
An extended abstract of this paper appears in ESORICS 2016. In the proceeding version, we have mistakenly removed the tag-based trapdoor
functions from the re-randomizable tagging construction which was in the submission version. Some other minor mistakes have also been corrected.

Efficient Sanitizable Signatures without Random Oracles
(Full Version)

Russell W. F. Lai1, Tao Zhang1, Sherman S. M. Chow1?, and Dominique Schröder2

1 Department of Information Engineering
The Chinese University of Hong Kong

Sha Tin, N.T., Hong Kong
{wflai, zt112, sherman}@ie.cuhk.edu.hk

2 Chair for Applied Cryptography
Friedrich-Alexander University Erlangen-Nürnberg

Erlangen and Nuremberg, Bavaria, Germany
dosc@cs.fau.de

March 23, 2017

Abstract. Sanitizable signatures, introduced by Ateniese et al. (ESORICS ’05), allow the signer
to delegate the sanitization right of signed messages. The sanitizer can modify the message and
update the signature accordingly, so that the sanitized part of the message is kept private. For a
stronger protection of sensitive information, it is desirable that no one can link sanitized message-
signature pairs of the same document. This idea was formalized by Brzuska et al. (PKC ’10) as
unlinkability, which was followed up recently by Fleischhacker et al. (PKC ’16). Unfortunately, the
existing generic constructions of sanitizable signatures, unlinkable or not, are based on building
blocks with specially crafted features of which efficient (standard model) instantiations are absent.
Basing on existing primitives or a conceptually simple primitive is more desirable.
In this work, we present two such generic constructions, leading to efficient instantiations in the
standard model. The first one is based on rerandomizable tagging, a new primitive which may
find independent interests. It captures the core accountability mechanism of sanitizable signatures.
The second one is based on accountable ring signatures (CARDIS ’04, ESORICS ’15). As an
intermediate result, we propose the first accountable ring signature scheme in the standard model.

1 Introduction

Regular signatures are non-malleable. It is infeasible to maul a valid message-signature pair (m,σ) into a
modified pair (m′, σ′) that passes the verification. However, a controlled form of malleability can be de-
sirable in many settings, such as research study on sanitized Internet traffic or anonymized medical data,
commercial usages that replace advertisements in authenticated media streams, or updates of reliable
routing information [ACdT05]. Sanitizable signatures, introduced by Ateniese et al. [ACdT05], support
controlled malleability. The signer can specify parts of a (signed) message which a designated third party,
called the sanitizer, can change and then adapt the signature accordingly. Brzuska et al. [BFF+09] for-
malized five security properties, including privacy which states that the sanitized part of the message
cannot be recovered from a sanitized signature. A strictly stronger property, called unlinkability, was sug-
gested one year later [BFLS10]. Unlinkability ensures that one cannot link sanitized message-signature
pairs of the same document. It is particularly important in the motivating applications which sanitize
data for privacy [ACdT05] as it prevents the attacker from combining information of several sanitized
versions of a document for reconstructing (parts of) the original document. Such linkage is useful for
de-anonymization.

Unlinkable sanitizable signatures was then constructed [BFLS10] from group signatures having the
specific property that the keys of the signers can be computed independently even before seeing the keys
of the group manager. Although this property was defined in the seminal work of Bellare, Micciancio, and
Warinshi [BMW03], in a typical application of group signature, the group is formed first and the signers
join the group later. This order is even exploited for gaining efficiency in building group signature scheme
? Corresponding Author

via the notion of certified signatures [Gro07]. In a very recent study of Fleischhacker et al. [FKM+16], to
instantiate the generic construction of Brzuska et al. [BFLS10], they need to use an inefficient scheme
based on the random oracle model (ROM) and generic group model (GGM) [FY05], or look into the
details of the scheme [Gro07] and perform the adaption accordingly to fit with the special requirement.
This diminishes the benefits of a generic construction. Although the scheme [Gro07] is proven in the
standard model without random oracles, the proof requires the adversary to only perform group opera-
tions on the given elements (generic group model or GGM). No existing simple assumption supports the
proof. Their study suggested that, to this date, no efficient group signature scheme that has the required
properties is known, which also means that no efficient unlinkable sanitizable signature scheme is known.
In response, they gave another generic construction from signatures with re-randomizable keys, which is
very efficient when instantiated with Schnorr signature, yet with security argued with the ROM heuris-
tics. Unfortunately, the re-randomizable keys property is also an unusual property, as showcased by the
original authors [FKM+16] that two pairing-based short signature schemes cannot serve as a building
block. This leaves limited and unsatisfactory choices of schemes:
– having a subset of the security properties [ACdT05, BFF+09],
– relying on the ROM [FKM+16],
– secure without ROM, but building upon inefficient construction [BFLS10].

1.1 Our Contribution

Our main result is closing the research gap, presenting the first efficient (unlinkable) sanitizable sig-
nature schemes which are secure in the standard model. In fact, we propose two very different generic
constructions which are both simple. Our study also gives several new results that are of independent
interests.

Generic Constructions. We propose two fundamentally different generic constructions. The first generic
construction is based on rerandomizable tagging, a new notion which may find independent applications.
Indeed, it can be considered as a dual notion of double-trapdoor anonymous tag [ACHO13], a primitive
proven to be useful for privacy-oriented authorship management mechanism. In particular, using it in a
generic construction of traceable signature schemes allows the signer (or the group manager on behalf)
to deny the authorship of a signature [ACHO13].

While both our tags and the public-keys expected by the signature scheme required in the previous
generic construction [FKM+16] are “re-randomizable”, we believe that our formulation captures the
essential functionality to achieve accountability, for both creation and sanitization. This leads to our
conceptually simple generic construction, in which the rerandomizable tagging scheme takes care of the
accountability, and regular signature schemes for the signing functionality. Using only basic primitives
and our new rerandomizable tagging without any zero-knowledge proofs, this construction is very efficient
and achieves privacy, in the standard model and under only the relatively simpler static assumptions.

Our second generic construction, which achieves unlinkability, is based on accountable ring signa-
tures [XY04]. In contrast to the existing generic construction from group signatures [BFLS10], where the
latter is required to satisfy some special property, our construction relies on an existing notion which can
be used as-is. One can immediately instantiate our construction by a recent scheme [BCC+15], which
yields an efficient unlinkable sanitizable signature scheme in the ROM. As an extra feature, this generic
construction naturally supports multiple sanitizers [CJL12].

Accountable Ring Signatures in the Standard Model. Aiming at constructing unlinkable sanitizable sig-
natures in the standard model, we also construct the first accountable ring signature scheme in the
standard model. The assumption required by this scheme is a q-type assumption due to the membership
proof [BDR15]. Our scheme inherits the constant signature size (with respect to number of members
in the ring) from non-accountable schemes in the literature [BDR15]. The existing scheme [BCC+15]
only relies on the (static) decisional Diffie-Hellman assumption yet requires a logarithmic signature size.
Due to the existing results [BCC+15, BCC+16], it also leads to a constant-size instantiation of a strong
variant of fully dynamic group signatures, in which group manager not only can enroll, but also revoke
group members.

2

1.2 Related Work

Ateniese et al. [ACdT05] informally describe the following properties of sanitizable signatures. Unforge-
ability says that signatures can only be created by honest signers and sanitizers. Immutability demands
only designated parts of the message can be modified by the (malicious) sanitizer. Transparency ensures
the indistinguishability of signatures computed by the signer and the sanitizer (or more precisely, they
are indistinguishable to public verifiers, i.e., anyone other than the signer and the sanitizer themselves).
Accountability means that neither the malicious signer nor the malicious sanitizer can deny authorship
of the message. When the need arises, the signer can generate a proof of authorship.

These requirements were formalized by Brzuska et al. [BFF+09]. Since then, many works formalize
various other properties. Note that transparency ensures that any public verifier cannot even notice if the
message has been sanitized. Unlinkability, introduced by Brzuska et al. [BFLS10], takes a step further
in which a sanitized signature cannot be linked to its original version. This is crucial for privacy.

It is tricky to get a right balance of accountability and transparency. Canard et al. [CLM08] addressed
the lack of accountability in the seminal work [ACdT05], yet at the cost of transparency. On the other
hand, unconditional transparency is often undesirable, which motivates the need for accountability. The
original accountability notion [ACdT05, BFF+09] is interactive since it needs the participation of the
signer. A non-interactive version was later proposed [BPS12], which allows a third party to determine
if a message originates from the signer or the sanitizer, without any help from the signer. Nevertheless,
non-interactive accountability and transparency cannot be achieved simultaneously [FKM+16], so we
focus on schemes that have (interactive) accountability and transparency.

Holding the sanitizer accountable is a measure after the fact. Another idea is to limit the allowable
sanitization [KL06, CJ10]. However, unlinkability in this setting is even more complicated. For instance,
one may want to also conceal the sets of allowed modifications [BPS13]. Yet, it appears to be difficult
to construct such a scheme efficiently. Recently, Derler and Slamanig [DS15] suggested an intermediate
notion (weaker than unlinkability but stronger than privacy) as a compromise for achieving efficient
construction. We remark that Canard et al. [CJL12] considered multiple signers and sanitizers, with
construction based on group signatures.

Malleable signatures were considered in many variations, such as homomorphic signatures [JMSW02,
Cat14], which allows public evaluation of functions on more than one signed messages, or redactable
signatures [JMSW02, BBD+10], which allows parts of the message to be removable. They aim to
solve related but different problems, and are not directly applicable in our motivating scenarios as
discussed [ACdT05, BFF+09, BFLS10, FKM+16].

Delegation of signing right is considered in proxy signatures [BPW12]. Yet, the signatures produced
by the proxy are often publicly distinguishable from signatures created by the designator, which violates
the transparency property of sanitizable signatures. Recent advances such as (delegatable) functional
signatures [BMS16] associate the signing right with a policy specifying which messages can be signed, or
even arbitrary functions to be applied on the key and the messages, such that the policy or the function
remain hidden. These works show theoretical solutions, but are too slow for practical use.

2 Rerandomizable Tagging Schemes

At a high level, the core of a sanitizable signature is a cryptographic object which is computed by the
signer with some secret information embedded. This object can can be rerandomized by the sanitizer
many times in an indistinguishable way. In addition, when the sanitizer changes the object, it will no
longer match with the embedded secret, indicating that the signature is sanitized.

To capture the above functionality, we introduce a new primitive called rerandomizable tagging. In a
rerandomizable tagging scheme, the tag issuer I generates a tag τ using its private key skI with respect
to a user public key pkU. The user U can then use its own private key skU to rerandomize the tag which
looks indistinguishable from the one issued by the issuer. When necessary, however, the tag issuer can
generate a proof π to claim or deny the authorship of a (rerandomized) tag.

2.1 Definition of Rerandomizable Tagging Schemes

In this section, we formalize the notion of rerandomizable tagging schemes.

3

Definition 1 (Rerandomizable Tagging Schemes). A rerandomizable tagging scheme RT =
(TGenI,TGenU,Tag,ReTag,TVer,TProv,TJud) consists of seven efficient algorithms:
Key Generation. The key generation algorithms for the issuer and the user respectively both create a
public/private key pair: (pkI, skI)← TGenI(1λ), (pkU, skU)← TGenU(1λ).
Tagging. The tagging algorithm takes as input an issuer private key skI, a user public key pkU, and a
message m ∈ {0, 1}∗. It outputs a tag τ ← Tag(skI, pkU,m).
Re-Tagging. The re-tagging algorithm takes as input the issuer public key pkI, a user private key skU,
two messages m,m′ ∈ {0, 1}∗, and a tag τ . It outputs a new tag τ ′ ← ReTag(pkI, skU,m,m

′, τ).
Verification. The verification algorithm takes as input the issuer public key pkI, a user public key pkU,
a message m ∈ {0, 1}∗, and a tag τ . It outputs a bit b← TVer(pkI, pkU,m, τ).
Proof. The proof algorithm takes as input the issuer private key skI, a user public key pkU, a message
m ∈ {0, 1}∗, and a tag τ . It outputs a proof π ← TProv(skI, pkU,m, τ).
Judge. The judge algorithm takes as input the issuer and user public keys pkI, pkU, a message m ∈
{0, 1}∗, a tag τ , and a proof π. It outputs a decision d ∈ {I, U} indicating whether the tag was created by
the issuer or the user: d← TJud(pkI, pkU,m, τ, π).

We define correctness of rerandomizable tagging as follows:

Definition 2 (Correctness). A rerandomizable tagging scheme RT is correct if, for all parameters λ ∈
N, for all messages m,m′ ∈ {0, 1}∗, for all keys generated from (pkI, skI)← TGenI(1λ) and (pkU, skU)←
TGenU(1λ), for all tags generated from τ ← Tag(skI, pkU,m) and τ ′ ← ReTag(pkI, skU,m,m

′, τ), it holds
that TVer(pkI, pkU,m, τ) = 1 and TVer(pkI, pkU,m

′, τ ′) = 1. Furthermore, for all proofs generated from
π ← TProv(skI, pkU,m, τ) and π′ ← TProv(skI, pkU,m

′, τ ′), it holds that TJud(pkI, pkU,m, τ, π) = I and
TJud(pkI, pkU,m

′, τ ′, π′) = U.

2.2 Security of Rerandomizable Tagging Schemes

Rerandomizable tagging schemes abstract the core properties of sanitizable signatures. Therefore,
their security properties, namely, (proof-restricted) privacy, accountability, and (proof-restricted)
transparency, follow from the corresponding ones of sanitizable signatures [BFF+09]. For sanitizable
signatures, (proof-restricted) transparency implies (proof-restricted) privacy. We therefore omit the
definition of the latter.

Accountability. This property demands that the origin of a (possibly rerandomized) tag should be un-
deniable. We distinguish between issuer-accountability and user-accountability. The former says that, if
a tag has not been rerandomized, then a malicious issuer cannot make the judge accuse the user. In the
issuer-accountability game, a malicious issuer ATag gets a user public key pkU as input and has access
to a re-tagging oracle, which takes as input tuples (pkI,i,mi,m

′
i, τi) and returns τ ′i . Eventually, ATag

outputs a tuple (pk∗I ,m∗, τ∗, π∗) and wins the game if TJud accuses the user of the new key pk∗I with a
valid tag τ∗ on the message m∗.

Definition 3 (Issuer-Accountability). A rerandomizable tagging scheme RT is issuer-accountable
if, for all PPT adversaries ATag, the probability that the experiment Iss-AccRTATag

(λ) outputs 1 is negligible
(in λ), where

Experiment Iss-AccRTATag
(λ)

(pkU, skU)← TGenU(1λ); (pk∗I ,m∗, τ∗, π∗)← A
ReTag(·,skU,·,·,·)
Tag (pkU)

where (pkI,i,mi,m
′
i, τi) and τ ′i denote the queries and answers to and from oracle ReTag.

