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Abstract. Side channel analysis and fault attacks are two powerful methods to analyze and break
cryptographic implementations. Recently, secure multiparty computation has been applied to prevent
side channel attacks. While multiparty computation is known to be fault resistant as well, the particular
schemes popular for side channel protection do not currently offer this feature. In this paper we introduce
a new secure multiparty circuit to prevent both fault attacks and side channel analysis. The new scheme
builds on an existing side channel countermeasure and extends it to preserve errors and propagate them
until the end of the circuit. A new recombination operation ensures randomization of the output in the
case of an error, ensuring that nothing can be learned from the faulty output. After introducing the
new secure multiparty circuit, we show how it can be applied to AES and present the performance and
security analysis.

1 Introduction

Physical attacks are a common threat to cryptosystems if the adversary has physical access to the imple-
mentation. A wide range of such attacks have been shown to circumvent security assumptions and reveal
cryptographic keys, often with little effort, especially if no special precautions were taken during implemen-
tation. Two commonly considered classes of physical attacks are fault injection attacks and passive side
channel attacks. Fault attacks require a fault to be induced into the (secret) state. The resulting faulty out-
put can then reveal information about the state and the key [6, 1]. Similarly, data on power [19], sound [11]
or electromagnetic emanation [9] of a target implementation is measured in a side channel analysis to learn
information about the secret state. Another studied physical attack are probing attacks, where Ishai et al. [17]
construct a generic countermeasure, which has also been analyzed in the context of side channels.

Due to the effectiveness of physical attacks, countermeasures to both fault and side channel attacks have
been studied extensively. A common technique to counter a fault induction is error detection through adding
redundancy. Often, reliable error detection requires duplication of computation in space or time [1], especially
for symmetric ciphers, to achieve the desired error detection ratio. For asymmetric ciphers, lower overheads
are often possible [32, 14]. Another direction of fault countermeasures are infective countermeasures, which
aim at randomizing the secret state if an error occurs. Lomné et al. [20] introduced an infective countermea-
sure using multiplicative random masking. Gierlichs et al. [13] present the idea of dummy rounds. However,
these countermeasures are broken by Bastellini et al. [2] by using bias on the multiplicative mask and the use
of dummy rounds respectively. The second is improved by Tupsamudre et al. in [33]. This updated scheme
has been analyzed in [3], showing that getting the countermeasure right and efficient is difficult.

For the prevention of side channel leakage, one popular and effective countermeasure is masking [7], which
splits the secret state into several shares in a randomized fashion, as done in secret sharing. Computations are
then performed on the shares, as done in secure multiparty computation (SMC). Examples include Threshold
implementation [24] and its generalization [5, 27] or a proposal by Goubin et al. [15] and another one by
Roche and Prouff [29]. Usually, the shares are not redundant, as the goal of masking is to provide as little
information about the shared secret from a subset of the shares as possible.

To achieve both fault and side channel resistance, two countermeasures can be combined. However,
while the interactions between the countermeasures have not been studied in much detail, combining ad-hoc



methods can have adverse effects [26, 21]. Furthermore, overheads are huge and become larger for combined
methods. Nevertheless, resistance against both attacks is important, even more since attacks can be combined
to have greater effect on partially protected implementations [28, 20]. So far only limited prior work exists.
Schneider et al. [30] recently proposed a combined side-channel and fault countermeasure using threshold
implementations and error detecting codes [22]. Their proposal, while efficient, fault coverage depends on the
fault distribution. While it detects faults, it does not by itself ensure the randomness of the output. Another
countermeasure is introduced by De Cnudde et al. [8] which combines threshold implementations with error
cascading. The idea is to forwarding the input unless a faulty encoding is detected.

Our contribution. In this paper we examine fault resistance of the glitch-free secure multiparty circuits
proposed in [29] and propose a new combined protection scheme for both side channel and fault attacks. After
introducing our fault models, we analyze the fault behavior of the operations—namely affine transformation
and squaring of a secret share, addition of two secret shares and multiplication of two secret shares are
explained. It is observed that using previous multiplication schemes, the errors do not propagate and become
undetectable, making the circuit vulnerable to fault attacks.

We propose a new multiplication scheme in which errors are propagated by the algebraic operations
and thus will propagate until the end of the circuit. With our new recombination operation, the output is
randomized if an error occurred anywhere in the circuit, ensuring that the attacker cannot learn anything from
the output. We are able to construct arbitrary fault resistant circuits using the basic arithmetic operations
and a new recombination-fault detection operation. In the presence of faults, computation spreads the error
to all shares and infects them for the recombination operation. Therefore, the attacker gets random outputs
at the end of the cryptographic operation. Our scheme differs from previous proposals, as it does not have the
same requirement of n ≥ 3d+ 1 to detect d cheaters in an (n, d)-secret sharing scheme. Instead, our scheme
can detect up to ε errors, where n > 2d+ ε with very high probability. In fact, the detection probability is 1
after the first operation on faulty shares, but can slightly decrease depending on the number of subsequent
additions and multiplications.

The rest of the paper is structured as follows. In Section 2 we introduce the necessary background on
Shamir’s secret sharing, multiparty computation, and the scheme proposed in [29]. Using these protocols we
explain the fault behavior on secret sharing schemes and give our main claim in Section 3 and explain the
fault propagation of each operation. In Section 4 a new error preserving multiplication scheme is introduced
and the preservation of errors as well as recombination operation is explained. Also we give the security
analysis in Section 4.3. In Section 5 we show how this scheme can be applied to AES. Finally we present the
performance analysis and experimental results.

2 Preliminaries

We start with introducing the concepts of Shamir’s secret sharing and secure multiparty computation (SMC).
Also we explain their analysis with respect to side channel resistance.

