
Towards Easy Key Enumeration

Changhai Ou, Degang Sun, Zhu Wang, Xinping Zhou, and Juan Ai

1 Institute of Information Engineering, Chinese Academy of Sciences
2 School of Cyber Security, University of Chinese Academy of Sciences

Email:ouchanghai@iie.ac.cn

Abstract. Key enumeration solutions are post-processing schemes for
the output sequences of side channel distinguishers, the application of
which are prevented by very large key candidate space and computation
power requirements. The attacker may spend several days or months to
enumerate a huge key candidate space (i.e. 240). In this paper, we aim
at pre-processing and reducing the key candidate space by deleting im-
possible key candidates before enumeration. A new distinguisher named
Group Collision Attack (GCA) is given. Moreover, we introduce key ver-
ification into key recovery and a new divide and conquer strategy named
Key Grouping Enumeration (KGE) is proposed. KGE divides the huge
key space into several groups and uses GCA to delete impossible key
combinations and output possible ones in each group. KGE then recom-
bines the remaining key candidates in each group using verification. The
number of remaining key candidates becomes much more smaller through
these two impossible key candidate deletion steps with a small amount of
computation. Thus, the attacker can use KGE as a pre-processing tool of
key enumeration and enumerate the key more easily and fast in a much
smaller candidate space.

Keywords: key enumeration, KGE, Group Collision Attack, DPA contest

v4, divide and conquer, side channel attack

1 Introduction

Side channel attacks make complex key recovery simple by using divide and
conquer. Divide and conquer attacks, such as correlation power analysis (CPA)
[6], differential power analysis (DPA) [11], template attack (TA) [7], mutual
information analysis (MIA) [9], etc., divide the full key into several pieces and
conquers each of them. If enough power traces are used, the correct sub-key
bytes are on the top of sequences output by distinguishers. By using divide and
conquer, the complex key recovery becomes simple. For example, if the attacker
divides the 16 bytes sub-key of AES into 16 chunks and conquers them one by
one, the amount of computation is reduced from 2128 to 28 · 16. However, if he
doesn’t have enough power traces, it’s possible that one or several sub-key bytes
are not ranked on the top of their corresponding sequences, but somewhere close
to the top. The attacker has to use key enumeration solutions to enumerate the
key candidates or use key rank estimation solutions to evaluate the security level.

Recently, several key rank estimation solutions are proposed to gauge the
security level of implementations for which enumeration is beyond reach [28, 12,
26, 21]. Solutions such as [2, 10, 13] typically allow estimating the rank of a 128-
or 256-bit key with an accuracy of less than one bit, within second of computa-
tion. Several key rank estimation solutions are even compared in [20]. However,
unlike key enumeration, key rank estimation is considered as an evaluation tool,
since it requires knowledge of the master key, which enables the evaluators to
approximate the security level of the cryptographic implementation, specifically,
by approximating the position of the master key.

Both key enumeration and key rank estimation are post-processing tools of
side channel attack outcomes. Compared to key rank estimation, key enumera-
tion in [21] is defined as an adversarial tool, since it allows to test key candidates
without knowledge of the master key [19, 25, 4]. However, key enumeration is lim-
ited to the computational power of the evaluator [26]. That is, the only leaking
devices for which we can evaluate the security are the ones that are practically
insecure (i.e. for which the leakage allows key enumeration). To enumerate a
key space 240, several days or months are needed. Moreover, large memory also
prevents the application of these solutions.

In this paper, we aim at reducing the key candidate space. For example,
from 260 to 220. Since a wrong candidate ranking in the first several places of the
outputs of a distinguisher may not rank in the first several places of the outputs of
another distinguisher. Though combining different distinguishers, some of these
candidates can be deleted. By doing this, the attacker can enumerate the key in
a smaller candidate space. In order to achieve this goal, we need to pre-process
the key candidate space before enumeration and delete a part of impossible key
candidates. Here we use collision attack [23, 5, 14] to post-process the outputs of
CPA, which attempts to establish the relationship between different key bytes
by collisions, such as ”test of chain” proposed by Bogdanov et al [3]. Each
chain includes one or several pairs of collisions. They used two thresholds, one
is for the key and another for ∆(ka,kb) = ka ⊕ kb between two key bytes ka and
kb. Here, ka and kb denotes the a-th and b-th key chunks. They tried to find a
long chain from k1 to k16 including 16 steps.

Wang et al. proposed fault tolerant chain (FTC) in [27], which was another
practical scheme of key recovery in a large candidate space (i.e. 264). In this
paper, we only consider AES-256. So, the length of each key chunk is 8 bits.
However, any chunk falling outside the threshold Thrk will result in very complex
or even fail key recovery in FTC. Changhai et al. proposed group verification
chain in [18], which enhanced FTC significantly. They used several key bytes to
verify one key bytes. The frequency or weight of the correct key byte values is
higher than these of wrong ones. However, this scheme is somewhat a kind of
key re-ordering. It is not a good choice to use it for key enumeration.

So, how to fast enumerate the correct key in a large space far beyond the
computational power of evaluator if exhaust attacks being used is still worthy of
further research. In order to better solve this problem, we combine the advan-
tages of full key recovery and divide and conquer attacks, and propose a new

2

AddRoundKey

SubBytes

Fig. 1. A linear collision for two AES executions.

divide and conquer solution named Key Grouping Enumeration (KGE)in this pa-
per. KGE divides the entire key of AES-256 into several big groups (pieces) and
use a new distinguisher named Group Collision Attack (GCA) to post-process
the outcomes of distinguishers (i.e. CPA) to delete the impossible key combina-
tions in each group. KGE then uses verification chain to delete impossible key
combinations among groups. The remaining key candidates are greatly reduced
after these two impossible key combination deletion steps. The total amount of
computation and memory requirements of KGE is very small. Our KGE can run
on a common desktop computer and quickly delete impossible key candidates
before enumeration. The attacker then can enumerate the key in a new candidate
space further smaller than the original one.

2 Preliminaries

2.1 Collision Attack

Bogdanov et al. introduced linear collision attack in [3]. AES performs the Sub-
Bytes operation (16 parallel S-box applications) in the first round. A generalized
internal AES linear collision occurs if there are two S-boxes in the same AES
encryption or several AES encryptions accepting the same byte value as their
input (as shown in Fig. 1). K = {kj}

16
j=1, kj ∈ F28 is the 16-byte subkey in

the first round of AES. AES plaintexts are denoted by P i =
{

pij
}16

j=1
, pij ∈ F28 ,

where i=1,2,... is the number of AES executions.

If a collision

S(pi1j1 ⊕ kj1) = S(pi2j2 ⊕ kj2) (1)

happens within the first round of AES (as shown in Fig. 1), the attacker obtains
a linear equation

pi1j1 ⊕ pi2j2 = kj1 ⊕ kj2 = ∆(kj1 ,kj2)
. (2)

3

If m collisions are detected, then a system ofm linear equations can be obtained:



















kj1 ⊕ kj2 = ∆(kj1 ,kj2)
,

kj3 ⊕ kj4 = ∆(kj3 ,kj4)
,

...
kj2m−1 ⊕ kj2m = ∆(kj2m−1

,kj2m).

