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Abstract

Non-malleable commitment is a fundamental cryptographic tool for preventing man-in-the-
middle attacks. Since its proposal by Dolev, Dwork, and Noar in 1991, a rich line of research has
steadily reduced the number of communication rounds needed for non-malleable commitment,
towards the ultimate goal of constructing non-interactive non-malleable commitment from well-
studied hardness assumptions. However, this successful research recently hit a barrier: Pass
showed that 2-round non-malleable commitment cannot be based on any, even subexponentially
secure, falsifiable assumptions, via black-box security reductions [Pass, STOC 2011], and the
only known construction of non-interactive non-malleable commitment is based on a new and
non-falsifiable assumption [Pandey, Pass, Vaikuntanathan, Crypto 2008].

In this work, we present a construction of 2-round non-malleable commitment from time-
lock puzzles; they are “mechanisms for sending messages to the future” proposed by Rivest,
Shamir, and Wagner in 1996, whose original construction has withstood cryptanalysis for two
decades. In addition, our construction uses a subexponentially secure injective one-way function
and a non-interactive witness indistinguishable proof system. The key to circumventing Pass’s
impossibility result lies in leveraging the different nature of hardness provided by time-lock
puzzles and classical cryptographic primitives. Conventionally, cryptographic hardness is defined
against adversaries with bounded time (or equivalently circuit-size); in contrast, the hardness of
time-lock puzzles holds against adversaries with bounded parallel-time (or circuit-depth). This
difference allows us to construct commitment schemes that are simultaneously harder than each
other according to different complexity measures, which imply a weak form of non-malleability.
It is then strengthened through a new 2-round non-malleability amplification technique, and
the final protocol is non-malleable even in the fully concurrent setting.

To the best of our knowledge, this is the first time that time-lock puzzles are used con-
structively outside time-released cryptography, and opens an interesting direction of combining
hardness w.r.t. different complexity measures for achieving cryptographic goals.

∗{rachel.lin,pratik soni}@cs.ucsb.edu. Supported in part by NSF grants CNS-1528178 and CNS-1514526.
†rafael@cs.cornell.edu. Supported in part by an Alfred P. Sloan Fellowship, a Microsoft New Faculty Fellow-

ship, NSF Awards CNS-1217821 and CCF-1214844, NSF CAREER Award CCF-0746990, AFOSR Award FA9550-
08-1-0197, AFOSR YIP Award FA9550-10-1-0093, BSF Grant 2006317, and DARPA and AFRL under contract
FA8750-11-2-0211. The views and conclusions contained in this document are those of the authors and should not
be interpreted as the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency
or the US Government.



Contents

1 Introduction 1
1.1 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Overview 3
2.1 Towards Overcoming Pass’s Impossibility Result . . . . . . . . . . . . . . . . . . . . 4
2.2 Full-Fledged Non-Malleable Commitments . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Preliminaries 10
3.1 Basic Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Circuit Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Indistinguishability and One-wayness . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Witness Relation, ZAP and NIWI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5 Commitment Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.6 Time-Lock Puzzles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Basic Commitment Schemes 18
4.1 Depth-robust Over-extractable Commitment Scheme from a TL-puzzle . . . . . . . . 18
4.2 Size-robust Over-extractable Commitment Scheme from OWPs . . . . . . . . . . . . 19
4.3 Strong Over-extractable Commitment Scheme . . . . . . . . . . . . . . . . . . . . . . 21

5 Non-malleable Commitment Scheme w.r.t. Extraction for Short Identities 22

6 Strengthening Non-malleability 25
6.1 Subprotocol puzz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
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1 Introduction

Commitment schemes are one of the most fundamental cryptographic building blocks. Often de-
scribed as the “digital” analogue of sealed envelopes, commitment schemes enable a sender to
commit itself to a value while keeping it secret from the receiver. This property is called hiding.
Furthermore, the commitment is binding, and thus in a later stage when the commitment is opened,
it is guaranteed that the “opening” can yield only a single value determined in the committing stage.

For many applications, however, the most basic security guarantees of commitments are not
sufficient. For instance, the basic definition of commitments does not rule out an attack where an
adversary, upon seeing a commitment to a specific value v, is able to commit to a related value
(say, v − 1), even though it does not know the actual value of v. To address this concern, Dolev,
Dwork and Naor (DDN) introduced the concept of non-malleable commitments [DDN00]. Loosely
speaking, a commitment scheme is said to be non-malleable if it is infeasible for an adversary to
“maul” a commitment to a value v into a commitment to a related value ṽ.

The first non-malleable commitment protocol was constructed in the original work of [DDN00]
in 1991, based on the minimal assumption of one-way functions. However, their protocol requires
Ω(log n) rounds of communication, where n is the length of the security parameter. Since then,
a central question in the study of non-malleable commitment is determining the exact number of
communication rounds needed. Significant progress has been made over the years [Bar02, PR05a,
PR05b, LPV08, LP09, PPV08, PW10, Wee10, Goy11, LP11, GLOV12]. The current state-of-the-art
is that 4 round non-malleable commitment can be constructed from one-way functions [GRRV14],
while 3 round from quasi-polynomially secure injective one-way functions [GPR16, COSV16]. How-
ever, the situation changes drastically when it comes to 2 or 1 rounds. First, Pandey, Pass and
Vaikuntanathan [PPV08] provided a construction of a non-interactive non-malleable commitment
based on a new non-falsifiable hardness assumption, namely, the existence of adaptively secure in-
jective one-way functions, which already has a strong non-malleability flavour. Later, Pass showed
that, in fact, 2-round non-malleable commitment cannot be based on any, even subexponentially
hard, falsifiable assumptions [Pas11]. His impossibility result is strong and rules out even non-
black-box constructions, as long as the security reduction makes only black-box use of the attackers.
Nevertheless, we still ask

Can we have 2-round non-malleable commitments from standard assumptions?

2-Round Non-Malleable Commitment Scheme from Time-Lock Puzzles. We make sig-
nificant progress towards answering the question by constructing a 2-round non-malleable commit-
ment scheme from time-lock puzzles — they are mechanisms for “sending messages to the future”
proposed fifteen years ago by Rivest, Shamir, and Wagner [RSW96] following May’s work on time-
release cryptography [May93]. Time-lock puzzles enable a sender to efficiently generate a puzzle puz
with a solution s and a designated “level” of hardness t = t(n) where n is the security parameter,
so that, the puzzle solution i) can be extracted after investing computing power for a sufficiently
large amount of time 2t, but ii) is hard to compute for any adversary that runs in parallel-time
T = T (t) significantly less than 2t, including resourceful adversaries with a large number of pro-
cessors whose overall runtime1 can be B = B(n) significantly larger than 2t. 2 When representing

1The sum of the runtime of all processors running in parallel.
2Originally, time-lock puzzles are meant to be solved in polynomial time in order to “send messages to the future”,

that is, 2t is polynomial in n. But this is clearly insufficient for building cryptographic primitives that are hard for
any polynoimal time attackers. Therefore, in this work, we consider “scaled up” versions of time-lock puzzles that
may take time 2t exponential in n to solve.
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parallel adversaries as circuits, this is equivalent to saying that puzzles are hard for adversarial
circuits with depth T (t) and size B(n), or (T (t), B(n))-hard for short. The “quality” of time-lock
puzzles is mainly reflected in the gap between the amount of time 2t for solving the puzzles, and
the parallel time T in which puzzles remain hard. Previous works considered strong puzzles with
very small gaps for exponential T = 2δt or even strongly exponential T = δ2t. In comparison,
our construction of 2-round non-malleable commitment only rely on subexponential parallel-time
hardness, more precisely, hardness against parallel adversaries with subexponential parallel-time
T = 2t

δ
and subexponential overall time B = 2n

ε
.

Theorem 1 (Main Theorem, Informal). Let T and B be two arbitrary subexponential functions.
There is a construction of 2-round (concurrently) non-malleable commitment scheme from (T (t), B(n))-
hard time-lock puzzles, assuming the existence of a subexponentially secure injective one-way func-
tion and a subexponentially secure non-interactive witness indistinguishable proof system.

