

j = (M [1], M ′
j [2]) in Steps 1–4, we obtain another colliding input pair

MQ+1 = (M ′[1], Mi[2]) and M ′
Q+1 = (M ′[1], M ′

j [2]). It is easy to see that more colliding
input pairs can be obtained by changing M ′[1].

It is also easy to see that more colliding input pairs can be obtained in PMAC2x by
following the attack mentioned in Sect. 3.3.1.

4 SIVx
SIVx is a deterministic AEAD (DAE for short) that uses PMAC2x as a PRF and IV-based
encryption scheme called IVCTRT designed by Peyrin and Seurin [PS16]. These two
functions are composed in the same way as SIV [RS06].

Let Ẽ : K × T × {0, 1}n → {0, 1}n be a tweakable block cipher, where this time we
assume that T = {0, 1, 2, . . . , 7} × {0, 1}t for t = n− 4.

SIVx consists of encryption algorithm SIVx[ẼK] and decryption algorithm SIVx−1[ẼK],
both internally use PMAC2x[ẼK]. Here, PMAC2x[ẼK] takes associated data (AD) A ∈
{0, 1}∗ and plaintext M ∈ {0, 1}∗ as input, thus the input domain is {0, 1}∗ × {0, 1}∗,
which is different from the specification of PMAC2x in Fig 1. The specification of PMAC2x
in SIVx applies PHASHx to A and M in parallel, using different tweak sets, and taking
XOR of two PHASHx outputs, then performs the same final processing as in the original
PMAC2x to have the 2n-bit output tag T . For encryption, IVCTRT[ẼK] takes T as its IV
and performs additive encryption for M . SIVx is defined in Fig. 6, and the PRF part is
illustrate in Fig. 7.

In our attacks, we will use the fact that IVCTRT encrypts M additively, but we remark
that further details of IVCTRT are irrelevant to our attacks.

5 Attacks against SIVx
5.1 Distinguishing and Forgery Attacks against SIVx
Let (Oe,Od) be the pair of encryption and decryption oracles of DAE, either (Oe,Od) =
(SIVx[ẼK], SIVx−1[ẼK]) or (Oe,Od) = ($,⊥), where $-oracle returns a random string of
length |M | + 2n bits on query (A, M), and ⊥ denotes a decryption oracle that always

8 Cryptanalysis of PMACx, PMAC2x, and SIVx

Algorithm SIVx[ẼK](A, M)

1. T ← PMAC2x[ẼK](A, M)
2. IV ← (msbt(T) ‖ lsbn(T))
3. C ← IVCTRT[ẼK](IV, M)
4. return (C, T)

Algorithm SIVx−1[ẼK](A, C, T)

1. IV ← (msbt(T) ‖ lsbn(T))
2. M ← IVCTRT−1[ẼK](IV, C)
3. T̂ ← PMAC2x[ẼK](A, M)
4. if T̂ = T then return M

5. else return ⊥

Algorithm PMAC2x[ẼK](A, M)

1. (XA, Y A)← PHASHx4,5[ẼK](A)
2. (XM , Y M)← PHASHx6,7[ẼK](M)
3. X̂ ← msbt(XA ⊕XM)
4. Ŷ ← msbt(Y A ⊕ Y M)
5. U ← Ẽ2,Ŷ

K (X)
6. V ← Ẽ3,X̂

K (Y)
7. T ← (U ‖V)
8. return T

Algorithm IVCTRT[ẼK](IV, M)

1. I ← msbt(IV), J ← lsbn(IV)
2. (M [1], . . . , M [m]) n←M

3. for i = 1 to m− 1 do
4. C[i]← Ẽ

1,I+(i−1)
K (J)⊕M [i]

5. S[m]← Ẽ
1,I+(m−1)
K (J)

6. C[m]← msb|M [m]|(S[m])⊕M [m]
7. C ← (C[1] ‖ · · · ‖C[m])
8. return C

Algorithm IVCTRT−1[ẼK](IV, C)

1. M ← IVCTRT[ẼK](IV, C)
2. return M

Figure 6: Definition of SIVx, following the texts of [LN17]. In the above definition,
PHASHxi,j [ẼK] is a variant of PHASHx[ẼK] defined in Fig. 1 where Ẽi,∗

K and Ẽj,∗
K are

used instead of Ẽ0,∗
K and Ẽ1,∗

K . We emphasize that PMAC2x[ẼK](A, M) above is not the
same as PMAC2x[ẼK](M) specified in Fig. 1. We note that there is an inconsistency in
the pseudocode and the figure of [LN17] for PHASHx, where tweak value (4, 5) is used for
A and (6, 7) used for M in the pseudocode, however, this is swapped in the figure.

returns ⊥ symbol. The all-in-one security notion for DAE is the indistinguishability
of (SIVx[ẼK], SIVx−1[ẼK]) from ($,⊥) without using queries leading to trivial win, see
e.g. [RS06] for details.