(3)

It is worth noting that some of these equations are independent. Thus they
can be divided into h0 independent subsystems with respect to the parts of key
[3], of which each may have one free variable and one or more equations. Let h1

denotes the number of all missing variables which are not in these subsystems.
Each of the subsystems or missing variables is called a chain. Each equation is
defined as a step of a chain. Hence the number of chains h = h0 + h1.

2.2 Test of Chain

Bogdanov et al. defined test of chain in [3]. Suppose that the attacker uses CPA
to calculate the correlation coefficients for each key candidate. He sorts all 256
key byte candidates in descend order according to their corresponding correlation
coefficients. He obtains the 16 guessing key byte sequences {ξi|i = 1, 2, · · · , 16}
of AES algorithm. He also uses Correlation-enhanced Collision Attack (CCA) to
calculate the correlation coefficients of ∆(ka,kb).

Chain ξ of length n consisting of key-byte indices j1, · · · , jn. In each list ξi,
they only consider values among the top m positions. They are the most possible
candidates of the key byte ki. The attacker tries to find a chain from ξ1 to ξ16
including 16 sub-key bytes. The guess chain is accepted if all key bytes of the
chain are among the top m candidates in their corresponding list ξi. The guess
chain is rejected if at least one key byte of the chain falls outside the m top
candidates in its corresponding list ξi.

2.3 Fault Tolerant Chain

In order to recover the key efficiently, the attacker usually hopes that a key chain
includes 15 steps as introduced in [3]. For a chain, one of the common cases is
that there are several steps in the path from the free variable to the end. If an
error takes place in one of these steps, the key bytes computed in the following
steps will be wrong in the key-recovery stage, which will result in the failure of
the whole attack. Unfortunately, this kind of errors happen with non-negligible
probability, which lead to low efficiency of Bogdanov’s attack.

Wang et al. constructed a new chain named fault-tolerant chain (FTC)[27].
In their scheme, ki(i ≥ 2) only depends on k1 instead of any other 14 key bytes.
There are 15 paths from k1 to ki (i = 2, · · · , 16). If ki is wrong (under the
threshold line), they can still attempt to recover other key bytes. In their paper,
the threshold of collision attack Thr∆ is set to 1. So, only Thrk is taken into
consideration in their scheme. Enlarging the threshold will lead to very complex

4

key recovery. If ki is under the threshold, their deduces that the chain is wrong.
Subsequently, a practical exhaust search is performed to find the correct key.

Suppose that k2 is wrong, and ∆(k1,k2) is wrong, too. If k1 = ∆(k1,k2) ⊕ k2
is still satisfied, then the attacker gets a wrong key byte value of k2. However,
he is completely unaware of the mistake. Actually, the threshold Thr∆ is always
set to 1. If Thr∆ or (or and) Thrk are set largely, the probability of this type of
error is large. With the increase of Thr∆ or (or and) Thrk, experimental failures
caused by this type of error increase significantly.

2.4 Group Verification Chain

Changhai et al. introduced group verification chain in [18]. Both frequency and
weight based group verification chain are given, which can be used to reorder the
key sequences under the condition that Thrk and Thr∆ are set largely. Group
verification chain here is defined as the mutual verification among key bytes. Let
ξki and ξtγ+1 denote the k-th and t-th key values in ranks ξi and ξγ+1. ∆

m
(ki,kγ+1)

denotes the m-th value in the rank ∆(ki,kγ+1). Then,

ξki ⊕ ξtγ+1 = ∆m
(ki,kγ+1)

(4)

is satisfied if ξki , ξ
t
γ+1 and ∆m

(ki,kγ+1)
are the correct ones. Then the frequencies

of ξki and ξtγ+1 are increased by 1. 120 sequences of ∆(ka,kb) between any two
key bytes ka and kb (1 ≤ a < b ≤ 16) are also calculated. The correct key byte
values are effectively supported that the Equation 4 is satisfied for most key byte
values and ∆s. Finally, the attacker gets the correct key.

3 Group Collision Attack

Suppose that the attacker obtains 16 key candidate sequences {ξi|i = 1, 2, · · · , 16}
output by CPA and 120 ∆ sequences output by CCA to construct C2

(a,b) chains

for two key bytes ka and kb. We define a set C2
a,b including all chains (ka, kb) as

C2
a,b = {(ka, kb)|ka ∈ Ka, kb ∈ Kb}, (5)

each C2 chain includes two sub key bytes ka and kb. Ka andKb are the candidate
space of ka and kb. ka and kb are within the threshold Thrk, and∆(ka,kb) is within
the threshold Thr∆. Each chain in the set C2

a,b satisfies that∆(ka,kb) = ka⊕kb. In
this paper, we divide the 16 bytes entire key of AES into several groups (pieces).
Group Collision Attack (GCA) is defined as collisions within each group. Each
group establishes the connection among key bytes by multi-pairs of collisions.

We take a real experiment on power trace set downloaded from DPA contest

v4 [1] implementing RSM [17] protected AES-256 for example to illustrate the
attack efficiency of our KGE schemes. Other experimental results are shown in
Section 5. Both Thrk and Thr∆ here are set to 10. The output of FGV-MDCA
proposed by Ou et al [18] for each of the 1st ∼ 16th guessing key byte are

5

sorted in descending order. We divided the 16 bytes sub-key of AES-256 into
4 groups, each of which includes 4 key bytes. Since the first step of our KGE
is deleting impossible key byte combinations within each group, here we take
group (k5, k6, k7, k8) for example. Then, the key byte candidates and guessing
∆s within the thresholds Thrk and Thr∆ are shown in Table 1 and Table 2.
Other key byte candidates and ∆s listed here are used in Section 4.

Table 1. Candidates of the 3rd ∼ 14th key bytes within Thrk.

ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 ξ10 ξ11 ξ12 ξ13 ξ14
198 127 40 125 8 61 235 135 102 240 115 139
122 172 230 80 46 118 7 23 41 64 47 38
69 105 251 174 187 123 243 250 194 4 241 141
98 204 97 25 196 146 94 145 147 239 53 96
124 111 103 173 30 57 244 53 47 33 227 207
24 146 154 209 76 153 6 89 183 76 122 17
150 168 5 52 103 170 37 22 190 84 153 41
153 219 12 59 106 27 43 67 2 112 217 115
21 57 16 101 7 121 44 70 65 165 43 1
22 71 55 106 12 126 188 87 141 40 54 55

Table 2. Guessing ∆s between some two of the 3rd ∼ 9th key bytes within Thr∆.

∆(k3,k4) ∆(k3,k5) ∆(k4 ,k5) ∆(k4 ,k6) ∆(k5 ,k6) ∆(k5 ,k7) ∆(k6 ,k7) ∆(k6 ,k8) ∆(k7 ,k8) ∆(k7 ,k9)

185 238 87 2 49 32 117 64 53 162
148 244 134 102 135 236 169 11 115 83
153 110 77 208 189 252 130 6 126 97
115 223 129 136 138 70 83 9 124 180
174 168 17 174 85 91 23 116 191 249
20 163 231 123 193 117 32 239 140 10
180 197 242 234 209 215 185 26 164 14
128 42 147 150 141 96 102 140 113 251
110 32 203 80 112 66 0 212 154 227
159 100 161 3 75 125 53 209 194 185

We search key pairs (ka, kb) (a, b ∈ [5, 8], a < b) of some two key bytes in
Table 1 satisfying that their corresponding ∆(ka,kb) are in Table 2. Each pair
(ka, kb) constitutes a chain in C2

a,b. Let NC2
a,b

denote the corresponding number

of C2
a,b chains. As shown in Table 1 and Table 2, if k5, k6 and ∆(k5,k6) are all

within the thresholds, we then add k5, k6 to set C2
5,6 (as shown in Table 3).