We briefly discuss instantiations of the building blocks of our theorem. First, non-interactive
witness indistinguishable (NIWI) proof systems can be constructed from a variety of assump-
tions [BOV05, GOS06, BP15], in particular from ZAP and a de-randomization assumption [BOV05]
(where ZAP in turn can be based on trapdoor permutations [DN00]), or from specific num-
ber theoretic assumptions on bilinear pairing groups [GOS06]. For time-lock puzzles, Rivest,
Shamir, and Wagner (RSW) [RSW96] proposed a construction based on repeated squaring mod-
ular an RSA-integer, which is believed to be an inherently sequential process: A puzzle has form

(s + g22
t

mod N, N), where N = pq is a randomly chosen n-bit RSA-modulus and g can either
be chosen at random or fixed to some particular element (e.g., 2). An honest puzzle generator,
knowing the factorization of N , can efficiently generate the puzzle by computing 22t mod φ(N)
before exponentiating. On the other hand, for adversaries that cannot factor N , the best strategy

seems to be computing g22
t

mod N using 2t sequential squaring, which reveals s. Twenty years
after the original proposal, there is still no strategy that can speed up this computation signifi-
cantly through parallelization. In fact, current knowledge suggests that the RSW puzzles could
be hard for (strongly) exponential parallel-time T = δ2t. Our construction relies on much weaker
parallel-time hardness as formalized below.

Assumption 1 (Subexponential RSW Assumption). There exist two subexponential functions T, S
and a constant c, such that, for every function t such that c log n < t(n) < B(n), and every adver-
sary A that runs in T (t)-parallel time and B(n)-overall time, the probability that A(N) computes

(g22
t

mod N) is negligible, where N is a randomly chosen n-bit RSA-modulus, and g is chosen at
random or fixed appropriately.

Besides from the RSW puzzles, our non-malleable commitment can also be based on another, more
recent, proposal of time-lock puzzles by Bitansky et al. [BGJ+16], which can be constructed from
any parallel-time hard language, but relies on the existence of indistinguishability obfuscation.

Why Time-Lock Puzzles? Our Ideas In a Nut Shell. In cryptography, the power, or re-
source, of attackers is usually measured by their running-time when represented as Turing machines,
or equivalently by their circuit-size when represented as circuits. Time-lock puzzles, and more gen-
erally time-released cryptography [May93, DN93, JJ99, Nak12, BN00], on the other hand, measure
the resource of attackers by their parallel running-time or equivalently by their circuit-depth. Our
2-round non-malleable commitments crucially rely on the synergy of these two types of resources.
The key idea is, instead of measuring the hardness of commitment schemes in a single “axis” of
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resource, measure the hardness in two axes, one refers to circuit-size and the other to circuit-depth.
By doing so, we can construct a pair of commitment schemes Com1,Com2 that are simultaneously
harder than the other, in different axes. In particular, Com2 is harder in the axis of circuit-size,
in the sense that Com1 admits an extractor of size S while Com2 is secure against all circuits of
size S; on the other hand, Com1 is harder in the axis of circuit-depth, in the sense that it admits
an extractor of depth D (and some size S) while Com1 is hiding against all circuits with depth
D (and size S). Such a pair of commitment schemes that are mutually harder than each other
already has a weak flavor of non-malleability, which can then be amplified to achieve full-fledged
non-malleability. More precisely, we transform the aforementioned commitment schemes, which are
non-malleable w.r.t. short “tags” to that for much longer “tags” (explained below), while keeping
two rounds. A step in the transformation lifts non-malleability in the stand-alone setting to that
in the concurrent setting.

A Perspective and Future Research. The concept of falsifiable assumptions [Nao03] is meant
to capture assumptions that can be falsified through a game between an efficient challenger and
an alleged attacker with bounded resource, which classically is bounded-time or bounded-size. The
hardness of time-lock puzzles can in fact be falsified in the same way, but restricting the attacker to
bounded parallel-time or circuit-depth. In turns out that Pass’s impossibility result relies on the fact
that two or more falsifiable assumptions w.r.t. the same resource can be collapsed into one: Simply
have one combined game that plays each game with equal probability. However, assumptions w.r.t.
different resources cannot be combined, which allows us to circumvent his impossibility result.

To the best of our knowledge, this is the first time that time-lock puzzles are used constructively
for building cryptographic objects outside time-released cryptography. An interesting open problem
is whether they can be used in more applications, potentially circumventing other impossibility
results. Moreover, beyond the two specific resources — circuit-size and circuit-depth — considered
in this work, there are many other resources, for instance, time-hard and memory-hard objects.
We believe that understanding how to leverage the synergy of different resources for achieving
cryptographic goals an interesting future research direction.

1.1 Organization

In Section 2, we give a detailed overview of our approach for constructing 2-round non-malleable
commitments. In Section 3 we detail the preliminaries and definitions, and give a construction
for time-lock puzzles. Section 4 gives constructions of basic commitment schemes which are size-
robust, depth-robust and size-and-depth robust. Using these basic commitment schemes, we give
a construction of a commitment scheme which is non-malleable w.r.t. extraction in Section 5. In
Section 6, we describe our non-malleability strengthening technique and detail its proof. Finally in
Section 7, we construct 2-round non-malleable commitment scheme for n-bit identities.

2 Overview

Every statistically binding commitment scheme is hiding against polynomial-sized circuits, while
extractable by some exponential-sized circuit (such an extractor is guaranteed to exist since one
can always find the committed value by brute force). In this work, we pay special attention to the
gap between the “resources” of attackers and that of extractors. Moreover, we crucially rely on
the synergy between different resources — in particular, circuit-size and circuit-depth, which are
captured by the following two basic types of commitment schemes:
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Size-Robust Commitments are parametrized versions of classical commitments: An (S, S′)-
size-robust commitment is hiding against any size-poly(S) attackers, and extractable by some
size-S′ extractor, for an S′ = Sω(1) denoted as S′ >> S. Importantly, the extractor has large
size, but shallow polynomial depth. Such extractors can be implemented using the näıve
brute force strategy of enumerating all possible decommitments, which a is time-consuming
but highly-parallelizable task.

Depth-Robust Commitments are natural analogues of size-robust commitments, but with re-
spect to the resource of circuit-depth. A (D,D′)-depth-robust commitment is hiding against
any depth-poly(D) circuits with size up to a large upper bound B, and extractable by some
size-D′ extractor for a D′ >> D that necessarily has a depth super-polynomially larger than
D. In this work, we consider a subexponential size upper bound B = 2n

ε
for some constant

ε > 0; for simplicity of exposition, we ignore this upper bound in the rest of this overview
(see Section 4 for more detail).

Size-Robust Commitments from Subexponential Injective OWFs. Size-robust commit-
ments can essentially be instantiated using any off-the-shelf commitment schemes that are subexpo-
nential secure, by appropriately scaling the security parameter to control the levels of security and
hardness for extraction. Take the standard non-interactive commitment scheme from any injective
one-way function f as an example: A commitment to a bit b is of form f(r), h(r)⊕ b, consisting of
the image f(r) of a random string r of length n, and the committed bit b XORed with the hard-core
bit h(r). Assuming that f is subexponentially hard to invert, the commitment is hiding against all
size-2n

ε
circuits for some constant ε > 0, while extractable in size 2n (ignoring polynomial factors

in n) and polynomial depth. By setting the security parameter n to (logS)1/ε, we immediately

obtain a (S, S′)-size robust commitment for S′ = 2logS1/ε
.

Depth-Robust Commitments from Time-Lock Puzzles. Depth-robust commitments are
naturally connected with cryptographic objects that consider parallel-time complexity, which cor-
responds to circuit-depth. When replacing subexponentially-hard one-way functions in the above
construction with time-lock puzzles, we immediately obtain depth-robust commitments:

- To commit to a bit b, generate a puzzle puz with a random solution s and a designated level of
hardness t, and hide b using the Goldreich-Levin hard-core bit, producing C = (puz, r, 〈r, s〉⊕
b) as the commitment.

- To decommit, the committer can simply reveal the puzzle solution s together with the random
coins ρ used for generating the puzzle. The receiver verifies that the puzzle is honestly
generated with solution s, and uses s to recover the committed bit b.

Since the time-lock puzzle solution s is hidden against adversaries in parallel-time T (t) (and overall
time B(n)), the commitments are hiding against depth-T (t) adversaries (with size up to B(n)).
Moreover, since the puzzles can be “forcefully” solved in time 2t, the committed values can be
extracted in size 2t. This gives a (T, 2t)-depth-robust commitment.

Next, we show how to compose the basic size-robust and depth-robust commitment schemes to
overcome Pass’s impossibility result on 2-Round non-malleable commitment.