We first point out that the attack presented in Sect. 3.1 works on SIVx. Specifically, we
let Q = 2n/2−1 and fix arbitrary M ∈ {0, 1}∗, A ∈ ({0, 1}n)+, A1, . . . , AQ, and A′1, . . . , A′Q,
where |Ai| = n, {A1, . . . , AQ} is distinct, 1 ≤ |A′j | < n, and {A′1, . . . , A′Q} is distinct. After
making 2Q queries of ((A, A1), M), . . . , ((A, AQ), M) and ((A, A′1), M), . . . , ((A, A′Q), M)
to Oe, the adversary obtains (C1, T1), . . . , (CQ, TQ) and (C ′1, T ′1), . . . , (C ′Q, T ′Q). With a
high probability, we find a collision between {T1, . . . , TQ} and {T ′1, . . . , T ′Q} which is not
the case for $-oracle.

The above attack breaks the privacy of SIVx, but breaking the authenticity is also
possible. After finding colliding Ti and T ′j with the above privacy attack, with the
corresponding ((A, Ai), M) and ((A, A′j), M), the adversary substitutes A to any A′

s.t. A′ 6= A and |A′| = |A|, makes a query ((A′, Ai), M) to Oe to obtain (C ′, T ′), and then
sends a forgery ((A′, A′j), C ′, T ′) to Od. The forgery is always accepted, which is not the
case for ⊥.

Therefore, there exist attacks against SIVx with a query complexity of O(2n/2). Next,

Kazuhiko Minematsu and Tetsu Iwata 9

2 2

0n

2

0n

Ẽ4,1
K Ẽ4,2

K

M [2]

2 2

M [1]

0n

2

0n

M [m] ‖ 10∗

Ẽ6,1
K Ẽ6,2

K Ẽ7,m
K

A[1] A[2] A[a] ‖ 10∗

ZA[1] ZA[2] ZA[a]

XA[1] XA[2]

XA

Y A[1] Y A[2]

Y A

ZM [1] ZM [2] ZM [m]

XM [1] XM [2] XM

Y M [1] Y M [2] Y M

Ẽ5,a
K

Ẽ2,Ŷ
K

Ẽ3,X̂
K

msbt

msbt

X

Y

U

V

Figure 7: The PRF part of SIVx

we present a variant of the above attacks with the same complexity but with more flexibility.

5.2 Distinguishing Attack against SIVx
Let SUBST(i, X, B) for X ∈ {0, 1}∗, B ∈ {0, 1}≤n, 1 ≤ i ≤ d|X|/ne, be a sequence of the
same length as X but the i-th block is substituted with B. That is, for (X[1], . . . , X[m]) n←
X and Xpre = (X[1] ‖X[2] ‖ · · · ‖X[i− 1]) and Xpost = (X[i + 1] ‖ · · · ‖X[m]), we have

SUBST(i, X, B) = (Xpre ‖B ‖Xpost).

We also define a complemental operation to SUBST written as

SUBSTc(i, X, X ′pre, X ′post) = (X ′pre ‖X[i] ‖X ′post),

for |X ′pre| = |Xpre| and |X ′post| = |Xpost|.
The attack shown below is to break the all-in-one security notion of DAE, using only

encryption queries. Thus the attack can also be interpreted as one breaks the privacy
SIVx. Let Q = 2n/2.

1. Fix non-empty A, M . Fix s ∈ {1, . . . , a} and t ∈ {1, . . . , m} for a = d|A|/ne and
m = d|M |/ne, satisfying a− s = m− t. For simplicity we assume A, M ∈ ({0, 1}n)+

and a, m ≥ 2 and s < a and t < m.

2. For i = 1, . . . , Q, let Ai = SUBST(s, A, Ai[s]) and Mi = SUBST(t, M, Mi[t]) for two
sets {A1[s], . . . , AQ[s]} and {M1[t], . . . , MQ[t]}, both distinct.