Output 1 if for all i the following holds:
(pk∗I ,m∗) 6= (pkI,i,m

′
i) ∧ TVer(pk∗I , pkU,m

∗, τ∗) = 1 ∧ TJud(pk∗I , pkU,m
∗, τ∗, π∗) 6= I

else output 0.

In the user-accountability game, AReTag models a malicious user with access to Tag and TProv oracles.
It succeeds if it outputs a key pk∗U , a message m∗, and a tag τ∗, such that (pk∗U ,m∗) is different from
(pkU,i,mi) previously queried to the Tag oracle. Moreover, the proof π∗ produced by the issuer via TProv
is required to lead the judge to decide “I”, i.e., the tag was created by the issuer.

4

Definition 4 (User-Accountability). A rerandomizable tagging scheme RT is user-accountable if,
for all PPT adversaries AReTag, the probability that the experiment Usr-AccRTAReTag

(λ) evaluates to 1 is
negligible (in λ), where

Experiment Usr-AccRTAReTag
(λ)

(pkI, skI)← TGenI(1λ); (pk∗U ,m∗, τ∗)← A
Tag(skI,·,·),TProv(skI,·,·,·)
ReTag (pkI)

where (pkU,i,mi) and τi denote the queries and answers of oracle Tag.
π ← TProv(skI, pk∗U ,m∗, τ∗)
Output 1 if for all i the following holds:

(pk∗U ,m∗) 6= (pkU,i,mi) ∧ TVer(pkI, pk∗U ,m∗, τ∗) = 1 ∧ TJud(pkI, pk∗U ,m∗, τ∗, π) 6= U
else output 0.

Transparency. This property says that one cannot decide if a tag has been rerandomized or not. Formally,
this is defined in a game where an adversary A has access to Tag, ReTag, and TProv oracles to create
(rerandomized) tags and learn the proofs. In addition, A gets access to a Tag/ReTagb(·, ·) oracle with a
secret random bit b ∈ {0, 1} embedded which, on input a messages m and m′, behaves as follows:
– for b = 0 runs the tagging algorithm to create τ ← Tag(skI, pkU,m), then runs the re-tagging

algorithm τ ′ ← ReTag(m,m′, pkI, skU, τ) and returns the rerandomized tag τ ′;
– for b = 1 runs the tagging algorithm to create τ ′ ← Tag(skI, pkU,m

′), then returns the tag τ ′.
Eventually, the adversary A eventually produces an output a as a guess for b. A rerandomizable tagging
is transparent if for all efficient algorithms A the probability for a right guess a = b in the above game is
negligibly close to 1

2 . Following [BFLS10], we define a relaxed version called proof-restricted transparency,
where the attacker is not allowed to query the challenge messages received from the challenge oracle
Tag/ReTagb(·, ·).

Definition 5 ((Proof-Restricted) Transparency). A rerandomizable tagging scheme RT is proof-
restrictedly transparent if, for all PPT adversaries A, the probability that the experiment TransRTA (λ)
returns 1 is negligibly close to 1

2 (in λ).

Experiment TransRTA (λ)
(pkI, skI)← TGenI(1λ); (pkU, skU)← TGenU(1λ); b← {0, 1}
a← ATag(skI,·,·),ReTag(·,skU,·,·,·),TProv(skI,·,·,·),Tag/ReTagb(·,·)(pkI, pkU)
Output 1 if

(
a = b ∧MTag/ReTag ∩MTProv = ∅

)
else output 0

where MTag/ReTag and MTProv denote the sets of messages output from and
queried to oracles Tag/ReTagb and TProv respectively.

3 Construction of Rerandomizable Tagging Schemes

We describe a rerandomizable tagging construction based on double-trapdoor chameleon hash-
ing [CDFG08], a variant of tag-based trapdoor functions to be defined below, and an extractable public
key encryption scheme (Appendix A). A double-trapdoor chameleon hash function is a chameleon hash
function [KR00] with an efficient algorithm which takes as input a pair of collisions and outputs one of
the trapdoors. Its formal definition can be found in Appendix A.

3.1 Tag-based Trapdoor Functions

We define our required variant of tag-based trapdoor functions.

Definition 6 (Tag-based Trapdoor Functions). A tag-based trapdoor function is a tuple of PPT
algorithms TD = (TDGen,TDEval,TDInv) that are defined as follows:
TDGen(1λ): The key generation algorithm returns a key-pair (pk, sk).
TDEval(pk, µ, ρ): The evaluation algorithm takes as input the public key pk, a tag µ, and a pre-image ρ

in some domain D. It outputs an image y.
TDInv(sk, µ, y): The inversion algorithm takes as input the secret key sk, a tag µ, and an image y. It

outputs a pre-image ρ such that y = TDEval(pk, µ, ρ).

For our purpose, we need tag-based trapdoor functions where it is efficiently possible to sample elements
from the domain and pre-image.

5

Definition 7 (Domain and Pre-image Sampling). A tag-based trapdoor function TD =
(TDGen,TDEval,TDInv) has an efficiently samplable domain and pre-image space, if there exists
an efficiently samplable distribution χ over the domain D, such that TDInv(sk, µ, y) samples ρ from the
conditional distribution of χ given y = TDEval(pk, µ, ρ).

Security of Tag-based Trapdoor Functions In the following, we define a security property called collision-
resistance under selective-tag adaptive-image attacks, which is inspired by the existential unforgeability
under selective chosen message attack of digital signatures. Indeed, if the images yi are all identical to
some y and are determined by the challenger instead of the adversary, one can interpret (pk, y) as the
public key of a signature scheme, and ρi as a signature of the message µi.
Definition 8 (Collision-Resistant under Selective-Tag Adaptive-Image Attacks). A tag-based
trapdoor function TD = (TDGen,TDEval,TDInv) has is collision-resistant under selective-tag adaptive-
image attacks if for all PPT adversary A which makes any Q number of queries, the probability of it
winning the following security game is negligible: The adversary A chooses Q distinct tags (µ1, . . . , µQ)
that it wishes to invert. The challenger C receives the tags, generates the key pair (pk, sk), and sends
the public key pk to A. A can adaptively choose images yi from i = 1 to Q. Upon receiving yi, C runs
ρi ← TDInv(sk, µi, yi) and sends ρi to A. After answering all Q queries, A outputs ((µ∗1, ρ∗1), (µ∗2, ρ∗2)). It
wins the game if TDEval(pk, µ∗1, ρ∗1) = TDEval(pk, µ∗2, ρ∗2), (µ∗1, ρ∗1) 6= (µ∗2, ρ∗2), and µ∗1, µ∗2 /∈ (µ1, . . . , µQ).
Our variant of tag-based trapdoor functions can be constructed similar to the construction of a selectively
secure signature scheme from lattice-based trapdoor functions [MP12, Section 6.2]. For completeness, we
describe the construction in Appendix B.

3.2 Informal Description of the Construction of Rerandomizable Tagging Schemes

In our construction, the user public key mainly consists that of a tag-based trapdoor function and a
tag τ of a message m of the randomness ρ1 and ρ2. The first randomness ρ1 is for deriving a (random)
hash value µ of the message m. The hash value µ is used as a tag and evaluated with ρ2 in the trapdoor
function to give an image y. The values µ and y are absent from the rerandomizable tag, but are implicitly
fixed by the tuple (m, ρ1, ρ2).

To allow proving of the tag authorship later, the issuer prepares the randomness ρ1 and ρ2, and
other auxiliary information, using the following procedures: It first obtains random seeds ri for i = 1, 2, 3
by evaluating a pseudorandom function on random inputs qi, then applies a pseudorandom generator
on r1 and r2, and uses them as the randomness ρ1 for the random hash and pre-image ρ2 for the
trapdoor function respectively. The last randomness r3 is used for generating a ciphertext c of the
message m. It then generates a signature σ for the tuple (pkU, y, q1, q2, q3, c), and outputs the tag τ :=
(ρ1, ρ2, q1, q2, q3, c, σ). Observe that only the values ρ1 and ρ2 can be changed by the user. In the case
of dispute, the issuer can recover the qi’s and hence the ri’s from the tag, and use the ri’s as the
proof of (non-)authorship. The pseudorandomness r1, r2, and r3 allow the judge to compute the original
pseudorandomness ρ1 and ρ2 using the pseudorandom generator, and extract the original message m
from the ciphertext. It can thus verify the authorship of the tag. The extractability of the encryption
scheme makes the proof algorithm “history-free”.

To rerandomize a tag for a message m into a tag for another message m′, the user first recovers the
values µ and y from the tuple (m, ρ1, ρ2). It then computes a random digest µ′ of m′. Finally, it uses the
trapdoor to sample a pre-image ρ′2 of y with tag µ′.

The above approach almost works except an annoying problem: In the proof of issuer-accountability,
the simulator must first commit to a set of µi’s, and hope that the adversary forges a tag with respect
to µ∗ outside of this set, which it is not obliged to do so. To resolve this obstacle, we require that the
string µ to be computed by a double-trapdoor chameleon hash function specified in the user public key.
We note that the trapdoors for the chameleon hash function are not used except in the security proof. In
this way, if the adversary comes up with a µ∗ inside the set chosen by the simulator, the latter can recover
the second trapdoor of the hash function and thus break the collision-resistance of the hash function.

3.3 Formal Description of the Construction of Rerandomizable Tagging Schemes

Let F : {0, 1}λ × {0, 1}∗ → {0, 1}λ be a pseudorandom function, g1 : {0, 1}λ → {0, 1}2λ be a pseudoran-
dom generator, g2 : {0, 1}λ → D be a sampler of the domain D of TD, C = (CGen,TCGen,CEval,CInv)

6

TGenI(1λ)

K ← {0, 1}λ

(pkΣ , skΣ)← SGen(1λ)
pkI := pkΣ
skI := (K, skΣ)
return (pkI, skI)

TGenU(1λ)

(pkC, skC,0, skC,1)← CGen(1λ)

(pkTD, skTD)← TDGen(1λ)

(pke, ske)← EGen(1λ)
pkU := (pkC, pkTD, pke)
skU := (skC,0, skTD, ske)
return (pkU, skU)

ReTag(pkI, skU,m,m
′, τ)

µ← CEval(pkC,m; ρ1)
y ← TDEval(pkTD, µ, ρ2)

ρ′1 ← {0, 1}2λ

µ′ ← CEval(pkC,m
′; ρ′1)

ρ′2 ← TDInv(skTD, µ
′, y)

τ ′ := (ρ′1, ρ′2, q1, q2, q3, c, σ)
return τ ′

Tag(skI, pkU,m)

qi ← {0, 1}λ, i ∈ {1, 2, 3}
ri ← F (K, qi), i ∈ {1, 2, 3}
ρi ← gi(ri), i ∈ {1, 2}
µ← CEval(pkC,m; ρ1)
y ← TDEval(pkTD, µ, ρ2)
c← Enc(pke,m; r3)
η := (pkU, y, q1, q2, q3, c)
σ ← SSig(skΣ , η)
τ := (ρ1, ρ2, q1, q2, q3, c, σ)
return τ

Ver(pkI, pkU,m, τ)

µ← CEval(pkC,m; ρ1)
y ← TDEval(pkTD, µ, ρ2)
η := (pkU, y, q1, q2, q3, c)
b← SVer(η, σ, pkΣ)
return b

TProv(skI, pkU,m, τ)

ri ← F (K, qi), i ∈ {1, 2, 3}
π := (r1, r2, r3)
return π

TJud(pkI, pkU,m, τ, π)

parse π = (r′1, r′2, r′3)
ρ′i ← g(r′i), i ∈ {1, 2}
m′ ← Ext(pke, c, r3)
µ← CEval(pkC,m; ρ1)
y ← TDEval(pkTD, µ, ρ2)
µ′ ← CEval(pkC,m

′; ρ′1)
y′ ← TDEval(pkTD, µ, ρ

′
2)

if y = y′∧
(µ, ρ2) 6= (µ′, ρ′2) then
return d = U

else
return d = I

endif

Fig. 1. Our rerandomizable tagging scheme

be a double-trapdoor chameleon hash which hashes messages m ∈ {0, 1}∗ with randomness ρ ∈ {0, 1}2λ,
TD = (TDGen,TDEval,TDInv) be a tag-based trapdoor function, E = (EGen,Enc,Dec,Ext) be an ex-
tractable public key encryption scheme, and Σ = (SGen,SSig,SVer) be a signature scheme. We construct
a rerandomizable tagging scheme RT as shown in Figure 1. The correctness of RT follows those of the
building blocks.

Theorem 1. If one-way function exists, then RT is user-accountable. If C is collision-resistant, and
TD is collision-resistant under selective-tag adaptive-image attacks, then RT is issuer-accountable. If
one-way function exists, E is CPA-secure, and TD supports domain and pre-image sampling, then RT
is proof-restrictedly transparent.

We refer the readers to Appendix E for the detailed proof.

4 Accountable Ring Signatures

Accountable ring signatures allow both spontaneous group formulation as ring signatures and desig-
nated opening of signer identity as group signatures. Xu and Yung [XY04] introduced this primitive.
Bootle et al. [BCC+15] recently formalized it, and gave both a generic construction and an efficient
instantiation in the random oracle model. We follow the definitions of Bootle et al. [BCC+15], which can
be found in Appendix C.

We adopt the ring signature scheme of Bose et al. [BDR15] (referred to as BDR hereinafter),
which in turn uses the full Boneh-Boyen (FBB) signature scheme [BB04] for signing hash values out-
put by a collision-resistant hash function H1 : {0, 1}∗ → Zn. We transform BDR into an account-
able ring signature scheme RS, described in Figure 2 and 3, by using a structure-preserving encryp-

7

RSetup(1λ)

(crs,G, xk)← GSSetup(1λ) where
G = (n,G1,G2,GT , e, ê, g1, g2)
β ← Z∗n

qSDH := (g1, g
β
1 , g

β2

1 , . . . , gβ
q

1)

pp := (1λ,G, crs, qSDH, gβ2)
return pp

ROKGen(pp)

(opk, osk)← EGen(1λ)
return (opk, osk)

RUKGen(pp)

sk := (a, b)← Z2
n

A := ga2

B := gb2

qa := a2 mod n
qb := b2 mod n
pk := (A,B, qa, qb)
return (pk, sk)

ROpen(osk,m,R, σ) where R = {pki = (qi,a, qi,b)}ki=1

A∗ ← Dec(osk, ea)
B∗ ← Dec(osk, eb)
if ∃ i, qa, qb s.t. pki = (A∗, B∗, qa, qb) then
φda ← GSProv({A∗ = Dec(osk, ea)}, osk)
φdb ← GSProv({B∗ = Dec(osk, eb)}, osk)
pk∗ := pki
ψ := (φda , φdb)
return (pk∗, ψ)

else
return ⊥

endif

RJud(opk,m,R, σ, pk∗, ψ) where R = {pki = (qi,a, qi,b)}ki=1

cda ← GSVer({A∗ = Dec(osk, ea)}, φda)
cdb ← GSVer({B∗ = Dec(osk, eb)}, φdb)
return cda ∧ cdb

Fig. 2. Our accountable ring signature scheme - Part I

tion scheme SPE = (EGen,Enc,Dec) of Camenisch et al. [CHK+11] which is secure against chosen-
ciphertext attack (CCA). We use a collision-resistant hash function H2 : Zn → G1 to create the labels
for SPE . Roughly, we encrypt the public key and prove using the Groth-Sahai proof system [GS08]
GS = (GSSetup,GSProv,GSVer) that the encrypted key matches with the one for verifying the BDR sig-
nature. A tracing authority holding the decryption key can identify the real signer. BDR ring signature
requires composite order group, so our accountable ring signature is also constructed in a composite
order group setting. Our scheme inherits the nice features of BDR, including constant signature size
and security without random oracles. We underline the witness components in the statement to be
proven by Groth-Sahai proof system. The details of SPE and Groth-Sahai proof system can be found in
Appendix A.

