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Abstract. This paper explores a new type of MACs called message-
recovery MACs (MRMACs). MRMACs have an additional input R that
gets recovered upon verification. Receivers must execute verification in
order to recover R, making the verification process unskippable. Such a
feature helps avoid mis-implementing verification algorithms. The syntax
and security notions of MRMACs are rigorously formulated. In particu-
lar, we formalize the notion of unskippability and present a construction
of an unskippable MRMAC from a tweakable cipher and a universal hash
function. Our construction is provided with formal security proofs. We
extend the idea of MRMACs to a new type of authenticated encryption
called verification-unskippable AE (VUAE). We propose a generic Enc-
then-MRMAC composition which realizes VUAE. The encryption part
needs to satisfy a new security notion called one-time undecipherability.
We provide three constructions that are one-time undecipherable, and
they are proven secure under various security models.
Keywords: message recovery MACs, authenticated encryption, unskip-
pability, one-time undecipherability, CTR mode, Even-Mansour, FX.

1 Introduction

Message authentication is fundamental to secure communication, ensuring that
a message that a user received has not been modified from the original content.
Authenticity can be achieved both in the public-key (digital signatures) and
symmetric-key (message authentication codes, in short MACs) frameworks.

The importance of message authenticity can be emphasized by the case of
traffic signal: green, yellow or red must not be modified in any way. This case
also tells us that all receivers must perform the verification procedure correctly,
or otherwise the reliability of the system would get severely compromised.

Authenticated encryption (AE) provides both authenticity and confidential-
ity in a single scheme. It is now actively discussed in the CAESAR compe-
tition [12]. Many AE schemes take the verify-then-decrypt approach to their
decryption process, where the decryption takes place only after the verifica-
tion succeeds. If decrypted data are released before verification—which is called
decryption-misuse [1, 2] or releasing unverified plaintext (RUP) [4, 5]—security



is no longer guaranteed, often leading to forgery or plaintext recovery. Therefore,
the execution of verification is crucial for many AE schemes.

For authenticity, extra bandwidth is inevitable due to the fact that additional
information for verification needs to be sent together with the message itself. In
the public-key framework, message-recovery signatures [23] mitigate the increase
in bandwidth. The idea is to construct a signature scheme with which part of
the message can be recovered during verification, so that only the remaining
part of the message needs to be sent. Namely, it produces a signature Σ taking
three inputs: a private key Kpriv, a recoverable part R and a (non-recoverable)
message M . Any user can verify the integrity of (M,Σ) using the corresponding
public key Kpub, recovering R upon verification.

In general, digital signatures with additional functionalities are realized by
exploiting some mathematical properties. It is not clear how to add similar func-
tionalities to MACs that are constructed from only symmetric-key primitives.
To the best of our knowledge, the aggregate MAC [17, 21] seems to be the only
concrete example having relevant applications.

Our Contributions.

• This paper proposes a new type of MAC with additional features called
message-recovery MAC (MRMAC), which is a symmetric-key counterpart of
the message-recovery signature. It takes three inputs: a pair of keys (K1,K2),
an r-bit recoverable part R, and arbitrary length message M . Let ẼK :
{0, 1}` × {0, 1}τ → {0, 1}τ and HK : {0, 1}∗ → {0, 1}` be a tweakable block
cipher (TBC) and a universal hash function using K, respectively. The tag
generation first concatenates τ − r bits of zeros to R. Then, a tag T is
computed by ẼK1(HK2(M), R‖0τ−r) as illustrated in Fig. 1. Verification first
computes HK2

(M) and computes decryption of TBC, Ẽ−1K1
(HK2

(M), T ), to
check if the resultant plaintext P contains τ − r bits of zeros in the proper
position. If verification succeeds, r bits of P is output as R.

The property that the recoverable part R is recovered during verification
makes the verification process unskippable. This prevents mis-implementation
of verification algorithms thus improves reliability of the system.

We formalize the syntax of MRMAC and define security notions. In particu-
lar, the property that R cannot be recovered without executing verification
is defined as unskippability, which is new and particular to MRMAC. We
prove security of our scheme with respect to the proposed notions.

• We then propose new type of AE called verification-unskippable AE (VUAE)
by instantiating MRMAC for the MAC part. We start by showing a generic
composition Enc-then-MRMAC ; combining a particular type of encryption
and MRMAC in the Enc-then-MAC manner leads to VUAE. Here, the en-
cryption scheme needs to be one-time encryption satisfying the security no-
tion which we call one-time undecipherability. One-time encryption uses a se-
cret random string S which essentially acts as a key but is one-time, meaning
that S is freshly re-sampled upon each execution of encryption. The existence
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Fig. 1. Message-recovery MAC
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Fig. 2. Enc-then-MRMAC composition

Table 1. Security models of each construction

Construction Security Models Efficiency
unskippability AE security (additional requirement)

One-time CTR standard model standard model recomputing key schedule
FX + CTR ideal cipher standard model using Kenc

EM + CTR random permutation random permutation -

of S makes the use of a (standard) key K optional. One-time undecipher-
ability is informally described that an adversary who knows K but does not
know S cannot distinguish a decryption oracle from a random oracle.

In more details, the sender and receiver first share a key for MAC, K2, and
if necessary a key for encryption, K1. The sender generates a random one-
time string S and computes an encryption scheme E as C ← Es(M) or C ←
Es,K1(M), where subscripts of E represent keys. It then computes MRMAC
by taking S as the recoverable part and C as the message. The composition
is illustrated in Fig. 2. The receiver needs S for starting decryption which is
recovered during verification. Thus verification unskippability is achieved.

We propose three constructions of encryption schemes satisfying one-time
undecipherability; based on CTR mode, based on the FX construction +
CTR mode, and based on the Even-Mansour (EM) construction + CTR
mode. Security of those are proven in the security model shown in Table 1.

• The discussion so far is about unskippability of standalone MAC and of AE
(encryption + MAC). We thus extend it to a layered MAC (MAC + MAC)
for the sake of completeness of this topic.

Paper Outline. Section 2 introduces related work. Section 3 formalizes syntax
and security notions of MRMAC. Section 4 proposes our construction of MR-
MAC and proves its security. Section 5 discusses the application of MRMAC to
key-wrapping. Section 6 formalizes syntax and security notions of VUAE, and
proposes a generic composition, ENC-then-MRMAC. Section 7 proposes three
constructions of VUAE and proves their security. Section 8 extends VUAE for
handling associated data and applies MRMAC to layered protocols.
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2 Related Work

In Section 2.1 we name some previous work related to the idea of message-
recovery MACs. In Section 2.2 we name those related to the idea of bypassing
verification. We also mention in Section 2.3 some previous work that handles
security notions in settings similar to the current work.

2.1 Recovering Information during Verification

The idea of recovering some information during verification has appeared several
times in previous work. Some are in the context of MAC, while others in the
context of AE. Here we list some of the major ones that we are aware of.

Aggregate MACs. The notion of aggregate MACs was introduced by Katz
and Lindell [21]. Its use case—relaying messages and tags in a sensor network—
motivates us to study the notion of layered MACs, which we discuss in Section 8.

Eikemeier et al. [17] proposed history-free aggregate MACs by utilizing par-
tially invertible MACs, in which the finalization part (often a block-cipher call)
inverts an n-bit tag T . The partial inversion property is used only for the purpose
of proving the security of their construction.

Incremental MACs and AE Schemes. Incrementality of a tag generation
algorithm G(·) is a property that once a tag T = G(M) for input M is stored, the
tag T ′ = G(M ′) for a slightly modified input M ′ can be updated from G(M) more
efficiently than computing G(M ′) from scratch. The notion of incrementality
was discussed for MACs [6], AE [13] and AEAD [26]. In order to be equipped
with incrementality, the schemes need to adopt an invertible finalization so that
the state value after processing all the message blocks (typically the XOR of
computation results for all blocks) can be recovered from the tag.

Secret Message Numbers (SMN). The CAESAR competition allows to use
SMN, which can take a role of a nonce, but can be sent through the commu-
nicated channel only after being encrypted. The protected-IV (PIV) construc-
tion [27] accommodates SMN; namely, an initialization vector (IV) is encrypted
to what they call the reconstruction information (RI), and only the RI (and not
IV) is sent. The receiver can recover IV from RI and ciphertext. We note that
PIV is a three-pass construction and its verification is done after decryption.

2.2 Protection against Verification Skipping

To the best of our knowledge, there have been no proposed MAC schemes that
explicitly claim security against legitimate users skipping verification. For AE,
several approaches have been proposed in order to mitigate damages that would
be caused by skipping verification.
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Robust Authenticated Encryption. One novel approach is robust authen-
ticated encryption [20], in which the decrypted “plaintext” would become com-
pletely random for any wrong inputs to the decryption algorithm, thus not caus-
ing any damage even if verification is done after decryption. Most of the robust
AE constructions tend to be inefficient. There have been several pieces of previ-
ous work that study the tradeoff between robust-like AE security and efficiency.

Releasing Unverified Plaintext (RUP). The event that decryption results
(plaintext candidates) are released before verification is called releasing unveri-
fied plaintext (RUP). Andreeva et al. [4, 5] formalized security models under the
RUP setting. A technique called nonce decoy has been proposed, which adds
security to nonce-based AE schemes in such a way as the decryption results for
wrong (converted) nonce would become random.

Similarly, a dedicated design APE [3] randomizes the decryption results for
wrong tag input, and a conversion method tag-feedback [19] randomizes the
decryption results for wrong associated data, (converted) nonce, and tag.

A number of approaches have been proposed to provide tradeoff between
security against decryption misuse and efficiency. In this paper, we propose a
quite different approach that forces the execution of verification.