2.1 Shamir’s Secret Sharing

Secret sharing schemes allow n participants to share a secret so that any d + 1 out of the n participants
can reconstruct the secret, while any d or fewer participants learn nothing about the secret. In a prominent
construction, due to Shamir [31], the secret is shared by a degree-d polynomial with coefficients in a finite
field. Sharing and reconstruction process can be summarized as follows:

Secret Sharing: In order to share a secret a0, a trusted dealer generates a random polynomial p(x) =
a0 + a1x+ . . .+ adx

d of degree d and sets the constant term to the secret a0. Then the dealer evaluates
p(x) at public coordinates αi and provides the ith player with its share p(αi).
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Secret Reconstruction: All coefficients of the secret polynomial p(x) can, e. g., be found using an n × n
Vandermonde matrix V = (αij)i,j=0,...,n−1. If (λj0, . . . , λ

j
n−1) corresponds to the j + 1th row of V −1 then

aj =

n−1∑
i=0

p(αj)λ
i
j , (1)

where ad+1 = ad+2 = . . . = an−1 = 0. With less than d + 1 shares, all possible values of a0 are
equiprobable.

2.2 Secure Multiparty Computation

Secure Multiparty Computation (SMC) enables the distributed computation on shared data and can be
implemented by means of sharing schemes [4]. Suppose we have two secret values f0 and g0 and each player
gets two shares of the form F (αi) and G(αi), respectively, where F (x) = f0⊕f1x⊕. . .⊕fdxd ∈ GF(28)[x] and
G(x) = g0⊕g1x⊕ . . .⊕gdxd ∈ GF(28)[x]. Here and throughout we assume a polynomial basis representation
of GF(28) using the irreducible degree-8 polynomial from the AES specification. The basic operations needed
below can be defined as follows:

Affine transformation of a secret: An affine transformation L(x) = ax⊕ b can be computed on a secret
value by applying the transformation on the shares locally; L(F (αi)) for i = 1, . . . , n.

Addition of two secrets: Players can compute the addition of two secret values f0 ⊕ g0 by H(αi) =
F (αi)⊕G(αi) on each share separately for i = 0, . . . , n− 1.

Squaring operation: Players can calculate the square operation ηk(y) = y2
k

without leaking any informa-
tion, if shares satisfies the following conditions [25];

1. αi 6= 0 for i = 1, . . . , n.
2. For every αi there exists αj such that α2

i = αj .

Each player calculates the operation on its share locally by ηk(F (αi)) = F ′(αi) where F ′(x) is the
polynomial whose coefficient are calculated by applying the same operation to the coefficients of F (x).

The family of shares ηk(F (αi)) for i = 0, . . . , n−1 is a valid secret shares of f2
k

0 . However, communication
between players is needed to do the reordering of the secret shares.

Multiplication of two secrets: If players want to compute the multiplication of two secret values f0 · g0,
then the algorithm is more complex than the previous operations. The following algorithm is based on
the work by Gennaro et al. in [12] and it is a simplified version of the original multiplication first proposed
by Ben-Or et al. [4]:

1. Each player Pi will compute H(αi) = F (αi) ·G(αi),
2. Each player Pi generates a degree d polynomial Qi(x) such that, Qi(0) = H(αi) and sends the value
Qi(αj) to player Pj .

3. Each player Pi computes Q(αi) =
n−1∑
j=0

λ0jQj(αi) where (λ00, . . . , λ
0
n−1) represents the first row of the

inverse Vandermonde matrix.

The shares calculated in Step 1 belong to a degree 2d polynomial H with H(0) = f0g0. Therefore the
shares (H(α0), . . . ,H(αn−1)) do not constitute an (n, d)− sharing. In step 2 and 3 degree reduction
and randomization is done in order to generate a proper (n, d)-sharing representation of f0g0. The final
relation between shares Q(αi) and the secret value f0 · g0 can be seen as follows:

Q(0) = λ1H(α1)⊕ . . .⊕ λnH(αn)

=

n∑
j=1

H(αj)λj = f0g0.

Hence, Q(αi) for i = 0, . . . , n− 1 will be a correct shared representation of f0 · g0.
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2.3 Secure Multiparty Computations as a Side Channel Countermeasure

Secure multiparty computations and secret sharing enable to split the information into shares in such a way
that neither the shares nor the computations on them reveals any critical information. Roche and Prouff
proposed to use the above described SMC as multiparty circuit (MPC) to counteract higher-order side
channel analysis, and showed how to apply it to AES [29]. The main idea is using Shamir’s secret sharing
to share the sensitive variable to protect the circuit. The computations on these shares are done by using
SMC methods from Ben-Or et al. [4] and Gennaro et al. [12]. They introduce a d-th order glitches adversary
model and an (n, d)-SMC. Also they show that an (n, d)-SMC is secure against a d-th order side channel
adversary. That is, an (n, d)-SMC resists d-th order side channel attacks, even in the presence of glitches.
An (n, d)-SMC consists of sub-circuits, which only ever process one share of any variable. Moreover, output
of these sub-circuits can be used as an input to other sub-circuits only if they constitute a proper sharing of
intermediate values.

In order to construct a secure AES implementation, (n, d)-SMCs for addition, affine transform, and mul-
tiplication over GF(28) are presented. AES’ MixColumns, ShiftRows and AddRoundKey only need addition
and affine transform, which are fairly efficient. The SubBytes operation, however, requires several multipli-
cations and squarings, making its implementation fairly expensive. Also AES’ KeyScheduling can be seen
as an affine transformation and S-box combination itself. Using these operations Roche and Prouff described
a d−glitch free AES-128 implementation. Details on the AES implementation can also be found in Section 5.

Moradi et al. [23] provide a first implementation of this scheme in hardware, as well as a practical side
channel analysis of their implementation. Similarly, Grosso et al. [16] examine the performance of existing
masking schemes in software for low-power microcontrollers. Both works conclude that the scheme comes
with a significant overhead, even when compared to other side channel protection schemes. The latter work
proposes the usage of packed secret sharing to make the scheme more efficient for higher protection orders.