Analysis. The correctness of RS follows those of BDR ring signatures and the proof on SPE ciphertexts.
The efficiency of RS depends on the instantiation of the Groth-Sahai proof. Instantiating SPE and our
accountable ring signature scheme with a composite order group, and the Groth-Sahai proof system with
the symmetric external Diffie-Hellman (SXDH) assumption [GS08], the signing algorithm RSig() requires
121 multiplications, 102 exponentiations (including the commitments for the proofs), and 10 pairings.

Theorem 2. If GS is sound and the underlying scheme [BDR15] is unforgeable, then RS is unforgeable.
If SPE is CCA-secure, and GS is hiding, then RS is CCA-anonymous under full key exposure. If GS
is complete, and SPE is perfectly correct, then RS is traceable. If GS is sound, and SPE is perfectly
correct, then RS has tracing soundness.

We refer the readers to Appendix F for the detailed proof.

5 Constructions of Sanitizable Signatures

Syntax. Sanitizable signature schemes allow the delegation of signing capabilities to a sanitizer. These
capabilities are realized by letting the signer “attach” a description of the admissible modifications for

8

RSig(opk,m,R, sk) where R = {pki = (qi,a, qi,b)}ki=1 and pk ∈ R

m′ ← H1(m||{pki}); ρ← Zn \ {
−a+m′

b
}; ∆← g

1
a+ρb+m′
1

Ra := (q1,a, . . . , qk,a); Rb := (q1,b, . . . , qk,b)
Wa ← MemWit(pp, qa,Ra); Wb ← MemWit(pp, qb,Rb)
φmema ← MemProv(pp,Ra,Wa); φmemb ← MemProv(pp,Rb,Wb)
φqa ← GSProv({qa = a2}, (qa, a)); φqb ← GSProv({qb = b2}, (qb, b))

φpka ← GSProv({A = g
a
2}, (A, a)); φpkb ← GSProv({B = g

b
2}, (B, b))

ea ← Enc(opk, H2(m′), A; ra); eb ← Enc(opk, H2(m′), B; rb)
φea ← GSProv({ea = Enc(opk, H2(m′), A; ra)}, (A, ra))
φeb ← GSProv({eb = Enc(opk, H2(m′), B; rb)}, (B, rb))

φsig ← GSProv({Bρ = B′ ∧ e(∆,A)e(∆,B′)e(∆, gm
′

2) = e(g1, g2)}, (∆,A,B,B′))
return σ := (ρ, ea, eb, φmema , φmemb , φsig, φqa , φqb , φpka , φpkb , φea , φeb)

RVer(opk,m,R, σ) where R = {pki = (qi,a, qi,b)}ki=1

m′ ← H1(m||{pki}); Ra := (q1,a, . . . , qk,a); Rb := (q1,b, . . . , qk,b)
cmema ← MemVer(pp,Ra, φmema); cmemb ← MemVer(pp,Rb, φmemb)
cqa ← GSVer({qa = a2}, φqa); cqb ← GSVer({qb = b2}, φqb)

cpkA ← GSVer({A = g
a
2}, φpkA); cpkB ← GSVer({B = g

b
2}, φpkB)

cea ← GSVer({ea = Enc(opk, H2(m′), A; ra)}, φea)
ceb ← GSVer({eb = Enc(opk, H2(m′), B; rb)}, φeb)

csig ← GSVer({Bρ = B′ ∧ e(∆,A)e(∆,B′)e(∆, gm
′

2) = e(g1, g2)}, φsig)
return (cmema ∧ cmemb ∧ csig ∧ cqa ∧ cqb ∧ cpkA ∧ cpkB ∧ cea ∧ ceb)

Fig. 3. Our accountable ring signature scheme - Part II

a particular message and sanitizer. The sanitizers may then change the message according to some
modification and update the signature. More formally, the signer uses its private key skS to sign a
message m and the description of the admissible modifications α for some sanitizer pkZ. The sanitizer,
having a matching private key skZ, can update the message according to some modification δ and compute
a new signature using skZ. If there is a dispute about the origin of a message-signature pair, the signer
can compute a proof π (using an algorithm Prov) from previously signed messages which (dis)proves that
a signature has been created by the sanitizer. The verification of this proof is done by an algorithm Jud
(that only decides the origin of a valid message-signature pair in question; for invalid pairs such decisions
are in general impossible). We mostly follow the existing syntax [BFF+09, BFLS10] except that our key
generation algorithms take as input a public parameter generated by a setup algorithm. For the formal
syntax and security definitions of sanitizable signatures, readers can refer to Appendix D.

Sanitizable signatures should satisfy (proof-restricted) privacy, immutability, sanitizer- and signer-
accountability, and (proof-restricted) transparency. Some schemes also satisfy the even stronger un-
linkability. It is known that full transparency or unlinkability both imply privacy separately [BFF+09,
BFLS10], while proof-restricted transparency implies a proof-restricted privacy [BFLS10].

To the best of our knowledge, there is no efficient instantiation of sanitizable signatures satisfying
either proof-restricted privacy or unlinkability, and all other security properties simultaneously, without
using random oracles. We thus fill this gap by describing two constructions. The first is more efficient
while satisfying privacy based on the rerandomizable tagging. The second one uses the accountable ring
signature scheme and can achieve unlinkability.

9

Setup(1λ)

pp = 1λ

return pp

Prov(skS, pkZ,m, σ)

π ← TProv(skI, pkU,m, τ)
return π

KGenS(pp)

(pkf , skf)← SGen(1λ)

(pkI, skI)← TGenI(1λ)
pkS = (pkf , pkI)
skS = (skf , skI)
return (pkS, skS)

KGenZ(pp)

(pkU, skU)← TGenU(1λ)
pkZ = pkU

skZ = skU

return (pkZ, skZ)

Fig. 4. Our first sanitizable signature scheme - Part I

Sig(skS, pkZ,m, α)

mf := (fα(m), pkZ, α)
σf ← SSig(skf ,mf)
τ ← Tag(skI, pkU,m)
σ := (σf , τ, α)
return σ

Ver(pkS, pkZ,m, σ)

mf := (fα(m), pkZ, α)
if SVer(mf , σf , pkf) = 1 ∧

TVer(pkI, pkU,m, τ) = 1 then
return 1

else
return 0

endif

San(pkS, skZ,m, δ, σ)

mf := (fα(m), pkZ, α)
m′ ← δ(m)
τ ′ ← ReTag(pkI, skU,m,m

′, τ)
σ′ := (σf , τ ′, α)
return (m′, σ′)

Jud(pkS, pkZ,m, σ, π)

if TJud(pkI, pkU,m, τ, π) = U then
return d = Z

else
return d = S

endif

Fig. 5. Our first sanitizable signature scheme - Part II

5.1 Basic Construction from Rerandomizable Tagging Scheme

Informal Description. Our first construction relies heavily on the rerandomizable tagging scheme (Sec-
tion 2) which captures the accountability properties of sanitizable signatures. We complement it with
signature schemes to restrict the malleability delegated to the sanitizers. The details of signature schemes
can be found in Appendix A.

To sign, the signer computes a tag τ of the message m using the rerandomizable tagging scheme. Then,
the signer uses its long-term private key skS to sign the fixed part of the message fα(m), the sanitizer
public key pkZ, and the admissible modifications α. The signature thus consists of a signature σf of the
fixed part, the tag τ , and the admissible modifications α. To sanitize, the sanitizer rerandomizes the tag
with respect to the new message m′ = δ(m) using the rerandomizable tagging scheme, and replaces the
tag in the signature with the rerandomized one.

Formal Description. Let Σ = (SGen,SSig,SVer) be a digital signature scheme, and RT =
(TGenI,TGenU,Tag,ReTag,TProv,TJud) be a rerandomizable tagging scheme (Section 2). Figure 4
and 5 describe our first sanitizable signature scheme SS1. Its correctness follows directly from those
of Σ and RT .

Theorem 3. If Σ is EUF-CMA secure, then SS1 is immutable. If Σ is EUF-CMA secure, and RT
is user-accountable, then SS1 is sanitizer-accountable. If RT is issuer-accountable, then SS1 is signer-
accountable. If RT is proof-restrictedly transparent, then SS1 is proof-restrictedly transparent.

We refer the readers to Appendix G for the detailed proof.

10

Setup(1λ)

ppRS ← RSetup(1λ)

pp := (1λ, ppRS)
return pp

KGenZ(pp)

(pkRS , skRS)← RUKGen(ppRS)
pkZ := pkRS
skZ := skRS
return (pkZ, skZ)

KGenS(pp)

(pkf , skf)← SGen(1λ)
(opkRS , oskRS)← ROKGen(ppRS)
(pkRS , skRS)← RUKGen(ppRS)
pkS := (pkf , opkRS , pkRS)
skS := (skf , oskRS , skRS)
return (pkS, skS)

Sig(skS, pkZ,m, α)

R := {pkRS , pk′RS}
mf := (fα(m), α,R)
σf ← SSig(skf ,mf)
σ̂ ← RSig(opkRS ,m,R, skRS)
σ := (σf , σ̂, α)
return σ

San(pkS, skZ,m, δ, σ)

R := {pkRS , pk′RS}
m′ ← δ(m)
σ̂′ ← RSig(opkRS ,m

′,R, sk′RS)
σ′ := (σf , σ̂′, α)
return (m′, σ′)

Ver(pkS, pkZ,m, σ)

R := {pkRS , pk′RS}
mf := (fα(m), α,R)
b1 ← RVer(opkRS ,m,R, σ̂)
b2 ← SVer(mf , σf , pkf)
return (b1 ∧ b2)

Fig. 6. Our second sanitizable signature scheme - Part I

5.2 Unlinkability from Accountable Ring Signatures

Our second construction is similar to the construction by Brzuska et al. [BFLS10] based on group
signatures, except that we replace the special group signatures with accountable ring signatures reviewed
in Section 4. This change has two interesting effects. First, the construction of sanitizable signatures
becomes simpler: The signer does not need to create a new group for each sanitizable signature, which
also eliminates the use of pseudorandom functions to generate the group [BFLS10]. Second, in contrast
to the special group signatures, of which the instantiations (with or without random oracle heuristics)
are not efficient [FKM+16], our accountable ring signatures scheme in Section 4 is efficient and is secure
without random oracles, though it requires composite order group.

Another route leading to our discovery is the observation that the fully dynamic group signatures
constructed from accountable ring signatures [BCC+15, BCC+16] features the property that the user
key generation does not depend on the group key pair, which is the property required in the sanitizable
signatures construction by Brzuska et al. [BFLS10].

Informal Description. We proceed directly to the signing and sanitizing procedures. To issue a signature,
the signer forms a ring consisting of itself and the sanitizer, and ring-signs the message. It binds the
sanitizer to this sanitizing chain by signing the fixed part of the message together with the sanitizer
public key using its private key. Sanitizing becomes computing a new accountable ring signature on the
modified message.

Formal Description. Let RS = (RSetup,ROKGen,RUKGen,RSig,RVer,ROpen,RJud) be an accountable
ring signature scheme (Section 4), and Σ = (SGen,SSig,SVer) be a deterministic signature scheme.
Figures 6 and 7 describe the construction of our unlinkable sanitizable signature scheme SS2. The
correctness of SS2 follows those of RS and Σ.

11

Prov(skS, pkZ,m, σ)

R := {pkRS , pk′RS}
(pk∗RS , ψ)← ROpen(oskRS ,m,R, σ̂)
π := (pk∗RS , ψ)
return π

Jud(pkS, pkZ,m, σ, π)

R := {pkRS , pk′RS}
if RJud(opkRS ,m,R, σ̂, pk∗RS , ψ) = 1
∧ pk∗RS = pk′RS then
return d := Z

else
return d := S

endif

Fig. 7. Our second sanitizable signature scheme - Part II

Multiple Sanitizers. Ring signatures support rings containing more than two members, so we can extend
SS2 easily to support more sanitizers: The signer can sign the public keys of a ring of multiple sanitizers
when issuing a sanitizable signature. This grants partial signing power to each the sanitizers (possibly
corresponding to different admissible modifications). Furthermore, since our accountable ring signatures
have constant signature size with respect to the number of users in the ring, the scheme supporting
multiple sanitizers also features constant signature size with respect to the number of sanitizers.

Theorem 4. If Σ is sEUF-CMA-secure, then SS2 is immutable and unlinkable. If RS is traceable and
unforgeable, then SS2 is sanitizer-accountable. If RS is unforgeable, then SS2 is signer-accountable. If
RS is anonymous, SS2 is proof-restrictedly transparent.

We refer the readers to Appendix H for the detailed proof.

6 Concluding Remarks

We compare our two constructions with some existing schemes in Table 1, taking both their security
and efficiency into consideration. To compare with SS1 the signature scheme Σ is instantiated with
Waters signature [Wat05], the extractable public-key encryption scheme E is instantiated with Cramer-
Shoup encryption [CS98], and the double-trapdoor chameleon hash is instantiated with the scheme by
Chen et al. [CZT+08]. ‘E’ denotes group exponentiation, ‘P’ denotes pairing, and ‘M’ denotes matrix
multiplication. For SS2, Σ is instantiated with full Boneh-Boyen signature [BB04]. For simplicity, we do
not differentiate between elements from different groups in this comparison. A more detailed comparison
can be found in the full version. We remark that SS2 is instantiated with a composite order group.
It shows that instantiating our generic construction leads to the first efficient unlinkable sanitizable
signature schemes in the standard model.

