
Full accounting for verifiable outsourcing

Riad S. Wahby⋆
rsw@cs.stanford.edu

Ye Ji◦
yj682@nyu.edu

Andrew J. Blumberg†

blumberg@math.utexas.edu

abhi shelat‡
abhi@neu.edu

Justin Thaler△
justin.thaler@georgetown.edu

Michael Walfish◦
mwalfish@cs.nyu.edu

Thomas Wies◦
wies@cs.nyu.edu

⋆Stanford ◦NYU †UT Austin ‡Northeastern △Georgetown

Abstract. Systems for verifiable outsourcing incur costs
for a prover, a verifier, and precomputation; outsourcing
makes sense when these costs are cheaper than not out-
sourcing. Yet, prover costs are generally ignored. The only
exception is Verifiable ASICs (VA), wherein the prover is
a custom chip; however, the only prior VA system ignores
the cost of precomputation.

This paper describes a new VA system, called Giraffe;
charges Giraffe for all three costs; and identifies regimes
where outsourcing is worthwhile. Giraffe’s base is an
interactive proof geared to data parallel computation. Gi-
raffe makes this protocol asymptotically optimal for the
prover, which is of independent interest. Giraffe also de-
velops a design template that produces hardware designs
automatically for a wide range of parameters, introduces
hardware primitives molded to the protocol’s data flows,
and incorporates program analyses that expand applica-
bility. Giraffe wins even when outsourcing several tens
of sub-computations, scales to 500× larger computations
than prior work, and can profitably outsource parts of
programs that are not worthwhile to outsource in full.

1 Introduction
In probabilistic proofs—Interactive Proofs (IPs) [12, 42,
43, 49, 65], arguments [26, 44, 45, 53], SNARGs [41],
SNARKs [24, 40] and PCPs [9, 10]—a prover convinces
a verifier of an assertion by supplying a proof (possibly
interactively); a false assertion is highly likely to cause
rejection. These protocols are foundational in complexity
theory and cryptography. There has also been substantial
progress in implementations over the last six years [14, 15,
17–19, 21, 22, 28, 29, 31–35, 38, 40, 47, 55, 56, 61–64,
66, 68–71] (for a survey, see [72]), based on theoretical
refinements and systems work.

A central application example is verifiable outsourc-
ing. The verifier specifies a computation and input; the
prover returns the (purported) output and proves the as-
sertion that “the returned output equals the computation
applied to the input.” The essential property here is that
the verifier’s probabilistic checks are asymptotically less
expensive than executing the computation; as a result, out-
sourcing can be worthwhile for the verifier. This picture
motivated a lot of the original theory [13, 39, 42, 53];
today, stories about cloud computing rehearse that mo-
tivation. To validate these stories in the context of real
implementations, there are three cost sources to consider:

• Prover overhead. Even in the best general-purpose
probabilistic proof protocols, the prover has enormous
overhead in running the protocol versus simply exe-
cuting the underlying computation: the ratio between
these is typically at least 107 [72, Fig. 5].

• Precomputation. Many of the implemented protocols
require a setup phase, performed by the verifier or a
party the verifier trusts. This phase is required for each
computation and can be reused over different input-
output instances. Its costs are usually proportional to
the time to run the computation. (Precomputation can
be asymptotically suppressed or even eliminated, but at
vastly higher concrete cost [17, 21, 22, 29]; see §10.)

• Verifier overhead. Separate from precomputation, there
are inherent protocol costs that the verifier incurs for
each input-output instance. These costs are at least
linear in the input and output lengths.

More or less tacitly, “practical” work in this area has
bundled in assumptions about the regimes in which these
costs are reasonable for the operator of the verifier.1 For
example, one way to tame the costs is not to charge the
operator for precomputation. This is the approach taken
in Pinocchio, which focuses on per-instance verifier over-
head [56, 57].2 This choice can be justified if there is a
trusted third party with extremely inexpensive cycles.

Another possibility is to target data parallel computa-
tions, meaning identical sub-computations on different
inputs. Here, one can charge the operator of the verifier
for the precomputation (which amortizes) and then iden-
tify cross-over points where the verifier saves work from
outsourcing [28, 32, 56, 62–64, 69, 71].

In both of these cases, prover overhead is measured
but in some sense ignored (when considering whether
outsourcing is worthwhile). This would make sense if
the prover’s cycles were vastly cheaper than the verifier’s
(the required ratio is approximately the prover’s overhead:
107×), or if the outsourced computation could not be
executed in any other way.

1A variant of this story, exploiting an exciting property of some proba-
bilistic proofs [24, 40], involves “zero knowledge” applications where
the proof can incorporate input hidden from the verifier [18, 33, 55, 56].
Here, one is often more concerned about the prover’s overhead. Never-
theless, the same efforts to identify regimes where overhead is reason-
able arise. We do not discuss this in detail, but see §10.

2Pinocchio certainly considers precomputation [56, §5.3], but its empha-
sized comparison is between native execution and verifier overhead.

Recently, Zebra [70] used a different justification by
observing that one can gain high-assurance execution
of custom chips (ASICs) by using trusted slow chips to
verify the outputs of untrusted fast chips. In this Verifiable
ASICs (VA) domain (§2.3), one can charge the operator
for both verifier and prover and still identify regimes
where their combination outperforms a baseline of simply
executing the given functionality in a trusted slow chip.
However, Zebra does not charge for precomputation (and
worse, introduces a preposterous assumption about the
daily delivery of hard drives to handle the problem).

The work of this paper is to create a system, Giraffe,
to charge the operator for all three costs, and to seek
out regimes where this combined cost is superior to the
baseline. Giraffe builds on Zebra and likewise targets
the VA setting. However, some of Giraffe’s results and
techniques apply to verifiable outsourcing more generally.

Giraffe has two high-level aspects. The first is a new
probabilistic proof implementation built on a protocol that
we call T13 [66, §7]. As with all systems in the literature,
T13 requires computations to be expressed as arithmetic
circuits, or ACs (§2.1). T13 has three key advantages:
(a) T13 is a variant of CMT [31, 42] (Zebra’s base), and
thus promises amenability to hardware implementation;
(b) in the VA context, T13 can in principle pay for pre-
computation and break even, because it is geared to the
data parallel model mentioned earlier: precomputation is
proportional to one sub-computation, and amortizes over
N sub-computations; and (c) T13 ought to permit break-
ing even for small N: CMT has low overhead compared to
alternatives [72]. From this starting point, Giraffe makes
the following contributions (§3):

• Giraffe improves T13. Most significantly, Giraffe
makes the prover asymptotically time-optimal: for suf-
ficiently large N, the prover’s work is now only a multi-
ple (≈ 10×) of executing the AC (§3.1). This can save
an order of magnitude or more for any implementation
of T13 in any context, and is of independent interest.

• Giraffe develops a design template that automati-
cally instantiates physically realizable, efficient, high-
throughput ASIC designs for the prover and verifier,
based on a designer’s parameters. Consistent with our
search for applicable regimes, the parameter ranges are
wide (small and large N, different hardware substrates,
etc.), which creates a challenge: the optimal architec-
tures are diverse. For example, large ACs (large sub-
computations and/or large N) must iteratively reuse the
underlying hardware whereas small ACs call for high
parallelism. Giraffe meets this challenge with a small
set of custom hardware structures that, when applied to
the data flows in T13, run efficiently in serial execution
and parallelize easily.

The second aspect of Giraffe is motivated by our search
for applicable regimes. In existing systems, protocol over-
head limits the maximum size of a computation that can
be outsourced. Worse, outsourcing really makes sense
only if the computation is naturally expressed as an AC;
otherwise, the asymptotic savings do not apply until pro-
gram sizes are well beyond the aforementioned maximum.
While these systems differ in the particulars, their restric-
tions are qualitatively similar—and there has been no
fundamental progress on the expressivity issue over the
last six years. As a consequence, it seems imperative to
adapt to this situation. Two possible approaches are to han-
dle these constraints by outsourcing amenable pieces of a
given computation and to apply program transformations
to increase the range of suitable computations.

We study techniques for each of these approaches (§4).
Giraffe employs slicing, which takes as input a cost model
and a program, automatically identifies amenable subre-
gions of the program, and generates glue code to sew the
outsourced pieces into the rest of the program. Slicing is
a very general technique that can work with all probabilis-
tic proof implementations. Giraffe also uses squashing,
which transforms sequential ACs into parallel ACs, and
adjusts the verifier to link these computations; this is rele-
vant to CMT and T13, which require parallel ACs.

Giraffe’s implementation (§5) applies the above trans-
formations to C programs to produce a high-level repre-
sentation suitable for T13. Another compiler takes this
representation and several design parameters (Fig. 14,
Apdx. C) and automatically generates a hardware design,
built in SystemVerilog, that can be used for cycle-accurate
simulation or synthesized (that is, compiled to a chip).

We evaluate using detailed simulation and modeling
of these generated hardware designs. Accounting for all
costs (prover, precomputation, verifier), Giraffe saves
compared to native execution across a wide range of com-
putation sizes and hardware substrates (§6.2). In our ex-
ample applications (§8), Giraffe breaks even on operating
costs for N ≈ 30 parallel sub-computations. Compared
to prior work in the VA setting, Giraffe scales to 500×
larger computation sizes, holding other parameters con-
stant (§8.1). Finally, we demonstrate slicing against an
image-matching application that Giraffe could not other-
wise handle (§8.2).

Ultimately, Giraffe’s significance rests in adopting the
most stringent cost regime considered in the verifiable
outsourcing literature and (to our knowledge) being the
only system that can profitably outsource under this ac-
counting. Nevertheless, Giraffe has plenty of limitations:
breaking even requires data parallel computations, the
absolute cost of verifiability is still very high (as in every
system in the research area), the applicability is still far
narrower than we would like, and the program transfor-
mation techniques have taken only a small first step.

2

2 Background
2.1 Probabilistic proofs for verifiability

The description below is intended to give necessary ter-
minology; it does not cover all variations in the literature.

Systems for verifiable outsourcing enable the following.
A verifier V specifies a computation Ψ (often expressed
in a high-level language) to a prover P . V determines in-
put x; P returns y, which is purportedly Ψ(x). A protocol
between V and P allows V to check whether y = Ψ(x)
but without executing Ψ. There are few (and sometimes
no) assumptions about the scope of P’s misbehavior.

These systems typically have a front-end and a back-
end. The interface between them is an arithmetic cir-
cuit (AC). In an AC, the domain is a finite field F, usually
Fp (the integers mod a prime p); “gates” are field opera-
tions (add or multiply), and “wires” are field elements.

The front-end transforms Ψ from its original expres-
sion to an AC, denoted C ; this step often uses a com-
piler [27, 28, 32, 38, 56, 62, 64, 69, 71], though is some-
times done manually [18, 31, 66]. The back-end is a proba-
bilistic proof protocol, targeting the assertion “y = C (x)”;
this step incorporates tools from complexity theory and
sometimes cryptography.

2.2 Starting point for Giraffe’s back-end: T13

Giraffe’s back-end builds on a line of interactive
proofs [12, 42, 43, 49, 65]: GKR [42], as refined and
implemented by CMT [31], Allspice [69], Thaler [66],
and Zebra [70]. Our description below sometimes bor-
rows from [69, 70].

In these works, the AC C must be layered: the gates
are partitioned, and there are wires only between adjacent
partitions (layers). Giraffe’s specific base is T13 [66, §7],
with an optimization [67]. T13 requires data parallelism:
C must have N identical sub-circuit copies, each with its
own inputs and outputs (x and y now denote the aggregate
inputs and outputs). We call each copy a sub-AC. Each
sub-AC has d layers. For simplicity, we assume that every
sub-AC layer has the same width, G (this implies that
|x| = |y| = N ·G). The properties of T13 are given be-
low; probabilities are over V ’s random choices (Apdx. A
justifies these properties, by proof and reference to the
literature):

• Completeness. If y = C (x), and if P follows the pro-
tocol, then Pr{V accepts}= 1.

• Soundness. If y ̸= C (x), then Pr{V accepts} < ε ,
where ε = (⌈log |y|⌉+ 6d log(G ·N))/|F|. This holds
unconditionally (no assumptions about P). Typically,
|F| is astronomical, making this error probability tiny.

• Verifier’s running time. V requires precomputation
that is proportional to executing one sub-AC: O(d ·G).
Then, to validate all inputs and outputs, V incurs cost

O(d · log(N ·G)+ |x|+ |y|) (which, under our “same-
size-layer assumption”, is O(d · log(N ·G) +N ·G)).
Notice that the total cost to verify C , O(d ·G + d ·
logN +N ·G) , is less than the cost to execute C di-
rectly, which is O(d ·G ·N).

• Prover’s running time. P’s running time is O(d ·G ·
N · logG); we improve this later (§3.1).

Details. Within a layer of C , each gate is labeled with
a pair (n,g) ∈ {0,1}bN ×{0,1}bG , where bN ≜ logN and
bG ≜ logG. (We assume for simplicity that N and G are
powers of 2.) We also view labels numerically, as elements
in {0, . . . ,N−1}×{0, . . . ,G−1}. In either case, n (a gate
label’s upper bits) selects a sub-AC, and g (a gate label’s
lower bits) indexes a gate within the sub-AC.

Each layer i has an evaluator function Vi : {0,1}bN ×
{0,1}bG → F that maps a gate’s label to the output of that
gate;3 implicitly, Vi depends on the input x. By convention,
the layers are numbered in reverse execution order. Thus,
V0 refers to the output layer, and Vd refers to the inputs.
For example, V0(n, j1) is the correct j1th output in sub-AC
n; likewise, Vd(n, j2) is the j2th input in sub-AC n.

Notice that V wants to be convinced that y, the pur-
ported outputs, matches the correct outputs, as given by
V0. However, V cannot check this directly: evaluating V0
would require re-executing C . Instead, P combines all
V0(·) values into a digest. Then, the protocol reduces this
digest to another digest, this one (purportedly) correspond-
ing to all of the values V1(·). The protocol proceeds in this
fashion, layer by layer, until V is left with a purported
digest of the input x, which V can then check itself.

Instantiating the preceding sketch requires some ma-
chinery. A key element is the sum-check protocol [49],
which we will return to later (§3.1). For now, let
P : Fm→ F be an m-variate polynomial. In a sum-check
invocation, P interactively establishes for V a claim
about the sum of the evaluations of P over the Boolean
hypercube {0,1}m; the number of protocol rounds is m.

Another key element is extensions. Technically, an ex-
tension f̃ of a function f is a polynomial that is defined
over a domain that encloses the domain of f and equals
f at all points where f is defined. Informally, one can
think of f̃ as encoding the function table of f . In this pa-
per, extensions will always be multilinear extensions: the
polynomial has degree at most one in each of its variables.
We notate multilinear extensions with tildes.