For example, the value 40 of k5, the value 125 of k6, and the value 85 of ∆(k5,k6)

satisfy 85 = 40 ⊕ 125, so we add (40,125) to Table 3. Although the value 40 of
k5 and the value 80 of k6 are within the threshold Thrk, 40⊕ 80 = 120 is not in
the threshold ∆(k5,k6). So, key pair (40,80) is discarded. Finally, all key chains
(k5, k6) are saved in the first two columns of Table 3. Each row saves a key chain
so that the number of possible key chains in C2

k5,k6
is 11. The attacker continues

to find key chain sets C2
k5,k7

,C2
k6,k7

,C2
k6,k8

and C2
k7,k8

. All C2 chains calculated
from Table 1 and Table 2 are shown in Table 3.

6

Table 3. C2 chains of some two of the 5th ∼ 8th key bytes.

C2
5,6 C2

5,7 C2
6,7 C2

6,8 C2
7,8

40 25 40 8 125 8 125 61 8 61
40 125 40 196 125 46 125 118 8 123
230 173 40 106 125 106 125 123 8 118
251 174 251 7 125 196 125 146 8 121
97 80 103 7 174 7 173 121 8 146
97 52 52 103 52 61 46 27
154 209 106 12 59 123 187 121
5 52 106 106 59 61 196 123
5 80 30 146
16 173 76 121
16 209 76 61

103 27
106 27
7 121
7 123
7 118
12 57

As shown in Table 3, there are only 11, 5, 8 and 17 possible combinations
(chains) in set C2

5,6, C
2
5,7, C

2
6,7, C

2
6,8 and C2

7,8 respectively. If brute-force is used,
100 combinations between any two key bytes should be enumerated. So, the key
candidate space becomes much smaller after deleting impossible key combina-
tions in each group and recombination. Although the overhead of construction
of C2 chains of any two key bytes is (Thrk)

2 ∗ (Thr∆), if the AES full-key is
divided into 8 independent groups, the complexity of calculating all C2 chains
is only 8 ∗ (Thrk)

2 ∗ (Thr∆). Similarly, the KGE schemes introduced in Sections
3.1 and 3.2 have even much smaller complexity of impossible key byte combina-
tions deletion. Then, the attacker can search the key more efficiently in a much
smaller key candidate space.

3.1 Key Chain Based Group Collision Attack

Actually, C2 chains are the simplest side channel collision between any two key
bytes. The attacker or evaluator can find several collisions among 3 or 4 key
bytes simultaneously. For example, C3 chain includes two collisions between ka
and kb and between kb and kc. The three S-boxes correspond to three key bytes
ka, kb and kc. Then, a set including all C3 chains of ka, kb and kc is defined as

C3
a,b,c = {(ka, kb, kc)|(ka, kb) ∈ C2

a,b, (kb, kc) ∈ C2
b,c}, (6)

which means both (ka, kb) and (kb, kc) are C2 chains. Specifically, ka, kb and kc
are within the Thrk; ∆(ka,kb) and ∆(kb,kc) are within the Thr∆; kb in (ka, kb)
and (kb, kc) are the same. The attacker or evaluator can construct more complex
key chain based group collision attack schemes like C4 by the same means as C3

chains, which can be defined as

C4
a,b,c,d = {(ka, kb, kc, kd)|(ka, kb, kc) ∈ C3

a,b,c, (kb, kc, kd) ∈ C3
b,c,d}. (7)

7

Compared to C3
a,b,c and C3

b,c,d, C
4
a,b,c,d has higher requirements on candidates.

For many C3 chains, (ka, kb, kc) and (kb, kc, kd) are not established simulta-
neously. Since kb is verified by ka and kc, and kc is verified by kb and kd, the
number of possible combinations in C4

a,b,c,d is much smaller than NC3
a,b,c

∗NC3
b,c,d

.

If the thresholds Thr∆ and Thrk are reasonable, the correct key bytes can be
successfully used to construct C4 chains and a lot of error C3 chains are deleted.

Compared to C2 chains, C3 chains delete impossible combinations where kb
in (ka, kb) and (kb, kc) are not the same. So, Ne is reduced significantly. Tak-
ing a C3 chain set C3

5,6,7 for example, (k5, k6) and (k6, k7) are satisfied simul-
taneously. For example, (k5, k6) = (40, 125) and (k6, k7) = (125, 8) constitute
(k5, k6, k7) = (40, 125, 8). However, (k5, k6) = (16, 209) and (k6, k7) = (125, 8)
can not constitute (k5, k6, k7) = (16, 209, 8) or (k5, k6, k7) = (16, 125, 8). NC2

5,6

and NC2
6,7

are 11 and 8 respectively. To recover key pair (k5, k6, k7), 88 key pairs

should be enumerated. If C3
5,6,7 chains are constructed, there are only 7 key pairs

should be taken into consideration. The key search space is reduced obviously.
The construction of C3 chains using guessing key bytes in Table 1 and ∆s

in Table 2 are shown in Table 4. We get a conclusion that NC3
5,6,7

= 7 and

NC3
6,7,8

= 14. Compared to C3 chains, C4 chains are more efficient. There are

only 13 C4 chains in thresholds (as shown in Table 7). The constraints of
C4

a,b,c,d are more strict than C3
a,b,c and C3

b,c,d. Compared with 104 of exhausting
key bytes in the thresholds, only 13 possible combinations of k5, k6, k7 and k8
are enumerated by the attacker in the second round.

The advantage of key chain based GCA schemes is that they are simple to
construct and suitable for small Thrk and Thr∆. Since more strict constraint
may delete the correct key bytes. However, the number of error C2 chains deleted
by this method is still very limited. After all, the key search space Thrk

16 is too
huge. For example, if Thrk is set to 32, then the key candidate space is 280.

Actually, for key chain based GCA schemes, key bytes in the middle positions
are verified two times, and the two key bytes at two ends are verified only once.
So, key bytes in the middle positions are more credible and more likely to be
the correct ones. For example, Since kb and kc in C4

a,b,c,d can be verified by two
collisions (ka, kb), (kb, kc) and (kb, kc), (kc, kd) separately. However, ka and kd are
not verified as strongly as kb and kc. Thus, kb and kc are more credible and are
more likely to be the correct keys. Each verification means that more impossible
key combinations are removed, the attacker or evaluator can get smaller key
candidate space after recombination.

In order to improve the reliability of key bytes located in two ends of key
chain based GCA schemes and further reduce the key search space, we propose
ring based GCA schemes in the next subsection.