2.1 Towards Overcoming Pass’s Impossibility Result

In the literature, there are two formulations of non-malleable commitment, depending on whether
the commitment scheme uses players’ identities or not. The formulation with identities, adopted
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in this work, assume that the players have identities of certain length `, and that the commitment
protocol depends on the identity of the committer, which is also referred to as the tag of the
interaction. Non-malleability ensures that, as long as the tags of the left and right commitments
are different (that is, the man-in-the-middle does not copy the identity of the left committer), no
man-in-the-middle attackers can “maul” a commitment it receives on the left into a commitment of
a related value it gives on the right. This is this is formalized by requiring that for any two values
v1, v2, the values the man-in-the-middle commits to after receiving left commitments to v1 or v2

are indistinguishable.
The length ` of the tags can be viewed as a quantitative measure of how non-malleable a scheme

is: A `-bit tag non-malleable commitment gives a family of 2` commitment schemes — each with
a hardwired tag — that are “mutually non-malleable” to each other. Therefore, the shorter the
tags are, the easier it is to construct such a family. Full-fledged non-malleable commitments have
tags of length equal to the security parameter ` = n, and hence corresponds to a exponentially
sized family. However, when the number of communication rounds is restricted to 2, Pass [Pas13]
showed that even the weakest non-malleable commitment for just 1-bit tags, corresponding to a size
2 family, cannot be constructed from subexponentially hard falsifiable assumptions, via black-box
security reduction. His result directly rules out the feasibility of building 2-round non-malleable
commitment from size-robust commitment schemes alone, as they are implied by subexponentially
hard one-way functions, and in fact, also applies to using depth-robust commitment alone. However,
we show that combining size-robust and depth-robust commitments in non-trivial ways overcomes
the impossibility.

One-Sided Non-Malleability via Complexity Leveraging. It is well known that one-sided
non-malleability can be achieved easily via complexity leveraging. One-sided non-malleability only
prevents mauling attacks when the tag of the left commitment is “larger than” the tag of the right
commitment 3. In the simple case of 1-bit tags, this requires the commitment for tag 1 (on the left)
to be non-malleable w.r.t. the commitment for tag 0 (on the right), which holds if the tag-1 com-
mitment is “harder” than the tag-0 commitment. For example, if the tag-1 commitment is (S1, S

′
1)-

size-robust while the tag-0 commitment is (S0, S
′
0)-size-robust for some S0 << S′0 << S1 << S′1,

then one can extract the right committed value using a size-S1 extractor, while the left committed
value still remain hidden. Therefore, the right committed value must be (computationally) inde-
pendent of the left. Similarly, we can also achieve one-sided non-malleability using depth-robust
commitments, by using a (D1, D

′
1)-depth robust commitment scheme for tag 1 and a (D0, D

′
0)-depth

robust commitment scheme for tag 0, for some D0 << D′0 << D1 << D′1.
However, simple complexity leveraging is inherently limited to one-sided non-malleability, since

when only one resource is considered, the tag-1 commitment cannot be both harder and easier than
the tag-0 commitment.

Two Resources for (Two-Sided) Non-Malleability. Therefore, our key idea is using two
resources to create two “axis”, such that, the tag-1 commitment and tag-0 commitment are simul-
taneously “harder” than the other, but, with respect to different resources. This is achieved by
combining the basic size-robust and depth-robust commitment schemes in the following simple way.

Basic 1-bit Tag Non-Malleable Commitment:

3The choice that the left tag is smaller than the right tag is not important. One could also require the opposite
that the left tag is larger than the right tag. The limitation is that the design of the commitments depends on this
arbitrary decision.
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Figure 1: (left) A 1-bit tag based commitment scheme: The tag-0 (resp., tag-1) commitment scheme is
hiding for circuits of depth below D0 (resp., D1) OR size below S1 (resp., S0), represented by the solid line
joining D0 (resp., D1) and S1 (resp., S0). The tag-0 (resp., tag-1) commitment scheme admits an extractor
of depth at most D′0 (resp., D′1) and size at most S′1 (resp., S′0). (right) This is a generalization of the 1-bit
tag commitment scheme to log l-bits tags, where for tag-i the commitment scheme is hiding for circuits of
depth below Di OR size below Sl−1−i and exhibits an extractor of depth at most D′i and size at most S′l−1−i.

For some D0 << D′0 << D1 << D′1 << S0 << S′0 << S1 << S′1,

- a tag-0 commitment to a value v consists of commitments to two random secret shares α, β
of v, such that, v = α+ β, where the first share is committed under a (D0, D

′
0)-depth-robust

commitment scheme and the second under a (S1, S
′
1)-size-robust commitment scheme, and

- a tag-1 commitment to v, on the other hand, uses a (D1, D
′
1)-depth-robust commitment

scheme to commit to the first share and a (S0, S
′
0)-size-robust commitment scheme to commit

to the second share.

Thus, the tag-1 commitment is harder w.r.t. circuit-depth, while the tag-0 commitment is harder
w.r.t. circuit-size. Leveraging this difference, one can extract from a tag-0 commitment (on the
right) without violating the hiding property of a tag-1 commitment (on the left), and vice versa
— leading to two-sided non-malleability. More specifically, the committed values in a tag-0 com-
mitment can be extracted in depth D′0 and size S′1 by extracting both secret shares from the size-
and depth-robust commitments contained in it. Yet, adversaries with such depth and size cannot
break the (D1, D

′
1)-depth-robust commitment contained in a tag-1 commitment; thus, the value

committed to in the tag-1 commitment remains hidden. On the flip side, the committed value in a
tag-1 commitment can be extracted in depth D′1 and size S′0, and, similarly, adversaries with such
depth and size do not violate the hiding of a tag-0 commitment, due to the fact that the size-robust
commitment contained in it is hiding against size-S1 adversaries.

In summary, combining the two types of commitment schemes gives us depth-and-size robust
commitment schemes: A (D ∨ S,D′ ∧ S′)-robust commitment is hiding against circuits with depth
below D or size below S, while extractable by some circuit with depth D and size S, as illustrated
in Figure 1 (left). In this language, a tag-0 commitment is (D0 ∨ S1, D

′
0 ∧ S′1)-robust while a tag-1

commitment is (D1 ∨S0, D
′
1 ∧S′0)-robust. They are mutually non-malleable, because the extractor

for one falls into the class of adversaries that the other is hiding against.
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The Subtle Issue of Over-Extraction The above argument captures our key idea, but is
overly-simplified. It implicitly assumes that the size- and depth-robust commitments are extractable
in the perfect manner: 1) Whenever a commitment is valid, in the sense that there exists an
accepting decommitment, the extractor outputs exactly the committed value, otherwise, 2) when
the commitment is invalid, it outputs ⊥. Such strong extractability ensures that to show non-
malleability that the right committed value is independent of the left committed value, it suffices
to show that the right extracted value is independent of the left committed value, as argued above.

However, our depth-robust commitments from time-lock puzzles do not satisfy such strong
extractability. 4 In particular, they do not satisfy the second property above: When commitments
are invalid, the extractor can output arbitrary values — this is known as “over-extraction”. Over-
extraction traces back to the fact that only honestly generated time-lock puzzles (i.e., in the domain
of the puzzle generation algorithm) are guaranteed to be solvable in certain time. There is no
guarantee for ill-generated puzzles, and no efficient procedure for deciding whether a puzzle is
honestly generated or not. Observe that this is the case for the time-lock puzzles proposed by

Rivest, Shamir, and Wagner [RSW96], since given a puzzle (s+ a22
t

mod N, N) one can extract s
using 2t squaring modular N , but cannot obtain a proof that N is a valid RSA-modulus; this is also
the case for the other puzzle construction [BGJ+16]. As a result, the extractor of our depth-robust
commitments that extracts committed values via solving time-lock puzzles, provides no guarantees
when commitments are invalid.

This means that our basic 1-bit tag commitment scheme is over-extractable, and the argument
above that reasons about the right extracted value fails to establish non-malleability. Nevertheless,
the basic scheme does satisfy a variant of non-malleability that we call non-malleability w.r.t.
extraction, which ensures that the value extracted from the right commitment is independent of
the left committed value. When a commitment scheme is perfectly-extractable, this new notion is
equivalent to standard non-malleability (w.r.t. commitment), but with over-extraction, it becomes
incomparable. The issue of over-extraction has appeared in the literature (e.g., [Wee10, Kiy14]),
standard methods for eliminating it requires the committer to additionally prove the validity of the
commitment it sends, using for instance zero-knowledge protocols or cut-and-choose techniques.
However, these methods take more than 2 rounds of interaction, and does not apply here.