2.3 “Keyless” and “Dual” Security Notions

We shall discuss the unskippability of message-recovery MACs, which is a secu-
rity notion against legitimate users who know the secret key K. Security notions
without a secret key or a randomized element have appeared in different con-
texts, e.g. message-locked encryption [8, 7]. Also, one of our constructions uses a
block cipher keyed in two different ways, acting as a PRF when keyed either way.
Such a notion of dual PRFs has been studied by Bellare and Lysyanskaya [9].

3 Message-Recovery MACs

In this section we discuss message-recovery MACs (MRMACs). Here we briefly
discuss their similarities and differences as compared to message-recovery signa-
tures and authenticated encryption. We describe the syntax of message-recovery
MAC algorithms in Section 3.1 and give security definitions in Section 3.2.

Comparison with Message-Recovery Signatures. Message-recovery MACs
are the symmetric-key counterpart of message-recovery signature schemes [23,
24]. However, there is a significant difference in the security requirement on the
recoverable part of the message.

Recall that a message-recovery signature scheme produces a signature Σ
taking three inputs: a private key Kpriv, a recoverable part R and a (non-
recoverable) message M . Anyone can verify the integrity of a message-signature
pair (M,Σ) using the corresponding public key Kpub of the signer, recovering
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R upon verification. Similarly, a message-recovery MAC produces a tag T tak-
ing three inputs: a secret key K, a recoverable part R and a (non-recoverable)
message M , but now only those users who know the secret key K can verify the
integrity of the message-tag pair (M,T ).

Note that while it does not make sense to try to protect the confidentiality
of R in the case of signatures (because anyone can recover R using Kpub), it does
make sense in the case of MACs. Indeed, in this work it is crucial that those
users who do not know K should not be able to obtain any information about R.

Comparison with (Deterministic) Authenticated Encryption. One may
notice that MRMACs are analogous to deterministic authenticated encryption
(DAE) [25]. The difference lies in the length of the recoverable part.

The analogy between MRMACs and DAE can be drawn by regarding “R for
MRMAC” as “plaintext for DAE,” “M for MRMAC” as “associated data for DAE”
and the MAC tag T as “ciphertext-tag for DAE.” However, in the current work,
MRMACs and AE play completely different roles, and the analogy ends there.
Indeed, we will use an MRMAC to build an AE scheme, where R is used as “a
one-time secret string,” M as “ciphertext for AE,” and T as the tag itself.

For MRMACs, the length of a recoverable part R is limited to a fixed size,
which is usually about the size of a security parameter, e.g. 128 bits. This con-
trasts sharply with (D)AE, where the space of plaintext is usually “huge,” so
that the (D)AE scheme can accommodate possibly lengthy plaintext. This is
exactly where the RUP problem arises [4]. On the other hand, MRMAC is free
of such an issue, because we are guaranteed that |R| is fixed to a small value.

3.1 Syntax of Message-Recovery MACs

A message-recovery MAC Θ is a triplet of algorithms Θ = (K,G,V) with a
correctness condition that should be satisfied between the algorithms. Each of
the three algorithm is defined as follows:

1. Key setup. The key setup K is a randomized algorithm which takes no

input and outputs a uniformly random key K
$←− K. The key space K may

be divided into its “subkey” spaces as K = K1 ×K2 × · · · , in which case we
write K = (K1,K2, . . .), depending on “how many” (sub)keys the MRMAC
construction requires. We write K ← K(·) to denote the invocation of K and
assigning the key value to variable K.

2. Tag generation. The generation algorithm G is a keyed family of determin-
istic, stateless functions. We have GK : R ×M → T for each K ∈ K, where
we have a recoverable part R ∈ R, a message M ∈ M and a tag T ∈ T, so
that T ← GK(R,M).

3. Verification with recovery. The verification algorithm V is a keyed family
of deterministic, stateless functions. It takes the form of VK : M × T →
R∪{⊥}. The symbol ⊥ implies verification failure. We demand that ⊥ 6∈ R.
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Given K, G and V above, we require the following condition between them:

• Correctness condition. For any R ∈ R and M ∈ M, we always have
VK(M,T ) = R whenever T ← GK(R,M) and K ← K(·),

which simply ensures that we would get the correct value of R after verifying a
legitimate pair (M,T ) with which the value R was used.

3.2 Security Definitions for Message-Recovery MACs

We provide message-recovery MACs with three different security notions. The
first one, unforgeability, corresponds to the ordinary MAC security which has
been most commonly used. The second one, indistinguishability, ensures the
confidentiality of the recoverable part. The last one, unskippability, is the key
notion in the current work. Informally, unskippability says that even a legitimate
verifier, who holds the secret key K, should not be able to recover R without
performing the full verification procedure. It already sounds challenging, and we
shall need to make a forcible argument for formalizing this notion.

Security Notations and Conventions. An adversaryA is an oracle machine,
possibly with a random tape. We write AO1(·),O2(·),... to mean the value returned
by A after interacting with its oracles O1(·),O2(·), . . .. We assume that A never
repeats its queries to its oracle if the oracle is deterministic. We usually upper-
bound by q the number of queries that A makes to its oracles. The running time
of A includes the time to execute its oracles. A scheme Λ = (S1,S2, . . .) is a set
of algorithms, usually the first one S1 being a key setup algorithm. An adversary
A is given oracle access to some of the algorithms Si after a key setup. We write
Adv∗∗∗Λ (A) to denote the advantage of an adversary A attacking a scheme Λ
with respect to a security notion ∗∗∗.

Tag Unforgeability. This corresponds to the common security notion for ordi-
nary MACs. We give an adversary A oracle access to the generation GK(·, ·) and
verification VK(·, ·). We want to make sure that the adversary A cannot forge,
or come up with a new pair of (M,T ) that would make the V-oracle accept the
query (M,T ) and return some string R ∈ R other than the reject symbol ⊥. We
allow multiple trials to the verification query, defining

Advmac
Θ (A) := Pr

[
AGK(·,·),VK(·,·) = 1

]
− Pr

[
AGK(·,·),⊥(·,·) = 1

]
,

where the probabilities are taken over the choice of key K ← K(·) and random
coins used by the adversary, if any. The symbol ⊥(·, ·) denotes a “reject oracle;”
it accepts a query (M,T ) ∈ M × T, having the same interface as VK(·, ·), and
always returns the reject symbol ⊥. To avoid a trivial win, the adversaryA is not
allowed to make a query (M,T ) to its V-oracle if A has already made a G-query
(R,M) with some R ∈ R and the G-oracle has returned T ← GK(R,M).
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Recoverable-Part Indistinguishability. This notion basically corresponds to
protecting the confidentiality of the recoverable part R. We adopt the definition
via indistinguishability. Let GK($, ·) denote a “random-R oracle” which, upon

receiving a query (R,M) ∈ R ×M, picks a random R′
$←− R and returns T ′ ←

GK(R′,M). An adversary A should not be able to distinguish between the real
oracle GK(·, ·) and the random-R oracle. Succinctly, we define

Advind
Θ (A) := Pr

[
AGK(·,·) = 1

]
− Pr

[
AGK($,·) = 1

]
,

where the probabilities are defined over K ← K(·), choice of R′ by the GK($, ·)
oracle, and random coins of the adversary A, if any. The following lemma will
be useful in Section 6. The lemma simply combines the unforgeability and the
indistinguishability notions.

Lemma 1. Let Θ = (K,G,V) be a message-recovery MAC and K ← K(·). For
any adversary A having access to G-oracle and V-oracle and making q queries,
there exist an adversary B such that

Pr
[
AGK(·,·),VK(·,·) = 1

]
− Pr

[
AGK($,·),⊥(·,·) = 1

]
≤ Advmac

Θ (A) + Advind
Θ (B),

where B makes at most q queries and runs in time comparable to that of A.

Proof. We have

Pr
[
AGK(·,·),VK(·,·) = 1

]
− Pr

[
AGK($,·),⊥(·,·) = 1

]
= Pr

[
AGK(·,·),VK(·,·) = 1

]
− Pr

[
AGK(·,·),⊥(·,·) = 1

]
+ Pr

[
AGK(·,·),⊥(·,·) = 1

]
− Pr

[
AGK($,·),⊥(·,·) = 1

]
≤Advmac

Θ (A) + Advind
Θ (B),

where B is the ind-adversary naturally derived from A. ut

Motivating Counterexamples for MRMAC Unskippability. To have a
good grasp of unskippability notion, we begin with instructive examples of skip-
pable MRMAC constructions. At first glance these constructions appear plausi-
ble; indeed, they are unforgeable and indistinguishable. However, they are ex-
actly what we want to avoid using, because they are not unskippable. We give
two examples. The first example is equipped with hasty recover-anyway algo-
rithms, which can be incentive for the receiver to skip verification. The second
example is not unskippable but comes without hasty recovery, which sounds
somewhat contradictory.

1. Example #1: case with hasty recovery. This construction comes with
hasty recovery, meaning that there are “recover-anyway” algorithms that
can be executed faster than the original verification algorithm—exactly the
things that we want to avoid. The construction is given in Fig. 3. It can be
directly confirmed that this construction Θ is unforgeable and indistinguish-
able. However, it is easy to recover R without verifying the integrity of the
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1: function K(·)
2: K1

$←− K1, K2
$←− K2, K3

$←− K3

3: return (K1,K2,K3)
4: end function

1: function GK1,K2,K3(R,M)
2: W ← HK2(M)

3: U ← ẼK1(W,R)

4: U ′ ← Ẽ′K3
(U,R)

5: return T ← U‖U ′
6: end function

1: function VK1,K2,K3(C, T )
2: U‖U ′ ← T
3: W ← HK2(M)

4: R← ẼK1(W,U)

5: R′ ← Ẽ′K3
(U,U ′)

6: if R′ = R then
7: return R
8: else
9: return ⊥

10: end if
11: end function

Fig. 3. Example #1: a skippable MRMAC construction Θ = (K,G,V) with hasty recov-
ery, where GK1,K2,K3 : (R,M) 7→ T for R ∈ R = {0, 1}n, M ∈ M and T ∈ T = {0, 1}2n.

