
Proof of Luck: an Efficient
Blockchain Consensus Protocol

Mitar Milutinovic
UC Berkeley

mitar@cs.berkeley.edu

Warren He
UC Berkeley

-w@berkeley.edu
Howard Wu
UC Berkeley

howardwu@berkeley.edu

Maxinder Kanwal
UC Berkeley

mkanwal@berkeley.edu

ABSTRACT
In the paper, we present designs for multiple blockchain con-
sensus primitives and a novel blockchain system, all based on
the use of trusted execution environments (TEEs), such as
Intel SGX-enabled CPUs. First, we show how using TEEs
for existing proof of work schemes can make mining equi-
tably distributed by preventing the use of ASICs. Next, we
extend the design with proof of time and proof of owner-
ship consensus primitives to make mining energy- and time-
efficient. Further improving on these designs, we present
a blockchain using a proof of luck consensus protocol. Our
proof of luck blockchain uses a TEE platform’s random num-
ber generation to choose a consensus leader, which offers
low-latency transaction validation, deterministic confirma-
tion time, negligible energy consumption, and equitably dis-
tributed mining. Lastly, we discuss a potential protection
against up to a constant number of compromised TEEs.

CCS Concepts
•Security and privacy → Hardware-based security
protocols; •Computer systems organization → Peer-
to-peer architectures;

Keywords
Blockchain, Trusted Execution Environments, Consensus Pro-
tocol, Intel SGX

1. INTRODUCTION
Bitcoin [15], a widely-used blockchain system, as well as

other popular cryptocurrencies [21], have demonstrated that
it is practical to use a blockchain as a distributed ledger.
Maintained by a peer-to-peer network of mutually distrust-
ing participants, these systems use proof of work [1] to solve
the key challenge of reaching consensus among participants.

This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in SysTEX ’16
Proceedings of the 1st Workshop on System Software for Trusted Execution,
http://dx.doi.org/10.1145/3007788.3007790.

SysTEX ’16 December 12–16, 2016, Trento, Italy
© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-4670-2/16/12.

DOI: http://dx.doi.org/10.1145/3007788.3007790

While proof of work is robust against misbehaving and
malicious participants, these algorithms require participants
to dedicate computation time, energy, and silicon towards
contrived “work.” Moreover, to reduce the number of inter-
mediary forks, which decrease the effective power of the net-
work, Bitcoin’s proof of work is designed to produce a new
block on average every 10 minutes. It is recommended to
wait for 6 blocks before accepting a transaction, [19] which
makes it impractical for many applications (e.g., point of
sale transactions).

To address these shortcomings, we can use modern trusted
execution environments (TEEs) to build new consensus prim-
itives for use in decentralized electronic currency designs.
The capabilities of TEEs can enforce correct processing of
critical operations and can also limit the effect of Sybils run-
ning under single units of hardware.

In this paper, we propose a novel consensus algorithm,
proof of luck, along with a proof-of-concept blockchain de-
sign using it, which achieves low-latency transaction valida-
tion while using minimal energy and computing power under
rational attackers and benign participants. Our design uti-
lizes the capabilities of Intel’s SGX platform, although any
TEE platform with similar features will work. Our design
scales to large numbers of participants and sidesteps the is-
sue of ASICs in mining, allowing consumer-grade hardware
to participate equally in the network.

Our contributions are as follows:

• We present three basic consensus primitives that use a
TEE—proof of work, proof of time, and proof of own-
ership. These are energy efficient drop-in replacements
for existing consensus primitives.

• We present a novel fourth consensus primitive—proof
of luck—and a blockchain design that uses it to achieve
low-latency transaction validation, deterministic con-
firmation time, negligible energy consumption, and eq-
uitably distributed mining.

• We discuss a potential protection against an attacker
with a small number of compromised TEEs.

Our paper is structured as follows: we present related
work in Section 2; formally define the problem we address
in Section 3; present three drop-in TEE-enabled consensus
primitives in Section 4; present our proof of luck blockchain
in Section 5; summarize our analysis in Section 6; describe
future directions in handling TEE compromise in Section 7;
and finally conclude in Section 8.