3 Fault Behavior of Secure Multiparty Computations

Another important feature of secure multiparty computations is that it can be used as a fault injection
countermeasure. Clearly the fault resistance properties of the system depend on the number of shares.
Depending on the number of altered shares, the error is detectable, undetectable or correctable. To be able
to correct faults on d shares, previously proposed schemes require at least 3d + 1 shares [4]. Furthermore,
robust multiplication requires cheater detection at the input and output of every multiplication, which is a
very costly operation [12].

To be able to introduce a fault detection mechanism, we need to observe the fault behavior of certain
operations. In this section we examine the fault propagation of the SMC operations. We start with introducing
the fault model.

The general fault models are discussed in [20] and the classification is explained using the invariance in
the fault models:

1. Fault attacks based on a fixed fault diffusion pattern: The attacker can inject a random fault on a specific
part of an intermediate variable and using the diffusion pattern of the cryptographic algorithm, can gain
information.

2. Fault attacks based on a fixed fault logical effect: The second type of fault attacks is based on the fact
that the logical effect of the error is fixed, i.e., the logical effect of the fault to the system is x′ = x ? e,
where x is the intermediate variable, e is the error and ? is a logical operation.

In our model the intermediate values are proper shares. The attacker can induce additive faults to these
shares and the logical effect of error e to the ith share will be p(xi)⊕ e. The additive model describes a wide
class of errors that can be observed in practice.
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3.1 Fault Behavior

The additive error model allows us to observe the effect of the faults to the system easily. The main idea is
detecting the faults using the changes in the secret sharing polynomial.

We capture the effect of faults with the error polynomial, denoted by ∆(x). Fault detection is simply
done by checking the degree of ∆(x). For an (n, d) secret sharing scheme with n = d + ε + 1, faults are
undetectable if the degree of ∆(x) is d, i.e., the coefficients of the terms of degree d+ 1, . . . , n− 1 should be
zero. We refer to these terms as error detection terms.

In fact, we consider the error detection terms as a system of linear equations whose unknowns are faults
and the attacker has ε degrees of freedom. If the adversary is able to inject k faults to the system, then
for ε ≥ k, the system has only the trivial solution, i.e., all additive errors will be detected. For ε < k, the
system will, usually, have many solutions. However, the detection probability for random faults is still very
high. Using this motivation, we introduce the following claim which constitute a basis of our error detection
method.

Claim 1. If there are k(≤ ε) faulty shares in an (n, d) secret sharing scheme with n = d + ε + 1 then the
corresponding error polynomial ∆(x) = δ0 ⊕ δ1x ⊕ . . . ⊕ δd+1x

d+1 ⊕ . . . ⊕ δd+εxd+ε has at most k − 1 zero
coefficients in the error detection terms δd+1, . . . , δd+ε. Hence deg(∆(x)) ≥ d+ 1 and the error is detectable.

Proof. Let α0, . . . , αn−1 be public evaluation points and F (x) = f0 ⊕ f1x⊕ . . .⊕ fdxd be the secret sharing
polynomial. Without loss of generality, assume there exist k errors in the first k shares of a secret sharing.
From Equation ((1)), the relation between faulty shares and coefficients of F (x) and ∆(x) can be seen as
follows:

V −1



F (α0)⊕ σ0
...

F (αk−1)⊕ σk−1
F (αk)

...
F (αn−1)


︸ ︷︷ ︸

Faulty shares

= V −1



F (α0)
...

F (αk−1)
F (αk)

...
F (αn−1)


︸ ︷︷ ︸
Points of F (x)

⊕V −1



σ0
...

σk−1
0
...
0


︸ ︷︷ ︸

Points of ∆(x)

=



f0
...
fd
0
...
0


⊕



δ0
...
δd
δd+1

...
δn−1



where V = (αij) is an n×n Vandermonde matrix. Using V −1i,j = λij we can form a system of linear equations
for error detection terms of ∆(x):

σ0λ
n−1
0 ⊕ . . .⊕ σk−1λn−1k−1 = δd+ε

σ0λ
n−2
0 ⊕ . . .⊕ σk−1λn−2k−1 = δd+ε−1

σ0λ
n−3
0 ⊕ . . .⊕ σk−1λn−3k−1 = δd+ε−2

...

σ0λ
n−ε
0 ⊕ . . .⊕ σk−1λn−εk−1 = δd+1

As each λji belongs to the inverse Vandermonde matrix, the above equations are linearly independent.
Assume that δi = 0 for i ∈ I and I ⊂ {d+1, d+2, . . . , d+ε} with |I| = k. The system becomes a homogeneous
system with k unknown and k equations. So the only solution will be trivial one. However, if |I| = k − 1
then, we will get non-trivial solutions also.

Therefore using k errors, at most k − 1 error detection terms are set to zero. Hence, at least one of the
error detection coefficients of ∆(x) becomes non-zero, deg(∆(x)) ≥ d+1 , and the error can be detected.

The last part of this claim, i.e., deg(∆(x)) ≥ d + 1 and hence the error being detectable, was already
proven in [34, Sec. 4.1].
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3.2 Propagation of Errors

Fault injection countermeasures are less concerned with the correction of errors. Main goal is to detect the
fault and to ensure nothing can be learned from a faulty output. Therefore our aim is to preserve faults and
to detect them only once when the output is produced. To be able to detect the faults using Claim 1, we
need to observe the error propagation for each SMC component. In this section we discuss the preservation
of faults and show the vulnerabilities of the computations. For the descriptions we use the same notation as
in Section 2.2.

Affine transformation of a share: Assume an affine operation L(x) = ax ⊕ b is used to calculate the
secret L(f0). L(x) changes the faults only in magnitude while the localization of the faults are preserved.
Using Vandermonde representation we can see the propagation as follows;

V −1



L(F (α0)⊕ σ0)
...

L(F (αk−1)⊕ σk−1)
L(F (αk)))

...
L(F (αn−1))


= V −1





aF (α0)⊕ b
...

aF (αk−1)⊕ b
aF (αk)⊕ b

...
aF (αn−1)⊕ b


︸ ︷︷ ︸

Degree = d

⊕



aσ0
...

aσk−1
0
...
0


︸ ︷︷ ︸
Degree > d


.