Acknowledgments

We thank the anonymous reviewers for their comments on our manuscript.
Sherman Chow is supported by the Early Career Award and the Early Career Scheme (CUHK 439713),

and General Research Funds (CUHK 14201914) of the Research Grants Council, University Grant Com-
mittee of Hong Kong.

Dominique Schröder is supported by the German Federal Ministry of Education and Research
(BMBF) through funding for the project PROMISE and by the German research foundation (DFG)
through funding for the collaborative research center 1223.

References

ACdT05. Giuseppe Ateniese, Daniel H. Chou, Breno de Medeiros, and Gene Tsudik. Sanitizable signatures. In
Sabrina De Capitani di Vimercati, Paul F. Syverson, and Dieter Gollmann, editors, ESORICS 2005:
10th European Symposium on Research in Computer Security, volume 3679 of Lecture Notes in Com-
puter Science, pages 159–177, Milan, Italy, September 12–14, 2005. Springer, Heidelberg, Germany.

12

SS1 SS2 [FKM+16] [BFLS10]
using [Gro07]

[BFLS10]
using [FY05] [BFF+09]

Security Privacy Unlinkability Unlinkability Unlinkability Unlinkability Privacy
Model Standard Standard ROM Standard ROM ROM
Group Prime Composite Prime Prime Composite Prime
Assumption Static q-type Static GGM GGM Static
KGenS 6E+2P 32E+1P 7E 1E 1E 3E +1P
KGenZ 7E+1M 2E 1E 1E 4E 2E
Sig 11E+2M 103E+10P 15E 194E+2P 2813E (2 · |m|+ 2)E
San 4E+10M 102E+10P 14E 186E+1P 2814E 2P
Ver 2E+4P+2M 2E+148P 17E 207E+62P 2011E 2 · |m|E +2P
Prov ⊥ 126E+152P 23E 14E+1P 18E 4 · |m|2E
Jud 5E+4M 152P 6E 1E+2P 2E 4E
pkS

(8 + 2|m|)G1+
2GT

16G1 + 5G2 +
1GT + 2Zn 5G + 2Zp 1G 1G (4 + |m|)G1 +

1GT
skS 2G1 + 1Zp 25Zn 7Zp 1Zp 1Zp 1G1 + 1Zp

pkZ
5G1 +

(` + 1)Zn×nkp
2G2 + 2Zn 1G 3G + 1GT 2Gp + 3Gq 2G1

skZ 7Zp+1Zm̄×nk 2Zn 1Zp 2G + 1Zp 1Zq 2Zp

σ 8G1 + 6Zp 23G1+12G2+
82GT + 3Zn 5G + 9Zp 65G + 2GT +

2Zp

3Gp + 6Gq +
1406Zp+

205Zq

2G1 +
(3 + |m|)Zp

π 3Zp 86G2 +
16GT + 2Zn 1G + 3Zp 1G 2Gq + 2Zp (4 + |m|)G1 +

1GT + 5Zp
Table 1. Comparison of Different Sanitizable Signature Schemes

ACHO13. Masayuki Abe, Sherman S. M. Chow, Kristiyan Haralambiev, and Miyako Ohkubo. Double-trapdoor
anonymous tags for traceable signatures. Int. J. Inf. Sec., 12(1):19–31, 2013.

BB04. Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian Cachin and
Jan Camenisch, editors, Advances in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes
in Computer Science, pages 56–73, Interlaken, Switzerland, May 2–6, 2004. Springer, Heidelberg,
Germany.

BBD+10. Christina Brzuska, Heike Busch, Özgür Dagdelen, Marc Fischlin, Martin Franz, Stefan Katzen-
beisser, Mark Manulis, Cristina Onete, Andreas Peter, Bertram Poettering, and Dominique Schröder.
Redactable signatures for tree-structured data: Definitions and constructions. In Jianying Zhou and
Moti Yung, editors, ACNS 10: 8th International Conference on Applied Cryptography and Network Se-
curity, volume 6123 of Lecture Notes in Computer Science, pages 87–104, Beijing, China, June 22–25,
2010. Springer, Heidelberg, Germany.

BCC+15. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens Groth, and Christophe Petit.
Short accountable ring signatures based on DDH. In Günther Pernul, Peter Y. A. Ryan, and Edgar R.
Weippl, editors, ESORICS 2015: 20th European Symposium on Research in Computer Security, Part I,
volume 9326 of Lecture Notes in Computer Science, pages 243–265, Vienna, Austria, September 21–25,
2015. Springer, Heidelberg, Germany.

BCC+16. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, and Jens Groth. Foundations of
fully dynamic group signatures. In Mark Manulis, Ahmad-Reza Sadeghi, and Steve Schneider, editors,
ACNS 2016, volume 9696 of LNCS, pages 117–136. Springer, 2016.

BDR15. Priyanka Bose, Dipanjan Das, and Chandrasekaran Pandu Rangan. Constant size ring signature
without random oracle. In Ernest Foo and Douglas Stebila, editors, ACISP 15: 20th Australasian
Conference on Information Security and Privacy, volume 9144 of Lecture Notes in Computer Science,
pages 230–247, Wollongong, NSW, Australia, June 29 – July 1, 2015. Springer, Heidelberg, Germany.

BFF+09. Christina Brzuska, Marc Fischlin, Tobias Freudenreich, Anja Lehmann, Marcus Page, Jakob Schelbert,
Dominique Schröder, and Florian Volk. Security of sanitizable signatures revisited. In Stanislaw Jarecki
and Gene Tsudik, editors, PKC 2009: 12th International Conference on Theory and Practice of Public
Key Cryptography, volume 5443 of Lecture Notes in Computer Science, pages 317–336, Irvine, CA,
USA, March 18–20, 2009. Springer, Heidelberg, Germany.

BFLS10. Christina Brzuska, Marc Fischlin, Anja Lehmann, and Dominique Schröder. Unlinkability of sanitiz-
able signatures. In Phong Q. Nguyen and David Pointcheval, editors, PKC 2010: 13th International
Conference on Theory and Practice of Public Key Cryptography, volume 6056 of Lecture Notes in
Computer Science, pages 444–461, Paris, France, May 26–28, 2010. Springer, Heidelberg, Germany.

13

BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications
(extended abstract). In 20th Annual ACM Symposium on Theory of Computing, pages 103–112,
Chicago, Illinois, USA, May 2–4, 1988. ACM Press.

BMS16. Michael Backes, Sebastian Meiser, and Dominique Schröder. Delegatable functional signatures. In
Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016: 19th
International Conference on Theory and Practice of Public Key Cryptography, Part I, volume 9614
of Lecture Notes in Computer Science, pages 357–386, Taipei, Taiwan, March 6–9, 2016. Springer,
Heidelberg, Germany.

BMW03. Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group signatures: Formal
definitions, simplified requirements, and a construction based on general assumptions. In Eli Biham,
editor, Advances in Cryptology – EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer
Science, pages 614–629, Warsaw, Poland, May 4–8, 2003. Springer, Heidelberg, Germany.

BPS12. Christina Brzuska, Henrich Christopher Pöhls, and Kai Samelin. Non-interactive public accountability
for sanitizable signatures. In Sabrina De Capitani di Vimercati and Chris Mitchell, editors, EuroPKI,
volume 7868 of LNCS, pages 178–193. Springer, 2012.

BPS13. Christina Brzuska, Henrich Christopher Pöhls, and Kai Samelin. Efficient and perfectly unlinkable
sanitizable signatures without group signatures. In Sokratis K. Katsikas and Isaac Agudo, editors,
EuroPKI, volume 8341 of LNCS, pages 12–30. Springer, 2013.

BPW12. Alexandra Boldyreva, Adriana Palacio, and Bogdan Warinschi. Secure proxy signature schemes for
delegation of signing rights. Journal of Cryptology, 25(1):57–115, January 2012.

Cat14. Dario Catalano. Homomorphic signatures and message authentication codes. In Michel Abdalla and
Roberto De Prisco, editors, SCN 14: 9th International Conference on Security in Communication
Networks, volume 8642 of Lecture Notes in Computer Science, pages 514–519, Amalfi, Italy, Septem-
ber 3–5, 2014. Springer, Heidelberg, Germany.

CDFG08. Dario Catalano, Mario Di Raimondo, Dario Fiore, and Rosario Gennaro. Off-line/on-line signatures:
Theoretical aspects and experimental results. In Ronald Cramer, editor, PKC 2008: 11th International
Workshop on Theory and Practice in Public Key Cryptography, volume 4939 of Lecture Notes in Com-
puter Science, pages 101–120, Barcelona, Spain, March 9–12, 2008. Springer, Heidelberg, Germany.

CHK+11. Jan Camenisch, Kristiyan Haralambiev, Markulf Kohlweiss, Jorn Lapon, and Vincent Naessens. Struc-
ture preserving CCA secure encryption and applications. In Dong Hoon Lee and Xiaoyun Wang,
editors, Advances in Cryptology – ASIACRYPT 2011, volume 7073 of Lecture Notes in Computer
Science, pages 89–106, Seoul, South Korea, December 4–8, 2011. Springer, Heidelberg, Germany.

CHKP10. David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate a
lattice basis. In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, volume 6110 of
Lecture Notes in Computer Science, pages 523–552, French Riviera, May 30 – June 3, 2010. Springer,
Heidelberg, Germany.

CJ10. Sébastien Canard and Amandine Jambert. On extended sanitizable signature schemes. In Josef
Pieprzyk, editor, Topics in Cryptology – CT-RSA 2010, volume 5985 of Lecture Notes in Computer
Science, pages 179–194, San Francisco, CA, USA, March 1–5, 2010. Springer, Heidelberg, Germany.

CJL12. Sébastien Canard, Amandine Jambert, and Roch Lescuyer. Sanitizable signatures with several signers
and sanitizers. In Aikaterini Mitrokotsa and Serge Vaudenay, editors, AFRICACRYPT 12: 5th In-
ternational Conference on Cryptology in Africa, volume 7374 of Lecture Notes in Computer Science,
pages 35–52, Ifrance, Morocco, July 10–12, 2012. Springer, Heidelberg, Germany.

CLM08. Sébastien Canard, Fabien Laguillaumie, and Michel Milhau. Trapdoorsanitizable signatures and their
application to content protection. In Steven M. Bellovin, Rosario Gennaro, Angelos D. Keromytis, and
Moti Yung, editors, ACNS 08: 6th International Conference on Applied Cryptography and Network
Security, volume 5037 of Lecture Notes in Computer Science, pages 258–276, New York, NY, USA,
June 3–6, 2008. Springer, Heidelberg, Germany.

CS98. Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In Hugo Krawczyk, editor, Advances in Cryptology – CRYPTO’98,
volume 1462 of Lecture Notes in Computer Science, pages 13–25, Santa Barbara, CA, USA, August 23–
27, 1998. Springer, Heidelberg, Germany.

CZT+08. Xiaofeng Chen, Fangguo Zhang, Haibo Tian, Baodian Wei, Willy Susilo, Yi Mu, Hyunrok Lee, and
Kwangjo Kim. Efficient generic on-line/off-line (threshold) signatures without key exposure. Inf. Sci.,
178(21):4192–4203, 2008.

DS15. David Derler and Daniel Slamanig. Rethinking privacy for extended sanitizable signatures and a black-
box construction of strongly private schemes. In Man Ho Au and Atsuko Miyaji, editors, ProvSec 2015:
9th International Conference on Provable Security, volume 9451 of Lecture Notes in Computer Science,
pages 455–474, Kanazawa, Japan, November 24–26, 2015. Springer, Heidelberg, Germany.

FKM+16. Nils Fleischhacker, Johannes Krupp, Giulio Malavolta, Jonas Schneider, Dominique Schröder, and
Mark Simkin. Efficient unlinkable sanitizable signatures from signatures with re-randomizable keys.

14

In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016: 19th
International Conference on Theory and Practice of Public Key Cryptography, Part I, volume 9614
of Lecture Notes in Computer Science, pages 301–330, Taipei, Taiwan, March 6–9, 2016. Springer,
Heidelberg, Germany.

FY05. Jun Furukawa and Shoko Yonezawa. Group signatures with separate and distributed authorities.
In Carlo Blundo and Stelvio Cimato, editors, SCN 04: 4th International Conference on Security in
Communication Networks, volume 3352 of Lecture Notes in Computer Science, pages 77–90, Amalfi,
Italy, September 8–10, 2005. Springer, Heidelberg, Germany.

Gro07. Jens Groth. Fully anonymous group signatures without random oracles. In Kaoru Kurosawa, editor,
Advances in Cryptology – ASIACRYPT 2007, volume 4833 of Lecture Notes in Computer Science,
pages 164–180, Kuching, Malaysia, December 2–6, 2007. Springer, Heidelberg, Germany.

GS08. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In Nigel P.
Smart, editor, Advances in Cryptology – EUROCRYPT 2008, volume 4965 of Lecture Notes in Com-
puter Science, pages 415–432, Istanbul, Turkey, April 13–17, 2008. Springer, Heidelberg, Germany.

JMSW02. Robert Johnson, David Molnar, Dawn Xiaodong Song, and David Wagner. Homomorphic signature
schemes. In Bart Preneel, editor, Topics in Cryptology – CT-RSA 2002, volume 2271 of Lecture Notes
in Computer Science, pages 244–262, San Jose, CA, USA, February 18–22, 2002. Springer, Heidelberg,
Germany.

KL06. Marek Klonowski and Anna Lauks. Extended sanitizable signatures. In Min Surp Rhee and By-
oungcheon Lee, editors, ICISC 06: 9th International Conference on Information Security and Cryptol-
ogy, volume 4296 of Lecture Notes in Computer Science, pages 343–355, Busan, Korea, November 30 –
December 1, 2006. Springer, Heidelberg, Germany.

KR00. Hugo Krawczyk and Tal Rabin. Chameleon signatures. In ISOC Network and Distributed System
Security Symposium – NDSS 2000, San Diego, California, USA, February 2–4, 2000. The Internet
Society.

MP12. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In
David Pointcheval and Thomas Johansson, editors, Advances in Cryptology – EUROCRYPT 2012,
volume 7237 of Lecture Notes in Computer Science, pages 700–718, Cambridge, UK, April 15–19,
2012. Springer, Heidelberg, Germany.

Wat05. Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer,
editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer
Science, pages 114–127, Aarhus, Denmark, May 22–26, 2005. Springer, Heidelberg, Germany.

XY04. Shouhuai Xu and Moti Yung. Accountable ring signatures: A smart card approach. In Jean-Jacques
Quisquater, Pierre Paradinas, Yves Deswarte, and Anas Abou El Kalam, editors, CARDIS, volume
153 of IFIP, pages 271–286. Kluwer/Springer, 2004.