2.2 Full-Fledged Non-Malleable Commitments

At this point, we face two challenges towards constructing full-fledged non-malleable commitments:

- Challenge 1: We need to go from non-malleability w.r.t. extraction to non-malleability w.r.t.
commitment in 2 rounds. Resolving this challenge would give a 2-round 1-bit tag non-
malleable commitment scheme that circumvents Pass’s impossibility result.

- Challenge 2: The next challenge is going beyond two tags, towards supporting an exponential
2n number of tags.

It is easy to generalize our basic 1-bit tag commitment scheme to handle arbitrary l tags, if
there exists a “ladder” of l commitment schemes with increasing levels of depth-robustness,
and another “ladder” of l schemes with increasing levels of size-robustness. Concretely, the
i’th schemes are respectively (Di, D

′
i)-depth robust and (Si, S

′
i)-size robust, for some

· · · << Di << D′i << · · · << Dl << D′l << S0 << S′0 · · · << Si << S′i << · · · .
4Our size-robust commitments from injective one-way functions do satisfy such strong extractability.
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A commitment with tag i ∈ {0, · · · , l − 1} combines the i’th (Di, D
′
i)-depth-robust scheme

and the (l−1−i)’th (Sl−1−i, S
′
l−i−1)-size-robust scheme to commit to a pair of secret shares of

the committed value. This gives a family of l mutually non-malleable commitment schemes,
as illustrated in Figure 1 (right).

To directly obtain full-fledged non-malleable commitments, we need an exponential number of
levels l = 2n of depth- and size-robustness, which is, however, impossible from the underlying
assumptions. From subexponentially hard injective one-way functions, we can instantiate at
mostO(log n/ log log n) levels of size-robustness, and similarly, from subexponentially parallel-
time hard time-lock puzzles, we can instantiate O(log n/ log log n) levels of depth-robustness.
Therefore, we need to amplify the number of tags.

We address both challenges using the a single transformation.

2-Round Tag Amplification Technique: We present a transformation that converts a 2-round
l-tag commitment scheme that is non-malleable w.r.t. extraction, into a 2-round 2l−1-tag
commitment scheme that is both non-malleable w.r.t. extraction and w.r.t. commitment.
The output protocol can be further transformed to achieve concurrent non-malleability.

With the above transformation, we can now construct full-fledged non-malleable commitment.
Start from our basic scheme for a constant l0 = O(1) number of tags that is non-malleable w.r.t.
extraction; apply the tag-amplification technique iteratively for m = O(log∗ n) times to obtain a
scheme for lm = 2n tags that is both non-malleable w.r.t. extraction and w.r.t. commitment.

Previously, similar tag-amplification techniques were presented by Lin and Pass [LP09] and
Wee [Wee10]. Our transformation follows the same blueprint, but differ at two important aspects.
First, our transformation starts with and preserves non-malleable w.r.t. extractability, which is not
considered in their work. Second, their amplification techniques incur a constant additive overhead
in the round complexity of the protocol, whereas our transformation keeps the number of rounds
invariant at 2. To do so, our amplification step combines ideas from previous works with the
new idea of using our depth-and-size robust commitments to create different 2-round sub-protocols
that are mutually “non-malleable” when executed in parallel, in the sense that the security of one
sub-protocol remains intact even when the security of another is violated by force.

Our 2-Round Tag-Amplification Technique in More Detail. Similar to [LP09, Wee10],
the transformation proceeds in two steps:

- First, amplify the security of a scheme from (one-one) non-malleability w.r.t. extraction
to one-many non-malleability w.r.t. extraction and commitment, which, following a proof
in [LPV08], implies concurrent (or many-many) non-malleability w.r.t. extraction and com-
mitment. (This is why our final protocol can be made concurrently non-malleable.) Here,
one-many and concurrent non-malleability w.r.t. extraction or commitment naturally gen-
eralize standard non-malleability to the setting where the man-in-the-middle concurrently
receives one or many commitments on the left and gives many commitments on the right,
and ensures that the joint distribution of the values extracted from or committed in right
commitments is independent of the value(s) committed in the left.

- Next, apply the “log-n trick” by Dolev, Dwork and Naor [DN00] to amplify the number of
tags supported from l to 2l−1 at the price of losing concurrent security, yielding a protocol
that is (one-one) non-malleable w.r.t. extraction and commitment.
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The main technical challenges lie in the first step. We briefly review the LP approach. At a high-
level, they construct one-many non-malleable commitment following the Fiat-Shamir paradigm:
The receiver starts by setting up a hidden “trapdoor” t. The sender commits to a value v using
an arbitrary (potentially malleable) 2-message commitment scheme, followed by committing to 0n

using a (one-one) non-malleable commitment and proving using many witness-indistinguishable
proofs of knowledge (WIPOK) that either it knows a decommitment to v or it knows a decommit-
ment of the non-malleable commitment to the trapdoor t; the former, called the honest witness, is
used by the honest committer, while the latter, called the fake witness, is used for simulation.

The LP protocol arranges all components — the trapdoor-setup, commitment to v, non-
malleable commitment (for trapdoor), and every WIPOK — sequentially. To compress the protocol
into 2 rounds, we run all components in parallel, and replace multiple WIPOK proofs with a single
2-round ZAP proof.

Unfortunately, arranging all components in parallel renders the proof of one-many non-malleability
in LP invalid. They designed a sequence of hybrids in which different components in the (single)
left interaction are gradually switched from being honestly generated to simulated, while maintain-
ing two invariants regarding the (many) right interactions. First, the soundness condition states
that the man-in-the-middle never commits to a trapdoor in any right interaction. Second, in every
right interaction, there is always a WIPOK that can be rewound to extract the value committed
to in this interaction, without rewinding the left component being changed; the value extracted
must be a valid decommitment since the fake witness does not exist by the soundness invariant —
this establishes strong extractability. The second invariant is true because the LP protocol contains
sufficiently many sequential WIPOKs so that there is always a proof that does not interleave with
the left-component being changed. The first invariant, on the other hand, relies not only on the
non-malleability of the input commitment scheme, but also on its “robustness” to other components
that have a small fixed k number of interactions (such as 2-message commitment and WIPOK).
The robustness captures “non-malleability” w.r.t. other protocols, and is achieved by embedding
more than k rewinding slots in the input commitment scheme.

In our 2-round protocol, we cannot afford to have many rewinding slots for extraction, nor for
establishing non-malleability between different components. Naturally, we resort to our size-and-
depth robust commitments, which can be made mutually non-malleable w.r.t. extraction by setting
the appropriate profiles of size-and-depth robustness. Using a family of 4 such schemes, we mimic
the LP proof in the following (overly-simplified) manner: In every hybrid, in the left interaction,
either a size-and-depth robust commitment or the non-malleable commitment is changed, while on
the right, values are extracted from a different size-and-depth robust commitment and from the
non-malleable commitment. To show that the left interaction remains indistinguishable despite of
extraction, we rely on the mutual non-malleability of the size-and-depth robust schemes, but also
seems to need the non-malleable commitment and the size-and-depth robust commitments to be
mutually non-malleable, which unfortunately does not hold.

Let us explain. It turns out that our basic non-malleable commitment schemes for short tags,
and all intermediate schemes produced by the tag-amplification technique are only secure against
circuits with both bounded-size and bounded-depth. In contrast, the depth-and-size robust com-
mitments are secure against circuits with either bounded-size or bounded-depth. This qualitative
difference in adversarial circuit classes prevents them from being mutually non-malleable. To get
around this, we instead rely on a “cycle of non-malleability” that consists of the non-malleable
commitment scheme and two depth-and-size robust commitment schemes, satisfying that the first
scheme is non-malleable to the second, the second non-malleable to the third, and the third to the
first. Such a cycle turns out to be sufficient for our proof to go through.
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One final technicality is that in order to create the cycle of non-malleability, the hardness of the
two size-and-depth robust commitments must be set appropriately according to that of the non-
malleable commitment scheme. Furthermore, the non-malleable commitment scheme produced by
the above transformation has weaker security than the input scheme. As a result, to iteratively
apply the tag-amplification technique for O(log∗ n) times, we need O(log∗ n) levels of depth- and
size-robustness. This can be easily instantiated using subexponentially secure injective one-way
functions and time-lock puzzles as stated in Theorem 1.

See Section 6 for more details on our tag amplification and its security proof.