2. RELATED WORK
To address the energy consumption of Bitcoin [16], vari-

ous alternative consensus mechanisms have been proposed,
e.g., proof of stake [10] and proof of burn [17]. It remains
unclear whether these suitably maintain the security prop-
erties and incentives of current proof of work schemes [18].
Alternative approaches include replacing “useless” proof of
work puzzles with meaningful problems [6, 9], making energy
consumption less wasteful, but still requiring such comput-
ing resources to be available, which limits mobile and IoT
devices from participating.

When there is a known set of participants, the practi-
cal Byzantine fault tolerance algorithm [3] allows a system
to commit transactions and reach consensus within a few
network communications in the presence of up to one-third
of the participants exhibiting arbitrary, malicious behavior.
However, this algorithm does not scale well in the number
of participants, relies critically on network timing assump-
tions, and only guarantees liveness when all participants be-
have as expected. While several improvements have been
proposed [11, 12, 14], these still require maintaining a list of
participants or trust relations between subgroups of partic-
ipants.

To improve transaction confirmation times in Bitcoin, sev-
eral approaches have been proposed, e.g., using uncles [20]
and dividing blocks into micro and macro blocks [5]. These
approaches are orthogonal to our proposed advancements
and can be used to further improve our blockchain system.

Intel is concurrently and independently developing an SGX-
based distributed ledger as part of the Sawtooth Lake project [7].
While it simulates Bitcoin mining in an energy-efficient man-
ner similar to proof of time, our work provides additional
consensus schemes and benefits, most notably proof of luck,
addresses the issue of possible compromised TEEs, and does
not require estimation of the number of participants.

3. PROBLEM DEFINITION
The problem of consensus is that the distributed system

must agree on a single shared state. Current designs of
blockchains are slow, using significant time and energy as
part of the consensus mechanism. Validation prevents ar-
bitrary changes to state, but still allows the blockchain to
“fork” into two or more valid continuations. A participant
may be incentivized to prefer their own state over other par-
ticipants’ states, e.g. to gain a block mining reward, or per-
form a double-spend attack [8]. The system must be able to
determine the state of the participants, uncontrollable by a
minority of colluding, malicious participants.

Our goal is to design a consensus algorithm with:

1. Quick, deterministic transaction confirmations.

2. Energy and network communication efficient protocol.

3. Resistant to custom hardware not commonly available.

4. An attacker controlling under a threshold of TEEs can-
not control the blockchain.

5. An attacker cannot control the blockchain without con-
trolling a majority of CPUs and without breaking the
TEE platform.

6. No requirement for a synchronized clock between par-
ticipants.

We assume the following about the setting of the problem:

1. The participants have CPUs that implement a suitable
TEE, such as Intel SGX.

2. TEE programs can produce unbiased uniform random
numbers, which an attacker cannot influence. (In Intel
SGX, the RDRAND instruction is available.)

3. TEE programs can detect concurrent invocations. (In
Intel SGX, this can currently be done by attempting
to create the maximum allowed number of monotonic
counters for each enclave identity, 256 at the time of
writing.)

3.1 Principals
Participants, the main principals in our protocol, are re-

quired to use a TEE, and perform routines to maintain the
blockchain and help others read and write to the blockchain.
The trusted platform vendor controls the correct execution of
the algorithm inside each participant’s TEE. Clients rely on
the blockchain and communicate with participants to read
and write to the blockchain. As clients do not authenticate
participants, they must protect the content of the blockchain
end-to-end, i.e., by signing any data to be added.

3.2 Threat Model
We analyze our protocol under attack from an adversary

controlling some fraction (less than half) of the participants’
machines. We assume that the adversary cannot break any
cryptographic primitives with non-negligible probability. It
follows that, while the adversary can run the protocol in the
TEE for each controlled machine, they cannot generate a
valid attestation proof if they deviate from the protocol.

In Section 7, we consider an adversary that can gener-
ate arbitrary valid attestation quotes on a limited number
of CPUs. We base our economic security model of TEE
platforms on the fact that compromising many TEEs is pro-
hibitively expensive.