A Preliminaries

A.1 Double Trapdoor Chameleon Hash Functions

A double trapdoor chameleon hash function is a chameleon hash function with two trapdoors. This
means that given one of the trapdoors ski, a message m, some randomness r, and another message m′,
it is possible to find a randomness r′ s.t. CEval(pk,m; r) = CEval(pk,m′; r′).

Definition 9 (Chameleon Hash Function). A double trapdoor chameleon hash function is a tuple
of PPT algorithms CH = (CGen,TCGen,CEval,CInv):
CGen(1λ): The key generation algorithm returns a key-pair (pk, sk0, sk1).
TCGen(1λ, i): Upon input a bit i, the algorithm returns a key-pair (pk, ski).
CEval(pk,m; r): The hash input is a message m and some randomness r ∈ {0, 1}λ. It outputs a hash

value.
CInv(ski,m, r,m′): Upon input of one of the trapdoors ski, a message m, some randomness r, and an-

other message m′, the collision finding algorithm returns some randomness r′ s.t. CEval(pk,m; r) =
CEval(pk,m′; r′).

Distribution of Keys: Let CGen(1λ, i) be the algorithm that first executes CGen(1λ) and restricts the
output to (pk, ski). The distributions of CGen(1λ, i) and TCGen(1λ, i) are identical.

Uniform Distribution: The output of CEval(pk,m; r) is uniformly distributed, thus is independent of
m. Furthermore, the distribution of CInv(ski,m, r,m′) is identical to the distribution of r for i = 0, 1.

15

A double trapdoor chameleon hash is required to be collision-resistant, i.e., no PPT adversary should
be able to find ski⊕1 given pk and ski, and there exists an efficient algorithm which, on input pk and
a collision (m, r) and (m′, r′) s.t. (m, r) 6= (m′, r′) and CEval(pk,m; r) = CEval(pk,m′; r′), outputs at
least one of the trapdoors ski. As a consequence, it is infeasible to find such collision without one of the
trapdoors.

A.2 Digital Signatures
We recall the definition of a digital signature scheme and the standard notion of existential unforgeability.

Definition 10 (Signatures). A signature scheme Σ = (SGen,SSig,SVer) is defined by:
SGen(1λ): The key generation algorithm takes the security parameter 1λ and generates a key pair (pk, sk).
SSig(sk,m): The signing algorithm takes a private key sk and a message m, and outputs a signature σ.
SVer(pk,m, σ): It takes a public key pk, a message m, and a candidate signature σ, and outputs a bit b.
Correctness The scheme is correct if and only if, for all λ ∈ N, all key-pairs (pk, sk)← SGen(1λ), all
messages m ∈ {0, 1}∗, and all signatures σ ← SSig(sk,m), it holds that SVer(pk,m, σ) = 1.
Definition 11 (Existential Unforgeability). A signature scheme Σ = (SGen,SSig,SVer) is said
to be existentially unforgeable under chosen message attacks (EUF) if and only if for all probabilistic
polynomial-time adversaries A there exists a negligible function negl(λ) such that Pr

[
EUFΣA(λ) = 1

]
≤

negl(λ) where EUFΣA is the existential unforgeability experiment defined as follows:
Experiment EUFΣA(λ) :

(pk, sk)← SGen(1λ); Q := ∅
(m∗, σ∗)← AO(sk,·)(pk)
If SVer(pk, σ∗) = 1 and m∗ 6∈ Q
Output 1; else output 0

O(sk,m) :
Q := Q ∪ {m}
σ ← SSig(sk,m)
output σ

A.3 Extractable Public Key Encryption
We shortly recall the definitions of an extractable public key encryption scheme as well as the standard
notion of CCA security. An extractable public key encryption scheme is a public key encryption scheme
with an extra extraction algorithm which, on input a ciphertext and the randomness used for encryption,
outputs the underlying message. Most, if not all, public key encryption schemes are extractable.
Definition 12 (Public Key Encryption Scheme). An extractable public key encryption scheme E =
(EGen,Enc,Dec,Ext) consists of four efficient algorithms:
EGen(1λ): The key generation algorithm takes the security parameter 1λ and generates a key pair (dk, ek).
Enc(ek,m): It takes an encryption key ek and a message m ∈ {0, 1}∗, and outputs a ciphertext c.
Dec(dk, c): The decryption algorithm takes a decryption key dk and a ciphertext c, and outputs a mes-

sage m.
Ext(ρ, c): It takes an encryption randomness ρ ∈ χ and a ciphertext c, and outputs a message m.
Correctness The scheme is correct if and only if for all λ ∈ N, all (dk, ek)← EGen(1λ), all m ∈ {0, 1}∗,
all ρ ∈ {0, 1}λ, and all c← Enc(ek,m; r), it holds that m = Dec(dk, c) = Ext(r, c).
Definition 13 (Indistinguishability under Chosen Ciphertext Attacks). An extractable public
key encryption scheme E = (EGen,Enc,Dec,Ext) has indistinguishable encryptions under chosen cipher-
text attacks (IND-CCA) if for all (possibly stateful) PPT adversaries A = (A0,A1) the probability that
the experiment IND-CCAEA(λ) evaluates to 1 is negligibly bigger than 1

2 (in λ), where

Experiment IND-CCAEA(λ) :
(dk, ek)← EGen(1λ); b← {0, 1}
m0,m1 ← ADec(dk,·)

0 (ek)
cb ← Enc(ek,mb)
a← ADec′(dk,cb,·)

1 (cb)
If a = b, output 1; else output 0

Dec′(dk, cb, c) :
If c 6= cb
then output Dec(dk, c)
else output ⊥

16

A.4 Structure-Preserving CCA-Secure Encryption

We adopt the structure-preserving CCA-secure encryption scheme by Camenisch et al. [CHK+11] in
composite order group. Let G2 be a group with order n = p · q generated by g2 where the DLIN
assumption holds (for the sake of CCA security). Let ê : G × G2 → GT̂ be a non-degenerate efficiently
computable bilinear map.

EGen(1λ): The private key is a tuple of exponents (α1, α2, α3, {βi,1, βi,2, βi,3}5i=0) ∈ Z21
n . The public

key is a tuple of group elements (ĝ1, ĝ2, ĝ3, h2, h2, {fi,1, fi,2}5i=0) ∈ G17 where ĝ1, ĝ2, ĝ3 ← G2, h1 =
ĝα1

1 ĝα3
3 , h2 = ĝα2

2 ĝα3
3 , fi,1 = ĝ

βi,1
1 ĝ

βi,3
3 , and fi,2 = ĝ

βi,2
1 ĝ

βi,3
3 .

Enc(pk, L,m): To encrypt a message m ∈ G2 with label L ∈ G2, sample r, s ← Zn and compute
c = (u1, u2, u3, d, v) ∈ G4

2 × GT̂ , where u0 = g2, u1 = ĝr1, u2 = ĝs2, u3 = ĝr+s3 , d = m · hr1hs2, and
v =

∏3
i=0 e(fri,1fsi,2, ui) · e(fr4,1fs4,2, d) · e(fr5,1fs5,2, L).

Dec(sk, c): To decrypt, check whether v
?=

∏3
i=0 e(u

βi,1
1 u

βi,2
2 u

βi,3
3 , ui) · e(u

β4,1
1 u

β4,2
2 u

β4,3
3 , d) ·

e(uβ5,1
1 u

β5,2
2 u

β5,3
3 , L) where u0 = g2. If so, output m = d · (uα1

1 uα2
2 uα3

3)−1.

A.5 Groth-Sahai Proof

Groth and Sahai [GS08] have proposed several instantiations for efficient non-interactive zero-knowledge
(NIZK) proof of knowledge. The proof is about group elements satisfying a pairing product equation.

Definition 14. An NIZK proof system GS = (GSSetup, GSProv, GSVer, GSExt) is defined by:
– GSSetup(1λ): The setup algorithm takes in the security parameter 1λ and generates the common

reference string crs and the extraction key xk of the proof system. All other algorithms take as input
a bilinear group G specified externally and the common reference string crs. They are omitted for
conciseness.

– GSProv(stmt, wit): The proving algorithm takes in a statement stmt with one witness wit, and gen-
erates a proof of the validity of stmt with respect to wit.

– GSVer(stmt, π): The verification algorithm takes in a statement stmt, and a proof π, and outputs 1
if π is a proof of stmt with a valid witness, 0 otherwise.

– GSExt(xk, π): It takes in the extraction key xk, and a proof π, and outputs the witness in π.

Blum, Feldman and Micali [BFM88] introduced NIZK proofs, and defined its three properties below.
– Completeness: The probability of succeeding in proving a true statement is overwhelming.
– Soundness: The probability of succeeding in proving a false statement is negligible.
– Zero-knowledge: The proof gives no information but the validity of the theorem.

B Our Variant of Tag-based Trapdoor Functions

We construct our required variant of tag-based trapdoor functions using lattice-based trapdoor func-
tions [MP12]. The construction is similar to the construction of a selectively secure signature scheme
from lattice-based trapdoor functions [MP12, Section 6.2].

Informal Description. The user generates its public key consisting of a sequence of matrices A,A0, . . . ,A`

for which it knows the lattice trapdoor of A. Recall from [MP12] that, using the trapdoor of A, the user
can sample a short vector v such that Av = u for any target vector u, which is otherwise infeasible.
Furthermore, the user can compute the trapdoor of Aµ := [A|A0 +

∑
i∈[`] µiAi] for any µ ∈ {0, 1}`. On

the other hand, for any µ ∈ {0, 1}`, any party can publicly sample a short vector v and compute a target
vector u = Av.

Formal Description. Let G ∈ Zn×nkq be a gadget matrix [MP12] where n = poly(λ) (1λ), q = poly(λ) (n)
and k = O(logn). Let m̄ = O(nk) and m = m̄+ 2nk. Let s = O(

√
`nk) · ω(

√
logn)2 be a sufficient large

Gaussian parameter. Using the formulation in [MP12], a matrix R ← D ∼ Zm̄×nk is a trapdoor for the
matrix A := [Ā|G− ĀR]. Denote Aµ := [A|A0 +

∑
i∈[`] µiAi] for a bit string µ ∈ {0, 1}`. Using R, for

any target vector u, there exists efficient algorithm SamPre(R,Aµ,u) which samples a preimage v such
that Aµv = u and ‖v‖ ≤ s ·

√
m [MP12]. We construct a tag-based trapdoor function TD as shown in

Figure 8.

17

TDGen(1λ)

Ā← Zn×m̄q

R ← Zm̄×nk

A := [Ā|G− ĀR]

Ai ← Zn×nkq , i = 0, . . . , `
pk := (A,A0, . . . ,A`)
sk := R
return (pk, sk)

TDEval(pk, µ, ρ = v)

Aµ := [A|A0 +
∑
i∈[`]

µiAi]

u← Aµv
return y := u

TDInv(sk, µ, y = u)

Aµ := [A|A0 +
∑
i∈[`]

µiAi]

v← SamPre(R,Aµ,u)
return ρ := v

Fig. 8. Our tag-based trapdoor function

Theorem 5. TD supports domain and pre-image sampling.

Proof. By [MP12, Theorem 5.5], the output of SamPre is within negligible statistical distance from
DΛ⊥u (Aµ),s, and DZm,s is efficiently samplable. ut

Theorem 6. If the SISq,β problem is hard for large enough β = O(`(nk)3/2) ·ω(
√

logn)3 where ` ≥ 21λ,
then TD is collision-resistant under selective-tag adaptive-image attack.

Proof. The following proof is essentially adapting the proof of unforgeability of the signature scheme
constructed in [MP12, Section 6.2]. We therefore only repeat the essential details here.

Suppose there exists PPT adversary A which breaks the collision-resistance of TD. Consider a PPT
simulator S which solves a random instance of SISq,β . We first describe how S simulates the matrices
(A,A0, . . . ,A`) in the public key.
S receives an SISq,β instance given by A = [Ā|B] ∈ Zn×(m̄+nk)

q and syndrome u′ ∈ Znq . It will use A
to find some z ∈ Zm of length ‖z‖ ≤ β − 1 such that Az = u′ or non-zero z ∈ Zm of length ‖z‖ ≤ β
such that Az = 0. In either case, it can find z′ ∈ Zm+ 1 of length ‖z‖ ≤ β such that [A|u′]z′ = 0.

At the beginning, A sends distinct µi for i = 1, . . . , Q to S. S computes the set P of all strings
p ∈ {0, 1}≤` such that p is a shortest string for which no µi has p as a prefix. P can be equivalently
viewed as the set of maximal subtrees of {0, 1}≤` (viewed as a tree) that do not contain any of the µi’s.
P can be computed efficiently [CHKP10] and has size bounded above by (` + 1)Q + 1. Choose p ← P
and let t = |p| ≤ `.