The construction Θ uses a tweakable block cipher ẼK1 : W × {0, 1}n → {0, 1}n with
K1 ∈ K1 and a tweak space W, a universal hash function HK2 : M→W with K2 ∈ K2

and another tweakable block cipher Ẽ′K3
: W′ × {0, 1}n → {0, 1}n with K3 ∈ K3 and a

tweak space W′ = {0, 1}n. The construction is illustrated in Fig. 9.

message-tag pair (M,T ). There are two ways to do this. The first recover-

anyway algorithm simply returns R′ ← Ẽ′−1K3
(U,U ′), not using the informa-

tion M at all. The second recover-anyway algorithm returns R← Ẽ−1K1
(W,U)

after computing W ← HK2
(M). The second algorithm does not use the in-

formation U ′, which is part of the tag T .

2. Example 2: case without hasty recovery. One might expect that non-
existence of hasty recovery would suffice for unskippability. The next example
demonstrates that such expectation is actually wrong, depending on what we
exactly mean by “hasty.” So let us re-examine more closely what we mean
by “hasty.” First, it seems safe to assume that any legitimate verification
procedure should end with a code of the form:

if (some string) = (some other string) then
return R

else (∗)
return ⊥

end if

and one could always skip this final “if” part of the verification procedure
and come up with a recover-anyway algorithm that would always return R.
Whether we should call it hasty or not (probably there is little reason to
skip just the final “if,” so let us call it not hasty here), this skipping seems
inevitable—but we would like to ensure that even such a recover-anyway
algorithm would not lead to any significant security loss. Now we show an
MRMAC construction that is problematic in Fig. 4; it does not come with
hasty recovery, yet if one skips the “if,” then one would encounter a severe
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1: function K(·)
2: K1

$←− K1, K2
$←− K2, K3

$←− K3

3: return (K1,K2,K3)
4: end function

1: function GK1,K2,K3(R,M)
2: V ← FK3(R,M)
3: W ← HK2(M)

4: U ← ẼK1(W,R‖V )
5: return T ← U‖V
6: end function

1: function VK1,K2,K3(C, T )
2: U‖V ← T
3: W ← HK2(M)

4: R‖V ∗ ← Ẽ−1
K1

(W,U)
5: if V = V ∗ then
6: return R
7: else
8: return ⊥
9: end if

10: end function

Fig. 4. Example #2: a skippable MRMAC construction Θ = (K,G,V) without hasty
recovery, where GK1,K2,K3 : (R,M) 7→ T for R ∈ R = {0, 1}n/2, M ∈ M and T ∈ T =

{0, 1}3n/2. The construction Θ uses a tweakable block cipher ẼK1 : W × {0, 1}n →
{0, 1}n with K1 ∈ K1 and a tweak space W, a universal hash function HK2 : M → W
with K2 ∈ K2 and a pseudo-random function FK3 : R×M→ {0, 1}n/2 with K3 ∈ K3.
Note that the algorithm VK does not use K3. The construction is illustrated in Fig. 10.

security problem. It can be directly verified that this construction is unforge-
able and indistinguishable. Then let us consider a recover-anyway algorithm
that skips the “if” part at line 5 of the V algorithm in Fig. 4 and always
returns R. This is problematic, because it would return the “correct” value
of R regardless of the value of V , which is part of the tag T .

MRMAC Unskippability Formalization. What was wrong with the pre-
vious examples? In these examples, the insecurity originates from the fact that
the receiver is able to obtain information about R without verifying the “en-
tire” (M,T ). Indeed, R ← ẼK1(W,U) and R′ ← Ẽ′K3

(U,U ′) in Fig. 3 do not

take a half of the tag U ′ and the entire M as input, respectively. Ẽ−1K1
(W,U) in

Fig. 4 does not take n/2 bits of the tag V as input. We would like to demand
that the receiver check all bits of the message M and all bits of the tag T and
only then become able to compute R and “some string” in pseudo-code (∗).

How do we impose such a requirement on a legitimate receiver who knows
the secret key K? Since all of K, M and T are known to the receiver, there is
no secret or randomized element left in the game of computing R← VK(M,T ).
Under such circumstances, it seems exceedingly difficult to define any security
notion in a formal manner.

Fortunately, in our specific case of MRMAC unskippability, we can reason-
ably convert our requirement on a legitimate receiver U who knows the key K
to another requirement on an adversary A who does not know the key K. The
conversion is based on a contrapositive reasoning, as follows:

1. Suppose U could recover information about R← VK(M,T ) without check-
ing all bits of M and T .
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2. This implies that there is a recover-anyway algorithm RK : M×T→ R such
that R′ ← RK(M ′, T ′), with (M ′, T ′) 6= (M,T ) and with R′ containing
some information about the original R.

3. Then, we should be able to construct an adversary A that is given oracle
access to GK(·, ·) and RK(·, ·) and retrieve information about the “correct”
R by making the query (M ′, T ′) to its R-oracle.

Therefore, let us define the unskippability of an MRMAC scheme Θ = (K,G,V)
with respect to a recover-anyway algorithm R, for an adversary A who does not
know the key, via the indistinguishability:

Advunskip
Θ,R (A) := Pr

[
AGK(·,·),RK(·,·) = 1

]
− Pr

[
AGK(·,·),$(·,·) = 1

]
,

where the probabilities are defined over K ← K(·) and random coins used by the
oracles and the adversary, if any. The symbol $(·, ·) denotes the random oracle
that accepts a query (M,T ) and always returns a freshly sampled random string

R∗
$←− R. To avoid a trivial win, we demand that A never make a query (M,T )

to its R-oracle such that A has already made a query (R,M) with some R ∈ R
to its G-oracle and the G-oracle has returned the value T .

The following lemma will become useful in Section 6. The lemma simply
combines the two notions of unskippability and indistinguishability.

Lemma 2. Let Θ = (K,G,V) be a message-recovery MAC and K ← K(·). Let
R be a recover-anyway oracle associated with Θ. For any adversary A having
access to G-oracle and R-oracle and making q queries, there exist an adversary
B such that

Pr
[
AGK(·,·),RK(·,·) = 1

]
− Pr

[
AGK($,·),$(·,·) = 1

]
≤ Advunskip

Θ,R (A) + Advind
Θ (B),

where B makes at most q queries and runs in time comparable to that of A.

Proof. We have

Pr
[
AGK(·,·),RK(·,·) = 1

]
− Pr

[
AGK($,·),$(·,·) = 1

]
= Pr

[
AGK(·,·),RK(·,·) = 1

]
− Pr

[
AGK(·,·),$(·,·) = 1

]
+ Pr

[
AGK(·,·),$(·,·) = 1

]
− Pr

[
AGK($,·),$(·,·) = 1

]
≤Advunskip

Θ,R (A) + Advind
Θ (B),

where B is the ind-adversary naturally derived from A. ut

4 Constructing Unskippable Message-Recovery MACs

We present our construction of unskippable message-recovery MAC. We give
security proofs for unforgeability, indistinguishability and unskippability.

11



4.1 Construction

The proposed construction uses a universal hash function and a tweakable block
cipher as its building blocks. It resembles the MAC construction recently pro-
posed by Cogliati, Lee and Seurin at ESC 2017 [15].

Let ẼK1
: {0, 1}` ×{0, 1}τ → {0, 1}τ be a tweakable block cipher, and HK2

:
M→ {0, 1}` be a universal hash function.

1. Key setup. The keys K1 and K2 are chosen uniformly at random from K1

and K2, respectively.

2. Tag generation. For recoverable part R ∈ {0, 1}r and message M ∈ M,
GK1,K2

: R×M → {0, 1}τ is defined by setting the tag value GK1,K2
(R,M)

to be ẼK1
(HK2

(M), R‖0τ−r).
3. Verification with recovery. For message M ∈ M and tag T ∈ {0, 1}τ ,
VK1,K2

(M,T ) first computes P ← Ẽ−1K1
(HK2

(M), T ). If the least significant
(τ − r) bits of P are zero, then it outputs the most significant r bits of P as
a recoverable part. Otherwise, it outputs ⊥.

The construction is illustrated in Fig. 1. It is obvious that the proposed con-
struction described above satisfies the correctness condition.

4.2 Security Proofs

We will assume that the underlying tweakable block cipher is ideal, that is, it is
replaced with a tweakable random permutation π̃ chosen uniformly at random.
Let us call the proposed construction Θπ̃,H .

Theorem 1 (Tag Unforgeability). For any adversary A making at most qg
queries to the G-oracle and qv queries to the V-oracle,

Advmac
Θπ̃,H (A) ≤ qv

2τ−r
+

(qg + qv)2

2τ
+

(qg + qv)2

2`+1
.

Proof. First, we replace the ideal tweakable permutation π̃ and its inverse with
two independent tweakable functions chosen uniformly at random. Let ĜK1,K2

and V̂K1,K2 be the resultant generation and verification algorithms, respectively.
Then, from the PRP/PRF switching lemma [11],

Advmac
Θπ̃,H (A) ≤ Pr

[
AĜK1,K2

,V̂K1,K2

]
− Pr

[
AĜK1,K2

,⊥]+
(qg + qv)2

2τ
.