3. For i = 1, . . . , Q, query (Ai, Mi) to Oe to obtain (Ci, Ti)← Oe(Ai, Mi).

10 Cryptanalysis of PMACx, PMAC2x, and SIVx

Ai[s]

ZA
i [s]

A[a]

XA
i

Y A
i

Xi

Mi[t]

ZM
i [t]

M [m]

XM
i

Y M
i

Yi

2 2

0n

0n

Ẽ4,1
K

2 2

M [1]

0n

0n

Ẽ6,1
K

A[1]

msbt

msbt

Ẽ4,s
K Ẽ4,a

K

Ẽ6,t
K Ẽ6,m

K

Ui

Vi

Ẽ2,Ŷi

K

Ẽ3,X̂i

K

2

2

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ti

Figure 8: Attack against SIVx

4. Search for a collision among {T1, . . . , TQ}.

5. If a collision is found, i.e., if Ti = Tj holds for some distinct i, j ∈ {1, . . . , Q}, then
Oe is SIVx[ẼK]. Otherwise Oe is $-oracle.

Case Oe = $-oracle. In this case, for each distinct i, j ∈ {1, . . . , Q}, we have Pr[Ti =
Tj] = 1/22n and the probability to find a collision in Step 4 is Θ(Q2/22n) = Θ(1/2n).

Case Oe = SIVx[ẼK]. We attach subscript i to the variables in Fig. 7 when the input
is (Ai, Mi). See Fig. 8 for an illustration. We have


XA

i = Ẽ4,s
K (Ai[s])⊕VarA

1 ,

Y A
i = 2a−s+1 · Ẽ4,s

K (Ai[s])⊕VarA
2 ,

XM
i = Ẽ6,t

K (Mi[t])⊕VarM
1 , and

Y M
i = 2m−t+1 · Ẽ6,t

K (Mi[t])⊕VarM
2

for some n-bit variables VarA
1 , VarA

2 , VarM
1 , and VarM

2 which are independent of i for
all 1 ≤ i ≤ Q, since they are determined by the invariant parts of Ai and Mi. From

Kazuhiko Minematsu and Tetsu Iwata 11

ZA
i [s] = Ẽ4,s

K (Ai[s]) and ZM
i [t] = Ẽ6,t

K (Mi[t]), we have

Xi ⊕Xj = (XA
i ⊕XM

i)⊕ (XA
j ⊕XM

j)
= ZA

i [s]⊕ ZA
j [s]⊕ ZM

i [t]⊕ ZM
j [t], and

Yi ⊕ Yj = (Y A
i ⊕ Y M

i)⊕ (Y A
j ⊕ Y M

j)
= 2a−s+1 · (ZA

i [s]⊕ ZA
j [s])⊕ 2m−t+1 · (ZM

i [t]⊕ ZM
j [t])

= 2a−s+1 · (Xi ⊕Xj),

where the last equality follows from a− s = m− t.
Here ZA

i [s]⊕ZA
j [s] and ZM

i [t]⊕ZM
j [t] are independent since underlying Ẽ takes distinct

tweaks for A and M .
Once Xi ⊕Xj = 0n holds, (Xi, Yi) = (Xj , Yj) always holds, and thus Ti = Tj holds,

that is, the adversary observes a collision in the tags of SIVx. Therefore, the adversary
wins the game with probability

Pr[Xi ⊕Xj = 0n for some i, j ∈ {1, . . . , Q}]. (1)

Assuming ẼK is ideal as in the previous attacks, we observe that (1) is not small.
More formally, for two independent n-bit random permutations P1 and P2, we observe
that finding a collision in {X1, . . . , XQ} is equivalent to finding a collision on the outputs
of function x → P1(x) ⊕ P2(x) i.e. the sum of two permutations which we call SUM2.
We write p1(q) to denote the maximum probability of finding a collision for SUM2 using
(possibly adaptive) q queries. What we need is a lower bound of p1(Q). By replacing
the function x → P1(x) ⊕ P2(x) with a random function, the above task is reduced to
be the collision finding on the output of single n-bit random function, R. Let p2(q) be
the maximum probability of finding a collision for R with q queries. Then |p1(q)− p2(q)|
is no greater than the distinguishing advantage between SUM2 and R, which is at most
q3/(3 · 22n−1) from Lucks [Luc00]. Therefore, p1(q) ≥ p2(q)− q3/(3 · 22n−1) holds. Now
the folklore result says that p2(q) is at least 0.3 · q(q − 1)/2n. Therefore, p1(q) is at least
about 0.3− 1/2n/2 when q = 2n/2.