3.2 Key Ring Based Group Collision Attack

In Section 3.1, we introduce our key chain based group collision attack schemes
under small thresholds Thrk and Thr∆. If the thresholds are small, the correct
key bytes may fall outside of them. If the attacker enlarges thresholds, the success

8

Table 4. C3 chains of the 5th ∼ 8th key bytes.

C3
5,6,7 C3

6,7,8

40 125 8 125 8 61
40 125 46 125 8 123
40 125 106 125 8 118
40 125 196 125 8 121
251 174 7 125 8 146
97 52 103 125 46 27
5 52 103 125 106 27

125 196 123
174 7 121
174 7 123
174 7 118
52 103 27
106 12 57
106 106 27

Table 5. R3 rings of the 5th ∼ 8th

key bytes.

R3
5,6,7 R3

6,7,8

40 125 8 125 8 61
40 125 196 125 8 118
40 125 106 125 8 123
251 174 7 125 8 146

125 196 123

rate [24] will be improved. However, it is very time-consuming, since the key
candidate space becomes larger. In order to improve the reliability of key bytes
located in two ends of chain and further reduce the key candidate space efficiently
in large thresholds, we propose the concept of the Key Ring in this section. A
key ring Rn consists of n C2 chains (k1, k2), (k2, k3),... , (kn−1, kn) and (k1, kn).
A set of ring R3

a,b,c constituting of ka, kb and kc is defined as

R3
a,b,c = {(ka, kb, kc)|(ka, kb) ∈ C2

a,b, (kb, kc) ∈ C2
b,c, (ka, kc) ∈ C2

a,c}, (8)

which means (ka, kb), (kb, kc) and (ka, kc) are C2 chains simultaneously. So, to
construct the ring R3, the attacker only needs to traverse the C2 table twice (see
Equation 8), its complexity is similar to the construction of the C4 chains.

The R3
5,6,7 and R3

6,7,8 rings constructed by the corresponding guessing key
bytes and guessing ∆s in Table 1 and Table 2 are shown in Table 5. We get a
conclusion that NR3

5,6,7
= 4 and NR3

6,7,8
= 5. However, we get another conclusion

from Table 4 that NC3
5,6,7

= 7 and NC3
6,7,8

= 14. This indicates that, R3 scheme,

which add a constraint (a pair of collision) on C3 chains, can effectively reduce
the key candidate space. This also indicates that ring based GCA schemes are
more efficient than chain based GCA schemes when deleting impossible key bytes
combinations within group, due to more strict constraints (collisions).

The R3
a,b,c only has a more pair of collision (ka, kc) than C3

a,b,c. However,
a ring is constructed since the existence of this pair of collision. Each of the
three key bytes ka,kb,kc on the ring R3

a,b,c is verified by the other two key bytes.
Thus, the probability of these three key bytes being the correct ones increases.
Key ring based GCA can delete more impossible combinations than key chain
based GCA. The attacker can also construct intersecting rings of two R3 rings.
A R2−3

a,b,c;a,b,d including 2 rings R3
a,b,c, R

3
a,b,d, which has more stringent constraint

than R3 rings. A set R2−3
a,b,c;a,b,d is defined as

R2−3
b,c,a;b,c,d = {(ka, kb, kc, kd)|(ka, kb, kc) ∈ R3

a,b,c, (kb, kc, kd) ∈ R3
b,c,d}, (9)

9

where a < b < c < d. Actually, R2−3 rings are easy to construct, the attacker can
traverse the R3 table twice (see Equation 9), search the sets R3

a,b,c and R3
b,c,d,

and select all double-rings from each of them if kb, kc are equal.
The number of R2−3 rings NR

2−3
6,7,5;6,7,8

constructed by the guessing key bytes

and guessing∆s in Table 1 and Table 2 is 5 (as shown inTable 8). However, if the
attacker exhausts all the 4 key bytes in the threshold Thrk = 10, the complexity
is 104. Obviously, the attacker gets higher efficient than C3, C4 and R3 schemes.
The complexity of R2−3

b,c,a;b,c,d rings construction is average NR3
5,6,7

·NR3
6,7,8

more

complex than that of R3 schemes.
In the case of large thresholds Thrk and Thr∆, the correct key bytes and ∆s

are within thresholds no matter what kind of constraints we use. The more harsh
conditions, the smaller number of remaining R2−3 rings. Moreover, we divide the
16-byte subkey of the AES algorithm into 4 groups, which are independent of
each other. The number of remaining key rings in each group is small, the at-
tacker can efficiently exhaust the 16-byte key in a much smaller candidate space.
The attacker can also construct more complex rings including more collisions.
With the increase of Thrk and Thr∆, the number of R3 or C3 increases very fast,
more complex rings or chains mean more loops in the program. so the attacker
also needs to consider the efficiency of program.

4 Key Grouping Enumeration

In Section 3, we introduce our GCA, which is a distinguisher to select possible
key combinations and delete impossible key combinations in each group. This is
the first step of our KGE. The second step of KGE is impossible key combinations
deletion among groups, which we will introduce in this section. The third (last)
step is key enumeration, the attacker can use the state-of-art key enumeration
solutions to search the key. For simplicity, here we only use key exhaustion.

The correct key bytes and ∆s are within thresholds if Thrk and Thr∆ are set
largely enough. In this case, each correct chain or ring is within the threshold.
What the attacker needs to do is using GCA proposed in Section 3 to delete
impossible combinations in each big group. Suppose that he divides the entire
key into 4 groups, which are independent of each other, and uses C4 chains
to delete impossible key combinations in each group. Here we recombine the
remaining key candidates of the first step.

Actually, the possible key candidate combinations in each group have been
greatly reduced after the first round of deletion. Suppose that there are n1,
n2, n3 and n4 chains in C4

1,2,3,4, C
4
5,6,7,8, C

4
9,10,11,12 and C4

13,13,15,16 respectively,
then a very simple solution to re-combine the entire key is calculate every pos-
sible combinations. By doing this, the attacker will get n1 · n2 · n3 · n4 possible
combinations. This value increases very fast with Thrk and Thr∆. Obviously,
this is not a good combination strategy. So, here we propose a new solution to
re-combine the entire key in KGE. We use verification chain to re-combine the
remaining tuples in each group and carry out a second round impossible key
bytes combinations deletion.

10

Let C4
a,b,c,d and C4

e,f,g,h denote two verification chain sets to verify chains in

set C4
c,d,e,f . If there has more than one chain in set C4

c,d,e,f satisfying that kc, kd
in C4

a,b,c,d and ke, kf in C4
e,f,g,h. Then, we define a new verified C4 chain set as

V 4
c,d,e,f = {(kc, kd, ke, kf)|(ka, kb, kc, kd) ∈ C4

a,b,c,d, (ke, kf , kg, kh) ∈ C4
e,f,g,h}.

(10)
Actually, verification chains are well used to delete impossible entire key combi-
nations. The verified set V 4

c,d,e,f is a sub set of C4
c,d,e,f .

For example, we use C4
3,4,5,6 and C4

7,8,9,10 to verify C4
5,6,7,8, and use C4

7,8,9,10

and C4
11,12,13,14 to verify C4

9,10,11,12 (as shown in Table 7). ∆ values are shown in
Table 2 and Table 6. We delete chains (k5, k6, k7, k8) in set C4

5,6,7,8 if (k3, k4, k5, k6)
are not in C4

3,4,5,6, and delete (k5, k6, k7, k8) if (k7, k8, k9, k10) are not in C4
7,8,9,10.