(ĜK1,K2
, V̂K1,K2

) and (ĜK1,K2
,⊥) are identical until A makes a successful ver-

ification query which makes V̂K1,K2
return a string in {0, 1}r as a recoverable

part. Let us call the event Suc. Then,

Pr
[
AĜK1,K2

,V̂K1,K2

]
− Pr

[
AĜK1,K2

,⊥] ≤ Pr[Suc] ≤ Pr[ColH ] + Pr[Suc | ¬ColH ],

where ColH is the event of collision for H. Since H is a universal hash function,
Pr[ColH ] ≤ (qg + qv)2/2`+1. Pr[Suc | ¬ColH ] ≤ qv/2τ−r. ut

12



Theorem 2 (Recoverable-Part Indistinguishability). For any adversary
A making at most qg queries to the G-oracle,

Advind
Θπ̃,H (A) ≤

(
1

2τ
+

1

2`
+

1

2r+1

)
q2g .

Proof. First, we replace the ideal tweakable permutation π̃ with a tweakable
function chosen uniformly at random. Let ĜK1,K2 be the resultant generation
algorithms. Then, from the PRP/PRF switching lemma [11],

Advind
Θπ̃,H (A) ≤ Pr

[
AĜK1,K2

(·,·)]− Pr
[
AĜK1,K2

($,·)]+
q2g
2τ
.

Let ColH be the event of collision for H. Let Col$ be the event of collision for $.
ĜK1,K2

(·, ·) returns a tag chosen uniformly at random for each query as long as

¬ColH . ĜK1,K2($, ·) returns a tag chosen uniformly at random for each query as
long as ¬ColH ∧ ¬Col$. Thus,

Pr
[
AĜK1,K2

(·,·)]− Pr
[
AĜK1,K2

($,·)] ≤ 2 Pr[ColH ] + Pr[Col$] ≤
q2g
2`

+
q2g

2r+1
.

ut

Theorem 3 (Unskippability). For any adversary A making at most qg queries
to the G-oracle and qv queries to the R-oracle,

Advunskip
Θπ̃,H ,R(A) ≤

(
1

2τ
+

1

2`+1

)
(qg + qv)2.

Proof. First, we replace the ideal tweakable permutation π̃ and its inverse with
two independent tweakable functions chosen uniformly at random. Let ĜK1,K2

and R̂K1,K2
be the resultant generation and recover-anyway algorithms, respec-

tively. Then, from the PRP/PRF switching lemma [11],

Advunskip
Θπ̃,H ,R(A) ≤ Pr

[
AĜK1,K2

,R̂K1,K2

]
− Pr

[
AĜK1,K2

,$
]

+
(qg + qv)2

2τ
.

(ĜK1,K2 , R̂K1,K2) and (ĜK1,K2 , $) are identical until the queries made byA cause
a collision for H. Since H is a universal hash function,

Pr
[
AĜK1,K2

,R̂K1,K2

]
− Pr

[
AĜK1,K2

,$
]
≤ (qg + qv)2/2`+1.

ut

5 Key-Wrapping with Message-Recovery MACs

In this section we discuss the issue of increasing the length r of the recover-
able part, which arises when one wants to wrap key material using a message-
recovery MAC. We also discuss an effective means of resolving the issue.
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Later in the paper we shall use a message-recovery MAC in order to construct
an authenticated encryption scheme. In the construction, the recoverable part is
a random, secret string S whose length is equal to the security parameter, e.g.
S ∈ {0, 1}n with n = 128. Then we may face a problem with the construction
described in Section 4, as typically the block length τ of a tweakable cipher is
τ = n bits. Appending 0n/2 to a recoverable part would result in r = τ − n/2 =
n/2. This is too short for key wrapping, being half the size of what we need.

The basic idea to resolve the issue is to use a tweakable cipher whose block
length is equal to τ = 3n/2 bits, so that we have r = τ − n/2 = n. Fortu-
nately there exist such tweakable strong pseudo-random permutations (SPRP)
constructed from oridnary n-bit primitives. We refer to the HCTR enciphering
scheme [28]. HCTR gives a variable-block-length, fixed-tweak-size SPRP using
an ordinary n-bit block cipher and a polynomial hash function. In Alg. 1 we
describe the HCTR scheme with the block length being fixed to τ = 3n/2 bits
and the tweak size fixed to ` = n bits.

Chakraborty and Nandi [14] prove the security of HCTR up to the birth-
day bound O(2n/2). They prove that HCTR is indistinguishable from an ideal
tweakable SPRP. To define an ideal tweakable SPRP for the case τ = 3n/2, let
Perm(3n/2) denote the set of permutations on {0, 1}3n/2 and Perm(3n/2)W the
set of functions mapping a tweak space W to Perm(3n/2). An ideal tweakable
SPRP is a collection, index by W, of random permutations π and their inverses
π−1, i.e. an element uniformly drawn from the space Perm(3n/2)W. We define

Advtsprp
HCTR(A) := Pr

[
AẼK1,K2

(·,·),Ẽ−1
K1,K2

(·,·) = 1
]
− Pr

[
Aπ(·,·),π−1(·,·) = 1

]
,

where the first probability is defined over the choice of (K1,K2) ← K(·) and

the second probability over the choice of π
$←− Perm(3n/2)W. Here, we cite their

result when the block length is 3n/2 bits and the tweak size is n bits:

Proposition 1 ([14]). For any adversary A making at most q queries,

Advtsprp

ĤCTR
(A) ≤ 18q2/2n,

where ĤCTR is Alg. 1 with EK1
replaced with an ideal permutation.

6 Verification-Unskippable AE

Now we discuss our main application of message-recovery MACs, namely, ver-
ification-unskippable AE schemes. The motivation behind this notion is that,
in authenticated encryption, we would like to avoid recovering the plaintext
P without verifying the integrity of ciphertext-tag pair (C, T ), intentionally or
unintentionally. Informally, we say that an AE scheme is unskippable if it is
equipped with such a mechanism of disabling decryption prior to verification.

Section 6 is mostly devoted to exploring the possibility and general method-
ology of realizing unskippable AE schemes. We begin with giving the syntax of
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Algorithm 1 HCTR. EK1
is an SPRP over {0, 1}n and GK2

is a polynomial
hash function from ({0, 1}n)∗ to {0, 1}n.

1: function K(·)
2: K1

$←− K1, K2
$←− K2

3: return (K1,K2)
4: end function

1: function ẼK1,K2(W,X) . |X|=3n/2
2: X1‖X2 ← X . |X2|=n/2
3: U ← X1 ⊕GK2(X2‖0n/2‖W )
4: V ← EK1(U)
5: Y2 ← X2 ⊕ msbn/2(EK1(U ⊕ V ))

6: Y1 ← V ⊕GK2(Y2‖0n/2‖W )
7: return Y1‖Y2

8: end function

1: function Ẽ−1
K1,K2

(W,Y ) . |Y |=3n/2
2: Y1‖Y2 ← Y . |Y2|=n/2
3: Y2 ← [Y ]n/2

4: V ← Y1 ⊕GK2(Y2‖0n/2‖W )
5: U ← E−1

K1
(V )

6: X2 ← Y2 ⊕ [EK1(U ⊕ V )]n/2

7: X1 ← U ⊕GK2(X2‖0n/2‖W )
8: return X1‖X2

9: end function

randomized AE schemes in Section 6.1. For the purpose of simpler presentation
we only consider the case without associated data. It is not difficult to include
associated data into our AE constructions, as we shall discuss in Section 8.

6.1 Syntax of Randomized AE Schemes

We consider randomized AE schemes, where the encryption-generation algorithm
is randomized (the verification-decryption algorithm remains deterministic). A
randomized AE scheme ΠΘ is a triplet of algorithms ΠΘ = (K, EG,DV) with a
correctness condition that should be satisfied between the algorithms. The three
algorithms have the following syntax:

1. Key setup. The key setup K is a randomized algorithm that takes no input
and returns a uniformly sampled key K from the key space K. We write K ←
K(·), simply meaning K

$←− K. Typically we have K = K1 × K2 × · · · with
“subkey” spaces K1,K2, . . . and K = (K1,K2, . . .) with subkeys K1,K2, . . .,
depending on “how many” keys the AE construction requires.

2. Encryption-generation. The encryption-generation EG is a randomized,
stateless algorithm keyed by K ∈ K. We have EGK : P → C × T, where P,
C and T denote the plaintext, ciphertext and tag spaces, respectively. Note

that randomization is implicit; we actually have some random element S
$←− S

sampled and used within the algorithm EG, so that at each invocation we
may get different results for EGK(P ) even with the same K and the same P .

3. Verification-decryption. The verification-decryption DV is a determinis-
tic, stateless algorithm keyed by K ∈ K. We have DVK : C× T→ P ∪ {⊥},
where the symbol ⊥ represents verification failure. We demand ⊥ 6∈ P.

As usual we demand the following:
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• Correctness condition. We always have P = DVK(C, T ) if K ← K and
(C, T )← EGK(P ) for any P ∈ P.

The condition says that one should always get the correct plaintext P by the
decryption-verification algorithm DV if the correct K, C and T are used.

AE Indistinguishability and Unforgeability. We define the AE security of
a randomized scheme ΠΘ = (K, EG,DV) via the indistinguishability:

Advae
ΠΘ(A) := Pr

[
AEGK(·),DVK(·,·) = 1

]
− Pr

[
AEGK($),⊥(·,·) = 1

]
, (1)

where the probabilities are taken over the choice of key K ← K(·) and random
coins used by the oracles and the adversary A, if any. Here the oracle EGK($)

accepts a query P ∈ P ⊂ {0, 1}∗, picks a random P ∗
$←− P such that |P ∗| = |P |

and returns C∗ ← EGK(P ∗). The oracle ⊥(·, ·) accepts a query (C, T ) and always
returns the reject symbol ⊥. To avoid a trivial win, adversary A is not allowed
to make a query (C, T ) to its DV-oracle if (C, T ) has been returned by the EG-
oracle. This definition corresponds to nothing but the conventional notion of
security that is most commonly used for AE schemes.