Based on the earlier sketch, we are motivated to express
Ṽi−1 in terms of Ṽi. To that end, we define several predi-
cates. The functions add(·) and mult(·) are wiring pred-
icates; they have signatures {0,1}3bG → {0,1}, and im-
plicitly describe the structure of a sub-AC. addi(g,h0,h1)
returns 1 iff (a) within a sub-circuit, gate g at layer i−1 is
an add gate and (b) the left and right inputs of g are, respec-

3This definition of Vi transposes the domain relative to [66, §7].

3

tively, h0 and h1 at layer i. multi is defined analogously.
Note that these predicates ignore the “top bits” (the n
component) because all sub-ACs are identical. We also
define the equality predicate eq : {0,1}2bN →{0,1} with
eq(a,b) = 1 iff a equals b. Notice that these predicates ad-
mit extensions: ˜add, ˜mult : F3bG → F and ẽq : F2bN → F.
(We give explicit expressions in Apdx. A.)

We can now express Ṽi−1 in terms of a polynomial Pq,i:

Pq,i(r0,r1,r′)≜ ẽq(q′,r′)

·
[˜addi(q,r0,r1) ·

(
Ṽi(r′,r0)+Ṽi(r′,r1)

)
+ ˜multi(q,r0,r1) ·Ṽi(r′,r0) ·Ṽi(r′,r1)

]
. (1)

Ṽi−1(q′,q) = ∑
h0,h1∈{0,1}bG

∑
n∈{0,1}bN

Pq,i(h0,h1,n). (2)

The signatures are Pq,i : F2bG+bN → F and Ṽi−1,Ṽi : FbN ×
FbG → F. Equation (2) follows from an observation
of [67] applied to a claim in [66, §7]. For intuition, notice
that (i) Pq,i is being summed only at points where its vari-
ables are 0-1, and (ii) at these points, if (q′,q) is a gate
label (rather than an arbitrary value in FbN ×FbG), then
the extensions of the predicates take on 0-1 values and
in particular eliminate all summands except the one that
contains the inputs to the gate (q′,q).

An excerpt of the protocol appears in Figure 1; the re-
mainder appears in Appendix A. It begins with V wanting
to be convinced that Ṽ0 (which is the extension of the cor-
rect C (x)) is the same polynomial as Ṽy (which denotes
the extension of the purported output y). V thus chooses a
random point in both polynomials’ domain, (q′0,q0), and
wants to be convinced that Ṽ0(q′0,q0) = Ṽy(q′0,q0) ≜ a0.
Notice that (i) Ṽ0(q′0,q0) can be expressed as the sum
over a Boolean hypercube of the polynomial Pq0,1 (Equa-
tion (2)), and (ii) Pq0,1 itself is expressed in terms of Ṽ1
(Equation (1)). Using a sum-check invocation, the pro-
tocol exploits these facts to reduce Ṽ0(q′0,q0) = a0 to a
claim: Ṽ1(q′1,q1) = a1. This continues layer by layer un-
til V obtains the claim: Ṽd(q′d ,qd) = ad . V checks that
assertion directly.

T13 incorporates one sum-check invocation—each
of which is 2bG + bN rounds—for each polynomial
Pq0,1, . . . ,Pqd−1,d .

2.3 Verifiable ASICs

Giraffe’s back-end works in the Verifiable ASICs (VA)
setting [70]. Giraffe also borrows evaluation metrics and
some design elements from [70]; we summarize below.

Consider some principal (a government, fabless semi-
conductor company, etc.) that wants high-assurance exe-
cution of a custom chip (known as an ASIC) [70, §1,§2.1].
The ASIC must be manufactured at a trustworthy foundry,
for example one that is onshore. However, for many prin-
cipals, high-assurance manufacture means an orders-of-
magnitude sacrifice in price and performance, relative

1: function VERIFY(ArithCircuit c, input x, output y)
2: (q′0, q0)

R←− FlogN ×FlogG

3: a0← Ṽy(q′0,q0) // Ṽy is the multilin. ext. of the output y
4: SendToProver(q′0,q0)
5: d← c.depth
6:
7: for i = 1, . . . ,d do
8: // Reduce Ṽi−1(q′i−1,qi−1)

?
= ai−1 to Pq,i(r0,r1,r′)

?
= e

9: (e,r′,r0,r1)← SUMCHECKV(i, ai−1)
10:
11: // Below, P describes a univariate polynomial H(t),
12: // of degree logG, claimed to be Ṽi (r′, (r1− r0) t + r0)
13: H← ReceiveFromProver() // see Line 47 of Figure 13
14: v0← H(0)
15: v1← H(1)
16:
17: // Reduce Pq,i(r0,r1,r′)

?
= e to two questions:

18: // Ṽi(r′,r0)
?
= v0 and Ṽi(r′,r1)

?
= v1

19:
20: if e ̸= ẽq(q′i−1, r′) ·

[˜addi(qi−1,r0,r1) · (v0 + v1)

21: + ˜multi(qi−1,r0,r1) · v0 · v1
]

then
22: return reject
23:
24: // Reduce the two v0,v1 questions to Ṽi(q′i, qi)

?
= ai

25: τi
R←− F

26: ai← H(τi)
27: (q′i, qi)← (r′, (r1− r0) · τi + r0)
28:
29: SendToProver(τi)
30:
31: // Ṽd(·) is the multilinear extension of the input x
32: if Ṽd(q′d , qd) = ad then
33: return accept
34: return reject

FIGURE 1—V ’s side of T13 [66, §7], with an optimization [67].
V ’s side of the sum-check protocol and P’s work are described
in Appendix A, Figures 9 and 13.

to an advanced but untrusted foundry. This owes to the
economics and scaling behavior of semiconductor tech-
nology. In the VA setup, one manufactures a prover in
a state-of-the-art but untrusted foundry (we refer to the
manufacturing process and hardware substrate as the un-
trusted technology node) and a verifier in a trusted foundry
(the trusted technology node). A trusted integrator com-
bines the two ASICs. This arrangement makes sense if
their combined cost is cheaper than the native baseline:
an ASIC manufactured in the trusted technology node.

VA is instantiated in a system called Zebra, which im-
plements an optimized variant of CMT [31, 67, 69]. Zebra
is evaluated with two metrics [70, §2.3]. The first is en-
ergy (E, in joules/run), which is a proxy for operating cost.
Energy tracks asymptotic (serial) running time: it captures
the number of operations and the efficiency of their im-
plementation. The second is area/throughput (A/T , in

4

mm2/(ops/sec)). Area is a proxy for manufacturing cost;
normalizing by throughput reflects cost at a given perfor-
mance level.

Furthermore, Zebra is designed to respect two physical
constraints. The first is a maximum area, to reflect man-
ufacturability (larger chips have more frequent defects
and hence lower yields). The second is a maximum power
dissipation, to limit heat. The first constraint limits A (and
thus the hardware design space) and the second limits the
product of E and T .

Zebra’s prover architecture consists of a collection
of pipelined sub-provers, each one doing the execution
and proving work for one layer of an AC [70, §3.1–3.2].
Within a sub-prover, there is dedicated hardware for each
AC gate in a layer. Zebra’s verifier is also organized into
layers [70, §3.5]. Giraffe incorporates this overall picture,
including some integration details [70, §4]. However, Gi-
raffe requires a different architecture, as we explain next.

3 Protocol and hardware design
Three goals drive Giraffe’s hardware back-end:

G1: Scale to large N without sacrificing G. V ’s pre-
computation scales with the size of one sub-AC (§2.2); it
needs to amortize this over multiple N. Further, we have
an interest in handling large computations (sub-ACs and
ACs). This implies that Giraffe’s design must reuse under-
lying hardware modules: for large G and N, requiring a
number of modules proportional to N ·G is too costly. Ze-
bra’s design is not suitable, since it requires logic propor-
tional to the amount of work in an AC layer [70, Fig. 5].

G2: Be efficient. In this context, good efficiency implies
lower cross-over points on the metrics of merit (§2.3).
This in turn means custom hardware, which is expected in
ASIC designs but, for us, is in tension with the next goal.

G3: Produce designs automatically. Ideally, the goal
is to produce a compiler that takes as input a high-level
description of the computation along with physical pa-
rameters (technology nodes, chip area, etc.) and produces
synthesizable hardware (§5). This goes beyond conve-
nience: a goal of this work is to understand where (in
terms of computations, technology nodes, G, N, etc.) an
abstract algorithm (T13) applies; we need to be able to op-
timize hardware for these parameters. This is challenging
because, over the parameter range that we target, different
hardware designs make sense. For example, if N and G
are small, iteratively reusing hardware might not consume
all available chip area; one would prefer to spend this area
to gain parallelism and thus increase throughput.

Giraffe manages this by developing a design template
that, when instantiated with different parameters, pro-
duces an optimized hardware design. The template’s
“primitives” are custom hardware structures that enable
efficient reuse (serial execution) when there are few of

them, but can be automatically parallelized. The designer
chooses template parameters (Fig. 14, Apdx. C; §6.2),
and design generation is automatic.

In the rest of the section, we modify T13 to obtain an
asymptotic improvement in P’s work (§3.1); this con-
tributes to Giraffe’s scalability, and is of independent
interest. Second, we describe aspects of the hardware de-
sign template for P (§3.2). Finally, we do the same for V ,
and also describe optimizations that help offset the cost of
precomputation (§3.3). These optimizations are modest,
but because V ’s costs dominate, they have a direct effect
on the bottom-line numbers.

Notation. [a,b] denotes {a,a+1, . . . ,b}. For a vector u,
u[ℓ] denotes the ℓth entry, indexed from 1; u[ℓ1..ℓ2] de-
notes the sub-vector between indices ℓ1 and ℓ2, inclusive.
Define χ0,χ1 : F→ F as χ1(w) = w, χ0(w) = 1−w. Sim-
ilarly, if s ∈ {0,1}γ and u ∈ Fγ , χs(u)≜ ∏

γ

ℓ=1 χs[ℓ](u[ℓ]).
Notice that when u comprises 0-1 values, χs(u) returns 1
if u = s and 0 otherwise.

3.1 Making P time-optimal

This section describes an algorithmic refinement that, by
restructuring the application of the sum-check protocol,
slashes P’s overhead. Specifically, P’s running time
drops from O(d ·N ·G · logG) to O(d ·(N ·G+G · logG)).
If N≫ logG, P’s new running time is linear in the num-
ber of total gates in the AC—that is, the prover has no
asymptotic overhead! Prior work [66, §5] achieved time-
optimality in special cases (if the AC’s structure met an
ad hoc and restrictive condition); the present refinement
applies in general, whenever there are repeated sub-ACs.

The O(logG) reduction translates to concrete double
digit factors. For example, software provers in this re-
search area [31, 66, 68, 69] typically run with G at least
218; thus, a software T13 prover’s running time improves
by at least 18×. For a hardware prover, the A/T metric
improves by approximately logG, as computation is the
main source of area cost (Apdx. C, [70, Fig. 6 and 7]).
The gain is less pronounced for the E metric: storage
and communication are large energy consumers but are
unaffected by the refinement (Apdx. C).

Before describing the refinement, we give some back-
ground on sum-check protocols; for details, see [8, §8.3;
42, §2.5; 49; 65]. Consider a polynomial P in m vari-
ables and a claim that ∑(t1,...,tm)∈{0,1}m P(t1, . . . , tm) = L.
In round j of the sum-check protocol, P must describe
to V a degree-α univariate polynomial Fj(t∗), where α

depends on P and j:

Fj(t∗)= ∑
(t j+1,...,tm)∈{0,1}m− j

P(ρ1, . . . ,ρ j−1, t∗, t j+1, . . . , tm).

To discharge this obligation, P computes evaluations
Fj(k), for α +1 different values of k. Then, at the end of

5

round j, V sends ρ j, for use in the next round. Notice
the abstract pattern: in every round j, P computes α +
1 sums over a Boolean hypercube of dimension m− j.
The number of hypercube vertices shrinks as j increases,
because variables that were previously summed become
set, or bound, to a ρ j.

Let us map this picture to our context. There is one
sum-check run for each layer i ∈ [1, d]; P is the per-layer
polynomial Pq,i defined in Equation (1); m = 2bG + bN ;
the ρ j are aliases for the components of r0,r1,r′; likewise,
the t j alias the components of h0,h1,n. Also, α is 2 or 3;
this follows from Equation (1), recalling that each mul-
tilinear extension (ẽq, ˜add, etc.) by definition has degree
one in its variables.

There are now two interrelated questions: In what order
should the variables be bound? How does P compute the
α + 1 sums per round? In T13, the order is h0,h1,n, as
in Equation (2). This enables P to compute the needed
sums in time O(N ·G · logG) per-layer [66, §7]. P’s total
running time is thus O(d ·N ·G · logG).

Giraffe’s refinement changes the order in which vari-
ables are bound, and exploits that order to simplify P’s
work. Giraffe’s order is n,h0,h1. From here on, we write
Pq,i(h0,h1,n) as P∗q,i(n,h0,h1); Pq,i ≡ P∗q,i except for ar-
gument order. Below, we describe the structure of P’s
per-round obligations, fixing a layer i. This serves as back-
ground for the hardware design (§3.2) and as a sketch of
the argument for the claimed running time. A proof, theo-
rem statement, and pseudocode are in Appendix B.

The rounds decompose into two phases. Phase
1 is rounds j ∈ [1, bN]. Observe that in this phase,
P’s sums seemingly have the form: Fj(k) =

∑n[j+1..bN] ∑h0,h1
P∗q,i(r

′[1.. j−1], k, n[j+1..bN], h0, h1),
where the outer sum is over all n[j+1..bN] ∈ {0,1}bN− j.
However, many (h0,h1) combinations cause
P∗q,i(. . . ,h0, h1) to evaluate to 0.4 As a result, there
is a more convenient form for the inner sum. Define
Sall,i ⊆ {0,1}3bG as all layer-(i−1) gates with their layer-i
neighbors, and OPg as “+” if g is an addition gate and “·”
if g is a multiplication gate. Then Fj(k) can be written as:

Fj(k) = ∑
n[j+1..bN]

∑
(g,gL,gR)∈Sall,i

termP1 j,n,k · termP2g

·OPg(termL j,n,gL,k, termR j,n,gR,k), (3)

where termP1 depends on j,n,k; termP2 depends on g,
and so forth; these also depend on values of ρ from prior
rounds and prior layers. Section 3.2 makes some of these
terms explicit (Apdx. B fully specifies).

Phase 2 is the remaining 2bG rounds. Here, there
is only a single sum, over increasingly bound com-

4In particular, if there is no gate at layer i− 1 whose left and right
inputs are h0 and h1, then P∗q,i(. . . ,h0,h1) = 0. This is a consequence
of Equation (1) in §2.2, and Equations (7) and (8) in Appendix A.