It constructs (A,A0, . . . ,A`) as follows: For j = 0, . . . , `, choose Rj ← Dm̄×nk
Z,ω(
√

logn)
and let

Aj = HjG− ĀRj , where Hj =

h(0) = 0 j > t

(−1)pj · h(uj) j ∈ [t]
−
∑
l∈[t] pl ·Hl j = 0

where u1, . . . , ut are units in Zq[x]/(f(x)) for some monic degree-n polynomial f irreducible over every
prime p dividing q such that all non-trivial subset sum of u1, . . . , ut is also a unit, and h : Zq[x]/(f(x))→
Zn×nq is an injective ring homomorphism, so that a is a unit in Zq[x]/(f(x)) if and only if h(a) in Zn×nq

is invertible.
S sends pk := (A,A0, . . . ,A`) to A. Upon receiving the i-th query yi = ui, S computes Aµi :=

[A|A0 +
∑
j∈[`] µi,jAj] = [A|HG− ĀR], where H = h(

∑
j∈[t],µi,j 6=pj uj) is invertible as p is not a prefix

of any µi, and R = (R0 +
∑
j∈[`] µi,jRj). From [MP12], R is a trapdoor of Aµi and S can sample and

output vi ← SamPre(R,Aµi ,ui).
Eventually, a successful A will output distinct (µ∗1,v∗1) and (µ∗2,v∗2) such that µ∗1, µ∗2 /∈ (µ1, . . . , µQ)

and Aµ∗1
v∗1 = Aµ∗2

v∗2. S computes R∗1 = (R0 +
∑
j∈[`] µ

∗
1,jRj) and R∗2 = (R0 +

∑
j∈[`] µ

∗
2,jRj), and

outputs

z =
[
Im̄ −R∗1

Ink

]
v∗1 −

[
Im̄ −R∗2

Ink

]
v∗2

18

We argue that z is a valid solution to the SISq,β instance.
Suppose both µ∗ and µ has prefix p, which happens with probability at least 1/((` − 1)Q + 1)2 −

negl(λ) (1λ) since we have assumed µ∗1 6= µi and µ∗2 6= µi for all i. Then Aµ∗1
= [A| − ĀR∗1] where

R∗1 = (R0 +
∑
j∈[`] µ

∗
1,jRj). Similarly Aµ∗2

= [A| − ĀR∗2] where R∗2 = (R0 +
∑
j∈[`] µ

∗
2,jRj). In other

words, we have Az = 0, i.e.,

[Ā|B]
([

Im̄ −R∗1
Ink

]
v∗1 −

[
Im̄ −R∗2

Ink

]
v∗2
)

= 0

Since both ‖v∗1‖, ‖v∗2‖ ≤ s ·
√
m = O(

√
`nk) · ω(

√
logn)2, and the maximum singular values of R∗1

and R∗2 satisfies s1(R∗k) = O(
√
`nk) · ω(

√
logn) for k = 1, 2 with overwhelming probability, we have

‖z‖ = O(`(nk) 3
2) · ω(

√
logn)3 as required. We refer the readers to the proof of [MP12, Theorem 6.1] for

details and the proof that z 6= 0. ut

C Accountable Ring Signatures

The definition of accountable ring signature is taken from Bootle et al. [BCC+15]

C.1 Definition of Accountable Ring Signatures

Definition 15 (Accountable Ring Signatures). An accountable ring signature scheme is a tuple of
seven polynomial-time algorithms RS = (RSetup,ROKGen, RUKGen, RSig, RVer, ROpen, RJud).
RSetup(1λ)→ pp: given a security parameter λ, this algorithm generates the system parameters pp.
ROKGen(pp) → (opk, osk): given the system parameters pp, this algorithm creates a key pair (opk, osk)
for the opener to trace the signer of a ring signature. We assume that opk is uniquely determined by pp
and osk, denoted as opk← ROKGen(pp, osk).
RUKGen(pp)→ (pk, sk): given the system parameters pp, this algorithm creates a key pair (pk, sk) for a
signer.
RSig(opk,m,R, sk) → σ: given the public opening key opk, a message m, a ring of signers R, and a
signing key sk of a member in R, this algorithm creates a ring signature on m.
RVer(opk,m,R, σ) → b: given the public opening key opk, a message m, a ring of signers R, and a
candidate ring signature σ, this algorithm output a bit b indicating the validity of σ.
ROpen(osk,m,R, σ)→ (pk∗, ψ)/⊥: given an opener private key osk, a message m, a ring R, and a ring
signature σ, this algorithm returns a verification key pk∗ and a proof ψ that the owner of pk∗ produced
σ. If any of the inputs is invalid, it returns ⊥.
RJud(opk,m,R, σ, pk∗, ψ)→ b: given an opener public key opk, a message m, a ring R, a ring signature
σ, a signer public key pk∗, and a proof ψ, this algorithm returns a bit b. When ψ is not accepted, or any
of the inputs is invalid, b = 0; otherwise, b = 1.

C.2 Security of Accountable Ring Signatures

An accountable ring signature scheme should be correct, fully unforgeable, anonymous, traceable, and
has tracing soundness.

Correctness. The scheme is correct if and only if, for all λ ∈ N, all pp ∈ RSetup(1λ), all opener key pairs
(opk, osk)← ROKGen(pp), all user key-pairs (pk, sk) ∈ RUKGen(pp), messages m ∈ {0, 1}∗, any subset of
signers R, and all signatures σ ∈ RSig(opk,m,R, sk), it holds that SVer(opk,m,R, σ) = 1.

Definition 16 (Full Unforgeability). An accountable ring signature scheme RS is fully unforgeable
if for any PPT adversaries A the probability that the experiment UnforgeabilityRSA (λ) evaluates to 1 is
negligible (in λ), where

19

Experiment UnforgeabilityRSA (λ)
pp← RSetup(1λ); (opk, pk,m,R, σ, ψ)← ARUKGen,RSig,Reveal(pp)
Output 1 if one of the following cases holds:

1. pk ∈ QRUKGen \QReveal, (opk,m,R, σ, pk) /∈ QRSig, and RJud(opk,m,R, σ, pk, ψ) = 1.
2. R ⊂ QRUKGen \QReveal, (opk,m,R, σ, ·) /∈ QRSig, and RVer(opk,m,R, σ) = 1.

Otherwise, output 0.

– RUKGen runs (pk, sk)← RUKGen(pp) and returns pk. QRUKGen is the set of verification keys pk that
have been generated by this oracle.

– RSig is an oracle that on query (opk,m,R, pk) returns σ ← RSig(opk,m,R, sk) if pk ∈ R∩QRUKGen.
QRSig contains the queries and responses (opk,m,R, σ, pk).

– Reveal is an oracle that when queried on pk ∈ QRUKGen returns the corresponding signing key sk.
QReveal is the list of verification keys pk for which the corresponding signing key has been revealed.

Definition 17 (Anonymity against Full Key Exposure). An accountable ring signature scheme
RS is anonymous if for any PPT adversaries A the probability that the experiment AnonRSA (λ) evaluates
to 1 is negligibly close to 1

2 (in λ), where

Experiment AnonRSA (λ)
pp← RSetup(1λ); (opk, osk)← ROKGen(pp); b← {0, 1}
b′ ← AChalb,Open(pp, opk)
Output 1 if b = b′, otherwise, output 0.

– Chalb is an oracle that the adversary can only call once. On query (m,R, i0, i1), it runs σ0 ←
RSig(opk, m, R, ski0) and σ1 ← RSig(opk, m, R, ski1). If σ0 6= ⊥ and σ1 6= ⊥ it returns σb,
otherwise, it returns ⊥. i0 and i1 are two indices of the signer in R.

– Open is an oracle that on query (m,R, σ) returns (pk, ψ)← ROpen(osk,m,R, σ). If σ was obtained
by calling Chalb on (m,R), the oracle returns ⊥.

Definition 18 (Traceability). An accountable ring signature scheme RS is traceable if for any PPT
adversaries A the probability that the experiment TraceRSA (λ) evaluates to 1 is negligible (in λ), where

Experiment TraceRSA (λ)
pp← RSetup(1λ); (osk,m,R, σ)← A(pp); opk← ROKGen(pp, osk); (pk, ψ)← ROpen(osk,m,R, σ)
Output 1 if RVer(opk,m,R, σ) = 1 ∧ RJud(opk,m,R, σ, pk, ψ) = 0
Otherwise, output 0.

Definition 19 (Tracing Soundness). An accountable ring signature scheme RS has tracing soundness
if for any PPT adversaries A the probability that the experiment TraceSoundRSA (λ) evaluates to 1 is
negligible (in λ), where

Experiment TraceSoundRSA (λ)
pp← RSetup(1λ)
(m,σ,R, opk, pk1, pk2, ψ1, ψ2)← A(pp)
Output 1 if, for all i = 1, 2, RJud(opk,m,R, σ, pki, ψi) = 1 ∧ pk1 6= pk2
Otherwise, output 0.

D Sanitizable Signatures

D.1 Definition of Sanitizable Signatures

The following definition of sanitizable signature schemes is slightly modified from [BFF+09, BFLS10].

Definition 20 (Sanitizable Signature Scheme). A sanitizable signature scheme SS = (KGenS,
KGenZ,Sig,San,Ver,Prov, Jud) consists of eight algorithms:
Key Generation. The setup algorithm creates a public parameter for key generations: pp← Setup(1λ).
There are two key generation algorithms, one for the signer and one for the sanitizer. Both create a
public/private key pair: (pkS, skS)← KGenS(pp), (pkZ, skZ)← KGenZ(pp).

20

Signing. The signing algorithm takes as input a message m ∈ {0, 1}∗, a signer private key skS, a sanitizer
public key pkZ, as well as a description α of the admissible modifications to m by the sanitizer and outputs
a signature σ ← Sig(skS, pkZ,m, α). We assume that α can be recovered from any σ.
Sanitizing. The sanitizing algorithm takes as input a message m ∈ {0, 1}∗, a description δ of the desired
modifications to m, a signature σ, the signer public key pkS, and a sanitizer private key skZ. It modifies
the message m according to the modification instruction δ, and outputs a new signature σ′ for the modified
message m′ = δ(m) or possibly ⊥ in case of an error, i.e., {(m′, σ′),⊥} ← San(pkS, skZ,m, δ, σ).
Verification. The verification algorithm takes as input a message m, a candidate signature σ, a signer
public key pkS, as well as a sanitizer public key pkZ and outputs a bit b, i.e. b← Ver(pkS, pkZ,m, σ).
Proof. The proof algorithm takes as input a signer private key skS, a message m, a signature σ, and a
sanitizer public key pkZ and outputs a proof π, i.e. π ← Prov(skS, pkZ,m, σ).
Judge. The judge algorithm takes as input a message m, a signature σ, signer and sanitizer public keys
pkS, pkZ, and proof π. It outputs a decision d ∈ {S, Z} indicating whether the message-signature pair was
created by the signer or the sanitizer, i.e. d← Jud(pkS, pkZ,m, σ, π).

For a sanitizable signature scheme the usual correctness properties should hold, saying that genuinely
signed or sanitized messages are accepted and that a genuinely created proof by the signer leads the judge
to decide in favor of the signer. For a formal approach to correctness see [BFF+09].

D.2 Security of Sanitizable Signatures

Here we recall the security notions of sanitizable signatures given by Brzuska et al. [BFF+09, BFLS10],
namely, unforgeability, privacy, immutability, accountability, transparency, and unlinkability. It is known
that signer and sanitizer accountability together implies unforgeability and that unlinkability implies
privacy. On the other hand, (proof-restricted) transparency implies (proof-restricted) privacy. Since both
of our schemes satisfy signer and sanitizer accountability, we omit the definition of unforgeability and
privacy.

Immutability. Informally, this property says that a malicious sanitizer cannot change inadmissible blocks.
This is formalized in a model where the malicious sanitizerA interacts with the signer to obtain signatures
σi for messages mi, descriptions αi and keys pkZ,i of its choice. Eventually, the attacker stops, outputting
a valid pair (pk∗Z ,m∗, σ∗) such that message m∗ is not a “legitimate” transformation of one of the mi’s
under the same key pk∗Z = pkZ,i. The latter is formalized by requiring that for each query pk∗Z 6= pkZ,i
or m∗ /∈ {δ(mi) | δ with αi(δ) = 1} for the value αi in σi. This requirement enforces that block-divided
messages m∗ and mi differ by at least one inadmissible block. Observe that this definition covers also
the case where the adversary interacts with several sanitizers simultaneously, because it can query the
signer for several sanitizer keys pkZ,i.

Definition 21 (Immutability). A sanitizable signature scheme SS is said to be immutable if for all
PPT adversaries A the probability that the experiment ImmutSSA (λ) evaluates to 1 is negligible (in λ),
where

Experiment ImmutSSA (λ)
pp← Setup(1λ); (pkS, skS)← KGenS(pp)
(pk∗Z ,m∗, σ∗)← ASig(skS,·,·,·),Prov(skS,·,·,·)(pp, pkS)

where (pkZ,i,mi, αi) and σi denote the queries and answers to and from oracle Sig.
Output 1 if Ver(pkS, pk∗Z ,m∗, σ∗) = 1 and for all i the following holds:

pk∗Z 6= pkZ,i ∨ m∗ /∈ {δ(mi) | δ with αi(δ) = 1}
Else output 0.

Accountability. This property demands that the origin of a (possibly sanitized) signature should be
undeniable. We distinguish between sanitizer-accountability and signer-accountability and formalize each
security property in the following. Signer-accountability says that, if a message and its signature have not
been sanitized, then even a malicious signer should not be able to make the judge accuse the sanitizer.

In the sanitizer-accountability game let ASan be an adversary playing the role of the malicious sani-
tizer. ASan has access to Sig and Prov oracle and it succeeds if it outputs a valid message signature pair

21

such that m∗, σ∗, together with a key pk∗Z (with (pk∗Z ,m∗) such that the output is different from pairs
(pkZ,i,mi) previously queried to the Sig oracle). Moreover, it is required that the proof produced by the
signer via Prov still leads the judge to decide “S”, i.e., that the signature has been created by the signer.

Definition 22 (Sanitizer-Accountability). A sanitizable signature scheme SS is sanitizer-
accountable if for all PPT adversaries A the probability that the experiment San-AccSSA (λ) evaluates to
1 is negligible (in λ), where

Experiment San-AccSSA (λ)
pp← Setup(1λ); (pkS, skS)← KGenS(pp)
(pk∗Z ,m∗, σ∗)← ASig(skS,·,·,·),Prov(skS,·,·,·)(pp, pkS)

where (mi, αi, pkZ,i) and σi denote the queries and answers to and from oracle Sig
π ← Prov(skS, pk∗Z ,m∗, σ∗)
Output 1 if for all i the following holds:

(pk∗Z ,m∗) 6= (pkZ,i,mi) ∧ Ver(pkS, pk∗Z ,m∗, σ∗) = 1 ∧ Jud(pkS, pk∗Z ,m∗, σ∗, π) 6= Z
else output 0.

In the signer-accountability game a malicious signer ASig gets a public sanitizing key pkZ as input
and has access to a sanitizing oracle, which takes as input tuples (mi, δi, σi, pkS,i) and returns (m′i, σ′i).
Eventually, the adversary ASig outputs a tuple (pk∗S ,m∗, σ∗, π∗) and is considered successful if Jud accuses
the sanitizer for the new key-message pair pk∗S ,m∗ with a valid signature σ∗.

Definition 23 (Signer-Accountability). A sanitizable signature scheme SS is said to be signer-
accountable if for all PPT adversaries A the probability that the experiment Sig-AccSSA (λ) outputs 1 is
negligible (in λ), where

Experiment Sig-AccSSA (λ)
pp← Setup(1λ); (pkZ, skZ)← KGenZ(pp)
(pk∗S ,m∗, σ∗, π∗)← ASan(·,skZ,·,·,·)(pp, pkZ)

where (pkS,i,mi, δi, σi) and (m′i, σ′i) denote the queries and answers to and from oracle San.
Output 1 if for all i the following holds:

(pk∗S ,m∗) 6= (pkS,i,m
′
i) ∧ Ver(pk∗S , pkZ,m

∗, σ∗) = 1 ∧ Jud(pk∗S , pkZ,m
∗, σ∗, π∗) 6= S

else output 0.

Transparency. Informally, this property says that one cannot decide whether a signature has been san-
itized or not. Formally, this is defined in a game where an adversary A has access to Sig, San, and
Prov oracles with which the adversary can create signatures for (sanitized) messages and learn proofs.
In addition, A gets access to a Sig/San box which contains a secret random bit b ∈ {0, 1} and which, on
input a message m, a modification information δ and a description α behaves as follows:
– for b = 0 runs the signer algorithm to create σ ← Sig(m, skS, pkS, α), then runs the sanitizer algorithm

and returns the sanitized message m′ with the new signature σ′, and
– for b = 1 acts as in the case b = 0 but also signs m′ from scratch with the signing algorithm to create

a signature σ′ and returns the pair (m′, σ′).
Adversary A eventually produces an output a, the guess for b. A sanitizable signature is now transparent
if for all efficient algorithms A the probability for a right guess a = b in the above game is negligibly
close to 1

2 . Below we also define a relaxed version called proof-restricted transparency.