6.2 Discussion on AE Unskippability

Now given the syntax and the conventional security definition, let us come back
to unskippable AE schemes. To capture the notion of AE unskippability, first
we try to give a formal definition.

Trying Extending MRMAC Unskippability Definition to AE. A naive
approach to formalizing AE unskippability is to try extending our definition of
MRMAC unskippability. As a result of such an approach, we obtain nothing but
the notion of RUP security [4]: for “decrypt-anyway” oracle DA, we put

Advrup
ΠΘ,DA(A) := Pr

[
AEGK(·),DAK(·,·) = 1

]
− Pr

[
AEGK(·),$(·,·) = 1

]
, (2)

where the probabilities are defined over the choice of key K ← K(·) and random
coins used by the oracles and the adversary. The oracle $(·, ·) accepts a query

(C, T ), computes P ← DAK(C, T ) and returns a random string P ∗
$←− P such

that |P ∗| = |P |. To avoid a trivial win, adversary A is not allowed to make the
same query to its DA-oracle as returned by the EG-oracle.

Unfortunately, it turns out that the above notion, which is the strongest in
RUP security, is not sufficient for ensuring unskippability. This can be easily seen
by a typical example of the encode-then-encipher scheme: let EK : {0, 1}∗ →
{0, 1}∗ be a variable-length SPRP. The encryption-generation (C, T )← EGK(P )

is defined as C‖T ← EK(S‖0n/2‖P ) with a randomizing string S
$←− {0, 1}n. The

decryption-generation DAK(C, T ) simply computes (S′, B, P ′) ← E−1K (C‖T ),
and returns P ′ if B = 0n/2 or ⊥ otherwise. One can decrypt-anyway by always
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returning P ′ regardless of value B. This encode-then-encipher scheme is RUP
secure. As one can see, verification is done at the “if B = 0n/2” part, which
occurs at the end of DV procedure. By that time, the decryption process (i.e.
computing the plaintext candidate P ′) has already completed, meaning that the
encode-then-encipher scheme is not unskippable.

The above observation is compatible with the word “RUP,” as it stands for
releasing unverified plaintext. In AE schemes that aim for RUP security, it might
be natural to perform decryption and release the plaintext candidate without
verification. Clearly this is not what we are aiming for in this paper.

Re-evaluating the Enc-then-MAC Composition. We have seen that naively
extending the MRMAC unskippability would not work. So we change our direc-
tion. Recall that the basic motivation behind AE unskippability was simple:
we would like to perform “Verify-then-Dec,” rather than “Dec-then-Verify” or
“Dec-and-Verify.” How do we achieve this? We can find our answer in the Enc-
then-MAC composition [10], which has been known for its better composition
security as compared to Enc-and-MAC or MAC-then-Enc. We re-evaluate the
Enc-then-MAC composition by focusing on the order of execution itself.

Naturally, the DV-procedure of an Enc-then-MAC composition ΠΘ should
take the style of Verify-then-Dec, just inverting the EG-procedure (i.e., Enc-then-
MAC). We would like to change this “should” to a “must.” That is, we would
like to force the receiver to perform verification first, and then decryption. We
would like to exclude any possibility that the receiver might change the order
of execution. By closely examining the Enc-then-MAC composition, we reach a
conclusion of using a message-recovery MAC and ensuring the unskippability of
ΠΘ by fulfilling both of the following conditions:

1. The MRMAC part is unskippable. The receiver, who knows the secret
key, cannot recover any information about a string S ∈ S = R unless he
performs the full verification of (C, T ). The string S is the recoverable part.

2. The encryption part is “undecipherable.” The receiver, who knows
the secret key, cannot recover any information about plaintext P without
knowing any information about the string S ∈ S = R (the recoverable part)
that was used to produce the corresponding ciphertext C.

The above two conditions define the unskippability of an AE scheme that takes
the style of Enc-then-MRMAC. The former condition can be met by simply using
an unskippable MRMAC Θ, but it remains unclear what types of encryption
schemes to be combined with and what we formally mean by undecipherability.
We look into these matters using the rest of Section 6.

6.3 One-Time Encryption Schemes

The type of encryption schemes that is suitable for Enc-then-MRMAC turns
out to be the one that uses the string S as a one-time key material. Formally, a
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one-time encryption scheme Π = (S,K, E ,D) is a set of four algorithms with a
correctness condition, as defined in the following:

1. Key-material generation. Our encryption scheme uses a secret random
string S which is uniformly drawn from the space S. We write S ← S(·)
to mean S

$←− S. The string S essentially acts as a key but is one-time,
meaning that S is freshly re-sampled as S ← S(·) upon each execution of
the encryption algorithm E .

2. Key setup (optional). The key setup K simply defines a secret (long-term)

key K. We write K ← K(·) to mean K
$←− K. This is optional; it may be the

case that there is no (long-term) key K. In such a case we set K := {∅}.
3. Encryption. The encryption algorithm E has the syntax ES,K : P → C,

where P and C represent the plaintext and ciphertext spaces, respectively.

4. Decryption. The decryption algorithm D has the syntax DS,K : C→ P.

As usual we require a correctness condition:

• Correctness condition. We always haveDS,K(C) = P whenever S ← S(·),
K ← K(·) and C ← ES,K(P ) for any P ∈ P,

which simply guarantees that one would get the correct plaintext P when de-
crypting a ciphertext C using the same (S,K) as was used when encrypting.

Indistinguishability for One-Time Encryption Schemes. This notion ba-
sically requires that the encryption algorithm E should behave like a random

oracle, if S
$←− S is freshly sampled each time the algorithm is invoked. We define

Advind-cpa
Π (A) := Pr

[
AES(·),K(·) = 1

]
− Pr

[
AES(·),K($) = 1

]
, (3)

where the probabilities are defined over the choice of key K ← K(·), if any,
and random coins used by the oracles and the adversary. The encryption oracle
ES(·),K(·) accepts a query P ∈ P and returns C ← ES,K(P ) where S ← S(·)
is freshly sampled each time the query is made. The oracle ES(·),K($) accepts

a query P ∈ P and picks a random P ′
$←− P such that |P ′| = |P | and returns

C ← ES,K(P ′), where S ← S(·) is freshly sampled each time the query is made.

One-Time Undecipherability Formalization. Recall that by undecipher-
ability we wanted to ensure that the receiver, who knows the (optional) secret
key K, cannot recover any information about plaintext P without knowing any
information about the string S ∈ S that was used to produce the corresponding
ciphertext C. Formalizing such a notion is less challenging than the MRMAC
unskippability as we saw in Section 3, because now we have a secret information

S
$←− S which is not known to the receiver. Still, it turns out that undecipher-

ability is a relatively strong requirement on a one-time encryption scheme Π.
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The notion of one-time undecipherability amounts to a type of indistinguisha-
bility between the decryption oracle and a random oracle, ensuring that the
adversary (receiver) is not obtaining any information about P . We define

Advundec
Π (A) :=

Pr
[
A(K)ES(·),K(·),D$,K(·) = 1

]
− Pr

[
A(K)ES(·),K($), $(·) = 1

]
, (4)

where the decryption oracle D$,K(·) accepts a query C ∈ C, picks a random

S∗
$←− S and returns P ← DS∗,K(C). The random oracle $(·) accepts a query

C ∈ C, picks a random S∗
$←− S, computes P ← DS∗,K(C) and returns a random

plaintext P ∗
$←− P such that |P ∗| = |P |. The probabilities are defined over the

choice of key K ← K(·) and random coins used by the oracles and the adversary.
Note that the key value K is input to adversary A.

One-Time Undecipherability Implies Decryption Indistinguishability.
We briefly point out that one-time undecipherability implies indistinguishability
of the decryption algorithm in the secret-key setting. This result will be used
later when we discuss the security of Enc-then-MRMAC composition. Let us
define another indistinguishability notion for Π by

Advind-cca
Π (A) := Pr

[
AES(·),K(·),D$,K(·) = 1

]
− Pr

[
AES(·),K(·), $(·) = 1

]
, (5)

where the oracles are as defined before, and the probabilities are defined over
the choice of key K and random coins used by the oracles and the adversary.
Note that here the secret key K is not given to adversary A. This notion says
that the decryption algorithm should behave like a random oracle to those who
do not know the secret key K.

Lemma 3. If a one-time encryption scheme Π is undecipherable, then it is
decryption-indistinguishable. That is, for any ind-cca-adversary A making q
queries, there exists an undec-adversary B such that

Advind-cca
Π (A) ≤ Advundec

Π (B), (6)

where B makes at most q queries to the decryption oracle, and the running time
of B is the sum of the running time of A plus the time to execute the encryption
algorithm required to answer the queries made by A.

Proof. The adversary B takes as input a key K and has oracle access to either
D$,K(·) or $(·). We simply let B run A and simulate ES(·),K(·) to answer the
queries made by A. ut

6.4 Formulating Generic Enc-then-MRMAC Composition

Now we are ready to formally state the generic Enc-then-MRMAC composition
for constructing an unskippable AE scheme, binding a one-time, undecipher-
able encryption scheme Π with an unskippable message-recovery MAC Θ. As
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Algorithm 2 Generic Enc-then-MRMAC composition ΠΘ = (K, EG,DV)

1: function K(·)
2: K1 ← K1(·), K2 ← K2(·)
3: return (K1,K2)
4: end function

1: function EGK1,K2
(P )

2: S ← S(·)
3: C ← ES,K1(P ), T ← GK2(S,C)
4: return (C, T )
5: end function

1: function DVK1,K2(C, T )
2: S ← VK2(C, T )
3: if S = ⊥ then
4: return ⊥
5: else
6: P ← DS,K1(C)
7: return P
8: end if
9: end function

expected, we demonstrate that AE unskippability is a stronger notion than the
RUP security. Our composition is generic enough to cover three different con-
structions which will be described in Section 7.