5.3 Forgery Attack against SIVx
The above attack for the privacy notion is easily extended to the attack for the authenticity
notion. Suppose that the adversary first performs the above attack to obtain (Ai, Mi) and
(Aj , Mj) with colliding tags, Ti and Tj , Ti = Tj for some i, j ∈ {1, . . . , 2n/2}. We know Ai

and Aj only differ in their s-th blocks, and Mi and Mj only differ in their t-th blocks. The
adversary then queries (A′, M ′) to the encryption oracle to obtain the response (C ′, T ′),
where A′ = SUBSTc(s, Ai, A′pre, A′post) and M ′ = SUBSTc(t, Mi, M ′

pre, M ′
post) for some

A′pre, A′post, M ′
pre and M ′

post so that (A′, M ′) is a new, valid encryption query.
Then, the adversary computes the key stream, S′ = M ′ ⊕ C ′.
Finally the adversary queries (A′′, C ′′, T ′′) to the decryption oracle, where

A′′ = SUBSTc(s, Aj , A′pre, A′post),
C ′′ = SUBSTc(t, Mj , M ′

pre, M ′
post)⊕ S′,

T ′′ = T ′.

The decryption oracle, SIVx−1[ẼK], computes M ′′ = C ′′⊕S′ = SUBSTc(t, Mj , M ′
pre, M ′

post)
as a decrypted plaintext, and then computes T̂ ′′ = PMAC2x[ẼK](A′′, M ′′) of Fig. 6 to see
if T̂ ′′ = T ′′ holds, which is always true because the internal (X, Y) value (i.e. the sum of
PHASHx outputs) will collide with that of query (A′, M ′). Hence the decryption oracle
always accepts this query and the adversary wins.

12 Cryptanalysis of PMACx, PMAC2x, and SIVx

Comment. The attacks in Sect 5.2 and Sect. 5.3 might be seen as minor variants of the
attack in Sect. 5.1 (and hence variants of the attacks in Sect. 3). However, the implication
is different. The attacks on PMACx and PMAC2x could be avoided if we appropriately
modify the padding method, which also avoids the attack of Sect. 5.1. However, the
attacks in Sect 5.2 and Sect. 5.3 indicate that the weakness of SIVx cannot possibly be
removed by merely changing the padding method, and for this reason the design of SIVx
is fundamentally flawed.

6 Discussions and Conclusions
In this paper, we showed that there are attacks against PMACx, PMAC2x, and SIVx with
the query complexity of O(2n/2).

We here discuss what went wrong with PMACx, PMAC2x, and SIVx. For PMACx and
PMAC2x, the critical flaw is in the XCBC/CMAC-like treatment of last message blocks in
PHASHx. This causes an output collision of PHASHx with probability 1/2n for a pair of
messages having spesific forms in the last blocks. Unfortunately, the security proof given
in [LN17] ignored this case, which, to our knowledge, were to be analyzed in Subcase 2 of
Case 1 in the proof of Theorem 1 in [LN17].

For SIVx, as it is based on PHASHx the same problem remains. Moreover the
specification PMAC2x in SIVx is not the same as stand-alone PMAC2x specification as
pointed out in Sect. 4, which enables even more variants of attacks. The paper [LN17] did
not provide any specific analysis on this structure.

PMACx and PMAC2x are built on PMAC_TBC1k and PMAC_TBC3k designed
and proposed by Naito [Nai15], and List and Nandi pointed out that the security proof
of [Nai15] has issues, claiming a correct security proof. We note that the attacks presented
in this paper indicate that the proofs of List and Nandi still have issues, yet the erroneous
parts are different from the one that is related to the issue of [Nai15].

Finally, we remark that PMAC_TBC1k and PMAC_TBC3k are not affected by our
attacks as they employ a different padding scheme.

Acknowledgements.

The authors thank Thomas Peyrin for discussions. The authors also thank Eik List and
Mridul Nandi for feedback. The work by Tetsu Iwata was supported in part by JSPS
KAKENHI, Grant-in-Aid for Scientific Research (B), Grant Number 26280045, and was
carried out while visiting Nanyang Technological University, Singapore.

A Collision on Two Sets of Non-Repeating Random Strings
We recall a folklore result about the collision probability of non-repeating random strings.

Let 1 ≤ q ≤ 2n/2 be an integer, and let X1, . . . , Xq be non-repeating n-bit random
strings. More precisely, we let X1

$← {0, 1}n, and for 2 ≤ i ≤ q, we let Xi
$← {0, 1}n \

{X1, . . . , Xi−1}. Here, the notation X
$← S means to select an element from a finite set S

uniformly at random and assign it to X. Similarly, let X ′1, . . . , X ′q be non-repeating n-bit
random strings that are independent from X1, . . . , Xq.