Furthermore, the adversary can read and send its own net-
work messages, but cannot modify messages sent by honest
participants or cause a network split. Messages in our pro-
tocol do not identify the sender, although some implementa-
tions may choose to do so (e.g., using TCP/IP); in this case,
it is assumed that the adversary can spoof the sender’s in-
formation in its own messages and tamper with the sender’s
information from honest participants.

Attacks that compromise an entire trusted platform ven-
dor are out of this paper’s scope, as such an attack would
have consequences much broader than our blockchain.

3.3 SGX Background
Our work is based on Intel’s SGX platform [13]. In ad-

dition to the isolation and remote attestation features of a
typical TEE, we utilize the SGX platform’s trusted services
that provide relative timestamps and monotonic counters.
SGX uses Enhanced privacy ID (EPID) [2] signatures, al-
lowing anonymous and pseudonymous attestation. When
initializing a TEE, the platform records a digest of the code
and data (called the measurement) which serves as the cryp-
tographic identity of the TEE. In the remote attestation pro-
tocol, the TEE certifies a computation result with a signed
report and remotely verifiable quote, which serves as the
proof that the results arose from appropriate computations
on proper hardware.



4. BUILDING BLOCKS
Existing blockchains and other systems utilizing proof of

work can benefit from using these TEE-enabled consensus
building blocks directly. In this section, we progress through
a series of designs that inform and motivate our proof of luck
consensus protocol, which we present in Section 5.

4.1 Proof of Work
One major discussion in the cryptocurrency community is

whether proof of work algorithms should be ASIC-resistant,
preventing custom ASIC hardware from speeding up the
computations. Using a TEE-enabled proof of work sidesteps
this issue, as only supported platforms can be used for min-
ing (e.g., Intel SGX-enabled CPUs). As a result, mining
power is decentralized, mining rewards are equity distributed
among participants, and mining pools bring no advantages.

Algorithm 1 TEE-enabled proof of work (inside TEE)

1: function PoW(nonce, difficulty)
2: result ← originalPoW(nonce, difficulty)
3: assert originalPoWSuccess(result)
4: return tee.attestation(〈nonce, difficulty〉, null)
5: end function

We propose Algorithm 1, which wraps any existing proof
of work algorithm into a TEE-enabled one. Inside a TEE,
we call the originalPoW algorithm with a given nonce
and difficulty . In Bitcoin, nonce is the newly-mined block
header, difficulty is the target hash, and originalPoWSuccess
checks that originalPoW succeeded. tee.attestation re-
turns a proof attesting that the algorithm ran inside the
TEE, and that the code was unmodified (based on the mea-
surement). The second argument in our pseudocode, null
here, calls for an anonymous random base EPID signature.

4.2 Proof of Time
Proof of work effectively enforces that a sufficient amount

of time has passed by requiring the participant to do work;
a TEE can enforce this directly by requiring the participant
to wait for the desired time, saving CPU cycles and energy
for other meaningful work. We now propose Algorithm 2.

Algorithm 2 Proof of time (inside TEE)

1: counter ← incrementMonotonicCounter()

2: function PoT(nonce, duration)
3: sleep(duration)
4: assert counter = readMonotonicCounter()
5: return tee.attestation(〈nonce, duration〉, null)
6: end function

TEE platforms, like Intel SGX, provide relative times-
tamps to the TEE. The sleep function can busy-wait for
duration, or it can yield control from the TEE for other out-
side processes, returning after duration and verifying that
the platform’s relative timestamp has increased sufficiently.

A malicious participant may try to game proof of time by
running multiple instances in parallel on the same CPU. By
maintaining a monotonic counter, provided as a TEE plat-
form service, we can prevent such malicious behavior by in-
crementing the counter (incrementMonotonicCounter)
every time the TEE starts. After control is transferred out of

the TEE and back, we check (readMonotonicCounter)
that the counter has not changed.

4.3 Proof of Ownership
Proof of work can be seen as a countermeasure against

Sybils, where an attacker acts as multiple participants—
such an attacker would have to do many times the amount of
work. When participants are required to use a TEE, instead
of consuming resources, one can make it expensive to main-
tain such virtual participants by physically limiting each
participant to owning a unique CPU. In SGX, we can oper-
ate the EPID signature (part of the remote attestation pro-
tocol) in name base mode, which produces a “pseudonym”
that reveals if multiple proofs came from the same CPU.
This works even if a malicious user resets the owner epoch
register on their CPU.