The Enc-then-MRMAC composition uses a one-time encryption scheme Π
and a message-recovery MAC Θ. More specifically, these are:

1. A one-time encryption scheme Π. We have Π = (S,K1, E ,D), with
S ← S(·), S ∈ S, K1 ← K1(·), K1 ∈ K1, ES,K : P→ C and DS,K : C→ P as
described in Section 6.3. This is used to encrypt plaintext P to ciphertext
C using a one-time string S and possibly with a key K.

2. A message-recovery MAC Θ. We have Θ = (K2,G,V), with K2 ← K2(·),
K2 ∈ K2, GK2

: R ×M → T and VK2
: M × T → R ∪ {⊥} as described in

Section 3.1. This is used to produce a tag T from the ciphertext C (as the
non-recoverable message) and the one-time string S (as the recoverable part).

To combine these two schemes, we need the following condition:

• Compatibility requirement. We need to have S = R and C = M.

Now given a one-time encryption scheme Π and a message-recovery MAC Θ
satisfying the compatibility requirement above, we can construct an AE scheme
ΠΘ, which is defined in Alg. 2.

Indistinguishability and Unforgeability for Enc-then-MRMAC. We
show that the Enc-then-MRMAC ΠΘ is AE-secure (indistinguishable and un-
forgeable) if the underlying components Π and Θ are both secure. This corre-
sponds to the well-known Enc-then-MAC composition result [10]. Specifically,
we prove the following composition theorem:

Theorem 4. Let ΠΘ be the Enc-then-MRMAC scheme composed of a one-time
encryption scheme Π and a message-recovery MAC Θ, as described in Alg. 2. If
both Π and Θ are secure, then so is ΠΘ. Specifically, for any AE-adversary A
attacking ΠΘ and making at most qe queries to the EG-oracle and qv queries to
the DV-oracle, there exist adversaries A1, A2 and A3 such that

Advae
ΠΘ(A) ≤ Advind-cpa

Π (A1) + 2 Advind
Θ (A2) + Advmac

Θ (A3), (7)
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Proof. 1: function EG$K1,K2
(P )

2: S ← S(·), C ← ES,K1(P )

3: S∗
$←− S, T ← GK2(S∗, C)

4: return (C, T )
5: end function

1: function E$G$K1,K2
(P )

2: P ∗
$←− P with |P ∗| = |P |

3: S ← S(·), C ← ES,K1(P ∗)

4: S∗
$←− S, T ← GK2(S∗, C)

5: return (C, T )
6: end function

Fig. 5. Intermediate oracles EG$K1,K2
(·) and E$G$K1,K2

(·)

where

• The adversary A1 makes at most qe queries to the encryption oracle. The
running time of A1 is the sum of the running time of A plus the time to
execute K2, G and ⊥ required to answer the queries made by A.

• The adversary A2 makes at most qe queries to the tag-generation oracle.
The running time of A2 is the sum of the running time of A plus the time
to execute K1, E, S and ⊥ required to answer the queries made by A.

• The adversary A3 makes at most qe queries to the tag-generation oracle and
qv queries to the verification-with-recovery oracle. The running time of A3

is the sum of that of A plus the time to execute K1, E, S and D required to
answer the queries made by A.

Let us define “intermediate” oracles EG$K1,K2
(·) and E$G$K1,K2

(·) both of
which accept a query P ∈ P and return (C, T ) ∈ C × T, as described in Fig. 5.
Then we have

Advae
ΠΘ(A)

= Pr
[
AEGK1,K2

(·),DVK1,K2
(·,·) = 1

]
− Pr

[
AEGK1,K2

($),⊥(·,·) = 1
]

(8)

= Pr
[
AEGK1,K2

(·),DVK1,K2
(·,·) = 1

]
− Pr

[
AEG

$
K1,K2

(·),⊥(·,·) = 1
]

+ Pr
[
AEG

$
K1,K2

(·),⊥(·,·) = 1
]
− Pr

[
AEGK1,K2

($),⊥(·,·) = 1
]

(9)

≤Advind
Θ (A2,1) + Advmac

Θ (A3)

+ Pr
[
AEG

$
K1,K2

(·),⊥(·,·) = 1
]
− Pr

[
AEGK1,K2

($),⊥(·,·) = 1
]

(10)

≤Advind
Θ (A2,1) + Advmac

Θ (A3)

+ Pr
[
AEG

$
K1,K2

(·),⊥(·,·) = 1
]
− Pr

[
AE

$G$
K1,K2

(·),⊥(·,·) = 1
]

+ Pr
[
AE

$G$
K1,K2

(·),⊥(·,·) = 1
]
− Pr

[
AEGK1,K2

($),⊥(·,·) = 1
]

(11)

≤Advind
Θ (A2,1) + Advmac

Θ (A3) + Advind-cpa
Π (A1) + Advind

Θ (A2,2), (12)

where we can use Lemma 1 for the conversion from Eq. (9) to Eq. (10). The
adversary A3 makes at most qe queries to the tag-generation oracle and qv
queries to the verification-with-recovery oracle. The running time of A3 is the
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sum of the running time of A plus the time to execute K1, E , S and D required
to answer the queries made by A.

The adversary A2,1 makes at most qe queries to the tag-generation oracle.
The running time of A2,1 is the sum of the running time of A and the time to
execute K1, E , S and ⊥ required to answer the queries made by A.

The adversary A1 makes at most qe queries to the encryption oracle. The
running time of A1 is the sum of that of A plus the time to execute K2, G and ⊥
required to answer the queries made by A. The adversary A2,2 is similar to A2,1.

Now observe that there exists some adversary A2 such that Advind
Θ (A2,1) +

Advind
Θ (A2,2) ≤ 2 Advind

Θ (A2), where A2 makes at most qe queries to the tag-
generation oracle, and the running time of A2 is the sum of the running time of
A plus the time to execute K1, E , S and ⊥ required to answer the queries made
by A. This completes the proof. ut

AE Unskippability Nullifies RUP. By now it is almost clear that AE un-
skippability implies the RUP security; AE unskippability guarantees that there
exists no such thing as “unverified plaintext,” so there is nothing to release.
We formulate this implication in the following theorem; recall that decryption
indistinguishability is implied by decipherability by Lemma 3.

Theorem 5. Let ΠΘ be the Enc-then-MRMAC composition binding a one-time
encryption scheme Π with a message-recovery MAC Θ, as described in Alg. 2.
If Π is decryption-indistinguishable and Θ is both indistinguishable and unskip-
pable, then the composed AE scheme ΠΘ is RUP-secure. Specifically, for any
RUP-adversary A attacking ΠΘ with a decrypt-anyway oracle DA by making
at most qe encryption queries and qd decrypt-anyway queries, there exist adver-
saries A1, A2 and A3 such that

Advrup
ΠΘ,DA(A) ≤ Advind-cca

Π (A1) + 2 Advind
Θ (A2) + Advunskip

Θ (A3), (13)

where

• The adversary A1 makes at most qd decryption queries. The running time
of A1 is the sum of the running time of A plus the time to execute E, K2

and G required to answer the queries made by A.

• The adversary A2 makes at most qe tag-generation queries. The running
time of A2 is the sum of the running time of A plus the time to execute K1,
E, S and D required to answer the queries made by A.

• The adversary A3 makes at most qe tag-generation queries and qd recover-
anyway queries. The running time of A3 is the sum of that of A plus the
time to execute K1, E, S and D required to answer the queries made by A.

Proof. Let us define an intermediate oracle DR$
K1,K2

(C, T ) that accepts a query

(C, T ) and returns P as S∗
$←− S, P ← DS∗,K1

(C). Other than the fact that
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DR$
K1,K2

(C, T ) accepts an extra key K2 and an extra argument T , it is identical
to the D$,K1

(C) oracle. Now we have

Advrup
ΠΘ,DA(A)

= Pr
[
AEGK1,K2

(·),DAK1,K2
(·,·) = 1

]
− Pr

[
AEGK1,K2

(·),$(·,·) = 1
]

(14)

= Pr
[
AEGK1,K2

(·),DAK1,K2
(·,·) = 1

]
− Pr

[
AEG

$
K1,K2

(·),DR$
K1,K2

(·,·) = 1
]

+ Pr
[
AEG

$
K1,K2

(·),DR$
K1,K2

(·,·) = 1
]
− Pr

[
AEGK1,K2

(·),$(·,·) = 1
]

(15)

≤Advunskip
Θ,R (A3) + Advind

Θ (A2,1)

+ Pr
[
AEG

$
K1,K2

(·),DR$
K1,K2

(·,·) = 1
]
− Pr

[
AEGK1,K2

(·),$(·,·) = 1
]

(16)

≤Advunskip
Θ,R (A3) + Advind

Θ (A2,1)

+ Pr
[
AEG

$
K1,K2

(·),DR$
K1,K2

(·,·) = 1
]
− Pr

[
AEG

$
K1,K2

(·),$(·,·) = 1
]

+ Pr
[
AEG

$
K1,K2

(·),$(·,·) = 1
]
− Pr

[
AEGK1,K2

(·),$(·,·) = 1
]

(17)

≤Advunskip
Θ,R (A3) + Advind

Θ (A2,1) + Advind-cca
Π (A1) + Advind

Θ (A2,2), (18)

where from Eq. (15) to Eq. (16) we have used Lemma 2. The adversary A3 runs
A and executes K1, E , S and D to answer the queries made by A. The adversary
A3 makes at most qe tag-generation queries and qd recover-anyway queries.