1: // initialize W : G vectors of N values
2: for h = 0, . . . ,G−1 and σ = 0, . . . ,N−1 do
3: W [h][σ]←Vi(σ ,h)
4:
5: function EVALTERMLR(Array-of-vectors W)
6: for j = 1, . . . ,bN do
7: look up all termL, termR in W (see text)
8:
9: r′[j]← Receive from V // see Figure 12, line 19

10:
11: for h = 0, . . . ,G−1 do
12: Collapse(W [h], N/2 j−1, r′[j])
13:
14: function COLLAPSE(Array A, size len, r ∈ F)
15: for σ = 0, . . . , len/2−1 do
16: A[σ]← (1− r) ·A[2σ]+ r ·A[2σ +1]

FIGURE 2—EvalTermLR: a dynamic programming algorithm
for computing termL, termR for all rounds j. EvalTermLR
adapts a prior technique [66, §5.4; 70, §3.3] [1–3].

ponents of h0,h1. As with phase 1, it is conve-
nient to express the sum “gatewise”. Specifically, for
rounds j ∈ [bN +1, bN +2bG], one can write Fj(k) =
∑(g,gL,gR)∈Sall,i

termP j,g,k ·OPg(termL j,gL,k, termR j,gR,k).
In both phases, P can compute each sum over Sall,i

with O(G) work. Thus, per-layer, the running time for
phase 1 is O(G ·N/2)+O(G ·N/4)+ · · ·+O(G) = O(G ·
N), and for phase 2 it is O(G · logG), yielding the earlier
claim of O(d · (N ·G+G · logG)).

3.2 Design of P

Consider P’s obligations in layer i, summarized at the
end of the previous section. Notice that P’s phase-2 obli-
gations are independent of N. This is a consequence of
Section 3.1; there is no such independence in the original
variable order [66, §7]. In fact, P’s phase-2 obligations
are almost isomorphic to those of the Zebra prover; ac-
cordingly, Giraffe incorporates that design as a module.

P’s principal work is in phase 1. Within that phase,
the heaviest work item is computing termL, termR in each
round. The rest of this section describes the obligation,
the algorithm by which P discharges it, and the hardware
design that computes the algorithm. P’s other obligations
(computing termP1 j,n,k, etc.) and algorithms for discharg-
ing them are described in Appendix B.

Algorithm for computing termL,termR. Fixing a
layer i, in round j, termL and termR are:

termL j,n,gL,k ≜ Ṽi
(
r′[1.. j−1], k, n[j+1..bN], gL

)
termR j,n,gR,k ≜ Ṽi

(
r′[1.. j−1], k, n[j+1..bN], gR

)
(4)

Notice that for each k, Equation (4) refers to G ·N/2 j

values of Ṽ (·).
Figure 2 depicts an algorithm, EvalTermLR, that com-

putes these values in time O(G ·N/2 j) for round j, by

6

RWSR specification
• Power-of-two storage locations, K

• Only locations 0 and 1 can be read

• The only write operation is s←. It is specified below. Infor-
mally, it updates one location, and causes all the “even” loca-
tions to behave like a distinct shift register (location 6 shifts
to 4, etc.), and likewise with all of the “odd” locations.

1: operator RWSR[a] s← v is
2: // Note that all updates happen simultaneously
3: RWSR[a]← v
4: for ℓ < K, ℓ ̸= a do
5: RWSR[ℓ]← RWSR[ℓ+2]
6:
7: function RWSRCOLLAPSE(RWSR R, size len, r ∈ F)
8: for σ = 0, . . . , len/2−1 do
9: R[len−2−σ]

s← (1− r) ·R[0]+ r ·R[1]

FIGURE 3—RWSR specification (§3.2) and RWSR-based Col-
lapse implementation (Fig. 2).

adapting a prior technique [66, §5.4; 70, §3.3] (see also [1–
3]). EvalTermLR is oriented around a recurrence. Let h
be a bottom-bit gate label at layer i. Then for all σ ∈
{0,1}bN− j, the following holds (derived in Apdx. B.1):

Ṽi
(
r′[1.. j],σ ,h

)
=
(
1− r′[j]

)
·Ṽi

(
r′[1.. j−1],0,σ ,h

)
+ r′[j] ·Ṽi

(
r′[1.. j−1],1,σ ,h

)
. (5)

EvalTermLR relies on a two-dimensional array W , and
maintains the following invariant, justified shortly: at the
beginning of every round j, W [h][σ] stores Ṽi(r′[1.. j−
1],σ ,h), for h ∈ [0, G−1] and σ ∈ [0, N/2 j−1−1].

Given this invariant, P obtains all of the termL, termR
values from W (in line 7), as follows. We focus on
termL. Write n[j+1..bN] as n j+1. Then, for k = {0,1},
termL j,n,gL,k is W [gL][k + 2 · n j+1]; this follows from
Equation (4) plus the invariant. Meanwhile, for k =−1,
termL j,n,gL,−1 = 2 · termL j,n,gL,0 + (−1) · termL j,n,gL,1.
This follows from Equations (4) and (5); k = 2 is sim-
ilar. termR is the same, except gR replaces gL. The total
time cost is O(G ·N/2 j) in round j: Collapse performs
(N/2 j−1)/2 iterations, and there are G calls to Collapse.

The invariant holds for j = 1 because Ṽi(r′[1.. j −
1],σ ,h) = Ṽi(σ ,h) =Vi(σ ,h), which initializes W [h][σ]
(line 3); the latter equality holds because functions equal
their extensions when evaluated on bit vectors. Now, at
the end of j, line 16 applies Equation (5) to all σ ∈
[0, N/2 j−1], thereby setting W [h][σ] to Ṽi(r[1.. j],σ ,h).
This is the required invariant at the start of round j+1.

Computing EvalTermLR in hardware. To produce a
design template for P consistent with Giraffe’s goals, we
must answer three questions. First, what breakdown of
P’s work makes sense: which portions are parallelized,
and what hardware is iteratively reused in a round (G1)?
Second, for iterative parts of the computation, how does

P load operands and store results (G2)? Finally, how can
this design be adapted to a range of parameters (G3)?

A convenient top-level breakdown is already implied
by the prior formulation of W : since Collapse operates on
each W [h] vector independently, it is natural to parallelize
work across these vectors. Giraffe allocates separate stor-
age structures and logic implementing Collapse for each
W [h] vector (and, of course, reuses this hardware from
round to round for each vector). We therefore focus on
the design of one of these modules.

To answer the second question, we first consider two
straw men. The first is to imitate a software design: instan-
tiate one module for field arithmetic and a RAM to store
the W [h] vector, then iterate through the σ loop sequen-
tially, loading needed values, computing over them, and
storing the results. In practice, however, VLSI designs
often avoid RAM, for several reasons: generality has a
price (e.g., address decoding imposes overheads in area
and energy), RAM often creates a throughput bottleneck,
and RAM is a frequent cause of manufacturability issues.

The second straw man is essentially the opposite: in-
stantiate a bank of registers to hold values in W [h], along
with two field multipliers and one adder per pair of adja-
cent registers, then create a wiring pattern such that the
adder for registers 2σ and 2σ +1 connects to the input of
register σ . This arrangement computes the entire σ loop
in parallel. This is similar to prior work [70, §3.3], but in
Giraffe O(NG) multipliers is extremely expensive when
N and G are large. It is also inflexible: in this design, the
number of multipliers is fixed after selecting N and G.

Giraffe’s solution is a hybrid of these approaches; we
first explain a serial version, then describe how to paral-
lelize. Giraffe instantiates two multipliers and one adder
that together compute one step of the σ loop. The remain-
ing challenge is to get operands to the multipliers and
store the result from the adder. Giraffe does so using a
custom hardware structure that is tailored to the access
pattern of the W [h] arrays: for each A =W [h], read two
values, write one value, read two values, and so on. Gi-
raffe uses RWSRs, (“random-write shift registers”), one
for each W [h]. Figure 3 specifies the RWSR and shows
its use for Collapse.

Compared to a standard shift register (which is inex-
pensive to implement), an RWSR pays a small overhead
to connect every storage location to the input source v
(Fig. 3). But RWSRs are significantly more efficient than
RAMs, in part because of the restriction that only two
locations may be read. And although the s← operation
allows writes to arbitrary locations (which might require
address decoding in the general case), RWSRCollapse
makes it possible to optimize away most address logic
because σ takes a predictable sequence of values.

The remaining question is how this design can be ef-
ficiently and automatically parallelized. Notice that the

7

loop over σ is serialized (because RWSRs allow only one
write at a time); but what if a designer has extra chip area
and is willing to use four multipliers for W [h] instead of
two? In other words, how can Giraffe’s design template
automatically improve RWSRCollapse’s throughput by
using more chip area?

To demonstrate the approach, we refer to the pseu-
docode of Figure 2. First, split each W [h] array into two
arrays, W1[h] and W2[h]. In place of the Collapse invoca-
tion (line 12), run two parallel invocations on W1[h] and
W2[h], each of half the length. Notice that each array has
increasing “empty” space as the rounds go on. In round
j, the “live values” are the first N/2 j elements in each of
W1[h] and W2[h]; regard W [h] as their concatenation.

To see why this gives the correct result, notice that
each Collapse invocation combines neighboring values
of its input array. We can thus regard the values of W [h]
as the leaves of a binary tree, and Collapse as reducing
the height of the tree by one, combining leaves into their
parents. In this view, W1[h] and W2[h] represent the left
and right subtrees corresponding to W [h]. As a result, in
round j = bN , W1[h] and W2[h] each have one value; to
obtain the final value of the Collapse operation, compute
(1− r) ·W1[h][0]+ r ·W2[h][0].

To implement this picture in hardware, Giraffe instan-
tiates two RWSRs, each of half the size. For even more
parallelism, observe that each RWSR corresponds to a
subtree of the full computation, and thus its work can be
recursively split into two even smaller RWSRs, each han-
dling a correspondingly smaller subtree. Because of this
structure, different choices of parallelism do not require
the designer to do any additional design work (§5).

3.3 Scaling and optimizing V

In this section, we explain how V meets the starting de-
sign goals of scalability, efficiency, and automation. We
do so by walking through three main costs for V , and how
Giraffe handles them. Some of the optimizations apply to
any CMT-based back-end [31, 66, 68–70].

Multilinear extensions of I/O. V ’s principal bottleneck
is computing the multilinear extension of its input x and
output y (Figure 1, lines 3 and 32). Recall (§2.2) that
|x| = |y| = N ·G; V ’s computation has at least this cost.
When N and G are large, this is expensive and must be
broken into parallel and serial portions. We show below
that this work has a similar form to P’s (termL, termR;
§3.2). This insight lets V reuse P’s hardware design.

Consider the input x and Ṽd (y and Ṽy are simi-
lar). V must compute Ṽd(q′d ,qd). For σ ∈ [0, N ·G−1],
Ṽd(σ) =Vd(σ), the σ th component of the input (§2.2).
For σ ∈ {0,1}bN+bG−ℓ, we have

Ṽd (r[1..ℓ],σ) = (1− r[ℓ]) ·Ṽd (r[1..ℓ−1],0,σ)

+ r[ℓ] ·Ṽd (r[1..ℓ−1],1,σ) .

This form is very close to Equation (5); the derivation
is similar (Apdx. B.1). It follows that V can use P’s
EvalTermLR to evaluate Ṽd(q′d ,qd): V initializes an array
A, setting A[σ] to the σ th input value, for σ ∈ [0, N ·G−
1] (cf. line 3, Fig. 2). V then invokes Collapse inside a
non-blocking loop, in each iteration setting r to the next
element of (q′d ,qd). At the end, A[0] holds the result.

This approach applies to related systems, and improves
on their constant factors. Allspice’s approach to this com-
putation has leading constant 4 [69, §5.1]. Zebra [70] re-
duces the constant to 3 using a custom hardware structure;
this does not meet Giraffe’s goal of producing designs au-
tomatically for a range of parameters. Giraffe’s approach
reduces the leading constant to 2. To see how, note that
the initial size of A is N ·G. When j = 1, Collapse costs
N ·G multiplications; in each successive invocation, the
number of multiplications is reduced by half. Summing
gives 2 ·N ·G−1 multiplications. Although the reduction
appears modest, in practice this computation dominates
V ’s costs and the improvement is thus significant.

Polynomial evaluation. The protocol requires V to eval-
uate polynomials (specified by P) at randomly chosen
points (specified by V). This occurs after the sum-check
invocation (Fig. 1, line 26) and in each round of the sum-
check protocol (Apdx. B; Fig. 9, line 21). Our description
here focuses on the former: the degree-bG polynomial H,
evaluated at τ . Giraffe applies the same technique to the
latter, namely computing F(r j), but those polynomials are
degree-2 or 3, and thus the savings are less pronounced.

In the baseline approach [31, 66, 69, 70] to computing
H(τ), P sends evaluations (meaning H(0), . . . ,H(bG)),
and V uses Lagrange interpolation. (Lagrange interpola-
tion expresses H(τ) as ∑

bG
j=0 H(j) · f j(τ); the { f j(·)} are

basis polynomials.) But interpolation costs O(b2
G) [46] for

each polynomial (one per layer), making it O(d log 2G)
overall. Prior work [69, 70] cut this to O(d logG), by
precomputing { f j(τ)}, and not charging for that.

Giraffe observes that the protocol works the same if P
describes H in terms of its coefficients; this is because co-
efficients and evaluations are informationally equivalent.
Thus, in Giraffe, P recovers the coefficients by interpo-
lating the evaluations of H, incurring cost O(d log 2G).
V uses the coefficients to evaluate H(τ) via Horner’s
rule [46]. The cost to V is now O(bG) per layer, or
O(d logG) in total, without relying on precomputation.

Summarizing, V shifts its burden to P , and in return
saves a factor logG. This refinement is sensible if the
same operation at P is substantially cheaper (by at least
a logG factor) than at V . This easily holds in the VA
context. But it also holds in other contexts in which one
would use a CMT-based back-end: if cycles at P were
not substantially cheaper than at V , the latter would not
be outsourcing to the former in the first place.

8

Precomputation. V must compute P∗q,i(r
′,r0,r1,), given

claimed Ṽi(r′,r0) and Ṽi(r′,r1): Figure 1, lines 20–21. The
main costs are computing ˜addi(q,r0,r1), ˜multi(q,r0,r1),
and ẽq(q′,r′). This costs O(G) per layer [69], and hence
O(d ·G) overall. (Apdx. A describes the approach.) This
is the “precomputation” in our context, and what was not
charged in prior work in the VA setting [70, §4]. We note
that this is not precomputation per se—it’s done alongside
the rest of the protocol—but we retain the vocabulary
because of the cost profile: the work is proportional to
executing one sub-AC, and is incurred once per sum-
check invocation, thereby amortizing over all N sub-ACs.

4 Software design
Giraffe incorporates two program transformation tech-
niques that broaden the scope of computations that are
amenable to outsourcing:
• Slicing extends applicability to computations that are

too large to be outsourced as a whole or contain parts
that cannot be profitably outsourced.

• Squashing rearranges tall, narrow ACs to produce shal-
low and wide ones, reducing cost for CMT-based back-
ends [31, 69, 70]. It can also turn some sequential
computations into data-parallel ACs, making them
amenable to outsourcing with a T13-derived back-end
like the one presented in Section 3 (see also §2.2).