(aF (α0)⊕ b, . . . , aF (αn−1)⊕ b) is a valid secret sharing of af0 ⊕ b and its polynomial is of degree d. So
faults are preserved by (aσ0, . . . , aσk−1, 0, . . . , 0). Moreover, the behavior of the faulty shares is the same
if they are injected during the computation of the affine transformation.

Addition of two shares: Assume the sum of two shared secrets f0 ⊕ g0 is wanted to be calculated. Each
party computes the sum of its shares locally as H(αi) = F (αi)⊕G(αi) and clearly if one of the shares
is faulty then the corresponding output share will also be faulty.
Attacker can inject faults to both polynomials in different or in same shares, however the overall effect
to the system will be similar. In this case however there is a probability that faults become undetectable.
The error detection coefficients can be zero if corresponding coefficients of F and G are equal that is,

fd+1 ⊕ gd+1 = . . . = fn−1 ⊕ gn−1 = 0. (2)

As the nature of secret sharing both F and G are random polynomials. Therefore the probability of
Equation (2) is (1/|F|)d+ε.

Squaring operation: As in the affine transformation, each player applies the transformation on its share.
The operation changes the magnitude of faults. The propagation of errors can be summarized as follows,
where (i1, . . . , in) is a permutation of indexes (1, . . . , n).

V −1



[F (α1)⊕ σ1]2
t

...

[F (αk)⊕ σk]2
t

[F (αk+1)]2
t

...

[F (αn)]2
t


= V −1





[F ′(αi1)]2
t

...

[F ′(αik)]2
t

[F ′(αik+1
)]2

t

...

[F ′(αin)]2
t


︸ ︷︷ ︸

Degree = d

⊕



σ2t

1
...

σ2t

k

0
...
0


︸ ︷︷ ︸

Degree > d


.

Hence, the points of the degree-d polynomial correspond to valid shares of secret f2
t

0 and the error is
propagated.
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Multiplication of two shares: Now we examine the propagation of faults in the multiplication scheme
introduced in Section 2.2 step by step.

1. Players whose shares are faulty calculate H(αi) = F (αi)G(αi)⊕σi where the magnitude of the fault
depends on the polynomial on which it is injected. Assume σFi and σGi represent the faults of the ith

shares of F and G respectively. The general form of a share can be summarized as

H(αi) = F (αi)G(αi)⊕ F (αi)σ
G
i ⊕G(αi)σ

F
i ⊕ σFi σGi . (3)

Equation (3) is still valid if only one polynomial is faulty. For example if only F (αi) is faulty then
the resulting share will be H(αi) = F (αi)G(αi)⊕G(αi)σ

F
i .

2. Each player generates a random degree d polynomial Qi(x) with Qi(0) = H(αi) and sends the
corresponding values to the other players. In this step all faults in H spread to shares and hence
they become undetectable.

3. Each player calculates its share by adding all corresponding values Qi(x) and gets a valid sharing of
the faulty secret value.

As a result, the final secret sharing polynomial will be a valid (n, d) secret sharing scheme and an
adversary is able to inject faults without detection.

We analyzed the error propagation for each SMC operation and observed the vulnerability of the multipli-
cation scheme. In order to generate a fault resistant implementation we need error-preserving SMC addition
and affine transform and most importantly an error-preserving SMC multiplication. Therefore, in the next
section we extend the multiplication scheme by Gennaro et al. [12] to an error preserving multiplication
scheme.

4 Error Preserving Multiparty Computation

The error-preserving multiparty computation scheme below differs significantly from other proposals, such
as robust SMC. Unlike, e. g., [12, 10], detecting errors after each operation is not convenient in many crypto-
graphic implementations, as it can reveal critical information. The basic ideas of our scheme are as follows:

– Error Detection Only Our scheme does not try to correct errors, nor detect where the error occurred.
As in most application scenarios, the scheme only aims at detecting the errors and ensures that the
attacker cannot learn anything from a faulty output.

– Error-Preserving Computation Once errors occur, the error will spread through the state and remain
part of the state. The advantage of this is that error detection only needs to be done once, when an
output is produced.

– Infective Computation If an error occurs, it is important to ensure the output does not reveal infor-
mation to the attacker. We show that the randomization property of the secret sharing together with
the redundant error polynomial ensure random outputs of faulty parts of the state if an error occurs.

Most of these goals can be achieved with the SMC described in [29] in a straightforward manner. However,
the multiplication is difficult to construct in a way such that error detection is not performed once for
each multiplication on each input and output. Instead, we propose a new multiplication engine that, in
addition to the shared inputs and outputs, also uses an additional error detection coefficient. The error
detection coefficients have several advantages: they add redundancy while only introducing minor overhead.
In summary, all circuits can be represented by a classic SMC addition, our updated SMC multiplication,
and a new recombination step, which is applied at the output and ensures that outputs are random if an
error occurred. SMC squaring and affine transform can still be used as before, as they do not influence the
the fault propagation in a negative way.
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F G

H

Q

Fig. 1. Framework of the multiplication scheme: The error detection terms of H, F and G are fed to shares of Q
during the randomization step.

4.1 Error Preserving Multiplication

Multiplication is the most critical SMC operation. Even without error detection, the multiplication is the
reason to require n > 2d, since the product of two degree-d polynomials is of degree-2d. To achieve error
detection, more shares are needed. In fact, we show that to detect ε errors, a total of n > 2d+ ε shares are
needed. A brief representation of the error preserving multiplication can be seen in Figure 1.