The adversaryA2,1 runsA and executes K1, E , S and D to answer the queries
made by A. The adversary A2,1 makes at most qe tag-generation queries. The
adversary A2,2 is similar to A2,1.

The adversary A1 runs A and executes K2 and G to simulate oracles of A.
The adversary A1 makes at most qe encryption and qd decryption queries. ut

7 Constructing One-Time Undecipherable Schemes

It remains to come up with actual constructions for one-time undecipherable
encryption schemes. The notion of one-time undecipherability is stronger than
that of the ordinary indistinguishability, and in fact it turns out that many naive
constructions of one-time encryption schemes fail to achieve this requirement.

We start with a counterexample; we show that a naive CTR mode of opera-
tion with a random (and secret) IV does not satisfy one-time undecipherability.
Then we present three different constructions of one-time undecipherable en-
cryption schemes. The first and the third constructions use a block cipher. The
second one is based on Even-Mansour construction [18] and hence uses a pub-
lic permutation. Each has advantages and disadvantages, giving us a tradeoff
between security models in which the construction can be proven and efficiency.

7.1 A Motivating Counterexample of One-Time Undecipherability

We start with a counter (CTR) mode with a random initialization vector (IV)
and show that such a construction is not one-time undecipherable. Throughout
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1: function Ctr IV[EK ](P )
2: (P1, P2, . . . , Pm)← P
3: for i = 1 to m do
4: j ← int(IV ) + i mod 2n

5: J ← 〈j〉n
6: Zi ← EK(J)
7: Ci ← Pi ⊕ msb|Pi|(Zi)
8: end for
9: return C ← C1‖C2‖ · · · ‖Cm

10: end function

1: function EML[π](X)
2: Y ← L⊕ π(L⊕X)
3: return Y
4: end function

1: function FXL[EK ](X)
2: Y ← L⊕ EK(L⊕X)
3: return Y
4: end function

Fig. 6. Left: the CTR mode Ctr IV[EK ] : P 7→ C using a block cipher EK :
{0, 1}n → {0, 1}n with K ∈ K and IV ∈ {0, 1}n, upper right: Even-Mansour con-
struction EML[π] : X 7→ Y using a public permutation π : {0, 1}n → {0, 1}n with
L ∈ {0, 1}n, and lower right: the FX construction FXL[EK ] : X 7→ Y . In the CTR
mode, plaintext P is divided into n-bit blocks with the last block length |Pm| ≤ n.
The symbol int(IV ) represents the integer converted from the bit string IV with the
left most bit being most significant. The symbol 〈j〉n is the n-bit string converted from
integer j < 2n with the most significant bit being the left most. The symbol msb|Pi|(Zi)
denotes the left most |Pi| bits of the string Zi.

Section 7, we use subroutines defined in Fig. 6. Here let us define an encryption
scheme Π = (S,K, E ,D) that is not one-time undecipherable, as follows. Let

S ← S(·) be defined as S
$←− S = {0, 1}n and K ← K(·) as K

$←− K. The
encryption algorithm C ← ES,K(P ) is defined as C ← CtrS [EK ](P ) and the
decryption algorithm P ← DS,K(C) as P ← CtrS [EK ](C).

Let U be a legitimate receiver who knows K. Then the receiver U can easily
break this scheme Π in the sense of one-time undecipherability, by just making
one query to its decryption oracle. The receiver U simply chooses arbitrary
two-block ciphertext C = C1‖C2 and make a query C to its decryption oracle.
Let P = P1‖P2 be the plaintext returned by the oracle. Then the receiver U
computes s1 ← int

(
E−1K (C1⊕P1)

)
− 1 mod 2n and s2 ← int

(
E−1K (C2⊕P2)

)
−

2 mod 2n. Here remember that U knows K. If the decryption oracle is real,
i.e. D$,K(·), then we must have s1 = s2. On the other hand, if the decryption
oracle is random, most likely we get s1 6= s2, thus distinguishing the two oracles.

7.2 Construction #1: One-Time CTR Scheme

What was wrong with the CTR mode with a random IV above? It did not
work because S, which is the only secret information to a legitimate user U
who knows K, was actually working not as a “key” but just as a random IV.
The next scheme ΠOT = (S,K, E ,G) is inspired by this counterexample. The new
scheme ΠOT, which we call the one-time CTR scheme, uses S as a key of the
underlying block cipher E rather than as an IV. The one-time CTR scheme ΠOT

is defined in Alg. 3 and illustrated in Fig. 11.

24



PRP Assumption about Block Cipher. We shall prove that the one-time
CTR scheme ΠOT is IND-CPA and undecipherable under the assumption that
the underlying block cipher is secure. So first we need to define our assumption
about block ciphers. The PRP advantages of a block cipher E is defined as

Advprp
E (A) := Pr

[
AEK(·) = 1

]
− Pr

[
Aπ(·) = 1

]
, (19)

where the probabilities are defined over the choice of key K
$←− K, the choice of

permutation π
$←− Perm(n) and random coins used by the adversary A, if any.

Indistinguishability of One-Time CTR Scheme. We start with the con-
ventional security notion of IND-CPA. We prove it based on the assumption that
the underlying block cipher is a secure PRP.

Theorem 6. The one-time CTR mode ΠOT is IND-CPA if the underlying block
cipher E is a secure PRP. Specifically, for any adversary A making q queries
with each query being at most µ blocks, there is an adversary B such that

Advind-cpa
ΠOT

(A) ≤ q ·Advprp
E (B) +

qµ2

2n+1
,

where B makes at most µ queries to its block cipher oracle and has running time
equal to the sum of the running time of A plus the time to execute ES(·),·(·) to
reply to the queries made by A.

Proof. We define an intermediate oracle Eπ1···πq,·(·) as follows. Let S1, S2, . . . , Sq ∈
S be the values of S induced by the queries made by A, i.e. Si ← S(·). Let

π1, π2, . . . , πq
$←− Perm(n) be independent random permutations on n-bit strings.

Then the oracle Eπ1···πq,·(·) behaves exactly like the real oracle ES(·),·(·) except
that now the block ciphers ES1(·), ES2(·), . . . , ESq (·) are replaced with random
permutations π1(·), π2(·), . . . , πq(·). Now we have

Advind-cpa
ΠOT

(A) = Pr
[
AES(·),·(·) = 1

]
− Pr

[
AEπ1···πq,·(·) = 1

]
(20)

+ Pr
[
AEπ1···πq,·(·) = 1

]
− Pr

[
AES(·),·($) = 1

]
, (21)

and we can bound Eq. (20) ≤ q · Advprp
E (B) with some adversary B making

at most µ queries. To bound Eq. (21), we let ϕ1, ϕ2, . . . , ϕq
$←− Func(n) be in-

dependent random functions on n-bit strings and define an oracle Eϕ1···ϕq,·(·)
accordingly. Then we claim that this oracle Eϕ1···ϕq,·(·) and the random ora-
cle ES(·),·($) result in the exactly same distribution. To see this, we observe

that in the latter oracle, the distribution of “random plaintext” P ∗i
$←− P (i =

1, 2, . . . , q) carries over to the oracle output, because it is just xored with the
mask ESi

(
〈1〉n

)
‖ESi

(
〈2〉n

)
‖ · · · which is independent of P ∗i . Also in the former

oracle, the output is the plaintext Pi xored with the mask ϕi
(
〈1〉n

)
‖ϕi
(
〈2〉n

)
‖ · · ·

which is uniformly random and independent from Pi. So we get Eq. (21) =
Pr
[
AEπ1···πq,·(·) = 1

]
− Pr

[
AEϕ1···ϕq,·(·) = 1

]
≤ q ·

(
µ
2

)
/2n ≤ qµ2/2n+1, using the

PRP/PRF switching lemma. This proves the theorem. ut
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Algorithm 3 One-time CTR scheme ΠOT = (S,K, E ,D)

1: function S(·)
2: S

$←− {0, 1}n
3: return S
4: end function

1: function ES,·(P )
2: return C ← Ctr0[ES ](P )
3: end function

1: function K(·)
2: return ∅
3: end function

1: function DS,·(C)
2: return P ← Ctr0[ES ](C)
3: end function

Undecipherability of One-Time CTR Scheme. Next we prove that the
one-time CTR scheme ΠOT is undecipherable. Owing to the lack of long-term
key K in ΠOT and the duality between the encryption algorithm ES,·(·) and
the decryption algorithm DS,·(·) (i.e. they are identical), we can deduce the
undecipherability of ΠOT almost directly from Theorem 6.

Theorem 7. The one-time CTR scheme ΠOT is undecipherable. Specifically, for
any adversary A making q queries with each query being at most µ blocks, there
is an adversary B such that

Advundec
ΠOT

(A) ≤ 2q ·Advprp
E (B) +

qµ2

2n
,

where B makes at most µ queries to its block cipher oracle and has running time
equal to the sum of the running time of A plus the time to execute ES(·),·(·) and
D$,·(·) to reply to the queries made by A.

Proof. We have

Advundec
ΠOT

(A) = Pr
[
A(∅)ES(·),·(·),D$,·(·) = 1

]
− Pr

[
A(∅)ES(·),·($), $(·) = 1

]
= Pr

[
A(∅)ES(·),·(·),D$,·(·) = 1

]
− Pr

[
A(∅)ES(·),·(·), $(·) = 1

]
(22)

+ Pr
[
A(∅)ES(·),·(·), $(·) = 1

]
− Pr

[
A(∅)ES(·),·($), $(·) = 1

]
, (23)

and Eq. (23) ≤ Advind-cpa
ΠOT

(A). To bound Eq. (22), we note that it amounts to
the indistinguishability between the oracles D$,·(·) and $(·). Now since D$,·(·)
is identical to ES(·),·(·), we get Eq. (22) ≤ Advind-cpa

ΠOT
(A). Hence Advundec

ΠOT
(A) ≤

2 Advind-cpa
ΠOT

(A) ≤ 2qAdvprp
E (B) + qµ2/2n from Theorem 6. ut

7.3 Construction #2: Even-Mansour CTR Scheme

We have seen that the one-time CTR scheme ΠOT is IND-CPA and undecipher-
able. Unfortunately, it has an efficiency problem—every time the encryption or
decryption algorithm is invoked, a new value of S ∈ S is used, which is input to
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the underlying block cipher E as a key. This means that the key schedule of E
needs to be computed upon every encryption or decryption.