Definition 24 ((Proof-Restricted) Transparency). A sanitizable signature scheme SS is said to be
proof-restrictedly transparent if for all PPT adversaries A the probability that the experiment TransSSA (λ)
evaluates to 1 is negligibly (in λ) bigger than 1

2 , where

Experiment TransSSA (λ)
pp← Setup(1λ); (pkS, skS)← KGenS(pp); (pkZ, skZ)← KGenZ(pp); b← {0, 1}
a← ASig(skS,·,·,·),San(·,skZ,·,·,·),Prov(skS,·,·,·),Sig/San(·,·,·,skS,skZ,b)(pp, pkS, pkZ)

where MSig/San and MProv denote the sets of messages output by the Sig/San
and queried to the Prov oracle respectively.

Output 1 if
(
a = b ∧MSig/San ∩MProv = ∅

)
; else output 0

22

Unlinkability. This security notion demands that it is not feasible to use the signatures to identify
sanitized message-signature pairs originating from the same source. This should even hold if the adversary
itself provides the two source message-signature pairs and modifications of which one is sanitized. It is
required that the two modifications yield the same sanitized message, because otherwise predicting the
source is easy, of course. This, however, is beyond the scope of signature schemes: the scheme should
only prevent that signatures can be used to link data.

In the formalization of [BFLS10], the adversary can access a signing oracle and a sanitizer oracle (and
a proof oracle since this step depends on the signer private key and may leak valuable information). The
adversary is also allowed to query a left-or-right oracle LoRSanit which is initialized with a secret random
bit b and keys pkS, skZ. The adversary may query this oracle on tuples ((m0, δ0, σ0), (m1, δ1, σ1)) and
returns San(mb, δb, σb, pkS, skZ) if Ver(mi, σi, pkS, pkZ) = 1 for i = 0, 1, α0 = α1 and if the modifications
map to the same message, i.e., α0(δ0) = 1, α1(δ1) = 1 and δ0(m0) = δ1(m1). Otherwise, the oracle
returns ⊥. The adversary should eventually predict the bit b significantly better than with the guessing
probability of 1

2 .

Definition 25 (Unlinkability). A sanitizable signature scheme SS is unlinkable if for all PPT ad-
versaries A the probability that the experiment LinkSSA (λ) outputs 1 is negligibly (in λ) bigger than 1

2 ,
where
Experiment LinkSSA (λ)
pp← Setup(1λ); (pkS, skS)← KGenS(pp); (pkZ, skZ)← KGenZ(pp); b← {0, 1}
a← ASig(skS,·,·,·),San(·,skZ,·,·,·),Prov(skS,·,·,·),LoRSanit(skS,skZ,·,·,b)(pp, pkS, pkZ)
if a = b then output 1, else output 0.

E Security Proofs for Rerandomizable Tagging Scheme

User-Accountability. We assume the existence of EUF-CMA secure signature scheme Σ and pseudoran-
dom function F by the assumption that one-way function exists. Suppose there exists PPT adversary A
which breaks the user-accountability of RT . Consider a PPT simulator S which acts as the adversary
in the EUF-CMA game of Σ. S simulates the user-accountability game for A as follows:
– S receives pk∗ and gains access to the signing oracle SSig(sk∗, ·). It sets pkΣ := pk∗ and simulates

the pseudorandom function with a table.
– To simulate the Tag oracle on query (pkU,i,mi) where pkU,i = (pkC, pkTD, pke), it samples random

tuple (qi,1, qi,2, qi,3, ri,1, ri,2, ri,3) and record it in the table. It computes ρi,1 ← g(ri,1), ρi,2 ← g(ri,2),
µi ← CEval(pkC,mi; ρi,1), and yi ← TDEval(pkTD, µi, ρi,2). It encrypts ci ← Enc(pke,mi; ri,3). It
then uses the signing oracle to obtain a signature σi on (pkU,i, yi, qi,1, qi,2, qi,3, ci). It outputs a tag
τi = (ρi,1, ρi,2, qi,1, qi,2, qi,3, ci, σi).

– To simulate the TProv oracle on query (pkU,i,mi, τi) where τi = (ρi,1, ρi,2, qi,1, qi,2, qi,3, ci, σi), it
checks whether (qi,1, qi,2, qi,3, ri,1, ri,2, ri,3) exists on the table for some (ri,1, ri,2, ri,3). If so, it outputs
(ri,1, ri,2, ri,3). Otherwise, it samples random (ri,1, ri,2, ri,3), records (qi,1, qi,2, qi,3, ri,1, ri,2, ri,3) in the
table, and returns (ri,1, ri,2, ri,3).

– Eventually, A returns (pk∗U ,m∗, τ∗) where τ∗ = (ρ∗1, ρ∗2, q∗1 , q∗2 , q∗3 , c∗, σ∗).
– S outputs ((pk∗U , y∗, q∗1 , q∗2 , q∗3 , c∗), σ∗) where y∗ ← TDEval(pkTD, µ

∗, ρ∗2) and µ∗ ← CEval(pkC,m
∗; ρ∗1).

Let (r∗1 , r∗2 , r∗3) = π∗ ← TProv(skI, pk∗U , τ∗). With non-negligible probability, we have (pk∗U ,m∗) 6=
(pkU,i,mi) for all i, TVer(pkI, pk∗U , τ∗) = 1, and TJud(pkI, pk∗U , τ∗, π) 6= U.

We argue that ((pk∗U , y∗, q∗1 , q∗2 , q∗3 , c∗), σ∗) is a valid forgery to Σ. This happens when either any of
the component in (pk∗U , y∗, q∗1 , q∗2 , q∗3 , c∗) was not queried to SSig before.

Suppose pk∗U = pkU,i for some i, then by the first winning condition, we have m∗ 6= mi. The judgment
suggests that y∗ 6= yi or (µ∗, ρ∗2) = (µi, ρi,2). Suppose the first case happens, we observe that y∗ was never
queried to the signing oracle before. In the second case, we can assume q∗1 = qi,1 and thus ρ∗1 = ρi,1, for
otherwise q∗1 was never queried to SSig. However, this violates that m∗ 6= mi as µ∗ = CEval(pkC,m

∗; ρ∗1) =
CEval(pkC,mi; ρ∗1) = µi (since ρ∗1 = ρi,1) implies m∗ = mi. We thus assume pk∗U 6= pkU,i for all i, which
means that pk∗U was never queried to the signing oracle before.

Issuer-Accountability. Suppose there exists PPT adversary A which breaks the issuer-accountability of
RT . Consider a PPT simulator S which acts as the adversary in the collision-resistance game of TD. S
simulates the issuer-accountability game for A as follows:

23

– S samples a random bit b← {0, 1} and runs TCGen(1λ, b) to generate pkC and one of the trapdoors
skC,b for the chameleon hash.

– Suppose A queries the ReTag oracle at most Q times. S samples random messages m�i ← {0, 1}λ and
random ρ�i,1 ← {0, 1}2λ and computes µ′i ← CEval(pkC,m

�
i ; ρ�i,1) for i = 1, . . . , Q. All µ′i are distinct

with overwhelming probability.
– S sends (µ′1, . . . , µ′Q) to the challenger of the collision-resistance game of TD, and receives from the

latter a public key pkTD.
– To simulate the ReTag oracle on query (pkI,i,mi,m

′
i, τi), where pkI,i = pki,Σ and τi =

(ρi,1, ρi,2, qi,1, qi,2, qi,3, ci, σi), S computes µi := CEval(pkC,mi; ρi,1) and yi := TDEval(pkTD, µi, ρi,2).
It queries the inversion oracle of TD with image yi and receives ρ′i,2. By definition of the
collision-resistance game, we have yi = TDEval(pkTD, µ

′
i, ρ
′
i,2). On the other hand, it computes

ρ′i,1 ← CInv(skC, i, ρ
�
i,1,m

′
i). S thus outputs τ ′i = (ρ′i,1, ρ′i,2, qi,1, qi,2, qi,3, ci, σi).

– Eventually, A outputs (pk∗I ,m∗, τ∗, π∗) for some pk∗I = pk∗Σ , τ∗ = (ρ∗1, ρ∗2, q∗1 , q∗2 , q∗3 , c∗, σ∗) and π∗ =
(r̂1, r̂2, r̂3) such that, for all i, it holds that (pk∗I ,m∗) 6= (pkI,i,mi), TVer(pk∗I , pkU, τ

∗) = 1, and
TJud(pk∗I , pkU, τ

∗, π∗) 6= I.
– S computes ρ̂1 ← g(r̂1), ρ̂2 ← g(r̂2), m̂ ← Ext(pke, c∗, r̂3), µ∗ ← CEval(pkC,m

∗; ρ∗1),
µ̂ ← CEval(pkC, m̂; ρ̂1). We argue that S wins the collision-resistance game of TD by outputting
((µ∗, ρ∗2), (µ̂, ρ̂2)).
By the condition TJud(pk∗I , pkU, τ

∗, π∗) 6= I, we have y∗ = ŷ, where y∗ ← TDEval(pkTD, µ
∗, ρ∗2) and

ŷ ← TDEval(pkTD, µ̂, ρ̂2), but (µ∗, ρ∗2) 6= (µ̂, ρ̂2). It remains to argue that µ∗, µ̂ /∈ (µ′1, . . . , µ′Q) with
overwhelming probability.

Suppose that µ∗ = µ′i for some i, we have µ∗ = CEval(pkC,m
∗; ρ∗1) = CEval(pkC,m

�
i ; ρ�i,1) = µ′i.

Since m�i is uniformly random, (m∗, ρ∗1) 6= (m�i , ρ�i,1) with overwhelming probability, thus, using pkC and
the collision (m∗, ρ∗1) and (m�i , ρ�i,1), there is an efficient algorithm using which S can output the other
trapdoor skC,1⊕b for the chameleon hash with probability at least 1

2 .
Finally, we argue that the case µ̂ = µ′i for some i happens with negligible probability. By the definition

of the chameleon hash function, the distribution of µ′i is identical to the distribution of ρ�i,1, which is the
uniform distribution over {0, 1}2λ. On the other hand, possible value of µ̂ only comes from {0, 1}λ since
it is computed from the pseudorandomness ρ̂2 := g(r̂2), thus, the probability that they are equal is at
most 2λ

22λ = 2−λ, which is negligible.

Proof-Restricted Transparency. We assume the existence of pseudorandom generator g1, and pseudoran-
dom function F by the assumption that one-way function exists. Suppose there exists PPT adversary
A which breaks the proof-restricted transparency of RT . Consider a PPT simulator S which acts as a
distinguisher of the pseudorandom generator g and a sequence of hybrid experiments.
– Game 0: This is the original proof-restricted transparency game.
– Game 1: S generates all keys honestly except that it simulates F by a table: On query q to F ,

it checks whether (q, r) appears on the table for some r. If so, it outputs r. Otherwise, it samples
r ← {0, 1}λ and outputs r.

– Game 2: S replaces the pseudorandom generator g1 by a random function.
– Game 3: S replaces the ciphertext c output by the Tag/ReTagb oracle in the case b = 0 by an

encryption of m′.
We argue that all experiments are computationally indistinguishable. The indistinguishability between
Game 0 and 1 follows from the security of the pseudorandom function F . The indistinguishability between
Game 1 and 2 follows from the security of the pseudorandom generator g1. The indistinguishability
between Game 2 and 3 follows from the CPA-security of E . Finally, if A can distinguish the cases of
the Tag/ReTagb oracle, S can distinguish ρ2 from ρ′2. This happens with negligible probability by the
definition of the tag-based trapdoor function.

F Security Proofs for Accountable Ring Signature

Unforgeability. If a PPT adversary A can break the unforgeability by outputting a forgery, we can simply
truncate the ciphertext and its proof from the forgery, which gives a forgery of the underlying scheme
of Bose et al. [BDR15]. Simply put, the SPE ciphertext and the corresponding proof do not tamper the
unforgeability.

24

Anonymity. If a PPT adversary A can break the anonymity under full key exposure of RS, a PPT
simulator S can use A to break the CCA-security of SPE as follows. S generates crs of GS in the
simulation setting. This way of generating the crs is indistinguishable from that in the real scheme, by
the hiding property of GS. It then generates the remaining public parameters honestly, and receives opk
as the public key of SPE from an SPE challenger. This is possible as the opk in the real scheme only
depends on the security parameter λ. S answers the queries to the opening oracle by first redirecting
the decryption steps to the decryption oracle of SPE , and then simulating the proofs itself. S answers
the queries to the challenge oracle honestly except that the proofs are now simulated as in the proof of
BDR [BDR15], and the ciphertexts are obtained by redirecting the public keys to the challenge oracle
of SPE (which we assume without loss of generality can be called twice). The simulated proofs are
indistinguishable to those in the real scheme, for otherwise we can construct an adversary to break the
hiding property of GS. Thus, ifA can distinguish the challenge oracle ofRS, it reduces to S distinguishing
the challenge oracle of SPE .

Traceability. Suppose a PPT adversary A breaks the traceability of RS. By the definition of GS, there
exists an extractor which extracts the public key (A,B) encrypted in the ciphertexts (ea, eb) output by
the adversary. By the perfect correctness of SPE , (ea, eb) must decrypt to (A,B) respectively. Finally,
by the completeness of GS, the generated proofs must verify to 1, which is a contradiction.

Tracing Soundness. Suppose a PPT adversary A can generate an RS signature which opens to two
signers. By the definition of GS, there exists an extractor which extracts the opener secret key osk
from the proofs output by the adversary. By the soundness of GS, both ((A0, ra,0), (B0, rb,0)) and
((A1, ra,1), (B1, rb,1)) are message-randomness tuples encrypted to ea and eb. However, by the perfect
correctness of SPE , this is impossible.

G Security Proofs for the First Construction

Immutability. Suppose there exists PPT adversary A which breaks the immutability of SS. Consider a
PPT simulator S acting as the adversary in the EUF-CMA game of Σ. S receives pk∗ and gains access
to the signing oracle SSig(sk∗, ·). S sets pkf := pk∗ and generates other keys honestly.

When A queries Sig(skS, ·, ·, ·), S computes everything honestly except that it computes σf as σf ←
SSig(sk∗,mf). When A queries Prov(skS, ·, ·, ·), S computes everything honestly.