In the new scheme, the error propagation and infective computation is achieved by including the error
detection terms of input polynomials and the intermediate polynomial H(x) in the calculation of the output.
Recall that the error detection terms are the terms whose degrees are between d + 1, . . . , n − 1. Clearly, if
there are no faults injected to the system, they remain unchanged at zero. Also side channel leakages are
eliminated by using Qi which is a new random polynomial. All players only use their local information to
construct their part Q′i. A step-by-step description of our new multiplication scheme that can resist ε faults
follows:

1. Each player Pi locally computes H(αi) = F (αi) ·G(αi).

2. Each player Pi generates a degree d polynomial Qi(x) such that Q(0) = H(αi). To propagate faults
from the input, the player Pi also multiplies its ith share of H(x) and of G(x)⊕F (x) the corresponding
Vandermonde element. The result is added to a specific share of Qi to propagate the error information
to the output of the multiplication. Then Pi sends the Q′i(αj) values to player Pj for j = 0, . . . , n − 1
and j 6= i.

Q′i(αj) =


Qi(αj)⊕

λ
n−(j−1)
i

λ0
i

H(αi) if 0 ≤ j < ε

Qi(αj)⊕
λ
n−(j−1)
i

λ0
i

(F (αi)⊕G(αi)) if ε ≤ j < ε+ d

Qi(αj) if ε ≤ j ≤ n− 1

.

3. In the third step each player calculates its new share Q(αj) by the same summation Q(αj) =
∑n−1
i=0 λ

0
iQ′i(αj).

However, the first ε + d players also get an error detection coefficient of H(x) or F (x) ⊕ G(x). Since
these values are masked, these operations do not reveal any sensitive information. For example, player
Pj (0 ≤ j < ε) calculates its share Q(αj) by:
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Q(αj) =

n−1∑
i=0

λ1iQ′i(αj)

=
[
λ00Q1(αj)⊕ . . .⊕ λ0n−1Qn−1(αj)

]
⊕
[
λn−j0 H(α0)⊕ . . .⊕ λn−jn H(αn−1)

]
=
[
λ00Q1(αj)⊕ . . .⊕ λ0n−1Qn(αj)

]
⊕ hn−j−1.

The output shares can be summarized as in Equation 4 where hi, gi and fi represent the coefficients of
ith degree term of H, G and F respectively.

Q(αi) =


Q(αi)⊕ hn−i−1 if 0 ≤ j < ε

Q(αi)⊕ gn−i−1 ⊕ fn−i−1 if ε ≤ j < ε+ d

Q(αi) if ε+ d ≤ j < n

. (4)

Clearly, if only one of the polynomials is faulty, i.e. deg(G) > d or deg(F ) > d then deg(H) > 2d. If both
polynomials are faulty, then deg(H) can be arranged as 2d. However, faults are still propagated using the
terms of G and F as explained in Step 2 with a very high likelyhood. A more detailed security analysis is
provided in Section 4.3.

Algorithm 4.1: Multiplication((F (αi), G(αi))1≤i≤n)

for i = 0 to n− 1

do



H(αi) = F (αi) ·G(αi)
Generate a random degree d polynomial Qi(x)
with Qi(0) = H(αi)

for i = 0 to n− 1

do



if (0 ≤ j < ε)

Pj ← Qi(αj)⊕
λn−j
i

λ0
i
H(αi)

else if (ε ≤ j < ε+ d)

Pj ← Qi(αj)⊕
λn−j
i

λ0
i

(F (αi)⊕G(αi)

else
Pj ← Qi(αj)

for i = 0 to n− 1

do

{
Q(αi) =

n−1∑
j=0

λ0jQ′j(αi)

return ((Q(αi))0≤i≤n−1)

4.2 Recombination Operation and Infective Computation

The advantage of using error preserving multiplication is that only one error detection is sufficient for fault
detection. As explained before, our aim is to randomize the output in case of injected faults, so that the
attacker cannot learn any information. Next we explain the infectiousness of the faults, while introducing
the fault detection and recombination algorithm.

The recombination operation is composed of two main steps recombination, and reconstruction. The
inputs of the operation are shares of the secret value F (αi) for 0 ≤ i ≤ n− 1 and a non-zero random vector
(r0, . . . , rε+d−1) where ri ∈ GF(28) \ 0 and the outputs are the secret value f0 and fault decision.
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1. Recombination: In this step we reshare the input polynomial and a non-zero random multiple of error
detection coefficients are added to shares.
The importance of this step is, error detection terms are actually generated by faults, therefore the adver-
sary is still able to get information from the output. Using random values we ensure the randomization
of the secret value.

(a) Each player Pi generates a degree d polynomial Qi(x) such that Qi(0) = F (αi). Then Pi sends the
Q′i(αj) values to player Pj and error detection coefficients are fed to final shares by using the same
method as in multiplication.

Q′i(αj) =

{
Qi(αj)⊕ ri

λ
n−(j−1)
i

λ0
i

F (αi) if 0 ≤ j < ε+ d

Qi(αj) if ε ≤ j ≤ n− 1
.

(b) Each player calculates its new share Q(αj) by
∑n−1
i=0 λ

0
iQi(αj). However, the first ε+ d players also

generate a non-zero random value and add it to the shares with the corresponding coefficient.

Q(αi) =

{
Q(αi)⊕ rifn−i−1 if 0 ≤ j < ε+ d

Q(αi) if ε+ d ≤ j < n
. (5)

2. Reconstruction: In the last step Secret value and error detection coefficients are reconstructed by using
following formula :

fj =

n−1∑
i=0

λjiQ(αi) for j = 0, n− 1, . . . , d+ 1

Clearly, if F is faulty, then at least one of the error detection terms is non-zero. In the second step secret
value is randomized by using these terms therefore, infective computation is achieved.