C4
9,10,11,12 are processed in the same way. There are 13, 16 possible combinations

in the set C4
5,6,7,8 and C4

9,10,11,12 respectively before verification. However, 4 and
3 chains are left after verification (as shown in Table 9). So, the number of
possible combinations drops from 13 · 16 = 208 to 3 · 4 = 12, which indicates the
high efficiency of our KGE.

Table 6. Guessing ∆s between some two of the 8th ∼ 14th key candidates.

∆(k8 ,k9) ∆(k8,k10) ∆(k9 ,k10) ∆(k9 ,k11) ∆(k10 ,k11) ∆(k10 ,k12)

214 186 108 196 225 119
59 199 109 133 168 171
190 172 252 141 174 199
204 150 235 78 233 247
94 239 70 120 195 55
148 16 122 194 238 27
224 144 150 170 20 18
112 42 199 249 223 31
241 43 17 198 149 202
129 123 226 224 57 111

∆(k11 ,k12) ∆(k11 ,k13) ∆(k12 ,k13) ∆(k12 ,k14) ∆(k13 ,k14)

150 21 131 123 49
78 191 197 50 197
98 151 1 47 248
142 255 128 223 254
38 83 41 214 98
170 2 188 219 136
219 28 214 125 120
139 6 223 121 62
133 152 95 153 172
246 136 105 89 85

In order to enhance the verification, we also verifyR2−3 in this way.R2−3
4,5,3;4,5,6,

R2−3
6,7,5;6,7,8, R

2−3
8,9,7;8,9,10, R

2−3
10,11,9;10,11,12 and R2−3

12,13,11;12,13,14 calculated from Ta-

ble 1, 2 and 6 are shown in Table 8. We also use R2−3
4,5,3;4,5,6, R

2−3
8,9,7;8,9,10 and

R2−3
12,13,11;12,13,14 to verify R2−3

6,7,5;6,7,8 and R2−3
10,11,9;10,11,12. Finally, there are only a

possibleR2−3 rings (40, 125, 8, 61), (235, 135, 102, 240) for these two verifiedR2−3

rings respectively (as shown in Table 10). The attacker only has to enumer-
ate (40, 125, 8, 61, 235, 135, 102, 240) for key bytes (k5, k6, k7, k8, k9, k10, k11, k12).
Actually, this only remaining combination corresponds to the correct key bytes

11

Table 7. C4 chains of the 3rd ∼ 14th key bytes.

C4
3,4,5,6 C4

5,6,7,8 C4
7,8,9,10 C4

9,10,11,12 C4
11,12,13,14

198 127 40 25 40 125 8 61 8 61 235 135 235 135 102 240 102 240 115 139
198 127 40 125 40 125 8 123 8 61 235 23 235 135 102 40 102 240 115 141
98 219 16 173 40 125 8 118 8 61 235 145 235 135 102 4 102 240 115 17
98 219 16 209 40 125 8 121 8 61 235 250 235 135 102 64 102 240 115 38
24 172 251 174 40 125 8 146 8 61 6 250 235 135 190 40 102 240 53 96
21 172 251 174 40 125 46 27 8 61 6 23 235 135 190 240 102 240 241 207

40 125 106 27 8 61 188 87 7 22 190 40 102 240 47 17
40 125 196 123 8 61 188 250 7 22 190 240 102 240 153 17
251 174 7 121 8 118 6 250 7 22 2 76 190 240 115 139
251 174 7 123 8 118 6 23 244 22 190 40 190 240 115 141
251 174 7 118 8 146 6 250 244 22 190 240 190 240 115 17
97 52 103 27 8 146 6 23 244 22 2 76 190 240 115 38
5 52 103 27 30 146 6 250 188 87 190 40 190 240 53 96

30 146 6 23 188 87 190 240 190 240 241 207
76 61 235 135 188 87 194 84 190 240 47 17
76 61 235 23 188 87 194 76 190 240 153 17
76 61 235 145
76 61 235 250
76 61 6 250
76 61 6 23
76 61 188 87
76 61 188 250
7 118 6 250
7 118 6 23

Table 8. Some R
2−3 rings of the 3rd ∼ 14th key bytes.

R
2−3
4,5,3;4,5,6 R

2−3
6,7,5;6,7,8 R

2−3
8,9,7;8,9,10 R

2−3
10,11,9;10,11,12 R

2−3
12,13,11;12,13,14

198 127 40 125 40 125 8 61 8 61 188 250 235 135 102 240 102 240 115 139
198 127 40 25 40 125 8 118 8 61 6 250 235 135 102 64 102 240 115 38
21 172 251 174 40 125 8 123 8 61 6 23 102 240 115 141

40 125 8 146 8 61 235 135
40 125 196 123 8 61 235 250

8 61 235 145
8 61 235 23

Table 9. C4 chains of the 5th ∼ 8th key bytes.

C4
5,6,7,8 C4

9,10,11,12

40 125 8 61 188 87 190 240
40 125 8 118 235 135 102 240
40 125 8 146 235 135 190 240
251 174 7 118

Table 10. VerifiedR
2−3
6,7,5;6,7,8 rings

of the 5th ∼ 8th key bytes.

R
2−3
6,7,5;6,7,8 R

2−3
10,11,9;10,11,12

40 125 8 61 235 135 102 240

k5 ∼ k12. So, compared to C4 chains, R2−3 rings are more powerful. Similarly,
we also use R2−3

12,13,11;12,13,14 and R2−3
16,1,15;16,1,2 to verify R2−3

14,15,13;14,15,16, and use

R2−3
16,1,15;16,1,2 and R2−3

4,5,3;4,5,6 to verify R2−3
2,3,1;2,3,4.

Moreover, the attacker or evaluator can also put forward different levels of
requirements for verification according to the size of thresholds Thrk and Thr∆.
Larger thresholds may need higher level of requirements. What the attacker
should take into consideration is that the combination of smaller groups may
bring in greater computation. Therefore, we recommend that the entire key
should not be divided into very smaller groups(pieces). For example, dividing
the entire key of AES-256 into 3 ∼ 5 groups may be a good decision.

12

5 Experimental Results

Our experiments are performed on an RSM [17] protected AES algorithm im-
plemented on the Side-channel Attack Standard Evaluation Board (SASEBO).
We use 40000 power trace set downloaded from the website of DPA contest

v4 [1]. We then implement our experiments on MATLAB R2014a on a desktop
computer with 4 Intel Core i7-3770 CPUs, 4 GB RAM and 500 GB memory.

We find the time samples from 100001 to 101000 of the first S-box within the
first round by using the optimal power consumption model of RSM [17] protected
AES proposed by Moradi et al [15]. The time samples of the other 15 S-boxes
are aligned to these of the first S-box. Then, we perform CCA combined with
TA [16] on 4000 power traces to extract 4 interesting points from time interval
of about a clock cycle suggested in [22]. Like Ou et al. in [18], we also use group
verification chain to reorder the outputs of CPA so that the average positions
of correct key bytes are closer to the top of sequences. Another advantage of
group verification chain is, when the threshold Thrk is reasonable, the possibility
that the correct key bytes fall outside the threshold is reduced. In fact, our
algorithm does not take up too much memory space. In order to quickly getting
the experimental results, we run 4 MATLAB main programs simultaneously on
our desktop computer. Each main program takes up less than 500MB memory.