Slicing. One approach to handling larger outsourced
computations is to outsource individual slices, with the
verifier handling the non-outsourced pieces locally.

This approach works as follows: a compiler converts
each sliced subcomputation into an AC. The program state
just prior to entering the code in the slice yields the input
of the corresponding AC. Likewise, the output of the AC
provides the program state after execution of the slice. The
threading of the inputs and outputs between the individual
runs of the back-end, the intervening local computations,
and the orchestration of the runs is all performed by glue
code that the verifier executes locally. We refer to this
code as the manifest of the sliced computation.

We now describe the slicing algorithm used in Giraffe.
It takes as a parameter a cost model for the target back-end.
Its input is a C program with the following restrictions
(commonly imposed by the most efficient front-ends [32,
56, 71, 72]): loop bounds are statically computable, no
recursive functions, and no function pointers.

The algorithm first inlines all function calls. It then con-
siders for outsourcing consecutive subsequences of the
top-level program statements. For each subsequence, the
algorithm transforms the program statements into an AC
and then uses the back-end cost model to determine the
associated cost. Next, the algorithm uses a greedy heuris-
tic to choose for outsourcing a set of non-overlapping
subsequences that maximizes savings. Finally, the algo-

rithm further analyzes parts of the program not in any of
the outsourced subsequences. It adds atomic statements
like assignments to the manifest for local execution. For
non-atomic statements (for example, each branch of an
if-else statement), the algorithm recursively invokes itself
to identify additional outsourcing opportunities.

Giraffe uses the same back-end for all sliced subcom-
putations, but its approach generalizes to considering mul-
tiple back-ends simultaneously [38, 69].

Squashing. In back-ends descended from CMT (includ-
ing T13), shallow and wide ACs are more cost-effective
than ACs that are narrow but deep (§2.2). Squashing turns
a deep but narrow computation (for example, a loop) into
a shallow but wide one by laying chunks of the computa-
tion (e.g., the loop iterations) side by side. The result is
a squashed AC. The intermediate values at the output of
each chunk in the original computation become additional
inputs and outputs of the squashed AC. P communicates
these to V , which uses them to construct the input and
output vectors for the squashed AC; this binds P to the
claimed values and the computation’s inputs to its pur-
ported outputs. This technique also generalizes to the case
of code “between” the chunks.

Squashing for T13. For T13-derived back-ends, the
squasher takes a C program as input and identifies oppor-
tunities for converting the program’s looping constructs to
data-parallel computations using simple heuristics. These
heuristics suffice in many cases because loops naturally
express repeated subcomputations; more sophisticated
analyses exist (e.g., automatic parallelization [25]).

Specifically, the squashing analysis assumes that
chunks start and end at loop boundaries and comprise
one or more loop iterations. Consider a loop with I depen-
dent iterations of a computation F , where F corresponds
to an AC of depth d and uniform width G. The squasher
chooses N such that each chunk contains I/N unrolled
iterations, and generates a sub-AC of width G and depth
d′ = I ·d/N, subject to a supplied cost model.

Squashing for CMT. For CMT-derived back-ends, the
squasher takes as input an arbitrary AC. It searches for a
value ℓ such that splitting the AC into chunks of ℓ layers
minimizes cost subject to a supplied model. Unlike in
T13, the boundaries of these chunks can be at any layer of
the original AC because data parallelism is not required.

5 Implementation
Front-end. The front-end produces an executable mani-
fest in Python plus a high-level arithmetic circuit descrip-
tion (similar to the one used by Allspice [69] and Zebra)
for each outsourced sub-computation. Outsourced sub-
computations in the manifest execute using the simulation
framework (below). The front-end comprises about 6100
lines of Scala and 300 lines of miscellaneous glue.

9

Back-end. Giraffe’s back-end has two components. The
first is a compiler that takes the front-end’s high-level AC
descriptions and design parameters for P and V paral-
lelization (Fig. 14, Apdx. C) and automatically produces
P and V designs in fully synthesizable SystemVerilog.
The second is a cycle-accurate simulation framework built
on Icarus Verilog [73]. The back-end comprises 14 600
lines of SystemVerilog, 6800 lines of C/C++, 3300 lines
of Python, and 600 lines of miscellaneous glue; parts of
the SystemVerilog and C/C++ borrow from Zebra [4].

We will release all of Giraffe’s code in the near future.

6 Back-end evaluation
We evaluate Giraffe’s back-end by answering:

1. When does Giraffe beat “native” (§2.3)?
2. What is the largest computation Giraffe supports?
3. How does Giraffe’s performance vary with computa-

tion and physical parameters?

6.1 Cross-over and scaling

Method. We consider a generic computation in the form
of an arithmetic circuit C with depth d, sub-AC width
G, number of parallel copies N, and fraction of multi-
pliers δ . The baseline is direct evaluation of C on the
same technology node as V . We measure the energy cost
for the baseline by summing the total cost of field opera-
tions plus the energy associated with receiving inputs and
transmitting outputs of the computation.

For Giraffe’s energy costs, we use a combination of sim-
ulation and modeling. The simulations are cycle-accurate
Verilog simulations of Giraffe’s execution. From these
simulations we extract a cost model (a simplified model
is given in Fig. 14, Apdx. C), and we spot check with
additional simulations to ensure that this model is correct.
Practical considerations demand this approach: simulat-
ing Giraffe over a broad range of parameters would be
prohibitively time consuming.

We account for all costs for both V and P: protocol
execution, V -P communication, storage, random num-
ber generation, and the cost to receive inputs and trans-
mit outputs. We simplify the accounting of the protocol
execution’s energy cost by counting just the energy con-
sumed by field operations. This approximation neglects
the energy consumed by control logic and miscellaneous
circuitry associated with protocol execution. As in prior
work [70, §7.2], we expect these costs to be negligible;
confirming this is future work. Computations in this sec-
tion are over Fp, p = 261−1. We use concrete costs for
arithmetic, communication, storage, random number gen-
eration, and I/O circuits from prior work [70, Figs. 6–7].

Results. Figure 4 compares the cost of Giraffe with the
baseline. Giraffe’s total cost is dominated by V ; P’s cost
is at most a few percent of the total. For small N, V ’s

0 2 4 6 8 10 12 14 16
log2 N , number of sub-AC copies

10−6

10−5

10−4

10−3

10−2

0.1

1

10

100

T
ot

al
en

er
gy

co
st

,
Jo

ul
es

(l
ow

er
is

b
et

te
r)

Native

Giraffe, total

Giraffe, P

Giraffe, precomp

FIGURE 4—Evaluation of Giraffe’s back-end. We compare Gi-
raffe’s costs to the native baseline, varying N. Giraffe beats
native for N ≈ 30. Fixed C parameters are: depth d = 20; width
of sub-AC G = 28; fraction of multipliers δ = 0.5; trusted tech-
nology = 350 nm; untrusted technology = 7 nm; maximum chip
area Amax = 200 mm2. In Section 6.2 we consider manufactur-
ing costs; there, Giraffe is less competitive with native.

precomputation (§3.3) dominates. As N increases, V ’s
multilinear extension computation (§3.3) dominates. The
cross-over point for savings versus native is roughly 30
copies. The cross-over point is insensitive to G because
precomputation cost and per-sub-AC savings are both
proportional to G, and they offset.

For the concrete costs we consider here, Giraffe can
handle about 216 parallel executions of a sub-AC with
G = 28, d = 20; in total this is about 80 million gates. For
a given hardware substrate, the maximum N ·G product is
nearly fixed. P’s costs increase with d (Fig. 14, Apdx. C),
so maximum size shrinks as d increases.

6.2 Parameter variation

Method. In addition to energy, we now consider manu-
facturing cost for a given performance level. Our metric is
As/T [70]. T is throughput. As = AV +AP/s, a weighted
sum of V ’s and P’s chip area; s accounts for the differ-
ence between untrusted and trusted manufacturing costs.

We use the same simulations and detailed cost model-
ing as in Section 6.1 to compute costs for Giraffe. As a
proxy for chip area dedicated to protocol execution, we
use the area occupied by field adder and multiplier cir-
cuits. This neglects area dedicated to control logic and
miscellaneous circuitry associated with protocol execu-
tion, but as in prior work [70, §7.2] we expect these costs
to be negligible; confirming this is future work.

For throughput, we use cycle-accurate Verilog simula-
tions to measure the delay of each stage of the execution
and proving pipeline (Apdx. C). End-to-end throughput is
given by the inverse of the maximum delay in any stage
of the computation. Concrete costs are the same as in
Section 6.1. For each experiment we vary one parameter
and fix the others; fixed parameters are d = 20, G = 28,
N = 210, δ = 0.5, trusted technology node = 350 nm, and
untrusted technology node = 7 nm.

For the native baseline, we optimize A/T given Amax
subject to the arithmetic circuit’s layering constraints.

10

8 10 12 14 16 18 20 22 24 26 28 30 32
d, depth of subcircuit

0.1

0.3

1

3
P

er
fo

rm
an

ce
re

la
ti

ve
to

na
ti

ve
ba

se
lin

e
(h

ig
he

r
is

b
et

te
r)

E

As/T, s=10

As/T, s=3

As/T, s=1

As/T, s=1/3

(a) Performance vs. d.

4 5 6 7 8 9 10 11 12
log2G, width of subcircuit

0.1

0.3

1

3

P
er

fo
rm

an
ce

re
la

ti
ve

to
na

ti
ve

ba
se

lin
e

(h
ig

he
r

is
b

et
te

r)

E

As/T, s=10

As/T, s=3

As/T, s=1

As/T, s=1/3

(b) Performance vs. G.

4 5 6 7 8 9 10 11 12 13 14
log2C, number of copies of subcircuit

0.1

0.3

1

3

P
er

fo
rm

an
ce

re
la

ti
ve

to
na

ti
ve

ba
se

lin
e

(h
ig

he
r

is
b

et
te

r)

E

As/T, s=10

As/T, s=3

As/T, s=1

As/T, s=1/3

(c) Performance vs. N.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
δ, fraction of multipliers in arithmetic circuit

0.1

0.3

1

3

P
er

fo
rm

an
ce

re
la

ti
ve

to
na

ti
ve

ba
se

lin
e

(h
ig

he
r

is
b

et
te

r)

E

As/T, s=10

As/T, s=3

As/T, s=1

As/T, s=1/3

(d) Performance vs. δ .

130 180 250 350 500
trusted technology node, nm

0.1

0.3

1

3

P
er

fo
rm

an
ce

re
la

ti
ve

to
na

ti
ve

ba
se

lin
e

(h
ig

he
r

is
b

et
te

r)

E

As/T, s=10

As/T, s=3

As/T, s=1

As/T, s=1/3

(e) Performance vs. trusted technology
node.

7 14 22 32 45
untrusted technology node, nm

0.1

0.3

1

3

P
er

fo
rm

an
ce

re
la

ti
ve

to
na

ti
ve

ba
se

lin
e

(h
ig

he
r

is
b

et
te

r)

E

As/T, s=10

As/T, s=3

As/T, s=1

As/T, s=1/3

(f) Performance vs. untrusted technology
node.

FIGURE 5—Giraffe’s overall performance (V and P costs) compared to native baseline on E and As/T metrics (§6.2), varying C
parameters and technology nodes. In each case, we vary one parameter and fix the rest. Fixed parameters are: depth of C , d = 20;
width of subcircuit G = 28; number of sub-AC copies N = 210; fraction of multipliers δ = 0.5; trusted technology node = 350 nm;
untrusted technology node = 7 nm; maximum chip area Amax = 200 mm2.

Choosing parameters for Giraffe. We optimize Gi-
raffe’s As/T by choosing the design template parameters
(Apdx. C). First, we fix V ’s area equal to native baseline,
which is no more than Amax. We also limit P’s area to no
more than max Amax and fix nP,pl = d. Then we optimize
nV ,io and nV ,sc based on available area and relative de-
lay of sumcheck computations and multilinear extensions
of inputs and outputs. Finally, given V ’s optimal delay
value, we search for settings of nP,ea, nP,Ṽ, and nP,sc
that optimize overall As/T .

Results. Figure 5 summarizes results. Giraffe’s operating
cost (i.e., energy consumption) beats the baseline’s over a
wide range of AC parameters and hardware substrates.

As in Section 6.1, energy cost is dominated by V . Sav-
ings increase with d (Fig. 5a) because V ’s per-layer work
is much less than the native baseline’s. Similarly, as δ

increases (Fig. 5d), the native baseline’s costs increase
but V ’s do not. V ’s savings are insensitive to G (Fig. 5b):
the cost of multilinear extensions of I/O scales with G,
balancing the increased savings in per-layer work.

Manufacturing costs are often dominated by P . As G
increases (Fig. 5b), P’s area also increases (§3.2). As N
increases (Fig. 5c), P’s storage costs increase (Fig. 14,
Apdx. C). In these cases, even if Giraffe’s operating costs
are better than the native baseline’s, its manufacturing
costs at a given performance level may be worse.

Finally, as the gap between the trusted and untrusted
technology nodes shrinks (Figs. 5e and 5f), P’s energy
cost increases relative to V ’s, reducing overall perfor-
mance versus the native baseline. As the trusted technol-
ogy node gets more advanced (i.e., smaller, Fig. 5f), V ’s
throughput increases and thus P’s size must increase to
avoid becoming a bottleneck. As the untrusted technology
node gets less advanced (i.e., bigger, Fig. 5e), P’s area
grows and throughput decreases, making As/T worse.

7 Front-end evaluation
This section answers the following questions:

1. How does slicing result in savings compared to full
outsourcing and native execution?

2. For deep loops with dependent iterations, how effec-
tive is squashing at extracting parallelism?

Setup and method. We create a sequence of programs
written in C, each containing two generic blocks, F1 and
F2, consisting of purely arithmetic computations. Among
the programs, these blocks vary in the fraction δ1 and δ2
of multipliers, width of computation (G1,G2 respectively),
the depth of the computation (d1,d2 respectively), and
number of parallel instances N. Unless specified, we fix
N = 210, G1 = G2 = 28, d1 = d2 = 20, δ2 = 0.05.

We consider two baselines: native execution and full
outsourcing. The cost of native execution is defined as in

11

// x1 and x2 are inputs
// y1 and y2 are outputs
y1 = F1(x1);
y2 = F2(x2);

(a) Slicing: a simple computation.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
δ1, fraction of multipliers in first subcomputation

0.0

1.0

2.0

3.0

4.0

5.0

P
er

fo
rm

an
ce

re
la

ti
ve

to
na

ti
ve

ba
se

lin
e

(h
ig

he
r

is
b

et
te

r)

slicing

full outsourcing

(b) Simple slicing vs. δ1.

// x1 and x2 are inputs
// y is output
if (pred) y = F1(x1);
else y = F2(x2);

(c) Slicing: conditionals.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
δ1, fraction of multipliers in first subcomputation

0.0

1.0

2.0

3.0

4.0

5.0

P
er

fo
rm

an
ce

re
la

ti
ve

to
na

ti
ve

ba
se

lin
e

(h
ig

he
r

is
b

et
te

r)

slicing

full outsourcing

(d) Conditional slicing vs. δ1.