Algorithm 4.2: Recombination((F (αi))0≤i<n, (r0, . . . , rε+d−1))

Recombination:
for i = 0 to n− 1

do



Generate a random degree d polynomial Qi(x)
with Qi(0) = F (αi)
for i = 0 to n− 1

do


if (0 ≤ j < ε+ d)

Pj ← Qi(αj)⊕ rj
λ
n−j
i

λ0
i
F (αi)

else
Pj ← Qi(αj)

for i = 0 to n− 1

do

{
Q(αi) =

n−1∑
j=0

Q′j(αi)

Reconstruction:

fj =
n−1∑
i=0

λjiQ(αi) for j = 0, n− 1, . . . , d+ 1

for i = d+ 1 to n− 1

do

{
if (fi! = 0)

Fault decision←Fault is detected
return (f0, Fault decision)
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4.3 Security Analysis

Up to now, we explained three main properties of our multiplication scheme: error detection, error-preservation
and infective computation. We now discuss the security features of our combined countermeasure under spe-
cific attack models.

First we introduce security features on side channel analysis. In the model, an adversary can observe
power traces of the circuit during a finite number of executions to perform a dthth order side channel
attack. Although (n, d)-SMC can be attacked by a d + 1th order side channel analysis, attacks become
increasingly impractical as d increases [7]. We use the same approach to split information between n players
as done by Roche et al. [29]. The sensitive variables are masked by an (n, d)-secret sharing scheme and
SMC enables us to do the distributed computations securely. Also in the proposed multiplication scheme,
error detection coefficients are calculated in a distributed fashion. Each player only uses local informations
which are produced share and a random polynomial. Therefore, produced share which contains sensitive
informations is masked by random polynomial and the communication between players can be done securely.
Finally, in the last step, players uses the same equation and some shares will get a error detection coefficient.
All calculations are done locally and all sensitive variables are masked by a random polynomial.

Moreover, in the recombination we use the same arguments as in multiplication. In the first step error
detection coefficients are masked by a random polynomial and all calculations are done locally. Therefore,
there will be no information leakages in the communication step. As a result, the secret value is re-shared
and masked with a random polynomial. In the reconstruction step the calculations are done using these
masked shares. Hence, we are able to reconstruct the fault decision the secret value securely. Note that in
case of a detectable error, the the secret value is randomized so that no information can be learned from it.

Next we state the fault resistance features of the proposed scheme. Clearly, the level of fault resistance
depends on ε. As given in Claim 1, ε is deduced as the maximum number of faults that definitely increases
the degree of the secret sharing polynomial. Using this discussion and the notation given by Schneider et
al. [30] we can define the fault coverage of our scheme. Let F ′(x) be the faulty secret sharing polynomial,
then the probability of a set of faults to be undetectable is defined as our fault coverage;

Coverageε = 1− Pr[deg(F ′(x)) ≤ d].

Since we do not have any restriction on faults, we assume that faults are selected from GF(28) with a
uniform distribution. Assume the number of injected faults to the system is k, then using the number of
solutions for the system of linear equations in Claim 1, the probability of fault propagation will be;

Pr[deg(∆(x)) > d] = 1− (28)max(k,ε)−ε − 1

(28)k − 1
. (6)

Therefore, in first multiplication faults are propagated with the probably 1, if k ≤ ε . However we cannot
use the Equation (6) as the fault coverage directly, since faults can be injected in different instances or one
fault can spread to large number of shares. As a result faults become unstable and undetectable.

In a sequence of operations faults can become undetectable after a SMC addition or multiplication. In
Section 3.2 we give the probability of undetectable faults in SMC addition. In the following, we do the
security analysis.

As given previously our main idea is to propagate faults using error detection coefficients. Therefore
faults become undetectable if and only if all of these terms become zero. First of all both input polynomials
should be faulty and two conditions are required to generate undetectable faults.

1. Error detection coefficients between d+ 1, . . . , 2d should be equal;

fd+1 ⊕ gd+1 = . . . = f2d ⊕ g2d = 0.

2. Faults should be in the same shares and for every faulty share i, denoted by F ′(αi) = F (αi) + σiF
G′(αi) = G(αi) + σiG , the following equation should hold:

F ′(αi) ·G′(αi) = [F (αi) + σiF ] · [G(αi) + σiG ]

= F (αi)G(αi) + F (αi)σiG +G(αi)σiF + σiF σiG︸ ︷︷ ︸
=0

.
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As the consequence of two conditions, the output polynomial will be a degree d polynomial and faults
become undetectable. As given in Section 3.2 the probability of the first condition is 1/|F|. Similarly, we can
calculate the probability of the second condition easily and it is close to 1/|F|3. Then the probability can be
calculated as follows;

Propagationε = 1−

(
Pr[deg(∆(x)) ≤ d] +

(
1

F

)ε+d)

= 1−

(
(28)max(k,ε)−ε − 1

(28)k − 1
+

(
1

28

)ε+d)
. (7)

As a result Equation (7) corresponds to propagation probability of SMC multiplication. Also using same
discussion it can be clearly seen that Equation (7) is valid for SMC addition.

In this section we analyzed the security features of the new multiplication scheme by means of side-channel
and fault injection resistance. Also we emphasized the fault propagation probabilities for SMC addition
and multiplication. Therefore, we can say that if both input polynomial are faulty in a SMC addition or
multiplication then, output polynomial is also faulty with high probability.

5 Side-Channel and Fault Resistant AES Implementation

In the previous sections, we introduced our combined countermeasure against side channel analysis and
fault attacks. Properties and security features are explained and in this section we will apply the scheme to
design a secure multi-party circuit implementation of AES-128. We use the fundamental operations stated
in Section 2 and the new error preserving multiplication. Our implementation uses an (n, d)-SMC and the
security levels are dependent on the parameters. First, we explain the design of AES-128 then we give the
performance analysis and experimental results of the implementation.

5.1 Implementation Details

AES-128 consists of 10-rounds of operations on its 16-byte state. The operations consist of two affine transfor-
mations MixColumns, AddRoundKey, one permutation layer ShiftRows and one non-linear layer the SubBytes
operation. Since it is the only non-linear layer of AES, the MPC implementation of SubBytes consist of squar-
ing and multiplications [29] and most importantly, faults injected during this part remains undetected in
previous schemes. So that it is vulnerable to fault attacks.