This motivates us to consider using the Even-Mansour construction EMS [π],
as defined in Fig. 6, in place of the block cipher ES in ΠOT. We call the resulting
scheme Even-Mansour CTR scheme ΠEM, which is illustrated in Fig. 12. The
scheme ΠEM is free of the key schedule issue. In principle ΠEM can be proven
IND-CPA and undecipherable, but it comes with a tradeoff; its security can be
proven only in the random permutation model, regarding the underlying public

permutation π as a random permutation π
$←− Perm(n).

The PRP security of EMS [π] follows from the analysis by Dunkelman et al. [16].
Basically, EMS [π] is a secure PRP in the random permutation model. However,
we cannot simply combine their result with those in Section 7.2, because our re-
sults are carried out in the standard model. Therefore, strictly speaking, we shall
need to directly prove the IND-CPA and undecipherability of ΠEM in the random
permutation model. Fortunately, Mouha and Luykx [?] have made analysis of
EMS [π] in the multi-user setting, and their results [?, Th.1] almost directly imply
the IND-CPA and undecipherability of ΠEM, with multi-user keys corresponding
to the multiple keys S1, S2, . . . , Sq in our setting.

7.4 Construction #3: FX CTR Scheme

The third construction, unlike the previous two, utilizes a long-term key K ∈ K.
The scheme is based on the one-time CTR ΠOT with the underlying block cipher
being the FX construction [22]. The FX construction FXS [EK ] is defined in
Fig. 6. We call the resulting scheme FX CTR scheme ΠFX, which is illustrated
in Fig. 13. The FX CTR scheme lies between the one-time CTR scheme ΠOT

and the Even-Mansour CTR scheme ΠEM. Namely, the IND-CPA security of the
FX CTR scheme ΠFX can be proven in the standard model, even though the
one-time undecipherability of ΠFX is proven in the ideal cipher model. The FX
CTR scheme uses a block cipher and hence needs to compute the key schedule,
but it only needs to do it once, because the key K is long-term.

The IND-CPA security of ΠFX is simply implied by the indistinguishability
of the CTR mode with a random IV. Here the block cipher key K is kept secret
from the adversary, and S acts as a random IV.

The one-time undecipherability of ΠFX is implied by that of ΠEM; for each key
K ∈ K, which is known to the adversary, we can regard EK as a public random
permutation if we regard E as an ideal cipher. Then FXS [EK ] becomes nothing
but the Even-Mansour construction if the adversary knows K but not S. Hence
the undecipherability immediately follows.

8 Further Extension and Application

8.1 Incorporating Associated Data into Enc-then-MRMAC

It is easy to incorporate associated data A into the generic Enc-then-MRMAC
composition. To do this, let A denote the space of associated data. The compat-
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ibility requirement C = M now changes to the existence of an encoding function
ε : A × C → M with an efficient decoding function ε−1 : M → A × C. We
can then construct EGK1,K2

: A × P → C × T via S ← S(·), C ← ES,K1
(P ),

T ← GK2

(
S, ε(A,C)

)
. An example of ε is ε(A,C) := 〈|A|〉n‖A‖C, where 〈x〉n is

an n-bit representation of integer x, assuming |A| < 2n.

8.2 Application to Layered Protocols

Section 4 proposed MRMAC (a stand alone MAC) and Section 7 proposed its
application to AE. Here we discuss the usage of MRMAC in layered protocols
such as in the OSI reference model.

Setting. There are NL layers from layer 1 (highest) to layer NL (lowest). A
sender in layer 1 wants to send (M1, T1) to a receiver in layer 1, where they share
a secret key. These two players never communicate directly, instead, (M1, T1) is
sent to layer 2. Each middle layer adds a new message Mi to the received one,
and tag Ti is computed possibly by taking (M1, · · · ,Mi, T1, · · · , Ti−1) as input.
If the current layer is not the lowest, (M1, · · · ,Mi, T1, · · · , Ti) is sent to layer
i + 1. Otherwise, it is sent to the receiver side in the lowest layer. The receiver
side checks integrity from the lower to higher layers. Only if verification succeeds,
the data is sent from layer i to i− 1.

Construction. The proposed construction uses the MRMAC proposed in Sec-
tion 4. To recall the construction, given a recoverable part R and a message M ,
MRMAC GK1,K2

(R,M) produces ẼK1
(HK2

(M), R‖0τ−r) as a tag.

Key setup. The keys for the i-th layer, K1,i and K2,i, 1 ≤ i ≤ NL, are chosen
uniformly at random from K1 and K2, respectively.
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Tag generation (illustrated in Fig. 8). For layer 1, a messageM1 ∈M is di-
vided into the r bits of recoverable part Mr

1 ∈ {0, 1}r and the remaining part
M ′1. Namely,M1 = Mr

1 ‖M ′1. A tag T1 is computed by GK1,1,K2,1(Mr
1 ‖0τ−r,M ′1).

Then (M ′1, T1) is sent to layer 2.

For layer i(= 2, 3, · · · , NL), the tag from the previous layer, Ti−1, is di-
vided into r bits T ri−1 and τ − r bits T τ−ri−1 . The tag Ti is computed by
GK1,i,K2,i

(T ri−1‖0τ−r,Mi) and (Mi, Ti) is added to and T ri−1 is removed from

the data to send. Namely, (M ′1,M2, . . . ,Mi, T
τ−r
1 , · · · , T τ−ri−1 , Ti) is sent to

layer i+ 1 when i < NL and sent to the verifier when i = NL.

Verification with recovery. For layer i(= NL, NL − 1, · · · , 2), it first com-
putes P ← Ẽ−1K1,i

(HK2,i
(Mi), Ti). If the least significant τ − r bits of P are

zero, it outputs the most significant r bits of P as T ri−1 and sends it layer
i− 1. Otherwise, it outputs ⊥.

For layer 1, it first computes P ← Ẽ−1K1,1
(HK2,1(M ′1), T1). If the least signifi-

cant τ − r bits of P are zero, it outputs the most significant r bits of P as
Mr

1 . Otherwise, it outputs ⊥.

By hiding T r1 , · · · , T rNL−1, the construction forces the verification order from
layer NL to layer 1 and the execution of verification for all the layers. Encoding
of τ − r bits of zeros in each layer takes a role of intermediate tags. The protocol
can detect in which layer verification failed. In addition, the protocol can stop
immediately when verification fails in some layer.

References

1. Abed, F., Fluhrer, S., Foley, J., Forler, C., List, E., Lucks, S., McGrew, D., Wenzel,
J.: Pipelineable on-line encryption. In: Cid, C., Rechberger, C. (eds.) FSE 2014.
LNCS, Springer (2014)

2. Abed, F., Forler, C., List, E., Lucks, S., Wenzel, J.: RIV for robust authenticated
encryption. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 23–42. Springer
(2016)

3. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Ya-
suda, K.: APE: Authenticated permutation-based encryption for lightweight cryp-
tography. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, Springer (2014)

4. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How
to randomize forged plaintext. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014.
LNCS, Springer (2014)

5. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.:
How to securely release unverified plaintext in authenticated encryption. IACR
Cryptology ePrint Archive 144 (2014)

6. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography and appli-
cation to virus protection. In: Leighton, F.T., Borodin, A. (eds.) STOC 1995. pp.
45–56. ACM (1995)

7. Bellare, M., Keelveedhi, S.: Interactive message-locked encryption and secure dedu-
plication. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 516–538. Springer
(2015)

29



8. Bellare, M., Keelveedhi, S., Ristenpart, T.: Message-locked encryption and secure
deduplication. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 296–312. Springer (2013)

9. Bellare, M., Lysyanskaya, A.: Symmetric and dual prfs from standard assumptions:
A generic validation of an HMAC assumption. IACR Cryptology ePrint Archive
2015, 1198 (2015)

10. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer (2000)

11. Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of triple
encryption. Cryptology ePrint Archive, Report 2004/331 (2004), http://eprint.
iacr.org/2004/331

12. Bernstein, D.: CAESAR Competition. http://competitions.cr.yp.to/caesar.
html (2013)

13. Buonanno, E., Katz, J., Yung, M.: Incremental unforgeable encryption. In: Matsui,
M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 109–124. Springer (2001)

14. Chakraborty, D., Nandi, M.: An improved security bound for HCTR. In: FSE 2008.
pp. 289–302 (2008)

15. Cogliati, B., Lee, J., Seurin, Y.: New MAC constructions from (tweakable) block
ciphers. Presented at Early Symmetric Crypto (ESC) 2017 (2017)

16. Dunkelman, O., Keller, N., Shamir, A.: Minimalism in cryptography: The Even-
Mansour scheme revisited. In: EUROCRYPT 2012. pp. 336–354 (2012)
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A Supplementary Material: Illustration of Examples of
Skippable MRMAC
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Fig. 9. Example #1: a skippable MRMAC construction with hasty recovery
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Fig. 10. Example 2: a skippable MRMAC construction without hasty recovery
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B Supplementary Material: Illustration of One-Time
Undecipherable Encryption Schemes
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Fig. 11. One-time CTR scheme
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Fig. 12. Even-Mansour CTR scheme
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Fig. 13. FX CTR scheme
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