// y is output, x is input
y = x;
for (i = 0; i < I; i++)

y = F1(y);

(e) Squashing: dependent iterations.

6 7 8 9 10 11 12 13 14
log2 I , number of loop iterations

1.0

2

5

10

20

30

P
er

fo
rm

an
ce

re
la

ti
ve

to
na

ti
ve

(h
ig

he
r

is
b

et
te

r)

(f) Squashing vs. number of iterations.

FIGURE 6—Evaluation of Giraffe’s front end. Higher is better. F1 and F2 are computations corresponding to arithmetic circuits
with N = 210, G = 28, d = 20. δ1 and δ2 are the fraction of multipliers in F1 and F2, respectively; we fix δ2 = 0.05. Figures 6a
and 6c show inputs to Giraffe’s slicing transformation. In Figures 6b and 6d, we vary δ1, which changes whether F1 is amenable
to outsourcing. We compare the efficacy of outsourcing the full computation and of first applying the slicing transform; when
outsourcing would not result in savings, Giraffe executes the computation natively. Figure 6e is a deep loop with dependent iterations.
Giraffe converts this to a data-parallel computation that can be outsourced, saving compared to native execution.

the prior section: the cost of computation in the same tech-
nology node as V . We estimate the cost of full outsourc-
ing by applying Giraffe’s back-end to the raw program,
without Giraffe’s front-end transformations (§4).

To compute costs for Giraffe, we apply the selected
transformation to produce a manifest (§4), then evaluate
the total cost of execution, as dictated by that manifest.
We use the model of Section 6 to determine the cost of
the outsourced portions of the manifest. For local compu-
tations, we sum the cost of all field operations, as in the
native baseline.

Slicing. We begin with a simple slicing example and then
consider slicing for conditionals.

Warmup. Consider the computation of Figure 6a. We
vary δ1 from 0 to 1. For each subcomputation, we allow
the front-end to decide either to outsource or to execute
locally. Note that F1’s amenability to outsourcing depends
on δ1: native execution cost increases with δ1 (multiplies
are more expensive than adds) while V ’s protocol costs
depend only on AC size. Because δ2 = 0.05, F2 is not
amenable to outsourcing; it native execution cost is less
than the cost to outsource. For full outsourcing we gener-
ate a sub-AC that combines F1 and F2, which is conser-
vative because it saves on precomputation.

Figure 6b plots the performance of executing the
slicer’s manifest and of outsourcing the entire compu-
tation, normalized to native execution. Giraffe’s front-end
never outsources F2 because native execution is cheaper.
F1 is amenable to outsourcing when δ1 > 0.2. In contrast,
full outsourcing pays extra costs for F2 compared to native
execution. Thus, slicing always beats full outsourcing.

Conditionals. In Figure 6c we consider a similar setup,
but with a conditional. We assume that pred evaluates to
true, so F1 is the desired branch. Naively converting this
program to an AC results in a computation that material-
izes both F1 and F2, and selects the result based on the
value of pred. In essence, part of the work is useless.

Figure 6d plots the performance of executing the
slicer’s manifest and the performance of outsourcing the
entire computation, normalized to the performance of na-
tive execution. Giraffe’s front-end never outsources F2
because its branch is never taken. When δ1 > 0.2, F1 is
amenable to outsourcing and Giraffe’s performance is bet-
ter than native. Full outsourcing, meanwhile, evaluates an
AC that incurs the cost for both branches. However, for
large enough δ1, the savings from F1 offsets the useless
work, allowing full outsourcing to beat native.

Squashing. We also experiment with a loop compris-
ing I iterations of F1 (Fig. 6e). Parameters are as above,
δ1 = 0.5, and we vary I. This is deep (I ·d1) and narrow
(G1), and not data parallel. The squasher (§4) chooses
N. Effective depth is d′ = I ·d/N for each chunk, balanc-
ing V ’s I/O cost against the per-layer cost. This happens
when depth and |x|+ |y| are within a constant factor, i.e.,
N ·G = d′ = O

(√
I
)

(overall cost is the sum). Figure 6f
shows the results: as I increases from 211 to 214, perfor-
mance improves by ≈ 3×.

8 Applications
8.1 Curve25519

Curve25519 is a high-performance elliptic curve used in
cryptographic protocols [5, 23]. This section compares

12

1 3 5 7 9 11 13 15
log2 N , number of copies of subcircuit

0.01

0.1

1

10

100

T
ot

al
en

er
gy

co
st

,
Jo

ul
es

(l
ow

er
is

b
et

te
r)

Native

Giraffe

Zebra

FIGURE 7—Energy cost of Giraffe, native baseline (§8.1), and
Zebra [70, §8.2] versus number of copies of Curve25519 sub-
circuit. Each subcircuit computes 20 parallel evaluations of
five sequential double-and-add steps. Untrusted technology
node = 350 nm; trusted technology node = 7 nm; Amax =
200 mm2. Zebra’s scaling is limited to about 1150 parallel
evaluations. Giraffe scales to more than 500× more parallel
computations for the same chip area. Because of Giraffe’s re-
finements (§3), its improvement compared to native is greater
than Zebra’s. But Giraffe must amortize precomputation, so it
needs more subcomputations than Zebra to break even.

three implementations of the point multiplication opera-
tion on this curve: a baseline, Zebra, and Giraffe. This op-
eration takes as inputs a 255-bit scalar value v and a curve
point Q, and computes the point R = [v]Q via 255 double-
and-add steps [11], one for each bit of v. Our algorithm
employs a Montgomery ladder, as is standard [11, 23, 54].
Double-and-add is naturally expressed as an arithmetic
circuit over Fp, p = 2255−19, with d = 7 and G≈ 8.

Zebra. This implementation [70, §8.2] groups 5 Mont-
gomery ladder steps into a block and requires 51 (= 255/ 5)
iterations of this block per operation. Zebra uses a special
mux gate for efficiency, requiring all double-and-add op-
erations in a protocol run to use the same scalar input v.
The authors argue that this restriction is acceptable, with
reference to specific applications.

Baseline implementation. Consistent with published
hardware implementations of point multiplication on
Curve25519 [59, 60] and the implementation from Zebra,
our baseline directly executes 5 Montgomery ladder steps.

Giraffe. In Giraffe there are two degrees of freedom:
L, the number of parallel double-and-add steps in a sub-
AC (which determines G); and N. Each copy of the sub-
AC uses the same L scalars, {v1, . . . ,vL}; this is because
wiring predicates are reused across the N sub-ACs. In our
experiment, we fix L = 20, and vary N; larger values of L
are also possible.

Results. We compute energy for Giraffe and the na-
tive baseline as in Section 6.1. For Zebra, we use pub-
lished results [70, §8.2]. We set the untrusted technology
node = 350 nm, the trusted technology node = 7 nm, and
Amax = 200 mm2, the same as in Zebra.

Figure 7 shows the results. Giraffe breaks even when
N ≈ 30, or at about 600 parallel double-and-add op-
erations. In contrast, Zebra breaks even for about 100

3 5 7 9 11 13 15
log2 N , number of copies of subcircuit

0.01

0.1

1

10

100

T
ot

al
en

er
gy

co
st

,
Jo

ul
es

(l
ow

er
is

b
et

te
r)

Native

Giraffe

FIGURE 8—Energy cost of Giraffe and native baseline (§8.2)
versus number of parallel image pyramid matching evaluations.
Each evaluation matches 16-word needles against 128-word
haystacks for a two-level image pyramid (§8.2). Words are rep-
resented as elements in Fp, p = 261 +219 +1. Untrusted tech-
nology node = 350 nm; trusted technology node = 7 nm; Amax =
200 mm2. Giraffe breaks even for ≈ 30 parallel searches.

parallel operations. This is because Giraffe pays the
cost of precomputation while Zebra does not. However,
the Zebra system handles at most 1150 parallel copies
for the given chip area, whereas Giraffe can accommo-
date roughly 32,000 parallel operations corresponding to
roughly 100M arithmetic gates, about 500× more than
Zebra, for the same technology node parameters.

8.2 Image pyramid

An image pyramid is a data structure for image process-
ing [6] that holds multiple copies of an image at different
resolutions. The “base” of the pyramid is a full resolution
image and higher “layers” summarize the image at pro-
gressively lower resolutions. One application of an image
pyramid is fast pattern matching. In the first step, a coarse
pattern is matched against the coarsest layer (top) of the
pyramid. Guided by the results, a finer pattern is matched
against a small part of the next layer until eventually a
portion of the full resolution image is matched against the
finest pattern.

We use a convolution-based matching algorithm [30]
that allows the pattern to contain “don’t care” symbols
that match any input. If the text is t = t0t1 . . . tn and the
pattern is p = p0 p1 . . . pm, then the matching algorithm
uses convolutions to compute ci = ∑

m
j=0 p j(p j−ti+ j)

2 for
each i ∈ {1, . . . ,n} and reports a match at i if ci = 0.

In our implementation, the input consists of a two-layer
image pyramid, a coarse pattern, and a fine pattern. The
bottom layer of the pyramid has 27×27 words, and the top
layer has 1×27 words. Both patterns comprise 24 words.
Words are represented over Fp, p = 261 + 219 + 1, and
we implement convolution using the number theoretic
transform over Fp. The entire application processes N
instances in parallel; each instance specifies its own input
and pattern. The application is written as a C program.

Baseline implementation. In our baseline implementa-
tion, each convolution is implemented using the direct
iterative implementation of the number theoretic trans-

13

form (NTT) and its inverse. Energy costs are accounted
as in the baseline of Section 6.

Giraffe. We apply Giraffe’s front-end to process our
C program into a manifest; the local computation selects
the needed portion of the next layer. We compute energy
consumption of the resulting manifest as in Section 7.
We report the results of fully automated compilation on a
realistic application: no hand optimization was applied.

Results. Figure 8 compares the cost of executing the
manifest to the cost of the native baseline. Trusted and un-
trusted technology nodes and Amax are as in Section 8.1.
Giraffe needs roughly 30 parallel evaluations to break
even, after which it uses 5× less energy than the base-
line. Giraffe can scale to handle 32,000 parallel instances
within the area constraint, or about 100 million AC gates.

9 Discussion and limitations
To understand Giraffe’s results, it is useful to provide
context about overhead and break-even points from other
implemented systems. For example, in the SNARK (§10)
literature, careful examination indicates that verifier over-
head is so high that enormous computations are required
to break even: millions of AC gates [72; 21; 56, §5.3; 71,
§2]. Yet, the maximum size that implementations can han-
dle is around 20 million AC gates (due to memory limits).
And even on a best-case problem (matrix multiplication),
Pinocchio [56] requires more than 6,000 instances, and
BCTV [20, 22] requires more than 90,000 instances to
break even [72, Fig.4]. (Note that we have not even dis-
cussed keeping track of prover overhead; even for small
ACs, these provers takes minutes on stock hardware.)

In contrast, Giraffe’s performance (keeping track of
prover costs) has only a weak dependence on computation
size, even for ACs of only a few hundred gates (Figs. 5a
and 5b, §6.2). Moreover, the number of parallel copies re-
quired to amortize is small, ≈ 30 (§6, §8). The maximum
instance size for a Giraffe sub-AC is around 1.5 million
gates; this is largely a function of the constraints imposed
by hardware. These numbers are very encouraging (al-
though note that [69] achieves similar instance numbers).
Of course, SNARKs have distinct advantages: precompu-
tation amortizes indefinitely in the non-interactive setting,
and a broader class of computations can be handled (sub-
ject to the usual AC requirement).

Since Giraffe is largely focused on the hardware setting,
it is also worthwhile to contrast with Zebra [70]. On the
one hand, Zebra does not impose the requirement for data
parallel computations (to amortize precomputation). But
on the other, Zebra is limited to approximately 500,000
AC gates total; as Giraffe supports 1.5 million per sub-AC
and N scales to 50 in this case, Giraffe is two orders of
magnitude better than Zebra in total size. More impor-
tantly, Giraffe can break even despite paying for precom-

putation, while Zebra’s costs—let alone whether it breaks
even—are reasonable only under a fanciful assumption
about daily delivery of trusted precomputations [70, §4].

Since it is hard to imagine a near-future system that
relaxes the size constraints, Giraffe uses program trans-
formation to extend its applicability to the wide range of
large programs that have portions suitable for outsourcing.
As the image pyramid example (§8.2) demonstrates, Gi-
raffe can be practical in situations where Giraffe simply
cannot outsource the entire computation.

To be sure, Giraffe has serious limitations. The price
of verification remains high and evaluation shows that
the overall win is not that substantial (Fig. 4, §6). Given
the prover overhead, Giraffe still requires a large technol-
ogy gap between the P and V technology nodes to be
practical (§6.2). And finally, the regime of applicability is
fundamentally narrow (as noted in the introduction).

10 Related work
Probabilistic proofs. Giraffe relates to the extensive
body of recent work on verifiable outsourced computa-
tion [14, 15, 17–19, 21, 22, 28, 29, 31–35, 38, 40, 47, 55,
56, 61–64, 66, 68–71]; see [72] for a comparatively recent
survey. Specifically, Giraffe descends from the GKR [42]
interactive proof line [31, 66, 68–70]. This line imposes
certain limitations (a more restricted class of computa-
tions, limitations on auxiliary prover input). Another line
of work uses argument protocols, both interactive [62–
64] and non-interactive [14, 21, 24, 40, 47, 56] (the lat-
ter are known as SNARKs). However, these protocols
seem largely incompatible with hardware implementation
(see [70, §9] for discussion of the issues), impose more
stringent cryptographic assumptions (particularly in the
non-interactive setting), and tend to have higher precom-
putation costs. (These costs can be asymptotically limited
but at very high concrete cost [21, 22, 29]—for example,
the prover is two [22] to six [21, 29] orders of magnitude
worse.) On the other hand, non-interactive arguments can
support zero knowledge (zkSNARK) protocols; this en-
ables applications that are not possible otherwise.

Much of the work in the area fits into the cost frame-
work outlined in the introduction: precomputation, veri-
fier overhead, and prover overhead, with native execution
as a sensible baseline. There are a few exceptions. In
the zkSNARK setting, the cost assessment depends on
the premium that one is willing to pay for otherwise un-
achievable functionality [14, 18, 33]. Also, two works
in the verifiable outsourcing setting do not require pre-
computation. The first is CMT [31, 68] (and [66]) when
applied to highly regular wiring patterns; however, such
wiring patterns substantially limit applicability. The sec-
ond is SCI [17], which aims to be general purpose. SCI
is, roughly speaking, an argument protocol built atop
“short PCPs”, and is an exciting development. However,

14

inspection of SCI makes clear that the costs are orders
of magnitude higher than in other works in the area, and
that the built system does not currently scale beyond very
small problem sizes.