3 Preliminaries

3.1 Basic Notation

We denote n as the security parameter. For n ∈ N, by [n] we denote the set {0, . . . , n− 1}. If v is a
binary string then |v| denotes the length of the string and v[i] is the ith bit of v, for 0 ≤ i ≤ |v|−1.
We use || as the string concatenation operator. For any probability distribution D, x← D denotes
sampling an element from the distribution D and assigning it to x. However, for a finite set Q,
x ← Q denotes sampling an element from the set Q uniformly and randomly, and assigning it to
x. We model algorithms as uniform TMs. We use the abbreviation PPT to denote probabilistic-
polynomial time. P/poly is the set of all non-uniform polynomial size circuits. We say that a
function ν : N→ R is negligible, if for every constant c > 0 and for sufficiently large n ∈ N we have
ν(n) < n−c. For functions d, S defined over N, we say that d < S (resp. d ≤ S) if for every n ∈ N,
d(n) < S(n) (resp. d(n) ≤ S(n)). Furthermore, we say that d << S if for every polynomial poly,
poly(d) < S.

3.2 Circuit Classes

We define the following circuit classes which are going to be used throughout this work. For the
following definitions, consider n ∈ N and let d, S and S∗ be some non-decreasing functions defined
on N such that d ≤ S << S∗.

Definition 1 (Depth ∧ size-restricted circuits). C∧d,S is the set of all non-uniform circuits C =
{Cn}n∈N such that there exists a polynomial poly such that for all n ∈ N,

dep(Cn) < poly(d(n))

and size(Cn) < poly(S(n)) ,

where dep(Cn) and size(Cn) denote the depth and the size of the circuit Cn respectively.

Throughout this work, we use S∗ to denote some pre-defined upper bound on the size of any
circuit considered in this work. Furthermore, when we are only concerned with restricting the
depth of the circuits, whose size can be as large as the upperbound poly(S∗) for any polynomial
poly, we simply refer to the circuit class C∧d,S∗ as Cd.

Definition 2 (Depth-restricted circuits). Cd is the set of all non-uniform circuits C = {Cn}n∈N
such that there exists a polynomial poly such that for all n ∈ N,

dep(Cn) < poly(d(n))

and size(Cn) < poly(S∗(n)) .
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Furthermore, when we want to only restrict the size of the circuits, allowing for the depth to
be as large as the size, we refer to the circuit class C∧S,S as CS .

Definition 3 (Size-restricted circuits). CS is the set of all non-uniform circuits C = {Cn}n∈N such
that there exists a polynomial poly(·) such that for all n ∈ N,

dep(Cn) ≤ size(Cn) < poly(S∗(n)) .

Definition 4 (Depth ∨ size-restricted circuits). C∨d,S is the set of all non-uniform circuits C =
{Cn}n∈N such that either C ∈ Cd or C ∈ CS.

Remark 1. The classes of circuits C (namely, Cd, CS, C∨d,S and C∧d,S) considered in this work are
such that S ≥ d >> n, that is, all d and S are super-polynomials. For any circuit C ∈ C, on
composing with a circuit P ∈ P/poly, it is easy to see that the resulting circuit is also in the class
C. Therefore, we say that the circuit class C is closed under composition with P/poly. This fact is
going to be important in the rest of this work.

Below, we define standard cryptographic primitives w.r.t. a general circuit class C, requiring
that any adversary in C has negligible advantage in breaking the security of the primitive. When
C = P/poly, we say that the primitive is computationally secure and when C is the set of non-
uniform circuits whose size is bounded by 2n

ε
for some constant ε < 1, we say that the primitive is

subexponentially secure.

3.3 Indistinguishability and One-wayness

Definition 5 (C-indistinguishability). Two ensembles {An,y}n∈N,y∈Yn and {Bn,y}n∈N,y∈Yn are said
to be C-indistinguishable, if for every non-uniform circuit D = {Dn}n∈N ∈ C, there exists a
negligible function ν(·) such that for every n ∈ N, y ∈ Yn:

|Pr [a← An,y : Dn(y, a) = 1]− Pr [b← Bn,y : Dn(y, b) = 1]| ≤ ν(n) .

Definition 6 (One-way functions). A function f : {0, 1}∗ → {0, 1}∗ is called a C-secure one-way
function if the following hold:

1. There exists a deterministic polynomial-time algorithm that on input s in the domain of f
outputs f(s).

2. For every A = {An}n∈N ∈ C there exists a negligible function ν(·) such that for every n ∈ N,

Pr
[
s← {0, 1}n, s′ ← An(f(s)) : f(s′) = f(s)

]
≤ ν(n) .

In this work, we will use a one-way function that is a permutation which is subexponentially
secure.

3.4 Witness Relation, ZAP and NIWI

Definition 7 (Witness Relation). A witness relation or relation (for short) for a language L ∈ NP
is a binary relation RL that is polynomially bounded, polynomial time recognizable and characterizes
L by L = {x : ∃w s.t. (x,w) ∈ RL}.
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We say that w is a witness for the membership of x ∈ L if (x,w) ∈ RL. We will also let RL(x)
denote the set of witnesses for the membership of x ∈ L; that is, RL(x) = {w : (x,w) ∈ RL}.

ZAPs are two-message public coin witness indistinguishable proofs defined as follows.

Definition 8 (ZAP [DN00]). A pair of algorithms (P,V), where P is PPT and V is (deterministic)
polytime, is a C-ZAP for an NP relation RL if it satisfies:

1. Completeness: There exists a polynomial l(·) such that for every (x,w) ∈ RL,

Pr
[
r ← {0, 1}l(|x|), π ← P(x,w, r) : V(x, π, r) = 1

]
= 1 .

2. Adaptive soundness: There exists a negligible function ν(·) such that for every malicious (po-
tentially unbounded) prover P∗ and every n ∈ N,

Pr
[
r ← {0, 1}l(n), (x, π)← P∗(r) : x ∈ {0, 1}n \ Ln ∧ V(x, π, r) = 1

]
≤ ν(n) .

3. C-witness indistinguishability: For any sequence {(xn, w1
n, w

2
n, rn)}n∈N such that for every

n ∈ N, xn ∈ Ln, w1
n, w

2
n ∈ RL(xn) and rn ∈ {0, 1}l(n), the following ensembles are C-

indistinguishable:

{π1 ← P(xn, w
1
n, rn) : (xn, w

1
n, w

2
n, π1, rn)}n∈N ,

{π2 ← P(xn, w
2
n, rn) : (xn, w

1
n, w

2
n, π2, rn)}n∈N .

Throughout this work, we will refer to the first message r of ZAP as aZAP and the second mes-
sage together with the statement (π, x) as bZAP.

Dwork and Naor [DN00] were the first to construct a ZAP from trapdoor permutations. They
also showed that ZAP for L ∈ NP can be based on the weaker assumption of the existence of
NIZKs for L.

Theorem 2. If there exists a C-secure family of trapdoor permutations then there exists a C-ZAP.

Furthermore, Bitansky and Paneth [BP15] construct ZAP based on the existence of indistin-
guishability obfuscation (iO) for a certain family of polysize circuits and one-way functions.

NIWIs are non-interactive witness-indistinguishable proofs.

Definition 9 (NIWI [BOV05]). A pair of algorithms (P,V) where P is PPT and V is (determin-
istic) polytime, is a C-NIWI for an NP relation RL if it satisfies:

1. Completeness: For every (x,w) ∈ RL,

Pr [π ← P(x,w) : V(x, π) = 1] = 1 .

2. Soundness: For every x /∈ L and π ∈ {0, 1}poly(n):

Pr [V(x, π) = 1] = 0 .
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3. C-witness indistinguishability: For any sequence {(xn, w1
n, w

2
n)}n∈N such that for every n ∈ N,

xn ∈ Ln, w1
n, w

2
n ∈ RL(xn), the following ensembles are C-indistinguishable:

{π1 ← P(xn, w
1
n) : (xn, w

1
n, w

2
n, π1)}n∈N ,

{π2 ← P(xn, w
2
n) : (xn, w

1
n, w

2
n, π2)}n∈N .

Dwork and Naor [DN00] showed the existence of a non-uniform non-constructive NIWI which
can be based on their ZAP construction by fixing the first message non-uniformly. Building on
their work, Barak, Ong and Vadhan [BOV05] de-randomize the ZAP verifier in [DN00] to give
the first NIWI construction. They base their de-randomization technique on the existence of a
function in Dtime(2O(n)) with non-deterministic circuit complexity 2Ω(n). The ZAP construction
from [BP15] can also be de-randomized under the same assumption. Furthermore, Groth, Ostrovsky
and Sahai [GOS06] construct a NIWI based on the decisional linear assumption for bilinear groups.