Algorithm 3 Proof of ownership (inside TEE)

1: function PoO(nonce)
2: return tee.attestation(〈nonce〉, nonce)
3: end function

In Algorithm 3, we generate a proof using nonce (a block
header) as the name base (second argument on Line 2).
Proofs generated by a single TEE for the same name base
bear the same pseudonym. A blockchain can then reach con-
sensus by selecting the block that has the most proofs with
unique pseudonyms as the leader.

5. PROOF OF LUCK
Our proof of luck blockchain is built upon the TEE-based

proof of luck primitive proposed in Algorithm 4.
The algorithm consist of two functions, PoLRound and

PoLMine. At the start of every round, the participant pre-
pares the TEE to mine on a particular chain by calling PoL-
Round and passing the currently known latest block . After
ROUND TIME passes, the participant calls PoLMine to
mine a new block. The participant passes the header of the
new block and the block that it will extend (as previousBlock).
previousBlock may be different from the roundBlock that
was passed to PoLRound, but we require that roundBlock
and previousBlock have the same parent . This ensures that
a participant waits the mandatory ROUND TIME between
mining blocks, while allowing them to switch to a luckier,
alternative block should they receive one while waiting. We
verify that ROUND TIME indeed has passed.

The PoLMine function generates a random value l ∈
[0, 1) from a uniform distribution, which is used to determine
the winning block from all mined blocks of participants in
this round. This will tie in with the protocol in Section 5.1.

To optimize protocol communication, the algorithm de-
lays releasing the proof depending on f(l), which prescribes
a shorter delay period for luckier (larger) numbers and a
longer wait period for unluckier numbers. If a participant
receives a luckier block before their own mining completes,
they will not need to broadcast their own block.

We use a monotonic counter as in Section 4.2 to prohibit
concurrent invocations of the TEE.

5.1 Protocol
Every participant in the protocol receives transactions

from clients and other participants and maintains a current



Algorithm 4 Proof of luck primitive (inside TEE)

1: counter ← incrementMonotonicCounter()
2: roundBlock ← null
3: roundTime ← null

4: function PoLRound(block)
5: roundBlock ← block
6: roundTime ← tee.getTrustedTime()
7: end function

8: function PoLMine(header , previousBlock)
// Validating link between header and previousBlock .

9: assert header .parent = hash(previousBlock)
// Validating previousBlock matches roundBlock .

10: assert previousBlock .parent = roundBlock .parent
// Validating the required time for a round passed.

11: now ← tee.getTrustedTime()
12: assert now ≥ roundTime + ROUND TIME

13: roundBlock ← null
14: roundTime ← null
15: l← getRandom()
16: sleep(f(l))

// Validating that only one TEE is running.
17: newCounter ← readMonotonicCounter()
18: assert counter = newCounter

19: nonce ← hash(header)
20: return tee.attestation(〈nonce, l〉, null)
21: end function

blockchain representing their view of the system state. In
every round, participants execute an algorithm to commit
pending transactions into a new block, containing a proof of
luck generated from inside a TEE, and extending their cur-
rent chain. Participants broadcast their new chain to other
participants should the chain be luckier than any alternative
chain received in the meantime.

Algorithm 5 Extending a blockchain with a new block

1: function commit(newTransactions, chain)
2: previousBlock ← latestBlock(chain)
3: parent ← hash(previousBlock)
4: header ← 〈parent ,newTransactions〉
5: proof ← PoLMine(header , previousBlock)
6: newBlock ← 〈parent ,newTransactions, proof 〉
7: return append(chain,newBlock)
8: end function

Participants use commit in Algorithm 5 to return a new
chain with a newBlock made from the set of newTransactions.
The newBlock consists of a hash parent of the previous block,
the data newTransactions, and a proof of luck proof .

The luck algorithm described in Algorithm 6 computes a
numeric score (luck) of a given blockchain by summing the
l values of each block.