PL techniques in cryptographic protocols. Squash-
ing (§4) is related to but distinct from Geppetto’s [32]
optimizations for loops. At a high level the goals are sim-
ilar (use loop transformations to adapt a computation to
a protocol), but they differ in particulars because each
technique leverages features of its respective back-end.
In settings where they are both relevant, we believe the
two approaches are complementary. (Giraffe pursues auto-
matic inference for this optimization, which is discussed
but not explored in [32].)

Our work on slicing is in the tradition of a great deal
of work adapting PL techniques to generating code that
implements cryptographic protocols and manages their
interaction with external programs. In the verifiable out-
sourcing literature, there are a handful of examples (e.g.,
Buffet [71] uses sophisticated loop unrolling techniques
to optimize loop handling, and Geppetto analyzes condi-
tionals to minimize evaluation of “dead code”).

More generally, the secure multi-party computation
literature has seen a great deal of work using program
analysis and transformation techniques to produce opti-
mized protocols, starting with Fairplay [50] and notably
including the line of work represented by [74]. There has
also been relevant work in the Oblivious RAM commu-
nity, for example [48] using PL techniques to partition
variables to ensure obliviousness. Another area in which
these techniques are used is in automatic compilation for
secure distributed programming [37]. Perhaps most sim-
ilar to our slicing protocol are the various compilers for
zero knowledge proofs of knowledge [7, 16, 52], most
notably ZQL and Z0 [36, 38]. The latter weaves together
explicitly annotated zero knowledge regions with ordinary
code, and does automatic inference for assigning function-
ality to tiers in client-server applications (see also [51]
for automatic tier partitioning). Giraffe is distinguished
by performing automatic inference for slicing based on a
cost model without explicit annotation.

Acknowledgments

We thank Fraser Brown and Keith Winstein for help-
ful comments. The authors were supported by NSF
grants CNS-1423249, CNS-1514422, and CNS-1646671;
AFOSR grant FA9550-15-1-0302; ONR grant N00014-
16-1-2154; DARPA grant HR0011-15-2-0047; and a
Google Research Award.

Giraffe’s source code is available at:
http://www.pepper-project.org/

References
[1] https://github.com/pepper-project/releases/blob/
master/ginger-allspice.tar.gz.

[2] http:
//people.cs.georgetown.edu/jthaler/code/code.htm.

[3] http:
//people.cs.georgetown.edu/jthaler/TRMPcode.htm.

[4] https://github.com/pepper-project.
[5] Things that use Curve25519.
https://ianix.com/pub/curve25519-deployment.html.

[6] E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M.
Ogden. Pyramid method in image processing. RCA Engineer,
29(6):33–41, Nov. 1984.

[7] J. B. Almeida, M. Barbosa, E. Bangerter, G. Barthe, S. Krenn, and
S. Z. Béguelin. Full proof cryptography: verifiable compilation of
efficient zero-knowledge protocols. In ACM CCS, 2012.

[8] S. Arora and B. Barak. Computational Complexity: A modern
approach. Cambridge University Press, 2009.

[9] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy.
Proof verification and the hardness of approximation problems. J.
ACM, 45(3):501–555, May 1998.

[10] S. Arora and S. Safra. Probabilistic checking of proofs: a new
characterization of NP. J. ACM, 45(1):70–122, Jan. 1998.

[11] R. M. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen,
and F. Vercauteren. Handbook of Elliptic and Hyperelliptic Curve
Cryptography. Chapman & Hall/CRC, 2005.

[12] L. Babai. Trading group theory for randomness. In STOC, May
1985.

[13] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. Checking
computations in polylogarithmic time. In STOC, May 1991.

[14] M. Backes, M. Barbosa, D. Fiore, and R. M. Reischuk.
ADSNARK: Nearly practical and privacy-preserving proofs on
authenticated data. In IEEE S&P, May 2015.

[15] M. Backes, D. Fiore, and R. M. Reischuk. Verifiable delegation
of computation on outsourced data. In ACM CCS, Nov. 2013.

[16] E. Bangerter, J. Camenisch, S. Krenn, A. Sadeghi, and
T. Schneider. Automatic generation of sound zero-knowledge
protocols. IACR Cryptology ePrint Archive, 2008.
http://eprint.iacr.org/2008/471.

[17] E. Ben-Sasson, I. Ben-Tov, A. Chiesa, A. Gabizon, D. Genkin,
M. Hamilis, E. Pergament, M. Riabzev, M. Silberstein, E. Tromer,
and M. Virza. Computational integrity with a public random
string from quasi-linear PCPs. In EUROCRYPT, 2017.

[18] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers,
E. Tromer, and M. Virza. Decentralized anonymous payments
from Bitcoin. In IEEE S&P, May 2014.

[19] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza.
SNARKs for C: Verifying program executions succinctly and in
zero knowledge. In CRYPTO, Aug. 2013.

[20] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza.
TinyRAM architecture specification, v0.991.
http://www.scipr-lab.org/system/files/TinyRAM-
spec-0.991.pdf, 2013.

[21] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Scalable zero
knowledge via cycles of elliptic curves. In CRYPTO, Aug. 2014.

[22] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Succinct
non-interactive zero knowledge for a von Neumann architecture.
In USENIX Security, Aug. 2014.

[23] D. J. Bernstein. Curve25519: new Diffie-Hellman speed records.
In PKC, Apr. 2006.

[24] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From
extractable collision resistance to succinct non-interactive
arguments of knowledge, and back again. In ITCS, Jan. 2012.

[25] P. Boulet, A. Darte, G. Silber, and F. Vivien. Loop parallelization
algorithms: From parallelism extraction to code generation.
Parallel Computing, 24(3-4):421–444, 1998.

[26] G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure
proofs of knowledge. J. of Comp. and Sys. Sciences,

15

http://www.pepper-project.org/
https://github.com/pepper-project/releases/blob/master/ginger-allspice.tar.gz
https://github.com/pepper-project/releases/blob/master/ginger-allspice.tar.gz
http://people.cs.georgetown.edu/jthaler/code/code.htm
http://people.cs.georgetown.edu/jthaler/code/code.htm
http://people.cs.georgetown.edu/jthaler/TRMPcode.htm
http://people.cs.georgetown.edu/jthaler/TRMPcode.htm
https://github.com/pepper-project
https://ianix.com/pub/curve25519-deployment.html
http://www.scipr-lab.org/system/files/TinyRAM-spec-0.991.pdf
http://www.scipr-lab.org/system/files/TinyRAM-spec-0.991.pdf

37(2):156–189, Oct. 1988.
[27] B. Braun. Compiling computations to constraints for verified

computation. UT Austin Honors thesis HR-12-10, Dec. 2012.
[28] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, and

M. Walfish. Verifying computations with state. In SOSP, Nov.
2013.

[29] A. Chiesa, E. Tromer, and M. Virza. Cluster computing in zero
knowledge. In EUROCRYPT, Apr. 2015.

[30] P. Clifford and R. Clifford. Simple deterministic wildcard
matching. Information Processing Letters, 101(2):53 – 54, 2007.

[31] G. Cormode, M. Mitzenmacher, and J. Thaler. Practical verified
computation with streaming interactive proofs. In ITCS, Jan.
2012.

[32] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter,
M. Naehrig, B. Parno, and S. Zahur. Geppetto: Versatile verifiable
computation. In IEEE S&P, May 2015.

[33] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, and B. Parno.
Cinderella: Turning shabby X.509 certificates into elegant
anonymous credentials with the magic of verifiable computation.
In IEEE S&P, May 2016.

[34] D. Fiore, C. Fournet, E. Ghosh, M. Kohlweiss, O. Ohrimenko,
and B. Parno. Hash first, argue later: Adaptive verifiable
computations on outsourced data. In ACM CCS, Oct. 2016.

[35] D. Fiore, R. Gennaro, and V. Pastro. Efficiently verifiable
computation on encrypted data. In ACM CCS, Nov. 2014.

[36] C. Fournet, M. Kohlweiss, G. Danezis, and Z. Luo. ZQL: A
compiler for privacy-preserving data processing. In USENIX
Security, Aug. 2013.

[37] C. Fournet, G. Le Guernic, and T. Rezk. A security-preserving
compiler for distributed programs: From information-flow
policies to cryptographic mechanisms. In ACM CCS, 2009.

[38] M. Fredrikson and B. Livshits. ZØ: An optimizing distributing
zero-knowledge compiler. In USENIX Security, Aug. 2014.

[39] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable
computing: Outsourcing computation to untrusted workers. In
CRYPTO, Aug. 2010.

[40] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic
span programs and succinct NIZKs without PCPs. In
EUROCRYPT, 2013.

[41] C. Gentry and D. Wichs. Separating succinct non-interactive
arguments from all falsifiable assumptions. In STOC, June 2011.

[42] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating
computation: Interactive proofs for muggles. J. ACM,
62(4):27:1–27:64, Aug. 2015. Prelim version STOC 2008.

[43] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge
complexity of interactive proof systems. SIAM J. on Comp.,
18(1):186–208, 1989.

[44] Y. Ishai, E. Kushilevitz, and R. Ostrovsky. Efficient arguments
without short PCPs. In IEEE CCC, June 2007.

[45] J. Kilian. A note on efficient zero-knowledge proofs and
arguments (extended abstract). In STOC, May 1992.

[46] D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of
Computer Programming, chapter 4.6.4. Addison-Wesley, third
edition, 1997.

[47] A. E. Kosba, D. Papadopoulos, C. Papamanthou, M. F. Sayed,
E. Shi, and N. Triandopoulos. TRUESET: Faster verifiable set
computations. In USENIX Security, Aug. 2014.

[48] C. Liu, M. Hicks, and E. Shi. Memory trace oblivious program
execution. In Computer Security Foundations Symposium (CSF),
June 2013.

[49] C. Lund, L. Fortnow, H. J. Karloff, and N. Nisan. Algebraic
methods for interactive proof systems. J. ACM, 39(4):859–868,
Oct. 1992.

[50] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay—a secure
two-party computation system. In USENIX Security, Aug. 2004.

[51] D. Manolescu, B. Beckman, and V. B. Livshits. Volta: Developing
distributed applications by recompiling. IEEE Software, 2008.

[52] S. Meiklejohn, C. C. Erway, A. Küpçü, T. Hinkle, and

A. Lysyanskaya. ZKPDL: a language-based system for efficient
zero-knowledge proofs and electronic cash. In USENIX Security,
2010.

[53] S. Micali. Computationally sound proofs. SIAM J. on Comp.,
30(4):1253–1298, 2000.

[54] P. L. Montgomery. Speeding the Pollard and elliptic curve
methods of factorization. Math. of Computation,
48(177):243–264, Jan. 1987.

[55] A. Naveh and E. Tromer. PhotoProof: Cryptographic image
authentication for any set of permissible transformations. In IEEE
S&P, May 2016.

[56] B. Parno, C. Gentry, J. Howell, and M. Raykova. Pinocchio:
Nearly practical verifiable computation. In IEEE S&P, May 2013.

[57] B. Parno, C. Gentry, J. Howell, and M. Raykova. Pinocchio:
Nearly practical verifiable computation. In Communications of
the ACM, volume 59, pages 103–112, Feb. 2016.

[58] G. N. Rothblum. Delegating Computation Reliably: Paradigms
and Constructions. PhD thesis, Massachusetts Institute of
Technology, 2009.

[59] P. Sasdrich and T. Güneysu. Efficient elliptic-curve cryptography
using Curve25519 on reconfigurable devices. In ARC, Apr. 2014.

[60] P. Sasdrich and T. Güneysu. Implementing Curve25519 for
side-channel–protected elliptic curve cryptography. ACM TRETS,
9(1):3:1–3:15, Nov. 2015.

[61] S. Setty, A. J. Blumberg, and M. Walfish. Toward practical and
unconditional verification of remote computations. In HotOS,
May 2011.

[62] S. Setty, B. Braun, V. Vu, A. J. Blumberg, B. Parno, and
M. Walfish. Resolving the conflict between generality and
plausibility in verified computation. In EuroSys, Apr. 2013.

[63] S. Setty, R. McPherson, A. J. Blumberg, and M. Walfish. Making
argument systems for outsourced computation practical
(sometimes). In NDSS, Feb. 2012.

[64] S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and
M. Walfish. Taking proof-based verified computation a few steps
closer to practicality. In USENIX Security, Aug. 2012.

[65] A. Shamir. IP = PSPACE. J. ACM, 39(4):869–877, Oct. 1992.
[66] J. Thaler. Time-optimal interactive proofs for circuit evaluation.

In CRYPTO, Aug. 2013. Citations refer to full version:
https://arxiv.org/abs/1304.3812.

[67] J. Thaler. A note on the GKR protocol.
http://people.seas.harvard.edu/ jthaler/GKRNote.pdf, 2015.

[68] J. Thaler, M. Roberts, M. Mitzenmacher, and H. Pfister. Verifiable
computation with massively parallel interactive proofs. In
USENIX HotCloud Workshop, June 2012.

[69] V. Vu, S. Setty, A. J. Blumberg, and M. Walfish. A hybrid
architecture for interactive verifiable computation. In IEEE S&P,
May 2013.

[70] R. S. Wahby, M. Howald, S. Garg, abhi shelat, and M. Walfish.
Verifiable ASICs. In IEEE S&P, May 2016.

[71] R. S. Wahby, S. Setty, Z. Ren, A. J. Blumberg, and M. Walfish.
Efficient RAM and control flow in verifiable outsourced
computation. In NDSS, Feb. 2015.

[72] M. Walfish and A. J. Blumberg. Verifying computations without
reexecuting them: from theoretical possibility to near practicality.
Communications of the ACM, 58(2):74–84, Feb. 2015.

[73] S. Williams. Icarus Verilog. http://iverilog.icarus.com.
[74] S. Zahur and D. Evans. Circuit structures for improved efficiency

of security and privacy tools. In IEEE S&P, pages 493–507, May
2013.

16

https://arxiv.org/abs/1304.3812
http://iverilog.icarus.com

1: function SUMCHECKV(layer i, ai−1)
2: e← ai−1
3:
4: (r′,r0,r1)

R←− FbN ×FbG ×FbG

5: r← (r′,r0,r1) // variable order is from §3.1
6: // For the protocol of Theorem A.1 (variable order of §2.2)
7: // replace the above line with r← (r0,r1,r′)
8:
9: for j = 1,2, . . . ,(bN +2bG) do

10:
11: // Fj is a degree-2 or degree-3 polynomial
12: Fj← ReceiveFromProver() // see lines 18,46 of Fig. 12
13: // For the protocol of Theorem A.1,
14: // see lines 22 and 41 of Figure 13
15:
16: if Fj(0)+Fj(1) ̸= e then
17: return reject
18:
19: SendToProver(r[j])
20:
21: e← Fj(r[j])

22:
23: return (e,r′,r0,r1)

FIGURE 9—Part of Giraffe’s and T13’s V pseudocode. Re-
duces the claim that ai equals the sum ∑n,h0,h1 P∗q,i(n,h0,h1)

(this sum equals Ṽi−1(q′i−1,qi−1), per Equation (2)) to the claim
e = P∗q,i(r

′,r0,r1). The depiction here follows Section 3.1: r′

comes before r0,r1 in the variable order, and the polynomial is
P∗q,i(n,h0,h1), not Pq,i(h0,h1,n).