5.1 Experimental Results Under Different Thresholds Thr∆

In this subsection, we compare our KGE scheme with TC proposed by [3] and
FTC proposed by Wang et al [27]. The search complexity of FTC is related to
the number of wrong key bytes as given by Wang et al [27]. They indicated that
the maximum number of candidates is 28 · (28)n ·

(

15
n

)

for n wrong key bytes. If
there are total t times that more than one candidates are in the threshold, then
15 − t errors can be detected. Then the number of key candidates the attacker
can only need to enumerate is almost

28 ·
(

28
)n

·

(

t

t+ n− 15

)

. (11)

Each experiment below is repeated 200 times. When average 100 power traces
are used and the Thrk is set to 16 (the candidate space here is 264), if the Thr∆
is from 1 to 20, the time consumption and success rate of the 4 schemes TC,
FTC, C4, and R2−3 are shown in Fig.2. Since Thr∆ of TC and FTC is set to 1
in [3] and [27], and no practical schemes for larger Thr∆ are given in these two
papers. So, here we still set Thr∆ of TC and FTC to 1. The time consumption
of TC and FTC increases very slow when Thr∆ is from 2 to 20. It is still less
than 0.025 seconds when Thr∆ = 20. Compared to TC and FTC, our C4 and
R2−3 consume more time, nearly 0.4 second is needed when Thr∆ = 20. This
value increases fast if both Thrk and Thr∆ increase. For example, if Thrk = 32
and Thr∆ = 26, it may need several minutes for these two schemes.

The success rate of the 4 schemes TC, FTC, C4, and R2−3 is very low under
small threshold Thr∆. For example, if Thr∆ = 2, the success rate of these 4

13

1 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
(1)

Thr
∆

T
im

e(
se

co
nd

)

0 1 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
(2)

Thr
∆

S
uc

ce
ss

 r
at

e

TC
FTC

C4

R2−3

TC
FTC

C4

R2−3

Fig. 2. Time consumption and success rate of 4 schemes under different Thr∆.

schemes is about 0.02, 0.05, 0.035, 0.05 respectively. With the increase of Thr∆,
more correct ∆s fall within the thresholds, the success rate increases. When
Thr∆ reaches 20, the success rate of these 4 schemes is about 0.01, 0.04, 0.675
and 0.405. Since some correct ∆s fall out of Thr∆, the success rate of C4 is
higher than that of R2−3.

Let Ne denote the number of possible key candidates to be enumerated.
KGE, the new strategy proposed in this paper is aimed at recover the key more
efficiently. When Thr∆ is from 1 to 20, Ne is shown in Fig.3. With the increase
of Thr∆, Ne of C4 scheme grow very fast. When Thr∆ is from 2 to 20, the
attacker has to enumerate 20 ∼ 26 and 217 ∼ 230 key candidates respectively.
Larger thresholds mean larger key candidate space.

0 1 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100
(1)

Thr∆

N
e(lo

g 2)

1 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30
(2)

Thr∆

N
e(lo

g 2)

1 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10
(3)

Thr∆

N
e(lo

g 2)

Fig. 3. Different Ne of 3 schemes when Thr∆ is from 2 to 20.

14

However, R2−3 with more strict constraints requires fewer key candidates to
be enumerated. When Thr∆ reaches 20, R2−3 scheme only needs to enumerate
almost 390 key candidates. Compared to C4 and R2−3 solutions, FTC appears
to be random since Thr∆ is set to 1, 220 ∼ 290 key candidates may need to
enumerate, which may far beyond exhaustion. Ne of TC is usually very small
(i.e. 1), which we don’t give in Fig.3, Fig.5 and Fig.7.

5.2 Experimental Results Under Different Thresholds Thrk

When average 100 power traces are used and the Thr∆ of C4 and R2−3 is set to
14 (Thr∆ of TC and FTC is always set to 1), if the Thrk is set to from 2 to 22
(the key candidate space is 216 ∼ 272), the time consumption and success rate
of the 4 schemes are shown in Fig. 4. Like time consumption in Fig.2, TC and
FTC is very fast, changing Thrk does not bring too much computation. When
Thr∆ = 14 and Thrk = 16, nearly 0.0483 and 0.0925 second is used. When
Thrk = 14 and Thr∆ = 16, nearly 0.0734 second and 0.1616 second is used. It
seems that enlarging Thr∆ will consume more time than enlarging Thrk, more
key candidates need to enumerate (as shown in Fig.3 and Fig.5).

0 1 2 4 6 8 10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

0.5

0.6

(1)

Thr
k

T
im

e(
se

co
nd

)

0 1 2 4 6 8 10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Thr
k

S
uc

ce
ss

 r
at

e

(2)

TC
FTC

C4

R2−3

TC
FTC

C4

R2−3

Fig. 4. Time consumption and success rate of 4 schemes under different Thrk.

However, the success rate of TC and FTC is still very low. Increasing Thrk
does not significantly increase the success rate. The success rate of C4 and R2−3

reach the highest when Thrk is 4 and 8 respectively. It then remains stable (as
shown in Fig.4). Continuing to increase the threshold does not result in higher
success rate, while the attacker needs to enumerate more candidates (as shown
in Fig.5). So, it will be better for the attacker to choose a reasonable Thrk.

The complexity of the 3 schemes FTC, C4 and R2−3 is very different. Like
in Fig.3, Ne of FTC seems to be random, enlarging Thrk does not reduce the
number of key candidates. A large number of key candidates are left in many
experiments, which is unreachable (i.e. larger than 260). Compared to Fig.3,
enlarging Thrk also brings computation. When Thrk = 2, Ne of C4 scheme is

15

1 2 4 6 8 10 12 14 16 18 20 22
0

20

40

60

80

100
(1)

Thr
k

N
e(lo

g 2)

1 2 4 6 8 10 12 14 16 18 20 22
0

5

10

15

20

25

30
(2)

Thr
k

N
e(lo

g 2)

1 2 4 6 8 10 12 14 16 18 20 22
0

2

4

6

8
(3)

Thr
k

N
e(lo

g 2)

Fig. 5. Different Ne of 4 schemes when Thrk is from 2 to 22.

20 ∼ 26. When Thrk = 22, this value becomes 214 ∼ 226. However, our R2−3

scheme only needs to enumerate less than 27 possible candidates. The attacker
can easily exhaust the correct entire key in the third step of KGE. If the attacker
enlarges Thrk, Thr∆, and the remaining key candidates ofR2−3 is still very large.
Then, the state-of-art key enumeration solutions can be used to search the entire
key. In order to reduce Ne, the attacker can choose a more strictly constrained
scheme under large thresholds.