Clearly, the algorithms for AddRoundKey and MixColumns are error preserving as given detailed in Sec-
tion 3 and can be implemented in a straightforward manner. Therefore, we focus on The SubBytes operation
which is divided into two parts:

– The power function y → y254 over GF(28), denoted by Exp254(y). This part is the hardest part of
the AES to protect. In order to find the output, a sequence of 4 multiplications and 3 squarings are
implemented [18].

y → y2 → y(y2)→ (y3)4 → y3y12 → (y15)16 → y12y240 → y2y252 → y254.

– The second part of the SubBytes operation is the GF(2)-affine transformation and it is denoted by
τ(y). It can be efficiently implemented using the following sequence of squarings and affine transforms
in GF(28) [29]:

τA(y) = 0x63 ⊕ (0x05 · y)⊕ (0x09 · y2)⊕ (0xf9 · y4)⊕ (0x25 · y8)

⊕ (0xf4 · y16)⊕ (0x01 · y32)⊕ (0xb5 · y64)⊕ (0x8f · y128).

3 Assume |F∗| is denoted by q The exact probability can be calculated as follows: q2(q−1)+5q2+4q

(q+1)4
.
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Using error preserving multiplication algorithm, we are able to compute the output of SubBytes securely
while the probability of generating undetectable faults is 2−12 in the worst case for (4, 1) secret sharing
scheme.

In the similar manner, we can introduce the KeyScheduling since it is a combination of SubBytes

operations and affine transformations. Finally, the Shiftrows operations is a rotation of states, therefore it
can be done by a permutation which is obviously error preserving. Moreover, the output of these operations
are also valid secret shares, therefore they constitute a proper sub-circuit as defined in Section 2.3. Hence,
using the algorithms we can generate a sequence of sub-circuits and finally build our side-channel and fault-
injection resistant AES-128 implementation.

5.2 Performance Analysis

First, we compare our error-preserving multiplication with the SMC multiplication by Gennaro et al. [12].
Table 1 compares the two operations in terms of field additions (XOR), multiplications and required fresh
randomness. As shown in Table 1, performance overhead is only introduced in the second step.

Table 1. Number of operations in Gennaro at al. [12] and error preserving multiplication in Section 4.1.

Gennaro at al. [12] Error Preserving Multiplication
step 1 step 2 step 3 step 1 step 2 step 3

Field Mul. n n2d n2 n n2d+ n(ε+ d) n2

Field Add - n2d (n− 1)n - n2d+ n(ε+ d+ 1) (n− 1)n
Randomness - nd - - nd -

The additional cost of this step is n(ε+ d) field multiplications and n(ε+ d+ 1) additions. On the other
hand, each player generates a random degree-d polynomial and sends the corresponding values to other
players as in the previous scheme. This step requires d random values and n2 polynomial evaluations, where
each evaluation costs d field multiplications and d additions.

Next, we compute the total number of SMC operations in one round of AES-128. As shown in Table 2,
four main parts of AES; SubBytes(as a composition of Exp254(y) and τ(y)), MixColumns, AddRoundKey and
ShiftRows are defined as a composition of SMCs.

Table 2. The number of SMC operations in one round of AES.

Exp254 τ(y) MixColumns AddRoundKey ShiftRows

SMC Multiplication 16× 4 - - - -
SMC Squaring 16× 7 16× 7 - - -
SMC Addition - 16× 7 12 16× 1 -
SMC Affine Transform - 16× 8 16 - -

In order to compare the performance of the different parameters, we determine the total number of field
multiplications, additions and randomness requirements of each SMC operation. The numbers for error pre-
serving multiplications can be derived from Table 1. Similarly, using the operation descriptions in Section 2.2
we can derive the numbers for other operations. Squaring requires n2 field multiplication and addition can
be seen as n XOR. Also affine transformation requires a multiplication and an XOR for each share Using
these observations we can find the total number of basic operations for SMC addition, multiplication and
affine transform, as given in Table 3.

Based on these results, we provide the performance analysis and cost of different (n, d)-SMC schemes. The
analysis is done by using the total number of field multiplications, additions and randomness requirements
for one round of AES-128. Results are shown in Table 4.
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Table 3. Number of field multiplications, additions and randomness requirements for the SMC operations.

SMC operation Multiplication Squaring Addition Affine Transform

Field Mul. n2(d+ 1) + n(e+ d+ 1) n - n
Field Add n2(d+ 1) + n(e+ d) - n n
Randomness nd - - -

Table 4. Total number of operations for different (n, d) scenarios.

ε = 0 ε = 1 ε = 2 ε = 3
(3,1) [12] (3,1) (4,1) (6,2) (5,1) (6,1)

Field Mul. 2448 2640 4288 10656 6320 8736
Field Add 1428 2196 3696 9768 5580 7848
Randomness 192 192 256 768 320 384

First, we compare the original (3,1)-SMC implementation based on the multiplication by Gennaro at
al. [12] to a (3, 1)-SMC implementation using the error preserving multiplication. The new scheme only re-
quires %8 more field multiplications. The 53% more addition operations which probably impact performance
less, as XORs are cheap on most platforms. Observe that, since ε = 0 for this parameter set, the error
preserving multiplication cannot detect errors during parts of the multiplication.

Secondly, we analyze first order side channel resistant AES-128 implementations. Using (4,1)-SMC, we are
able to extend the first order side channel implementation of Roche and Prouff [29] to a combined first-order
side channel and fault resistant implementation. The extension increases the number of field multiplications
by 62%, additions by 68% and randomness requirements by 33%. Since the error detection coefficients are
used for error propagation, our scheme is more efficient than simple duplication. Moreover, we can increase
the side channel resistance of the system to second order by using (6,2)-SMC. The cost of this implementation
is 148% more field multiplications and also 164% more additions, since it heavily depends on n and ε. On
the other hand, the randomness requirement increases by 200%, because the cost of it proportional to n and
d.