Our blockchain prefers the chain with the highest luck,
which results in desirable behaviors. First, when appending
a block, the new chain is preferred. Second, when a network
split heals, the larger half’s chain is likely to have greater
luck. Third, our analysis in Section 6.1 shows that, with high
probability, a minority attacker’s chain will not overtake the
majority’s.

Algorithm 6 Computing a luck of a valid blockchain

1: function luck(chain)
2: luck ← 0
3: for block in chain do
4: luck ← luck + tee.proofData(block .proof ).l
5: end for
6: return luck
7: end function

Algorithm 7 Validating a blockchain

1: function valid(chain)
2: previousBlock ← null
3: while chain 6= ε do
4: block ← earliestBlock(chain)
5: 〈parent , transactions, proof 〉 ← block
6: if parent 6= hash(previousBlock) ∨

not validTransactions(transactions) ∨
not tee.validAttestation(proof ) then

7: return false
8: end if
9: 〈nonce, l〉 ← tee.proofData(proof )

10: if nonce 6= hash(〈parent , transactions〉) then
11: return false
12: end if
13: previousBlock ← block
14: chain ← withoutEarliestBlock(chain)
15: end while
16: return true
17: end function

The valid algorithm in Algorithm 7 traverses the chain
from the earliest (genesis) block (returned from earliest-
Block) to the latest block, ensuring each block has valid
transactions, a valid proof of luck, and a matching previ-
ous block hash. tee.validAttestation is provided by the
TEE platform to validate attestations, and tee.proofData
exposes data used when creating the proof .

We now introduce the proof of luck blockchain protocol in
Algorithm 8. Every participant starts with an empty block-
chain currentChain = ε, a set of pending transactions = ε,
and an initial roundBlock = null.

After initializing state, participants listen for network mes-
sages. Upon receiving a transaction network message, par-
ticipants add the transaction to their transactions if it has
not been already included, and broadcasts it to their peers.
If the message is a new chain, they verify that the chain is
valid (Algorithm 7) and has higher luck (Algorithm 6). If
so, the participant switches to the new chain and broadcasts
it using network.broadcast.

Before broadcasting, the participant may start a new round
of mining. This happens if it is the first round, or if the new
chain has a different parent block from its latest block. Dur-
ing one round of mining, the participant continues to receive
messages about luckier chains and switches should it have
higher luck. In this instance, the parent will not change.
However, if a participant was part of a network split and
just reconciled, the parent will differ and the participant
will have to restart the mining process on the new chain.

Every time a new round is started (by calling newRound),
we call PoLRound to bind mining to the new chain, clear
any pending callbacks, and schedule a new callback to start



Algorithm 8 Proof of luck blockchain protocol

1: currentChain ← ε
2: transactions ← ε
3: roundBlock ← null

4: function newRound(chain)
5: roundBlock ← latestBlock(chain)
6: PoLRound(roundBlock)
7: resetCallback(callback ,ROUND TIME)
8: end function

9: on transaction from network
10: if transaction /∈ transactions then
11: transactions ← insert(transactions, transaction)
12: network.broadcast(transaction)
13: end if
14: end on

15: on chain from network
16: if valid(chain) ∧ luck(chain) >

luck(currentChain) then
17: currentChain ← chain
18: if roundBlock = null then
19: newRound(chain)
20: else
21: latestBlock ← latestBlock(chain)
22: if latestBlock .parent 6= roundBlock .Parent then
23: newRound(chain)
24: end if
25: end if
26: network.broadcast(chain)
27: end if
28: end on

29: on callback
30: newTransactions ← transactions
31: transactions ← ε
32: chain ← commit(newTransactions, currentChain)
33: network.sendToSelf(chain)
34: end on

after ROUND TIME . During normal operation, this means
that every participant mines a new block approximately once
every ROUND TIME interval. Participants do not have to
have a synchronized clock and their rounds do not have to be
synchronized, but the protocol tends to synchronize rounds.

Inside a callback , pending transactions are appended to a
new chain using commit (Algorithm 5) and the new chain
is sent back for processing using network.sendToSelf.

Because the proof of luck TEE releases the proof for luck-
ier (larger) numbers first, participants will receive new chains
with numbers luckier than their own before receiving their
own from the TEE. If the participant receives a chain from
its TEE that is worse than the one that they have already
received, they do not broadcast its chain this round.