5.3 Experimental Results Under Different Numbers of Power
Traces

We also compare the time consumption and success rate under different num-
bers of power traces. Thrk and Thr∆ are set to 16 and 14 respectively. The
experimental results are shown in Fig.6. Let Np denote the number of power
traces used. The time consumption of TC is almost the same when Np is from
40 to 260 compared to 0.0066 ∼ 0.0114 second used in FTC. Compared to TC
and FTC, our C4 and R2−3 spend 0.0345 ∼ 0.1534 and 0.1014 ∼ 0.2405 second.
This indicates that, with the increase of Np, more correct key bytes and ∆s are
within Thrk and Thr∆, more time are needed to construct chains and rings.

Compared to increase Thrk or Thr∆, it will be more efficient to increase
the number of power traces. The success rate of 4 schemes increases fast with
the number of power traces used in each repetition (as shown in Fig.6(2)).
When 100 power traces are used, the success rate of these 4 schemes are 0.0150,
0.0500,0.5800 and 0.2600 respectively. These 4 values soon become 0.0550, 0.1500,
0.8000 and 0.5200 when average 120 power traces are used. The success rate of
these 4 schemes reaches 0.7850, 0.9650, 0.9850 and 0.9750 respectively when av-
erage 260 power traces are used. Actually, the success rate of our C4 and R2−3

16

40 60 80 100 120 140 160 180 200 220 240 260
0

0.05

0.1

0.15

0.2

0.25
(1)

Number of power traces

T
im

e(
se

co
nd

)

40 60 80 100 120 140 160 180 200 220 240 260
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(2)

Number of power traces

S
uc

ce
ss

 r
at

e

TC
FTC

C4

R2−3

TC
FTC

C4

R2−3

Fig. 6. Time consumption and success rate of 4 schemes under different numbers of
power traces.

schemes are more higher than that of TC and FTC, which indicates that our C4

and R2−3 schemes can significant improve the efficiency of TC and FTC.

TheNe of C
4 and R2−3 when different numbers of power traces being used are

shown in Fig.7, which changes much smaller compared to different thresholds
since the fixed Thrk and Thr∆(as shown in Fig.3 and Fig.5). Ne of FTC
decreases with increase of Ne. When average 40, 80, 120, 160, 200 power traces
are used, the range of Ne is 260 ∼ 2120, 230 ∼ 2100, 224 ∼ 280, 224 ∼ 264 and
24 ∼ 240 respectively. This indicates that, with more power traces used in each
repetition, more correct Thrk and Thr∆ locate in the front of sequences output
by side channel distinguishers. The advantages of TC and FTC began to appear.

40 60 80 100 120 140 160 180 200 220 240 260
0

20

40

60

80

100

120
(1)

Number of power traces

N
e(lo

g 2)

40 60 80 100 120 140 160 180 200 220 240 260
0

5

10

15

20

25

30
(2)

Number of power traces

N
e(lo

g 2)

40 60 80 100 120 140 160 180 200 220 240 260
0

2

4

6

8

10

12
(3)

Number of power traces

N
e(lo

g 2)

Fig. 7. Different Ne of 3 schemes under different numbers of power traces.

17

Ne of C4 under different numbers of power traces also increases, but not as
fast as it in Fig.3 and Fig.5. When average 40, 260 power traces are used, the
attacker has to enumerate 25 ∼ 220 and 212 ∼ 228 key candidates. If R2−3 is used,
20 ∼ 21 and 20 ∼ 211 key candidates are needed to enumerate. However, similar
to Ne in Fig.3 and Fig.5, Ne of R2−3 is smaller than 28 in most of repetitions.

6 Thrk and Thr∆ in KGE

In the Section 5, we discuss the experimental results under different thresholds
Thrk, Thr∆, and different number of power traces. Actually, it’s hard for attacker
to determine the correlation between Thrk and Thr∆ in our KGE. If the attacker
uses small thresholds and a lot of constraints, the correct key is easy to be deleted.
So, he had better use simple constraints such as C3 chains, C4 chains, etc.

Actually, the locations of Thrk and Thr∆ are determined by the outputs
of the distinguishers. For example, correlation-enhanced collision attack deter-
mines the locations of Thr∆, CPA determines the locations of correct sub keys
candidates. If the thresholds Thrk and Thr∆ are large, the attacker has to enu-
merate large number of key candidates. The attacker can appropriately increase
the constraints and construct more complex constraints such as R3 rings, R2−3

rings to delete wrong key candidates. However, if the attacker’s constraints are
too complex, the complexity of algorithm itself is a big problem. Although the
constraint conditions can effectively reduce the number of key rings or chains,
it also increases the complexity of the construction of the them. Moreover, very
reasonable thresholds Thrk and Thr∆ are very hard to find. So, the attacker
or evaluator needs to introduce fault tolerance schemes into KGE to reduce the
probability of accidentally deleting the correct key bytes.

7 Conclusions and Open Problems

Key enumeration solutions are post-processing schemes for the output sequences
of side channel distinguishers. The attacker or evaluator enumerates the key
candidates from the most possible one to the most impossible one, he may not
obtain the entire key directly from the outputs of the distinguisher. Since the
correct sub-key bytes are not always located at the top of the output sequences.
Therefore, the attacker or evaluator needs to use certain algorithms to search
the entire key. However, This kind of solutions are time-consuming, the attacker
or evaluator has to spend several days or months to enumerate a key candidate
space 240. The efficiency of these solutions is still very low.

In this paper, a new distinguisher named GCA is given. Moreover, a divide
and conquer strategy named KGE is proposed. Key chain and key ring based
KGE schemes are introduced in detail. Experiments results show that our KGE
schemes can significantly reduce key candidate space, which can be regarded as
a very powerful pre-processing tool of key enumeration.

There are still several open problems of KGE. The first open problem is fault
tolerance of KGE to reduce the probability of accidentally deleting the correct

18

subkey bytes. The second open problem is how to delete the impossible combina-
tions under large thresholds Thrk and Thr∆. Since compared to 2128, 264 ∼ 271

in this paper is still very small. With the increase of both two thresholds, more
and more combinations meet the conditions. Recently, there were several papers
discussing key enumeration in parallel [13, 21, 8]. Our KGE is also very easy to
perform in parallel since the 16-byte key is divided into several independent
groups. Each group can be calculated independently. The efficient KGE parallel
algorithms are also a open problem.

References

1. Dpa contest. http://www.dpacontest.org/home/.
2. D. J. Bernstein, T. Lange, and C. van Vredendaal. Tighter, faster, simpler side-

channel security evaluations beyond computing power. IACR Cryptology ePrint

Archive, 2015:221, 2015.
3. A. Bogdanov and I. Kizhvatov. Beyond the limits of DPA: combined side-channel

collision attacks. IACR Cryptology ePrint Archive, 2010:590, 2010.
4. A. Bogdanov, I. Kizhvatov, K. Manzoor, E. Tischhauser, and M. Witteman. Fast

and memory-efficient key recovery in side-channel attacks. In Selected Areas in

Cryptography - SAC 2015 - 22nd International Conference, Sackville, NB, Canada,

August 12-14, 2015, Revised Selected Papers, pages 310–327, 2015.
5. A. Bogdanov, I. Kizhvatov, and A. Pyshkin. Algebraic methods in side-channel

collision attacks and practical collision detection. In Progress in Cryptology - IN-

DOCRYPT 2008, 9th International Conference on Cryptology in India, Kharagpur,

India, December 14-17, 2008. Proceedings, pages 251–265, 2008.
6. E. Brier, C. Clavier, and F. Olivier. Correlation power analysis with a leakage

model. In Cryptographic Hardware and Embedded Systems - CHES 2004: 6th In-

ternational Workshop Cambridge, MA, USA, August 11-13, 2004. Proceedings,
pages 16–29, 2004.