A Details of T13 (with an optimization)
Recall from §2.2 that the starting point of Giraffe’s back-
end is T13 [66, §7], with an optimization [67]. A complete
description of the verifier’s work in this protocol can be
found in Figures 1 and 9. A complete description of the
prover’s work can be found in Figures 10 and 13.

The following theorem restates the relevant properties
of this protocol (§2.2): completeness, soundness, V ’s
runtime, and P’s runtime. The proof of this theorem is
omitted for brevity; it essentially follows the analysis of
[66, §7], as the only difference between the protocol of
[66, §7] and the protocol of this section is the inclusion
of the optimization of [67]. We do, however, provide a
detailed proof of the claim about V ’s runtime, as Giraffe’s
verifier is implemented in a similar manner.

Theorem A.1. Consider the protocol with verifier de-
scribed in Figures 1 and 9, and prover described in Fig-
ure 13. When applied to a circuit C as in Section 2.2, the
protocol satisfies completeness, and satisfies soundness
with ε = (⌈log |y|⌉+6d log(G ·N))/|F|. V requires pre-
computation that is O(d ·G). Then, to validate all inputs
and outputs, V incurs cost O(d · log(N ·G)+ |x|+ |y|).
P’s running time is O(d ·G ·N · logG).

1: function PROVE(ArithCircuit c, input x)
2: (q′0,q0)← ReceiveFromVerifier() // see line 4
3: d← c.depth
4:
5: // each circuit layer induces one sumcheck invocation
6: for i = 1, . . . ,d do
7: r′,r0,r1← SUMCHECKP(c, i, (q′i−1,qi−1))
8: τi← ReceiveFromVerifier() // see line 29 of Figure 1
9: (q′i, qi)← (r′, (r1− r0) · τi + r0)

FIGURE 10—Part of Giraffe’s P pseudocode. (The correspond-
ing pseudocode for the protocol of Theorem A.1 is identical,
though it refers to the SUMCHECKP pseudocode in Figure 13
rather than Figure 12.)

It will be convenient to have the following expression
for the multilinear extension. For a function f : {0,1}γ →
F, the multilinear extension f̃ of f is given by:

f̃ = ∑
s∈{0,1}γ

f (s) ·χs. (6)

This follows because both sides of the equality are multi-
linear polynomials that agree at all Boolean inputs, and
hence must be equal as formal polynomials.

Remark. f̃ can be viewed as an encoding of a table
of f ’s values. Specifically, let us view f (·) as a function
table with 2γ entries, where each s ∈ {0,1}γ is an index
into that table. Notice that every point in the domain of f̃
is a linear combination of all 2γ entries in this table.

V ’s Precomputation. V ’s precomputation evaluates
˜addi(qi−1,r0,r1) and ˜multi(qi−1,r0,r1) for each i =

1, . . . ,d, and all points (qi−1,r0,r1) ∈ FlogG × FlogG ×
FlogG encountered in Lines 20 and 21 of Figure 1 over
the course of the protocol execution.5

Hence, to show that V ’s precomputation work is O(d ·
G), it suffices to show that for each i, ˜addi(qi−1,r0,r1)
and ˜multi(qi−1,r0,r1) can be evaluated in O(G) time. An
algorithm for achieving this was claimed by Vu et al. [69];
we present the details of such an algorithm.

Let Sadd,i ⊆ Sall,i ⊆ {0,1}3bG denote the set of all addi-
tion gates at layer-(i−1), with their layer-i neighbors, and
similarly for Smult,i. By Equation (6),

˜addi = ∑
u∈{0,1}3bG

addi(u) ·χu = ∑
u∈Sadd,i

χu

= ∑
(g,gL,gR)∈Sadd,i

χg ·χgL ·χgR (7)

Likewise,

multi = ∑
(g,gL,gR)∈Smult,i

χg ·χgL ·χgR (8)

5Figure 1 states that the (qi−1,r0,r1) values are only determined over
the course of the protocol execution, but in fact they can be determined
in precomputation, as they only depend on V ’s randomness.

17

1: // t[ℓ] ∈ F are elements of vector t,
2: // which is indexed 1, . . . ,bG from LSB to MSB
3: // A is a vector of length G
4:
5: A[0]← 1− t[bG]
6: A[1]← t[bG]
7: for ℓ= bG−1,bG−2, . . . ,1 do
8: for k = 2bG−ℓ−1,2bG−ℓ−2, . . . ,0 do
9: A[2k]← (1− t[ℓ]) ·A[k]

10: A[2k+1]← t[ℓ] ·A[k]

FIGURE 11—Pseudocode for computing At =
{χ0(t), . . . ,χG−1(t)} in time O(G). V needs to compute
Aq, Ar0 , and Ar1 . Each of q,r0,r1 is a member of FbG .

Hence, V ’s algorithm for evaluating ˜addi(qi−1,r0,r1)
and ˜multi(qi−1,r0,r1) first constructs three zero-indexed
arrays, each with G elements:

Aq ={χ0(q), . . . ,χG−1(q)}
Ar0 ={χ0(r0), . . . ,χG−1(r0)}
Ar1 ={χ0(r1), . . . ,χG−1(r1)} .

To construct each array, consider the algorithm in Fig-
ure 11. This algorithm uses dynamic programming to
avoid recomputing suffixes. For example, notice that
for all even h ∈ [0,G−1], χh(q) = (1− q[1]) · L and
χh+1(q) = q[1] ·L, where L = ∏

bG
ℓ=2 χh[ℓ](q[ℓ]); the algo-

rithm computes L only once. Constructing an array takes
O(G) time because for each iteration of the outer loop,
the number of iterations in the inner loop ascends as
21,22, . . . ,2bG−1, making the total number of inner loop
iterations ∑

bG−1
i=1 2i < 2bG = G. Moreover, each inner loop

iteration requires 2 field multiplications, so constructing
all 3 arrays requires at most 6 ·G multiplications.

Once the three arrays are computed, V computes the
right hand sides of Equations (7) and Equation (8) by
iterating over each gate s = (g,gL,gR); looking up the
three quantities Aq[g], Ar0 [gL], Ar1 [gR]; multiplying them;
and adding this product to a running sum for ˜addi(q,r0,r1)
or ˜multi(q,r0,r1), depending on whether the gate is an
addition or multiplication gate. This requires an additional
2G multiplications, and G additions.

In summary, the above shows that both
˜addi(qi−1,r0,r1) ˜multi(qi−1,r0,r1) can be computed in

O(G) time, with at most 8G field multiplications in total.

Finally, recall that prior work has the prover specify
the univariate polynomial H appearing in Figure 1 by
specifying its evaluations at bG +1 inputs (§3.3). Some
works have V evaluate Lagrange basis polynomials at
various points in precomputation, in O(d log2 G) time
[69, 70]. This ensures that V can later evaluate H(τi)
(line 26, Figure 1) in O(logG) time per evaluation.

V ’s remaining costs. Given the results of V ’s precom-
putation, inspection of Figures 1 and 9 indicates that V

runs in O(d · log(N ·G)+ |x|+ |y|) time, provided that V
can accomplish the following tasks in the following time
bounds:

• For any point (q′d , qd) ∈ FbN × FbG , evaluate
Ṽ0(q′0, q0) in time O(|y|).

• For any point (q′i−1, r′) ∈ FbN × FbN , evaluate
ẽq(q′i−1, r′) in time O(bN).

• For any point (q′d , qd) ∈ FbN × FbG , evaluate
Ṽd(q′d , qd) in time O(|x|).

The first and third bullets are handled as in Section 3.3
(cf. the paragraph on multilinear extensions of I/O).
To establish the second bullet, note that ẽq : F2bN → F
has the following form [58, Prop. 3.2.1] (see also [69,
Apdx. A.1]):6

ẽq(q′,r′) =
bN

∏
ℓ=1

(
q′[ℓ]·r′[ℓ]+ (1−q′[ℓ])·(1− r′[ℓ])

)
(9)

Each term simplifies to 2q′[ℓ] · r′[ℓ]+1− (q′[ℓ]+ r′[ℓ]),
which can be computed with one multiplication and four
additions. Thus the whole computation requires 4bN addi-
tions and 2bN−1 multiplications.

B Details of Giraffe’s back-end
Recall from §3.1 that Giraffe’s back-end differs from the
protocol of Appendix A in that it changes the order in
which variables are bound within each invocation of the
sum-check protocol, and exploits that order to simplify
P’s work.

A complete description of the verifier’s work in this
protocol can be found in Figure 1 and Figure 9. A com-
plete description of the prover’s work can be found in
Figures 10 and 12. The following theorem restates the
relevant properties of this protocol.

Theorem B.1. Consider the protocol with verifier de-
scribed in Figures 1 and 9, and prover described in Fig-
ure 12. When applied to a circuit C as in Section 2.2, the
protocol satisfies completeness, and satisfies soundness
with ε = (⌈log |y|⌉+6d log(G ·N))/|F|. V requires pre-
computation that is O(d ·G). Then, to validate all inputs
and outputs, V incurs cost O(d · log(N ·G)+ |x|+ |y|).
P’s running time is O(d · (G ·N +G · logG)).

The conclusion of Theorem B.1 is identical to that of The-
orem A.1, except for the improvement in P’s runtime.

Proof. The proof of completeness, soundness, and the
bound on V ’s runtime is essentially identical to that of

6The validity of this equation can be seen by observing that the right
hand side is a multilinear polynomial in the components of q′ and r′,
and agrees with the function eq whenever q′ and r′ are in {0,1}bN

18

1: function SUMCHECKP(ArithCircuit c, layer i, q′i−1, qi−1)
2: for j = 1, . . . ,bN do
3: // Prover sends degree-3 polynomial Fj. Does this by computing Fj(−1),Fj(0),Fj(1),Fj(2) and then interpolating.
4:
5: for all σ ∈ {0,1}bN− j and g ∈ {0,1}bG and k ∈ {−1,0,1,2} do
6: s← (g, gL, gR) // gL,gR are labels of g’s layer-i inputs in sub-circuit.
7:
8: termP← ẽq(q′i−1,r

′[1], . . . ,r′[j−1], k, σ [1], . . . ,σ [bN − j]) ·χg(qi−1)
9: termL← Ṽi (r′[1], . . . ,r′[j−1], k, σ [1], . . . ,σ [bN − j], gL)

10: termR← Ṽi (r′[1], . . . ,r′[j−1], k, σ [1], . . . ,σ [bN − j], gR)
11:
12: if g is an add gate then Fj[σ ,g][k]← termP · (termL+ termR)
13: else if g is a mult gate then Fj[σ ,g][k]← termP · termL · termR

14:
15: for k ∈ {−1,0,1,2} do
16: Fj[k]← ∑σ∈{0,1}bN− j ∑g∈{0,1}bG Fj[σ ,g][k]

17: // Use Lagrange interpolation to compute coefficients of Fj and send them to V
18: SendToVerifier(Fj, 3)
19: r′[j]← ReceiveFromVerifier() // see line 19 of Figure 9
20:
21: r′← (r′[1], . . . ,r′[bN]) // notation
22:
23: for j = 1, . . . ,2bG do
24: // In these rounds, prover sends degree-2 polynomial FbN+ j .
25: for all gates g ∈ {0,1}bG and k ∈ {−1,0,1} do
26:
27: s← (g, gL, gR) // gL,gR are labels of g’s layer-i inputs in subcircuit
28: uk← (qi−1[1], . . . ,qi−1[bG], r[1], . . . ,r[j−1], k)
29: termP← ẽq(q′i−1,r

′) ·∏bG+ j
ℓ=1 χs[ℓ](uk[ℓ])

30:
31: if j ≤ bG then
32: termL← Ṽi (r′,r[1], . . . ,r[j−1], k, gL[j+1], . . . ,gL[bG])
33: termR← Ṽi (r′,gR)
34: else // bG < j ≤ 2bG
35: termL← Ṽi(r′,r[1], . . . ,r[bG])
36: termR← Ṽi (r′,r[bG+1], . . . ,r[j−1], k, gR[j−bG+1], . . . ,gR[bG])

37:
38: if g is an add gate then
39: FbN+ j[g][k]← termP · (termL+ termR)
40: else if g is a mult gate then
41: FbN+ j[g][k]← termP · termL · termR

42:
43: for k ∈ {−1,0,1} do
44: FbN+ j[k]← ∑g∈{0,1}bG FbN+ j[g][k]

45: // Use Lagrange interpolation to compute coefficients of FbN+ j and send them to verifier
46: SendToVerifier(FbN+ j, 2)
47: r[j]← ReceiveFromVerifier() // see line 19 of Figure 9
48:
49: r0← (r[1], . . . ,r[bG]) // notation
50: r1← (r[bG+1], . . . ,r[2bG]) // notation
51:
52: for ℓ= {0, . . . ,bG}, H[ℓ]← Ṽi(r′,(r1− r0) · ℓ+ r0)
53: // Use Lagrange interpolation to compute coefficients of H and send them to V
54: SendToVerifier(H, bG)
55:
56: return (r′,r0,r1)

FIGURE 12—P pseudocode in Giraffe for the layer-i sum-check invocation.