Theorem 3. We base the existence of NIWI on either of the following assumptions:

1. If decisional linear assumption holds for the elliptic curve based bilinear groups in [BF01]
against all circuits in class C then there exists a C-NIWI.

2. If C-secure trapdoor permutations exist and there exists a function in Dtime(2O(n)) with non-
deterministic circuit complexity 2Ω(n) then there exists a C-NIWI.

3.5 Commitment Schemes

Definition 10 (Commitment scheme). A commitment scheme 〈C,R〉 consists of a pair of inter-
active PPT TMs C and R with the following properties:

1. The commitment scheme has two stages: a commit stage and a reveal stage. In both stages,
C and R receive a security parameter 1n as common input. C additionally receives a private
input v ∈ {0, 1}n that is the string to be committed.

2. The commit stage results in a joint output c, called the commitment, a private output for C, d,
called the decommitment string. Without loss of generality, c can be the full transcript of the
interaction between C and R. Let nc = nc(n) denote the maximal length of the commitment
c for security parameter n.

3. In the reveal stage, committer C sends the pair (v, d) to the receiver R, and R decides to accept
or reject the decommitment (v, d) deterministically according to an efficiently computable
function Open; that is, R accepts iff Open(c, v, d) = 1.

4. If C and R do not deviate from the protocol, then R should accept with probability 1 in the
reveal stage.

Furthermore, we say that a commitment c is valid, if there exists a string v and a decommitment
string d such that Open(c, v, d) = 1.

Next we define the binding and hiding property of a commitment scheme.

Definition 11 (Statistical binding). A commitment scheme 〈C,R〉 is statistically binding if for
any committer C∗ possibly unbounded, there exists a negligible function ν(·) such that C∗ succeeds
in the following game with probability at most ν(n):
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On security parameter 1n, C∗ first interacts with R in the commit stage to produce a commitment
c. Then C∗ outputs two decommitments (v0, d0) and (v1, d1), and succeeds if v0, v1 ∈ {0, 1}n, v0 6= v1

and R accepts both as decommitments of c.
Furthermore, a commitment scheme is perfectly binding if the probability that C∗ succeeds in

the above game is 0.

We define the value of any commitment through a function val, that takes as input an arbitrary
commitment c and outputs v if c is valid and there exists exactly one value v such that Open(c, v, ·) =
1, otherwise it outputs a ⊥. Note that such a function val may not be efficiently computable.

Definition 12 (C-hiding). A commitment scheme 〈C,R〉 is C-hiding if for every non-uniform
circuit A = {An}n∈N ∈ C, there exists a negligible function ν(·) such that A succeeds in the following
game with probability at most ν(n) away from 1

2 :
For security parameter 1n, An outputs a pair of values v0, v1 ∈ {0, 1}n. C on input vb, where

b is a randomly chosen bit, interacts with An to produce a commitment of vb. An outputs a bit b′

and wins the game if b′ = b.

Additionally, we consider commitment schemes that are “tag-based”.

Definition 13 (Tag-based commitment scheme). A commitment scheme 〈C,R〉 is a tag-based
scheme with t(n)-bit identities if, in addition to the security parameter 1n, the committer and
receiver also receive a “tag” – a.k.a. identity–id of length t(n) as common input.

When the length t(n) of identities is n, we refer to 〈C,R〉 as a tag-based commitment scheme.

Definition 14 (Over-extractable commitment scheme). A statistically binding commitment scheme
〈C,R〉 is over-extractable w.r.t. extractor oE = {oEn}n∈N if there exists a negligible function ν(·)
such that ∀n ∈ N, ∀c ∈ {0, 1}nc,

Pr
[
v′ ← oEn(c) : c is valid ∧ val(c) 6= v′

]
≤ ν(n) ,

where nc is the maximal length of the commitment generated by 〈C,R〉 with security parameter n.
Furthermore, we say 〈C,R〉 is (d, S)-over-extractable if the extractor oE belongs to the circuit class
C∧d,S.

Remark 2. Note that the extractor oE must successfully extract the correct value for any valid
commitment (i.e., for which there exists a decommitment), even if the valid commitment is generated
by a malicious committer.

In the rest of the paper whenever we say a commitment scheme, we mean a statistically (per-
fectly) binding commitment scheme.

The man-in-the-middle (MIM) execution: Let 〈C,R〉 be a tag-based commitment scheme.
Consider a non-uniform circuit family A = {An}n∈N. For security parameter n, An participates
in m-left and m-right interactions5. In the left interactions, An interacts with C and receives
commitments to values v1, . . . , vm ∈ {0, 1}n, using identities id1, id2, . . . , idm of its choice. In the
right interactions An interacts with R attempting to commit to related values ṽ1, . . . , ṽm, using
identities ĩd1, ĩd2, . . . , ĩdm of its choice. We define the values ṽi committed on the right as ṽi = val(c̃i)

5In standard definitions of non-malleability [DDN00, LPV08], the man-in-the-middle adversary is also given some
auxiliary information z. In this work, we consider non-malleability against non-uniform circuits, which can be thought
of as having z hard-wired in them. This is why we ignore z in our definitions.
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where c̃i is the commitment in the ith right interaction. Recall that val(c) = ⊥, if c is not valid or
that it can be opened to more than one value. Otherwise, val(c) equals the unique value v it can
be opened to. Furthermore, if for any right interaction i, ĩdi = idj for some j, we set ṽi = ⊥.

We define two different flavours of non-malleability. First we recall the standard notion of
non-malleability – a.k.a non-malleability w.r.t. commitment, for (tag-based) commitment schemes.
Then, we introduce a new notion called non-malleability w.r.t. extraction for over-extractable com-
mitment schemes.

Non-malleability w.r.t. commitment: Consider a MIM execution withA. Let mimA
〈C,R〉(v1, . . . , vm)

denote the random variable that describes the values ṽ1, . . . , ṽm that A commits to on the right
and the view of A in MIMA

〈C,R〉(v1, . . . , vm).

Definition 15 (Non-malleability). A tag-based commitment scheme 〈C,R〉 is said to be concur-
rent C-non-malleable if for every circuit family A = {An}n∈N ∈ C participating in m = poly(n)
concurrent interactions, the following ensembles are computationally indistinguishable:{

mimA
〈C,R〉(v

(1)
1 , . . . , v(1)

m )
}
n∈N,v(1)1 ,...,v

(1)
m ∈{0,1}n,v

(2)
1 ,...,v

(2)
m ∈{0,1}n

,{
mimA

〈C,R〉(v
(2)
1 , . . . , v(2)

m )
}
n∈N,v(1)1 ,...,v

(1)
m ∈{0,1}n,v

(2)
1 ,...,v

(2)
m ∈{0,1}n

.

Non-malleability w.r.t. extraction: Let 〈C,R〉 be a tag-based commitment scheme which is
over-extractable w.r.t. extractor oE . We say that 〈C,R〉 is non-malleable w.r.t. extraction if the
distributions of the random variable emim defined below are indistinguishable in any two MIM
executions with different values committed on the left. Recall that mim describes the view of A and
the values ṽi that A commits to on the right. However, the random variable emimA

〈C,R〉(v1, . . . , vm),

instead, describes the view of A and the values ṽi
′ which are obtained by running the extractor oE

on input c̃i (the ith right commitment); that is, ṽi
′ ← oEn(c̃i). Note that, if for any right interaction

i, ˜idi = idj , for some j, then we set ṽi
′ = ⊥.

Definition 16 (Non-malleability w.r.t. extraction). A tag-based commitment scheme 〈C,R〉 is said
to be concurrent C-non-malleable w.r.t. extraction by oE if the following hold:

1. 〈C,R〉 is over-extractable by oE.

2. For every circuit A = {An}n∈N ∈ C participating in m = poly(n) concurrent interactions, the
following ensembles are computationally indistinguishable:{

emimA
〈C,R〉(v

(1)
1 , . . . , v(1)

m )
}
n∈N,v(1)1 ,...,v

(1)
m ∈{0,1}n,v

(2)
1 ,...,v

(2)
m ∈{0,1}n

,{
emimA

〈C,R〉(v
(2)
1 , . . . , v(2)

m )
}
n∈N,v(1)1 ,...,v

(1)
m ∈{0,1}n,v

(2)
1 ,...,v

(2)
m ∈{0,1}n

.