7. S. Chari, J. R. Rao, and P. Rohatgi. Template attacks. In Cryptographic Hard-

ware and Embedded Systems - CHES 2002, 4th International Workshop, Redwood

Shores, CA, USA, August 13-15, 2002, Revised Papers, pages 13–28, 2002.
8. L. David and A. Wool. A bounded-space near-optimal key enumeration algorithm

for multi-subkey side-channel attacks. In Topics in Cryptology - CT-RSA 2017 -

The Cryptographers’ Track at the RSA Conference 2017, San Francisco, CA, USA,

February 14-17, 2017, Proceedings, pages 311–327, 2017.
9. B. Gierlichs, L. Batina, P. Tuyls, and B. Preneel. Mutual information analysis. In

Cryptographic Hardware and Embedded Systems - CHES 2008, 10th International

Workshop, Washington, D.C., USA, August 10-13, 2008. Proceedings, pages 426–
442, 2008.

10. C. Glowacz, V. Grosso, R. Poussier, J. Schüth, and F. Standaert. Simpler and more
efficient rank estimation for side-channel security assessment. In Fast Software

Encryption - 22nd International Workshop, FSE 2015, Istanbul, Turkey, March

8-11, 2015, Revised Selected Papers, pages 117–129, 2015.
11. P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Advances

in Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference,

Santa Barbara, California, USA, August 15-19, 1999, Proceedings, pages 388–397,
1999.

19

12. D. P. Martin, L. Mather, E. Oswald, and M. Stam. Characterisation and esti-
mation of the key rank distribution in the context of side channel evaluations.
In Advances in Cryptology - ASIACRYPT 2016 - 22nd International Conference

on the Theory and Application of Cryptology and Information Security, Hanoi,

Vietnam, December 4-8, 2016, Proceedings, Part I, pages 548–572, 2016.
13. D. P. Martin, J. F. O’Connell, E. Oswald, and M. Stam. Counting keys in parallel

after a side channel attack. In Advances in Cryptology - ASIACRYPT 2015 -

21st International Conference on the Theory and Application of Cryptology and

Information Security, Auckland, New Zealand, November 29 - December 3, 2015,

Proceedings, Part II, pages 313–337, 2015.
14. A. Moradi. Statistical tools flavor side-channel collision attacks. In Advances in

Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-

19, 2012. Proceedings, pages 428–445, 2012.
15. A. Moradi, S. Guilley, and A. Heuser. Detecting hidden leakages. In Applied

Cryptography and Network Security - 12th International Conference, ACNS 2014,

Lausanne, Switzerland, June 10-13, 2014. Proceedings, pages 324–342, 2014.
16. A. Moradi, O. Mischke, and T. Eisenbarth. Correlation-enhanced power analysis

collision attack. In Cryptographic Hardware and Embedded Systems, CHES 2010,

12th International Workshop, Santa Barbara, CA, USA, August 17-20, 2010. Pro-

ceedings, pages 125–139, 2010.
17. M. Nassar, Y. Souissi, S. Guilley, and J. Danger. RSM: A small and fast counter-

measure for aes, secure against 1st and 2nd-order zero-offset scas. In 2012 Design,

Automation & Test in Europe Conference & Exhibition, DATE 2012, Dresden,

Germany, March 12-16, 2012, pages 1173–1178, 2012.
18. C. Ou, Z. Wang, D. Sun, X. Zhou, and J. Ai. Group verification based multiple-

differential collision attack. In Information and Communications Security - 18th In-

ternational Conference, ICICS 2016, Singapore, November 29 - December 2, 2016,

Proceedings, pages 145–156, 2016.
19. J. Pan, J. G. J. van Woudenberg, J. den Hartog, and M. F. Witteman. Improving

DPA by peak distribution analysis. In Selected Areas in Cryptography - 17th Inter-

national Workshop, SAC 2010, Waterloo, Ontario, Canada, August 12-13, 2010,

Revised Selected Papers, pages 241–261, 2010.
20. R. Poussier, V. Grosso, and F. Standaert. Comparing approaches to rank estima-

tion for side-channel security evaluations. In Smart Card Research and Advanced

Applications - 14th International Conference, CARDIS 2015, Bochum, Germany,

November 4-6, 2015. Revised Selected Papers, pages 125–142, 2015.
21. R. Poussier, F. Standaert, and V. Grosso. Simple key enumeration (and rank esti-

mation) using histograms: An integrated approach. In Cryptographic Hardware and

Embedded Systems - CHES 2016 - 18th International Conference, Santa Barbara,

CA, USA, August 17-19, 2016, Proceedings, pages 61–81, 2016.
22. C. Rechberger and E. Oswald. Practical template attacks. In Information Security

Applications, 5th International Workshop, WISA 2004, Jeju Island, Korea, August

23-25, 2004, Revised Selected Papers, pages 440–456, 2004.
23. K. Schramm, G. Leander, P. Felke, and C. Paar. A collision-attack on AES: combin-

ing side channel- and differential-attack. In Cryptographic Hardware and Embedded

Systems - CHES 2004: 6th International Workshop Cambridge, MA, USA, August

11-13, 2004. Proceedings, pages 163–175, 2004.
24. F. Standaert, T. Malkin, and M. Yung. A unified framework for the analysis of side-

channel key recovery attacks. In Advances in Cryptology - EUROCRYPT 2009,

20

28th Annual International Conference on the Theory and Applications of Cryp-

tographic Techniques, Cologne, Germany, April 26-30, 2009. Proceedings, pages
443–461, 2009.

25. N. Veyrat-Charvillon, B. Gérard, M. Renauld, and F. Standaert. An optimal key
enumeration algorithm and its application to side-channel attacks. In Selected

Areas in Cryptography, 19th International Conference, SAC 2012, Windsor, ON,

Canada, August 15-16, 2012, Revised Selected Papers, pages 390–406, 2012.
26. N. Veyrat-Charvillon, B. Gérard, and F. Standaert. Security evaluations beyond

computing power. In Advances in Cryptology - EUROCRYPT 2013, 32nd An-

nual International Conference on the Theory and Applications of Cryptographic

Techniques, Athens, Greece, May 26-30, 2013. Proceedings, pages 126–141, 2013.
27. D. Wang, A. Wang, and X. Zheng. Fault-tolerant linear collision attack: A com-

bination with correlation power analysis. In Information Security Practice and

Experience - 10th International Conference, ISPEC 2014, Fuzhou, China, May

5-8, 2014. Proceedings, pages 232–246, 2014.
28. X. Ye, T. Eisenbarth, and W. Martin. Bounded, yet sufficient? how to determine

whether limited side channel information enables key recovery. In Smart Card

Research and Advanced Applications - 13th International Conference, CARDIS

2014, Paris, France, November 5-7, 2014. Revised Selected Papers, pages 215–232,
2014.

21