19

1: function SUMCHECKP(ArithCircuit c, layer i, q′i−1, qi−1)
2: for j = 1, . . . ,2bG do
3: // In these rounds, prover sends degree-2 polynomial Fj. Does this by computing and sending Fj(0),Fj(1),Fj(2).
4:
5: for all σ ∈ {0,1}bN and all g ∈ {0,1}bG and k ∈ {0,1,2} do
6: s← (g, gL, gR) // gL,gR are labels of g’s layer-i inputs in subcircuit
7: uk← (qi−1[1], . . . ,qi−1[bG], r[1], . . . ,r[j−1], k)
8: termP← ẽq(q′i−1,σ) ·∏bG+ j

ℓ=1 χs[ℓ](uk[ℓ])
9:

10: if j ≤ bG then
11: termL← Ṽi (σ , r[1], . . . ,r[j−1], k, gL[j+1], . . . ,gL[bG])
12: termR←Vi (σ , gR) // Vi = Ṽi on gate labels
13: else // bG < j ≤ 2bG
14: termL← Ṽi(σ , r[1], . . . ,r[bG])
15: termR← Ṽi (σ , r[bG+1], . . . ,r[j−1], k, gR[j−bG+1], . . . ,gR[bG])

16:
17: if g is an add gate then Fj[σ ,g][k]← termP · (termL+ termR)
18: else if g is a mult gate then Fj[σ ,g][k]← termP · termL · termR

19:
20: for k ∈ {0,1,2} do
21: Fj[k]← ∑σ∈{0,1}bN ∑g∈{0,1}bG Fj[σ ,g][k]

22: SendToVerifier(Fj, 2)
23: r[j]← ReceiveFromVerifier() // see line 19 of Figure 9
24:
25: r0← (r[1], . . . ,r[bG]) // notation
26: r1← (r[bG+1], . . . ,r[2bG]) // notation
27:
28: for j = 1, . . . ,bN do
29: // In these rounds, prover sends degree-3 polynomial F2bG+ j , so computes F2bG+ j(0), . . . ,F2bG+ j(3)
30:
31: for all σ ∈ {0,1}bN− j and k ∈ {0,1,2,3} do
32: termP← ẽq(q′i−1,r

′[1], . . . ,r′[j−1],k,σ [1], . . . ,σ [bN − j])
33: termL← Ṽi (r′[1], . . . ,r′[j−1], k, σ [1], . . . ,σ [bN − j], r0)
34: termR← Ṽi (r′[1], . . . ,r′[j−1], k, σ [1], . . . ,σ [bN − j], r1)
35:
36: // See text for computation of ˜add(qi−1,r0,r1) and ˜mult(qi−1,r0,r1)
37: F2bG+ j[σ][k]← termP ·

(˜add(qi−1,r0,r1) · (termL+ termR)+ ˜mult(qi−1,r0,r1) · termL · termR
)

38:
39: for k ∈ {0,1,2,3} do
40: F2bG+ j[k]← ∑σ∈{0,1}bN− j F2bG+ j[σ][k]

41: SendToVerifier(F2bG+ j , 3)
42: r′[j]← ReceiveFromVerifier() // see line 19 of Figure 9
43:
44: r′← (r′[1], . . . ,r′[bN]) // notation
45:
46: for ℓ= {0, . . . ,bG}, H[ℓ]← Ṽi(r′,(r1− r0) · ℓ+ r0)
47: SendToVerifier(H, bG)
48:
49: return (r′,r0,r1)

FIGURE 13—P pseudocode in T13 [66, §7] (with optimization [67]) for the layer-i sum-check invocation.

20

Theorem A.1. This is because the principal difference
between the two protocols is the order in which variables
are bound, and this change does not affect completeness,
soundness, or V ’s runtime. Hence, the remainder of the
proof is devoted to bounding P’s runtime.

From inspection of Figure 10, the claim about P’s run-
time is true as long as each of the d calls to SUMCHECKP
(cf. line 7 of Figure 10) can be implemented in time
O(G ·N +G · logG).

To show this, we begin by explaining how the first for
loop of the SUMCHECKP function (lines 2–19 in Figure
12) can be implemented to run in time O(G ·N). As in
Section 3.1, we call this part of the protocol “phase 1”.

We begin with the inner for loop of phase 1 (lines
5-13 in Figure 12). This loop has 4G ·N/2 j iterations.
Lines 12 and 13 each take constant time per iteration,
leading to a contribution of O(∑

bN
j=1 G ·N/2 j) = O(G ·N).

Next, consider the computation of termL and termR in
lines 9 and 10. Section 3.2 (see the “algorithm” para-
graph) explained how to compute, in iteration j, all re-
quired values of termL and termR (across σ ,g,k) in to-
tal time O(G ·N/2 j), leading to another contribution of
O(∑

bN
j=1 G ·N/2 j) = O(G ·N).

The bulk of our attention on the inner loop is on comput-
ing all required values of termP in line 8 in O(G+N) time
across all iterations j = 1, . . . ,bN . This decomposes into
(a) computing χg(qi−1) for all g ∈ {0,1}bG , and (b) com-
puting ẽq(q′i−1,r

′[1], . . . ,r′[j−1], k, σ [1], . . . ,σ [bN− j]),
where j ranges from 1 up to bN , σ ranges over {0,1}bN− j,
and k ranges over {−1,0,1,2}. For (a), Apdx A (the “pre-
computation” paragraph) explained precisely how to com-
pute the χg(qi−1) in time O(G). To achieve (b) in time
O(N), consider the function Z : {0,1}bN → F given by
Z(·) = ẽq(q′i−1, ·). Observe that Z̃(·) and ẽq(q′i−1, ·) are
equal as formal polynomials, because they are both mul-
tilinear and agree at all Boolean inputs. Hence, task (b)
is equivalent to evaluating Z̃ at all points of the form
(r′[1], . . . ,r′[j−1], k, σ [1], . . . ,σ [bN− j]).

P can achieve this in two steps. In the first step, prior
to round j = 1, P evaluates Z on all Boolean inputs as
follows. Observe that for any σ ∈ {0,1}bN , Equation (9)
implies that Z(σ)= ẽq(q′i−1,σ)= χσ (q′i−1). P can again
use the technique from Apdx A, this time to build an array
containing χσ (q′i−1) for all σ ∈ {0,1}bN in time O(N).

In the second step, P evaluates Z̃ at all of the nec-
essary points using the following method. Notice that
when explaining how to efficiently compute termL and
termR (§3.2), we more generally showed that the follow-
ing is true. For any b-variate function f : {0,1}b→ F and
any k ∈ F, given f ’s values on all Boolean inputs, one can,
in total time O(2b), evaluate f̃ at all points of the form
(r′[1], . . . ,r′[j−1],k, σ [1], . . . ,σ [b− j]), where j ranges
from 1 up to b, and σ ranges over {0,1}b− j. Hence, once
P has evaluated Z on all Boolean inputs, P can apply

the aforementioned result to f = Z in order to evaluate Z̃
at the necessary points in time O(2bN) = O(N).

In total, both steps of task (b) are dispatched in O(N)
time.

By inspection, lines 15-19 of Figure 12 can be dis-
patched in ∑

bN
j=1 O(G ·N/2 j) = O(G ·N) time. Hence,

phase 1 of the protocol can be dispatched in O(G ·N)
time in total.

The next cost to P to account for is the for loop with
2bG iterations (cf. line 23); as in Section 3.1, we refer
to this as “phase 2”. This for loop can be dispatched in
O(G) time per iteration (hence, O(G logG) time in total),
in a manner analogous to the prover implementation of
CMT [31] (indeed, the pseudocode of Figure 12 already
incorporates key insights from [31]).

In more detail, it is enough to show that for each it-
eration j ∈ [1, 2bG] of this for loop, all 3G iterations of
the inner for loop in line 25 of Figure 12 can be dis-
patched in O(G) total time, as this will yield a time
bound of O(G ·bG) = O(G logG). The dominant cost of
these iterations is in computing the termP, termL, and
termR values. The termL and termR values are handled
via essentially the same method as in phase 1, requiring
O(∑

bN+bG
j=bN+1 G/2 j) = O(G) time in total (across all 2bG

iterations j).
The bottleneck for phase 2 is the time required to com-

pute termP (cf. line 29). The prover stores, at all itera-
tions j ∈ [1, 2bG] of the outer loop, and for each gate
g ∈ {0,1}bG and k = 0, the value U [g] = ẽq(q′i−1,r

′) ·
∏

bG+ j−1
ℓ=1 χs[ℓ](uk[ℓ]) (see lines 27 and 28 for the definition

of s and u). Given these U [g] quantities, in each iteration
j of the outer loop, P can compute each value of termP
and update U [g] in constant time. This means that for each
iteration j, all O(G) values of termP can be computed in
O(G) total time, resulting in the claimed O(G logG) time
bound across all 2bG iterations of the outer loop.

The final cost to account for in P’s work is evaluating
the degree-bG univariate polynomial H = Ṽi(r′,(r1− r0) ·
ℓ+ r0) at bG+1 values of ℓ (see lines 52 and 53 of Figure
12). Consider the function Q : {0,1}bG → F, defined as
Q(·) = Ṽi(r′, ·). Then Q̃(·) and Ṽi(r′, ·) are equal as formal
polynomials, because the right- and left-hand sides are
multilinear polynomials that agree at all Boolean inputs.

Hence, P must compute Q̃((r1− r0) · ℓ+ r0) for ℓ ∈
{0, . . . ,bG}. For this purpose, we use the following result,
which is a variant of the one given earlier (in reference to
task (b)): given the evaluations of a bG-variate function Q
on all Boolean inputs, one can evaluate Q̃ at any point in
time O(2bG) = O(G). This follows from again applying
the technique from Section 3.2 used to compute all of the
termL and termR values (and is described in Section 3.3,
the paragraph on multilinear extensions of I/O).

21

To get the evaluations of Q(·) on all Boolean inputs,
we need Ṽi(r′,σ) for σ ∈ {0,1}bG . These evaluations can
be computed in time O(N ·G), again using the Section 3.2
technique. Then, we apply the previous paragraph to the
bG +1 points {(r1− r0) · ℓ+ r0 | ℓ= 0, . . . ,bG}, yielding
additional computational cost of O(G ·bG).

In summary, lines 52 and 53 of Figure 12 together can
be dispatched in time O(N ·G+G · logG).

B.1 Recursive expression for Ṽi

The Equation (5) recurrence in Section 3.2 is derived as
follows:

Ṽi
(
r′[1.. j],σ ,h

)
= ∑

s∈{0,1}bN+bG

Vi(s) ·χs
(
r′[1.. j],σ ,h

)
= ∑

s∈{0,1}bN+bG :s j=0

Vi(s) ·χs
(
r′[1.. j],σ ,h

)
+ ∑

s∈{0,1}bN+bG :s j=1

Vi(s) ·χs
(
r′[1.. j],σ ,h

)
=
(
1− r′[j]

)
·Ṽi

(
r′[1.. j−1],0,σ ,h

)
+ r′[j] ·Ṽi

(
r′[1.. j−1],1,σ ,h

)
.

The first and last equalities apply Equation (6).

B.2 Other implementation considerations

The choice of values k ∈ {−1,0,1,2}. In phase
1, Giraffe’s P evaluates Fj(k),k ∈ {−1,0,1,2}.
This is a small optimization compared to, e.g.,
k ∈ {0,1,2,3}. Recall from Section 3.2 that for k =−1,
termL j,n,gL,−1 = 2 · termL j,n,gL,0 +(−1) · termL j,n,gL,1.
Multiplication by 2 and by −1 can both be implemented
as an addition rather than a multiplication, while k = 3
requires either two additions or a multiplication. A further
slight optimization arises in P’s work interpolating Fj:
interpolating a third-degree polynomial for evaluations
at the chosen points allows a few more multiplications
to be traded for additions. In phase 2, Giraffe uses
k ∈ {−1,0,1} (Fig. 12) for the same reason.

V ’s precomputation hardware. V implements the dy-
namic programming algorithm of Figure 11 using an ap-
proach similar to the one described in Section 3.2. In brief,
the access pattern of the algorithm is read one, write two,
read one, and so forth. V instantiates two multipliers, one
for each of the products in the innermost loop of Fig-
ure 11, and uses a variant of the RWSR design to store
operands and results.

C Cost model
Figure 14 presents a simplified cost model for Giraffe’s
operating cost (energy), manufacturing cost (chip area),
and performance (delay, i.e., inverse throughput). Roughly

speaking, energy captures the number of operations ex-
ecuted, area corresponds to parallelism, and throughput
represents the time spent on the critical path of execution.

Both P and V are designed to allow the designer to
trade chip area for throughput. Section 3.2 describes one
such tradeoff; Giraffe applies similar techniques in other
parts of both P and V . In addition, Giraffe’s protocol
requires computations expressed as layered arithmetic
circuits (§2), and as with prior work [70, §3.2], Giraffe
can take advantage of this requirement using pipelining.
In this arrangement, P and V comprise a number of
submodules, all running in parallel and executing different
instances of the proof protocol.

To control area and throughput, Giraffe’s P and V
designs each have several parameters. For V , the param-
eters are nV ,io, the chip area dedicated to computing the
multilinear extension of inputs and outputs; and nV ,sc,
the number of sumcheck instances V executes simulta-
neously. For P , the parameters are nP,pl, the number
of in-flight computations in the pipeline; nP,sc, the num-
ber of sumcheck instances P executes simultaneously;
nP,ea, P’s parallelism in the early rounds of the sum-
check (§3.2); and nP,Ṽ, P’s parallelism in the final Ṽ
evaluation (Fig. 12, line 52).

22

cost verifier prover
energy

compute G(6d +2C)Emul,t +G(d +2C)Eadd,t d
[
G(6C+8logG)Emul,u +G(11N +8logG)Eadd,u +4G(N + logG)

〈
Eg,u

〉]
V -P tx (d (2logG+ logN)+GN)Etx,t (d (7logG+4logN)+NG)Etx,u

store — dNG ·Esto,u
PRNG d (2logG+ logN)Eprng,t —
V I/O 2NG ·Eio,t —

area
compute nV ,sc

(
4Amul,t +3Aadd,t

)
+2nV ,io

(
2Amul,t +Aadd,t

)
nP,sc

[(
4GnP,ea +

N
2 +2nP,Ṽ logG

)
Amul,u +

(
4GnP,ea +

N
2 +nP,Ṽ logG

)
Aadd,u

]
V -P tx (d (2logG+ logN)+GN)Atx,t (d (7logG+4logN)+NG)Atx,u

store — dNGnP,pl ·Asto,u
PRNG d (2logG+ logN)Aprng,t —
V I/O 2NG ·Aio,t —

delay: Giraffe’s overall throughput is 1/max(V delay,P delay); the expressions for V and P delay are given immediately below:
max

(
dG

nV ,sc

(
3λmul,t +λadd,t

)
, CG

nV ,io

(
λmul,t +λadd,t

)) d
nP,sc

[(
3C

nP,ea
+ G

nP,Ṽ

)(
λmul,u +λadd,u

)]
nV ,io: V parameter; trades area vs I/O delay nP,pl: P parameter; # in-flight runs nP,ea: P parameter; parallelism in early rounds (§3.2)
nV ,sc: V parameter; trades area vs sumcheck delay nP,sc: P parameter; trades area vs delay nP,Ṽ: P parameter; parallelism for final Ṽ (z3, ·) eval〈
Eg,u

〉
: mean per-gate energy of C , untrusted d,G,N: depth, width, and number of copies of arithmetic circuit C

E{add,mul,tx,sto,prng,io},{t,u}: energy cost in {trusted, untrusted} technology node for {+, ×, V -P interaction, store, PRNG, V I/O}
A{add,mul,tx,sto,prng,io},{t,u}: area cost in {trusted, untrusted} technology node for {+, ×, V -P interaction, store, PRNG, V I/O}
λ{add,mul},{t,u}: delay in {trusted, untrusted} technology node for {+, ×}

FIGURE 14—V and P costs as a function of C parameters and technology nodes (simplified model; low-order terms discarded).
We assume |x|= |y|= N ·G. Energy and area constants for interaction, store, PRNG, and I/O indicate costs for a single element of
Fp. V -P tx is the cost of interaction between V and P; V I/O is the cost for the operator to communicate with Giraffe. For P ,
store is the cost of buffering pipelined computations. Transmit, store, and PRNG occur in parallel with execution, so their delay is
not included under the assumption that the corresponding circuits execute quickly enough.

23