6. ANALYSIS
We analyze the behavior of the proof of luck blockchain

protocol.

6.1 Persistence against Minority Attacker
We show that several blocks after a fork, it is exponentially

improbable for a minority attacker to produce a chain that

is preferred to a majority of honest participants.
Let M = majority population size, m = minority popu-

lation size. For block t, we have that the population luck is
distributed according to the maximum of uniform random
variables:

lM (t)
iid∼ max{{Uniform(0, 1)}M}

lm(t)
iid∼ max{{Uniform(0, 1)}m}

After h blocks from a fork, we define the relative total
luck:

L(h) :=

h∑
t=1

lM (t)− lm(t)

Using a Chernoff bound and independence assumptions,
we now show that the probability of the event that a minor-
ity wins is exponentially small in h:

Pr
(
L(h) ≤ 0

)
≤ min

s>0
E
[
e−sL(h)

]
= min

s>0

h∏
t=1

E
[
e−slM (t)

]
E
[
eslm(t)

]
= min

s>0

(
E
[
e−slM (t)

]
E
[
eslm(t)

])h
Because M > m, there exists an s > 0 such that the

product of the inner expectations is less than 1.
Hence we have that the probability of the event that the

total minority luck exceeds the total majority luck decreases
exponentially in the number of blocks, h, after a fork.

6.2 Proportional Control of Blocks
Consider a group of participants A ⊆ G, from all partic-

ipants G. Among honest participants that append to the
longest chain, the new chain with the largest luck value l
in the newly added block is preferred. At each round, ev-
ery participant has an equal probability of generating the
largest random number, because the participants sample in-
dependently from identical distributions. Thus over time,
the expected number of blocks mined by group A is propor-
tional to the number of participants in A.

6.3 Round Time and Confirmation Time
We propose a ROUND TIME of 15 seconds, which cre-

ates block confirmation times slightly larger than 15 seconds,
comparable with Ethereum and much faster than Bitcoin’s
10 minutes. We have chosen this value based on an evalua-
tion of information in the Bitcoin network [4], where median
block propagation time has been observed to be around 6.5
seconds. The initial selection of the winning block with max-
imal luck value l can be implemented without transmitting
whole blocks, only block headers (i.e., without the full trans-
action data), which should take just one round-trip based
on Bitcoin’s transaction propagation time, and only after a
winner is determined should the whole block be propagated.

7. COMPROMISED TEE
Our consensus protocol assumes that the security require-

ments of the TEE are met for all participants. Although it
would be expensive to violate these requirements, a moti-
vated attacker may compromise a limited number of TEEs.
We discuss a mitigation extension to our protocol.



7.1 Luckiest m

To strengthen our design against high-cost attacks on in-
dividual TEEs, we discuss a possible extension to our proto-
col, which constructs a blockchain consisting of super-blocks:
super-blocks are made by merging m normal blocks and their
proofs of luck. Participants continue to create individual
blocks based on pending transactions and attach a proof of
luck with a luck value l to the block. However, participants
now select the m luckiest blocks (m blocks with highest l)
and merge, in a deterministic way, those m blocks into a
super-block.

Each super-block has m proofs of luck, with values l1, ..., lm,
where l1 > ... > lm (i.e., l1 is the luckiest). Under this ex-
tension, the luck of the super-block as a whole is lm, the
least luckiest value. This ensures that even if m − 1 CPUs
have been compromised, they still cannot fully control the
l value of the super-block. Future work may analyze the
persistence propery of this extension.

This approach is similar to our proof of ownership primi-
tive from Section 4.3. However, instead of recording proofs
from all participants, we record only the luckiest m, making
this approach more scalable. In our SGX-based prototype,
we ensure that the m proofs come from different CPUs by
having the participants generate linkable quotes during re-
mote attestation, using the parent block’s hash as a name
base in the EPID signature scheme. EPID signatures pro-
duce a pseudonym based on the name base and the CPU’s
private key, and proofs with the same pseudonym would re-
veal that they came from the same physical CPU. Thus, even
if a CPU is compromised, it is still limited to supplying one
proof of luck per super-block.