At first glance, it may seem that the new notion — non-malleability w.r.t. extraction, is no
more interesting than the standard notion of non-malleability (w.r.t. commitment). After all,
an extractor that agrees with the function val establishes that the two notions are equivalent.
Most constructions of non-malleable commitment schemes in the literature, in fact, establish non-
malleability by building such an extractor in their security proofs. In this work, however, we
consider extractors that may not always agree with val and have some over-extraction.
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Over-extractability guarantees that for valid commitments, the extractor extracts out the com-
mitted value with overwhelming probability. However, given an invalid commitment, the value
extracted by the extractor can be arbitrary. This inept behaviour of the extractor, on invalid com-
mitments, is what makes the two notions incomparable (in general). For instance, there might exist
an adversary A, depending on the value committed on the left, may choose to send invalid tran-
scripts on the right with different probabilities. Such an A certainly breaks the non-malleability of
the scheme (w.r.t commitment) but depending on the extractor, A may not violate non-malleability
w.r.t. extraction because the extracted values may still be indistinguishable. Furthermore, there
might exist an adversary that irrespective of the value on the left always sends invalid commit-
ments on the right. Such an A does not break the non-malleability w.r.t. commitment. But A may
violate non-malleability w.r.t. extraction by establishing a co-relation between the value committed
on the left and the value that will be over-extracted by the extractor on the right. Hence, the two
notions are incomparable. However, if one sets up the decommitment condition (which defines the
random variable mim) appropriately then we show that it is possible to base non-malleability w.r.t.
commitment on non-malleability w.r.t. extraction. We believe this reduction as one of the main
contributions of this work.

We also consider relaxed versions of both non-malleability and non-malleability w.r.t. extraction:
one-one, one-many and many-one secure commitment schemes. In one-one (a.k.a. standalone), we
consider an adversary A that participates in one left and one right interaction; in one-many A
participates in one left and many right; and in many-one, A participates in many left and one right
interaction.

3.6 Time-Lock Puzzles

Definition 17 (Time-lock puzzles [BGJ+16]). A (T,B)-time-lock (TL) puzzle is a tuple (Gen,Sol)
satisfying the following requirements:

1. Syntax:

- Z ← Gen(1n, 1t, s) is a probabilistic algorithm that takes as input a security parameter
n, a solution s ∈ {0, 1}n and a difficulty parameter t and outputs a puzzle Z.

- s ← Sol(Z) is a deterministic algorithm that takes as input a puzzle Z and outputs a
solution s.

2. Completeness: For every security parameter n, difficulty parameter t, solution s ∈ {0, 1}n and
puzzle Z in the support of Gen(1n, 1t, s), Sol(Z) outputs s.

3. Efficiency:

- Z ← Gen(1n, 1t, s) is a poly-time algorithm, that is, it runs in time poly(t, n).

- s← Sol(Z) runs in time poly(2t) for Z in the support of Gen(1n, 1t, ·).

4. (T,B)-hardness: (Gen,Sol) is a (T,B)-hard TL puzzle if there exists a constant c such that
for every c log n < t(n) < B(n) and every adversary A = {An}n∈N where,

dep(An) ≤ T (t) ; size(An) ≤ B(n) ,

there exists a negligible function ν, such that for every n ∈ N,

Pr
[
s← {0, 1}n; Z ← Gen(1n, 1t(n), s); s′ ← An(Z) : s′ = s

]
≤ ν(n) .
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The first candidate construction of TL puzzles was proposed by Rivest, Shamir and Wag-
ner [RSW96] and is based on the “inherently sequential” nature of exponentiation modulo an RSA
integer. Twenty years after their proposal, there still does not exist a (parallelizable) strategy that
can solve the puzzle (of difficulty parameter t) in parallel-time T (t) which is significantly less than
2t. Apart from the variants of RSW puzzles [BN00, GMPY11], the only other construction of TL
puzzles was given by Bitansky et al. [BGJ+16] based on succinct randomized encodings for Turing
machines (which in turn can be built from indistinguishability obfuscation and one-way functions)
and the existence of non-parallelizing languages. These previous works have considered puzzles with
strong parameters, that is, puzzles that are parallel-time hard for exponential T = 2δt ([BGJ+16])
and even strongly exponential T = δ2t ([BN00, GMPY11]).

However, for our task of constructing 2-round non-malleable commitments, much weaker TL
puzzles are sufficient, that is, puzzles that remain hard for only subexponential T = 2t

δ
parallel-

time. More precisely, we need a (T (t) = 2t
δ
, B(n) = 2n

ε
)-TL puzzle for some 0 < ε, δ < 1. We here

recall the RSW TL puzzles RSW = (Gen, Sol) as a candidate.

- Algorithm Gen(1n, 1t, s):

1. Select an n-bit RSA modulous N = pq.

2. Compute the mask y = g22
t

mod N for some element g ∈ Z∗N . Note that since the

factorization of N is known, Gen can first compute the exponent e = 22t mod φ(N) and
then efficiently compute the mask y = ge mod N .

3. Mask the solution s with y, that is, z = (s+ y) mod N .

4. Return the tuple Z = (z,N) as the puzzle.

- Solver Sol(Z = (z,N)):

1. By 2t repeated squarings, compute y = g22
t

mod N .

2. Output (z − y) mod N as the solution.

As discussed in [RSW96], the element g above can either be a fixed element such as 2, or sampled
at random.

Next, we discuss that the RSW = (Gen, Sol) is a TL puzzle in the sense of Definition 17. It is
easy to see that for security parameter n and difficulty parameter t, Gen runs in time poly(t, n)
and Sol runs in time poly(2t). Futhermore, we base the (T,B)-hardness of the RSW puzzle on
the subexponential RSW assumption as stated in Assumption 1. Informally, it says that for some
subexponential functions T and B, and any function t such that c log n ≤ t(n) ≤ B(n), B(n)-

sized adversaries with depth T (t) cannot compute g22
t

mod N . From the discussion presented in
Section 1 it follows that if the subexponential RSW assumption holds, then the RSW puzzle as
defined above is a (T,B)-hard TL puzzle for some subexponential functions T and B.

Lemma 1. If the subexponential RSW assumption holds, then there exists subexponential functions
T and B, such that, RSW = (Gen,Sol) is a (T,B)-hard TL puzzle.
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4 Basic Commitment Schemes

In this section we construct three basic over-extractable commitment schemes, each one of them
enjoys hiding against different circuit classes. Firstly, we construct a depth-robust commitment
scheme which is (S′, S′)-over-extractable and hiding against any circuit whose depth is sufficiently
smaller than S′. Next, we construct a size-robust commitment scheme which is hiding against any
circuit whose size is at most poly(S) but there exists an extractor of polynomial depth and size larger
than S. Finally, we construct a commitment scheme which is hiding against both depth-restricted
and size-restricted circuits.

4.1 Depth-robust Over-extractable Commitment Scheme from a TL-puzzle

For some subexponential functions T and B, assume the existence of a (T,B)-TL puzzle (Gen,Sol).
For any difficulty parameter c log n < t(n) < B(n), these puzzles are solvable in time poly(2t) but
hard for B(n)-sized circuits having depth at most poly(T (t)). 6 Furthermore, consider a difficulty
parameter t(n) that admits the following hierarchy of non-decreasing functions, n << d = T (t) <<
S′ = 2t << S∗ << B. Using the (T,B)-TL puzzles, we construct a commitment scheme which
is over-extractable in time poly(S′) and is hiding against any circuit in Cd (hence the name depth-
robust commitment scheme). We refer to the commitment scheme as (EComd,EOpend) which is
described below. 7

On input a security parameter 1n, the honest committer C runs the algorithm EComd described
below to commit to a value v ∈ {0, 1}n. After the commit stage, the honest receiver R decides
whether to accept the commitment by running the function EOpend as described in the reveal stage.

- Commit stage - Algorithm EComd:

1. On input security parameter 1n and value v ∈ {0, 1}n, for every i ∈ [n], the honest
committer C samples random strings si, ri ∈ {0, 1}n and computes the commitment ci
to v[i], the ith bit of v, as follows,

ci = (Zi = Gen(1n, 1t(n), si ; r), ri, 〈ri · si〉 ⊕ v[i]) ,

where r is the random tape used by Gen and t is the difficulty parameter such that
d = T (t).

2. C sends the vector c = {ci}i∈[n] to R as the commitment and keeps (v, {si}i∈[n], r) as
the decommitment.

- Reveal stage - Function EOpend:
On receiving (v, {si}i∈[n], r) from C, R computes the function EOpend which returns 1 if
ci = (Gen(1n, 1t, si ; r), ri, 〈ri · si〉 ⊕ v[i]) for every i ∈ [n]. Otherwise, outputs 0.