Finally, we analyze the number of operations while increasing the fault resistance order. As seen from the
table (4,1), (5,1) and (6,1)-SMCs have the same side channel resistance and have the first, second and third
order fault resistance, respectively. The number of field multiplications and additions are nearly proportional
to half of the fault resistance order. Therefore we can conclude that, increasing the order of fault resistance
costs less than the increasing the side channel resistance.

Another overhead of our scheme is the recombination operation. We introduce this operation for fault
detection, reconstruction and infective computation. As seen in the Table 5, a single recombination costs
us more than an error preserving multiplication, but the number of recombination operation is exactly the
same as the number of secret values. Therefore, the overall cost of this operation still enables us to do the
secret reconstruction efficiently.

Table 5. Recombination Operation

Recombination Reconstruction

Field Mul. n2(d+ 1) + n(2ε+ 2d+ 1) n(ε+ d+ 1)
Field Add n2(d+ 1) + n(ε+ d− 1) (n− 1)(ε+ d+ 1)
Randomness ε+ d+ nd -

5.3 Experimental Results

Before concluding, we give experimental results of the side-channel and fault injection resistant AES-128
implementation. We do the simulations in SAGE and the aim is to experimentally analyze fault resistance of
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different (n, d)-SMC schemes. Since the most vulnerable part of the implementation is SubBytes operation,
faults are injected to this operation.

First, we start with Exp254 operation. The idea is to experimentally verify the unstable faults by worst
case scenario, in which faults are injected to the beginning of Exp254 operation. To be able to perform the
experiments exhaustively we work on GF(24), as checking all possible errors on all possible sharings of all
possible values is doable in reasonable time. However we did not change the sequence of multiplication and
squaring operations, since our aim is to check whether this sequence is generating undetectable faults and
at what rate.

First of all we generate all possible valid secret sharings. Remark that; public shares (α0, . . . , αn−1) are
fixed to efficiently calculate the squaring. And all possible faults are injected to the first share of the input
polynomial. Fault detection is done when the final output the operation (Exp254 or entire SubBytes) is
produced.

For example in (4, 1) case, even if faults spread to all shares the probability of generating undetectable
errors at most 2−12 as expected. In each multiplication faults are spreads to ε+d shares and these shares are
become input for another multiplication. Therefore Equation (7) changes for each multiplication. Unstable
can occur in such conditions and in these experiments we search for unstable errors in SubBytes operation.
As seen in the Table 6, if we increase the ε+ d, the probability of undetectable faults decreases with respect
to two conditions in Section 4.3. And most importantly, all undetectable faults satisfy these two conditions.

Remark that, in some experiments all faults become detectable even if the propagation probability is not
one. Although we do the experiments on each possible polynomials and each possible faults randomness is
added in the nature of multiplication. Therefore, the numbers are not the exact values, but rather upper
bounds.

Table 6. Experimental results on the probability of a faulty input generating an output with undetectable faults.

Exp254 Exp254 + τ(y)

(4,1) 3.6× 10−3 9.4× 10−3

(5,1) 5.2× 10−4 1.9× 10−3

(6,1) 0 0
(6,2) 3.6× 10−3 3.5× 10−3

In the second experiment, we inject the faults in the beginning of the Exp254 and do the fault detection
in each step of τ(y). As seen in the table, probabiliites of generating undetectable faults are close to the ones
of the first experiment. The reason for this is that faults become undetectable after an addition operation
if and only if error detection coefficients of input polynomials are the same. And the probability of this is
(1/F)ε+d.

Moreover, in Table 7 we can see the probability of generating undetectable faults in GF(28) for different
secret sharing schemes. Some probabilities are equal to each other since, it does not depend on n as given
in Section 4.3. Depending on the number of faulty shares, fault become undetectable. Therefore we can use
this formulas to analyze an arbitrary functions.

Table 7. Probability of generating undetectable faults in GF(28) where k is the number of faulty shares.

k = 1 k = 2 k = 3 k = 4

(4,1) 1.5× 10−5 3.9× 10−4 3.9× 10−4 3.9× 10−4

(5,1) 5.9× 10−8 5.9× 10−8 1.5× 10−5 1.5× 10−5

(6,1) 2.3× 10−10 2.3× 10−10 2.3× 10−10 5.9× 10−8

(6,2) 5.9× 10−8 3.8× 10−4 3.9× 10−4 3.9× 10−4
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6 Conclusion

Fault and side channel attacks have become a real threat to cryptographic systems if the adversary can
observe and interact with the physical implementation. In this work we proposed a new secure multiparty
computation to achieve both fault and side channel resistance. It is shown that the proposed secure multiparty
circuits can be used to perform addition, affine transform, multiplication and squaring while resisting both
well-defined fault and side channel adversaries. The advantage of the proposed scheme is a reduced overhead,
as only an extra operation within the multiplication is needed.

One main idea is not to correct or detect any errors inside the circuit. Instead, we define our operations
in such a way that, once an error occurs, it will remain detectable even after further computations on the
shares. Since the previously used multiplication scheme is not error preserving, we propose a new error
preserving multiplication. This approach allows us to delay any error detection until the final recombination
step. We introduce a recombination gate which is used for both error detection and reconstruction of the
secret. Hence, error detection is done when the output is produced. The error detection method is based on
the degree of the secret sharing polynomial, which increases when errors occur. After the initial increase,
additional levels of logic operations can result in a loss of degree for faulty states, leaving a small probability
of undetected faults. The recombination gate features another desired property: Infective computation. If an
error occurs, our scheme ensures that attacker cannot learn anything since the output is random.

Finally, we give a full description of fault and side channel resistant AES implementation. Using error
preserving operation and recombination operation we are able to build an ε fault resistant and d-th order
side channel resistant AES-128 implementation that detects faults with a very high probability. Note that
faults injected in the SubBytes operation will be undetectable using the scheme by Roche and Prouff, if the
inversion part of this operation is targeted. We performed experiments with fault injection of all possible
faults in various instances and shares of AES-128 implementation. The novel recombination gate always
ensures proper randomization of affected outputs.
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