7.2 Merging
After the honest participants produce their own blocks,

they broadcast their block to other participants that chose
the same blockchain to extend (they may choose different
blockchains due to network latency). Participants then merge
the m luckiest blocks into a super-block. Blocks from honest
participants have nearly the same transactions, so a super-
block can often be compressed efficiently. Having partici-
pants merge blocks into super-blocks is similar to Ethereum’s
concept of block uncles, in which a block may have multiple
parents, and which improves the throughput and liveness of
the protocol.

8. CONCLUSION
We have proposed three TEE-enabled building block de-

signs for systems using existing proof of work schemes: TEE-
enabled proof of work, proof of time, and proof of ownership.
We have combined ideas from these primitives into a new
blockchain system based on the proof of luck consensus pro-
tocol. Our analysis shows that our blockchain ensures live-
ness and persistence, while providing energy efficient mining,
low-latency transaction validation with deterministic confir-
mation time, and decentralized mining power. Lastly, we
discuss a potential protection against a constant number of
compromised TEEs participating in the blockchain.

9. ACKNOWLEDGEMENTS
We thank Dawn Song for helpful suggestions. This work

was supported by IC3, NSF (TWC-1518899), DARPA (N66001-
15-C-4066). Any opinions, findings, and conclusions or rec-

ommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of NSF
and/or DARPA.

10. REFERENCES
[1] A. Back et al. Hashcash: a denial of service

counter-measure, 2002.

[2] E. Brickell and J. Li. Enhanced privacy ID: A direct
anonymous attestation scheme with enhanced
revocation capabilities. In Proceedings of the 2007
ACM workshop on Privacy in electronic society, pages
21–30. ACM, 2007.

[3] M. Castro, B. Liskov, et al. Practical Byzantine fault
tolerance. In OSDI, volume 99, pages 173–186, 1999.

[4] C. Decker and R. Wattenhofer. Information
propagation in the bitcoin network. In Peer-to-Peer
Computing (P2P), 2013 IEEE Thirteenth
International Conference on, pages 1–10. IEEE, 2013.

[5] I. Eyal et al. Bitcoin-ng: A scalable blockchain
protocol. arXiv preprint arXiv:1510.02037, 2015.

[6] R. Halford. Gridcoin, 2013.

[7] Intel Corporation. Sawtooth lake, 2016.

[8] G. O. Karame et al. Double-spending fast payments in
bitcoin. In Proceedings of the 2012 ACM Conference
on Computer and Communications Security, CCS ’12,
pages 906–917, New York, NY, USA, 2012. ACM.

[9] S. King. Primecoin: Cryptocurrency with prime
number proof-of-work. July 7th, 2013.

[10] S. King and S. Nadal. Ppcoin: Peer-to-peer
crypto-currency with proof-of-stake, 2012.

[11] J. Kwon. Tendermint: Consensus without mining,
2014.

[12] D. Mazières. The Stellar consensus protocol: A
federated model for Internet-level consensus, 2015.

[13] F. McKeen et al. Innovative instructions and software
model for isolated execution. In Proceedings of the 2nd
International Workshop on Hardware and
Architectural Support for Security and Privacy. ACM,
2013.

[14] A. Miller et al. The honey badger of BFT protocols.
In CCS, 2016. To appear.

[15] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash
system, 2008.

[16] K. J. O’Dwyer and D. Malone. Bitcoin mining and its
energy footprint. In ISSC 2014/CIICT 2014, 25th
IET, pages 280–285. IET, 2013.

[17] P4Titan. Slimcoin: A peer-to-peer crypto-currency
with proof-of-burn, 2014.

[18] A. Poelstra et al. Distributed consensus from proof of
stake is impossible, 2014.

[19] M. Rosenfeld. Analysis of hashrate-based double
spending. arXiv preprint arXiv:1402.2009, 2014.

[20] Y. Sompolinsky and A. Zohar. Accelerating Bitcoin’s
transaction processing. fast money grows on trees, not
chains. IACR Cryptology ePrint Archive, 2013:881,
2013.

[21] G. Wood. Ethereum: A secure decentralised
generalised transaction ledger. Ethereum Project
Yellow Paper, 2014.