Proposition 1. Pr[Xi = X ′j for some (i, j) ∈ {1, . . . , q}2] ≥ 0.6 · q2/2n.

Proof. For any fixed X1, . . . , Xq, we have (2n − q)(2n − (q + 1)) · · · (2n − (2q − 1)) =∏
0≤i≤q−1(2n − (q + i)) possible choices of X ′1, . . . , X ′q, out of

∏
0≤i≤q−1(2n − i) choices,

Kazuhiko Minematsu and Tetsu Iwata 13

that satisfies Xi 6= X ′j for all (i, j) ∈ {1, . . . , q}2. We have

Pr[Xi = X ′j for some (i, j) ∈ {1, . . . , q}2] = 1− Pr[Xi 6= X ′j for all (i, j) ∈ {1, . . . , q}2]

= 1−
∏

0≤i≤q−1(2n − (q + i))∏
0≤i≤q−1(2n − i)

= 1−
∏

0≤i≤q−1

(
1− q

2n − i

)
≥ 1−

∏
0≤i≤q−1

(
1− q

2n

)
.

From 1− x ≤ e−x, we have 1− q/2n ≤ e−q/2n , and hence

1−
∏

0≤i≤q−1

(
1− q

2n

)
≥ 1− e−q2/2n

.

From 1− e−x ≥ (1− 1/e) · x for 0 ≤ x ≤ 1, we have 1− e−q2/2n ≥ (1− 1/e) · q2/2n.

References
[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,

Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
Family of Block Ciphers and Its Low-Latency Variant MANTIS. In Matthew
Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II, volume 9815 of
LNCS, pages 123–153. Springer, 2016.

[BR00] John Black and Phillip Rogaway. CBC MACs for Arbitrary-Length Messages:
The Three-Key Constructions. In Mihir Bellare, editor, CRYPTO 2000, volume
1880 of LNCS, pages 197–215. Springer, 2000.

[IK03] Tetsu Iwata and Kaoru Kurosawa. OMAC: One-Key CBC MAC. In Thomas
Johansson, editor, FSE 2003, volume 2887 of LNCS, pages 129–153. Springer,
2003.

[JNP14] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and Keys for Block
Ciphers: The TWEAKEY Framework. In Palash Sarkar and Tetsu Iwata,
editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages 274–288.
Springer, 2014.

[LN17] Eik List and Mridul Nandi. Revisiting Full-PRF-Secure PMAC and Using It
for Beyond-Birthday Authenticated Encryption. In Helena Handschuh, editor,
CT-RSA 2017, volume 10159 of LNCS, pages 258–274. Springer, 2017.

[LRW11] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable Block Ciphers.
J. Cryptology, 24(3):588–613, 2011.

[Luc00] Stefan Lucks. The Sum of PRPs Is a Secure PRF. In Bart Preneel, editor,
EUROCRYPT 2000, volume 1807 of LNCS, pages 470–484. Springer, 2000.

[Nai15] Yusuke Naito. Full PRF-Secure Message Authentication Code Based on Tweak-
able Block Cipher. In Man Ho Au and Atsuko Miyaji, editors, ProvSec 2015,
volume 9451 of LNCS, pages 167–182. Springer, 2015.

14 Cryptanalysis of PMACx, PMAC2x, and SIVx

[PS16] Thomas Peyrin and Yannick Seurin. Counter-in-Tweak: Authenticated Encryp-
tion Modes for Tweakable Block Ciphers. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 33–63.
Springer, 2016.

[RS06] Phillip Rogaway and Thomas Shrimpton. A Provable-Security Treatment of the
Key-Wrap Problem. In Serge Vaudenay, editor, EUROCRYPT 2006, volume
4004 of LNCS, pages 373–390. Springer, 2006.

[Yas11] Kan Yasuda. A New Variant of PMAC: Beyond the Birthday Bound. In
Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 596–609.
Springer, 2011.

	Introduction
	PMACx and PMAC2x
	Attacks against PMACx and PMAC2x
	Attack against PMAC2x
	Attack against PMACx
	Remarks on the Attacks against PMACx and PMAC2x

	SIVx
	Attacks against SIVx
	Distinguishing and Forgery Attacks against SIVx
	Distinguishing Attack against SIVx
	Forgery Attack against SIVx

	Discussions and Conclusions
	Collision on Two Sets of Non-Repeating Random Strings