Eventually, A outputs (pk∗Z ,m∗, σ∗). By construction, we have σ∗ = (σ∗f , τ∗, α∗) and m∗f =
(fα(m∗), pk∗Z , α∗), such that SVer(pkf ,m

∗
f , σ
∗
f) = 1, and TVer(pkI, pk∗U ,m∗, τ∗) = 1. With

non-negligible probability, we have Ver(pkS, pk∗Z ,m∗, σ∗) = 1, and for all i, pk∗Z 6= pkZ,i or
m∗ /∈ {δ(mi) | δ with αi(δ) = 1} for the value αi in σi. Thus, S outputs (m∗f , σ∗f) and wins the
EUF-CMA game of Σ with the same advantage as A.

Sanitizer-Accountability. Suppose there exists PPT adversaryA which breaks the sanitizer-accountability
of SS. Consider a PPT simulator S, which chooses at the beginning a random bit b← {0, 1}. If b = 0, S
acts as the adversary in the EUF-CMA game of Σ. S receives pk∗ and gains access to the signing oracle
SSig(sk∗, ·). S sets pkf := pk∗ and generates other keys honestly. Else, S acts as the adversary in the
user-accountability game of RT . S receives pk∗ and gains access to the tagging oracle Tag(·, sk∗, ·) and
proof oracle TProv(sk∗, ·, ·, ·). S sets pkI := pk∗ and generates other keys honestly. In both cases, when
A queries Prov(skS, ·, ·, ·), S computes everything honestly.

If b = 0, when A queries Sig(skS, ·, ·, ·), S computes everything honestly except that it computes σf
as σf ← SSig(sk∗,mf). If b = 1, when A queries Sig(skS, ·, ·, ·), S computes everything honestly except
that it computes τ as τ ← Tag(sk∗, pkU,m) and πτ as πτ ← TProv(sk∗, pkU,m, τ).

Eventually, A outputs (pk∗Z ,m∗, σ∗). By construction, we have σ∗ = (σ∗f , τ∗, α∗) and m∗f =
(fα(m∗), pk∗Z , α∗), such that SVer(pkf ,m

∗
f , σ
∗
f) = 1, and TVer(pkI, pk∗U ,m∗, τ∗) = 1.

Let π ← Prov(skS,m
∗, σ∗, pk∗Z). For all i, with non-negligible probability, we have (pk∗Z ,m∗) 6=

(pkZ,i,mi), Ver(pkS, pk∗Z ,m∗, σ∗) = 1, and Jud(pkS, pk∗Z ,m∗, σ∗, π) 6= Z. By the judgment, we have
TJud(pkI, pk∗U ,m∗, τ∗, πτ) = I.

Suppose (m∗f , σ∗f) is not a message-signature pair queried to and returned from the signing oracle
before. If S guessed b = 0, it outputs (m∗f , σ∗f) and wins the EUF-CMA game of Σ with the same
advantage as A. Otherwise, it has guessed wrongly and aborts.

25

On the other hand, suppose (m∗f , σ∗f) is a message-signature pair queried to and returned from
the signing oracle before. It implies that m∗f = (fα(m∗), pk∗Z , α∗) = (fα(mi), pkZ,i, αi) = mf,i. Thus
(pk∗U ,m∗) 6= (pkU,i,mi) (since m∗ 6= mi). If in addition, S guessed b = 1, then S outputs (pk∗U ,m∗, τ∗)
and wins the user-accountability game of RT . Otherwise, it has guessed wrongly and aborts.

Since the cases b = 0 and b = 1 are indistinguishable from the view of A, the chance of S guessing
correctly is at least 1

2 .

Signer-Accountability. Suppose there exists A which breaks the signer-accountability of SS. Consider
a PPT simulator S acting as the adversary in the issuer-accountability game of RT . S receives pk∗U
and can access the oracle ReTag(·, sk∗U , ·, ·). S sets pkU := pk∗U and generates other keys honestly. When
A queries the oracle San(·, skZ, ·, ·, ·), S computes everything honestly except that it computes τ ′ as
τ ′ ← ReTag(pkI, sk∗U ,m, τ). Eventually, A outputs (pk∗S ,m∗, σ∗, π∗). By construction, we have σ∗ =
(σ∗f , τ∗, α∗) and m∗f = (fα(m∗), pk∗Z , α∗), such that SVer(pkf ,m

∗
f , σ
∗
f) = 1, and TVer(pk∗I , pk∗U ,m∗, τ∗) = 1.

For all i, with non-negligible probability, we have (pk∗S ,m∗) 6= (pkS,i,m
′
i), Ver(pk∗S , pkZ,m

∗, σ∗) = 1,
and Jud(pk∗S , pkZ,m

∗, σ∗, π∗) 6= S. By the judgment, we have TJud(m∗, pkI, pk∗U , τ∗, π∗τ) = U. S outputs
(pk∗I ,m∗, τ∗, π∗τ) to win the issuer-accountability game of RT with the same advantage as A.

Proof-Restricted Transparency. Suppose there exists PPT adversary A which breaks the proof-restricted
transparency of SS. Consider a PPT simulator S acting as the adversary in the proof-restricted
transparency game of RT . S receives (pk∗I , pk∗U) and gains access to the tagging oracle Tag(·, sk∗I , ·),
the re-tagging oracle ReTag(·, sk∗U , ·, ·) the proof oracle TProv(sk∗I , ·, ·, ·), and the tag-or-re-tag oracle
Tag/ReTagb(·, ·). S sets pkI := pk∗I and pkU := pk∗U and generates other keys honestly.

When A queries the oracle Sig(skS, ·, ·, ·), S computes everything honestly except that it computes τ as
τ ← Tag(m, sk∗I , pkU) and πτ as πτ ← TProv(sk∗I , pkU,m, τ). When A queries the oracle San(·, skZ, ·, ·, ·), S
computes everything honestly except that it computes τ ′ as τ ′ ← ReTag(pkI, sk∗U ,m, τ). When A queries
the oracle Prov(skS, ·, ·, ·), S computes everything honestly. When A queries the oracle Sig/San(·, ·, ·), S
obtains the tag τ ′ from τ ′ ← Tag/ReTagb(m,m′).

Eventually, A outputs a bit a which is also output by S. Note that since every part except the tag τ ′
output by the Tag/ReTagb oracle has exactly the same distribution, the advantage of A in distinguishing
the sanitized signatures is identical to that of S in distinguishing the tags from rerandomized tags.

H Security Proofs for the Second Construction

Immutability. Suppose there exists a PPT adversary A which breaks the immutability of SS2. Consider
a PPT simulator S acting as the adversary in the sEUF-CMA game of Σ. S receives pk∗ and gains access
to the oracle SSig(sk∗, ·) of Σ. S sets pkf := pk∗ and generates other keys honestly.

In the query phase, S answers queries to Prov(skS, ·, ·, ·) honestly. When A queries Sig(skS, ·, ·, ·),S
computes everything honestly except that it receives σf by querying mf to the oracle SSig(sk∗, ·).

Eventually, A outputs a sanitized signature (pk∗Z ,m∗, σ∗) such that Ver(pkS, pk∗Z ,m∗, σ∗) = 1 with
non-negligible probability. By construction, we have σ∗ = (σ∗f , σ̂∗, α∗) and m∗f = (fα(m∗), α∗,R∗),
such that RVer(opkRS ,m∗,R∗, σ̂∗) = 1 and SVer(pkf ,m

∗
f , σ
∗
f) = 1, and for all i, pk∗Z 6= pkZ,i or m∗ /∈

{δ(mi) | δ with αi(δ) = 1} for the value αi in σi. Thus, S outputs (m∗f , σ∗f) and wins the sEUF-CMA
game of Σ.

Sanitizer-Accountability. Suppose there exists a PPT adversary A which breaks the sanitizer-
accountability of SS2. Consider a PPT simulator S who acts as the adversary in the user traceability
game or the unforgeability game of RS.
S receives pp and flips a fair coin c ∈ {0, 1} to decide its behavior.

– If c = 0, S guesses that A will output (pk∗Z ,m∗, σ∗) where pk∗Z 6= pk′Z. In this case, S obtains pk∗RS
from the challenger in the unforgeability game of RS, runs (opk∗RS , osk∗RS) ← ROKGen(pp), runs
(pkf , skf) ← SGen(pp), and sets pk∗S = (pkf

∗, opk∗RS , pk∗Z). Remark that the probability for A to
generate a ring signature key pair (pk′RS , sk

′
RS) where pk∗RS = pk′RS is negligible.

When A makes a signing query to S on message m, S runs σf ← SSig(skf
∗,mf , α), makes a signing

query m to the signing oracle of RS to obtain σ̂, and returns σ = (σf , σ̂, α).
When A makes a proof query to S with a signature generated with respect to pk∗S , S runs π ←
ROpen(osk∗RS ,m,R, σ̂) to answer the query.

26

Eventually, A outputs (pk∗Z ,m∗, σ∗). By construction, we have σ∗ = (σ∗f , σ̂∗, α∗) and m∗f =
(fα(m∗), α∗,R∗), such that RVer(opkRS ,m∗,R∗, σ̂∗) = 1 and SVer(pkf ,m

∗
f , σ
∗
f) = 1.

Let π = (pk′RS , ψ) ← ROpen(osk∗RS ,m∗,R, σ̂∗). For all i, with non-negligible probability, we have
(pk∗Z ,m∗) 6= (pkZ,i,mi), Ver(pk∗S , pk∗Z ,m∗, σ∗) = 1, and Jud(pk∗S , pk∗Z ,m∗, σ∗, π) 6= Z. By the judgment,
we have pk′RS = pk∗RS 6= pk∗Z and RJud(opkRS ,m,R, σ̂, pk∗RS , ψ) = 0. Hence, S outputs (m∗, σ̂∗) as
a forgery for RS.

– If c = 1, S guesses that A will output (pk∗Z ,m∗, σ∗) where pk∗Z = pk′Z. In this case, S runs
(pk∗RS , sk

∗
RS)← RUKGen(pp), runs (opk∗RS , osk∗RS)← ROKGen(pp), runs (pkf , skf)← SGen(pp), and

sets pk∗S = (pkf
∗, opk∗RS , pk∗Z).

When A makes a signing query to S on (m,α), S runs σ ← Sig(sk∗S , pkZ,m, α) and returns σ.
When A makes a proof query to S with a signature generated with respect to pk∗S , S runs π ←
ROpen(osk∗RS ,m,R, σ̂) to answer the query.
Eventually, A outputs (pk∗Z ,m∗, σ∗). By construction, we have σ∗ = (σ∗f , σ̂∗, α∗) and m∗f =
(fα(m∗), α∗,R∗), such that RVer(opkRS ,m∗,R∗, σ̂∗) = 1 and SVer(pkf ,m

∗
f , σ
∗
f) = 1.

Let π = (pk′RS , ψ) ← ROpen(osk∗RS ,m∗,R, σ̂∗). For all i, with non-negligible probability, we have
(pk∗Z ,m∗) 6= (pkZ,i,mi), Ver(pkS, pk∗Z ,m∗, σ∗) = 1, and Jud(pkS, pk∗Z ,m∗, σ∗, π) 6= Z. By the judgment,
we have pk∗RS = pk′RS and RJud(opkRS ,m,R, σ̂, pk∗RS , ψ) = 0. This is a break to the traceability of
RS.

Signer-Accountability. Suppose there exists a PPT adversary A which breaks the signer-accountability
of SS2. Consider a PPT simulator S who acts as the adversary in the unforgeability game of RS. S
receives pp and gets access to a signing oracle of RS. S obtains (pk∗RS , opkRS), and sets pk∗Z = pk∗RS . A
receives pp and can do anything with pp including generating signers and signatures by itself.

When A makes a sanitizing query to S, S extracts σf from the query, forwards the sanitized message
to the signing oracle of RS to obtain σ̂, and returns (σf , σ̂, α) to A.

Eventually, A outputs (pk∗Z ,m∗, σ∗, π∗). By construction, we have σ∗ = (σ∗f , σ̂∗, α∗) and m∗f =
(fα(m∗), α∗,R∗), such that RVer(opkRS ,m∗,R∗, σ̂∗) = 1 and SVer(pkf ,m

∗
f , σ
∗
f) = 1.

Let π = (pk′RS , ψ) ← ROpen(osk∗RS ,m∗,R, σ̂∗). For all i, with non-negligible probability, we have
(pk∗Z ,m∗) 6= (pkZ,i,mi), Ver(pkS, pk∗Z ,m∗, σ∗) = 1, and Jud(pkS, pk∗Z ,m∗, σ∗, π) = Z. By the judgment, we
have pk′RS = pk∗RS and RJud(opkRS ,m,R, σ̂, pk∗RS , ψ) = 1. Hence, (m∗, σ∗) is a successful forgery for
RS in the first case in Definition 16.

Proof-Restricted Transparency. Suppose there exists A which breaks the proof-restricted transparency
of SS. Consider a PPT simulator S acting as the adversary in the anonymity game of RS. S receives
(pp, opk), and gains access to the challenge oracle Chalb(·, ·, ·, ·) and opening oracle ROpen(osk, ·, ·, ·)
where b ∈ {0, 1} is chosen by S. S generates other keys honestly, and use them to simulate the Sig and
San oracles. When A queries Sig/San(·, skZ, ·, ·, ·), we consider a sequence of hybrids: In the first hybrid,
S simulates Sig/San using the keys generated by itself. In the k-th intermediate hybrids, S replaces σ̂
returned by the k-th query to the Sig/San oracle by the challenge signature of the anonymity game of
RS. When A queries Prov(skS, ·, ·, ·),S computes π as ROpen(m,R, σ̂, osk).

Eventually, A outputs a bit a which is also output by S. If A can distinguish the original proof-
restricted transparency games for b = 0, 1, then it must also be able to distinguish the k-th hybrid from
the (k + 1)-th for some k. In such case, S breaks the anonymity of RS.

Unlinkability. To argue the unlinkability of our scheme, consider the tuples (m0, δ0, σ0) and (m1, δ1, σ1)
submitted by the adversary to LoRSanit(skS, skZ, ·, ·, b). By the definition of unlinkability, we have
δ0(m0) = δ1(m1). Thus, the distributions of the ring signatures are identical regardless of the
cases b = 0 and b = 1. Furthermore, observe that mf,0 = (fα(m0), α,R) = (fα(δ0(m0)), α,R) =
(fα(δ0(m0)), α,R) = (fα(m0), α,R) = mf,0. Since Σ is deterministic, it should be the case that
σf,0 = σf,1. If A submits distinct σf,0 and σf,1, S can use A to break the sEUF-CMA-security of Σ.
Finally, α0 = α1. Thus, the probability that A distinguishes the cases b = 0 and b = 1 is zero.

27

	 Efficient Sanitizable Signatures without Random Oracles