Furthermore, the extractor oEd of the scheme proceeds as follows:

- Extraction - Extractor oEd:
On receiving any commitment c = {ci = (Zi, ri, zi)}i∈[n], the extractor oEd computes the

6The definition of TL puzzles presented in Definition 17 defines hardness against circuits with depth at most T but
for ease of description we assume hardness for poly(T ) depth. This is without loss of generality for subexponential

T = 2t
δ′

, that is, hardness against 2t
δ′

implies hardness against poly(2t
δ

) for any δ < δ′ < 1.
7From now on, for notational convenience, we represent a non-interactive commitment scheme by the tuple of

commit and open algorithms; that is (ECom,EOpen), instead of a pair of interactive TMs C and R.
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solution si of Zi by running Sol(Zi). Then, oEd extracts bit v[i] committed in ci by computing
v[i] = zi ⊕ 〈ri · si〉. oEd returns the string v[0]|| . . . ||v[n− 1] as its output.

Theorem 4. Assuming the existence of (T,B)-TL puzzle (Gen,Sol), an appropriate diffculty param-
eter t(n) and non-decreasing functions n << d = T (t) << S′ = 2t << S∗ << B, (EComd,EOpend)
is a non-interactive, perfectly binding, Cd-hiding, (S′, S′)-over-extractable commitment scheme w.r.t.
extractor oEd.

Proof. We discuss each of the properties in the following:

- Efficiency: For any n ∈ N, difficulty parameter t which is upper-bounded by some polynomial
and i ∈ [n], EComd runs Gen to sample puzzles Zi’s and rest of computation (i.e., sampling
n-bit strings, computing inner-product) takes poly(n) time. Infact for difficulty parameter t(n),
Gen runs in time poly(t, n) which is upper-bounded by some poly(n) as t is upper-bounded by a
polynomial. Hence, EComd runs in time poly(n) for each i ∈ [n]. Therefore, EComd is efficient.

- Perfect binding: Note that the TL-puzzle as defined is injective, that is, given a honestly generated
puzzle Z there exists only one solution s to this puzzle. Assume towards a contradiction, there
exists a puzzle Z that has two solution s0 6= s1, that is, Z lies in the support of both Gen(·, ·, s0)
and Gen(·, ·, s1). Then, the deterministic algorithm Sol on input Z outputs s. If s = s0, then
this contradicts the correctness of Sol w.r.t. puzzles in the support of Gen(·, ·, s1) and vice-versa.
Therefore, given a puzzle Z (arbitrarily generated), there exists at most one solution. This
then implies that the puzzles Zi in the commitment c lie in the support of at most one string
si. Therefore, for every commitment c there exists at most one sequence {si}i∈[n] that will
make R accept the commitment c. It is easy to see that this implies the perfect binding of
(EComd,EOpend).

- Over-extractable: First, the extractor oEd belongs to the class C∧S′,S′ since Sol runs in time

poly(S′) = poly(2t) and the rest of the computation takes poly(n) time. Furthermore, since
oEd always solves the puzzle Zi’s correctly, it always extracts the correct unique committed value.
Therefore, (EComd,EOpend) is (S′, S′)-over-extractable.

- Hiding: By the definition of (T,B)-hardness of the TL puzzle, for difficulty parameter t, the
distribution,

{s← {0, 1}n, Z ← Gen(1n, 1t, s) : (s, Z)} , (1)

is unpredictable for any adversary A = {An}n∈N where dep(An) ≤ poly(T (t)) and size(An) ≤
poly(S∗) < B. In our construction of (EComd,EOpend), we sample the TL puzzles with difficulty
t such that T (t) = d. Therefore, for any circuit in the class Cd, the above distribution is unpre-
dictable. We refer to such a distribution as Cd-unpredictable. Then, by a standard argument
about the hardcoreness of the Goldreich Levin bit [GL89] extracted from an Cd-unpredictable
distribution, we can conclude that the bit 〈si · ri〉 is hardcore for circuits in the class Cd. This
implies that (EComd,EOpend) is Cd-hiding.

4.2 Size-robust Over-extractable Commitment Scheme from OWPs

For a non-decreasing function S(n) (<< S∗(n)), assume that there exists a OWP f that is hard to
invert for any poly(S)-sized circuit (for any polynomial poly(·)), but there exists a non-decreasing
function S′′(n) (S << S′′ << S∗) such that a circuit of poly(n) depth and S′′ size can invert
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it. Such a OWP f can be instantiated from a subexponentially secure OWP by setting the input
length appropriately. More concretely, consider a subexponentially secure OWP that is hard for
circuits of size poly(2k

ε
) (for any polynomial poly() and some 0 < ε < 1). For any S, we can design

the required f which is hard to invert for poly(S)-sized circuits by setting k = (logS)1/ε, thereby
achieving security against circuits of size poly(2k

ε
) = poly(2(logS)). Furthermore, there exists a

circuit which can invert (with probability 1) by enumerating all the 2k pre-images. Such a circuit

has size S′′ = poly(2k) = poly(2(logS)1/ε) >> S and polynomial depth.
Using such a OWP f , we construct a commitment scheme (EComS ,EOpenS) which is hiding

against circuits of size poly(S) (hence the name size-robust commitment scheme) and (poly(n), S′′)-
over-extractable. (EComS ,EOpenS) is simply the non-interactive commitment scheme based on
OWP where the hard-core predicate is the Golreich-Levin bit [GL89]. For completeness, we describe
the scheme below.

- Commit stage - Algorithm EComS :

1. On input security parameter 1n and value v ∈ {0, 1}n, for every i ∈ [n], the honest
committer C samples random strings si and ri in the domain of f and computes the
commitment ci to v[i], the ith bit of v, as follows,

ci = (f(si), ri, 〈ri · si〉 ⊕ v[i]) .

2. C sends the vector c = {ci}i∈[n] to R as the commitment and keeps (v, {si}i∈[n]) as the
decommitment.

- Reveal stage - Function EOpenS :
On receiving (v, {si}i∈[n]) from C, R computes the function EOpenS which returns 1 if ci =
(f(si), ri, 〈ri · si〉 ⊕ v[i]) for every i ∈ [n]. Otherwise, outputs 0.

The extractor oES for the scheme proceeds as follows:

- Extraction - Extractor oES :
On receiving any commitment c = {ci = (yi, ri, zi)}i∈[n], the extractor oES computes the
pre-image si of yi under f (by assumption, f can be inverted using a circuit of polynomial
depth and S′′ size). oES extracts bit v[i] committed in ci by computing v[i] = zi ⊕ 〈ri · si〉.
oES returns the string v[0]|| . . . ||v[n− 1] as its output.

Theorem 5. If f is a CS-secure OWP which is invertible by a circuit in C∧poly,S′′ for some S′′ >>
S then (EComS ,EOpenS) is a non-interactive, perfectly binding, CS-hiding and (poly, S′′)-over-
extractable commitment scheme w.r.t. extractor oES.

Proof. We discuss all the properties in the following:

- Binding and Hiding: The proof of perfect binding follows from the injectivity of f and proof
of CS-hiding follows from the hard-coreness of the Goldreich-Levin bit with OWP being CS-
secure (hence the scheme is CS-hiding).

- Over-extractable: First, the extractor oES belongs to the class C∧poly,S′′ since f can be inverted
by a circuit in C∧poly,S′′ and the rest of the computation takes poly(n) time. Furthermore,
since oES always inverts the OWP images yi’s correctly, it always extracts the correct unique
committed value. Therefore, (EComS ,EOpenS) is (poly, S′′)-over-extractable.
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4.3 Strong Over-extractable Commitment Scheme

For non-decreasing functions,

n << d(n) << S′(n), S(n) << S′′(n) << S∗(n) << 2n
ε
,

we construct a non-interactive perfectly binding commitment scheme (EComd,S ,EOpend,S) which
is C∨d,S-hiding and (S′, S′′)-over-extractable w.r.t an extractor oEd,S . Note that, unlike the commit-
ment schemes described in Sections 4.1 and 4.2 which were either hiding against depth-restricted
circuits Cd or hiding against size-restricted circuits CS , (EComd,S ,EOpend,S) enjoys a stronger se-
curity property of being hiding against circuits in both depth-restricted and size-restricted circuit
classes (i.e., C∨d,S). We describe the construction of the scheme (EComd,S ,EOpend,S) for an honest
committer C and an honest receiver R below. The idea is to commit to a random 2-out-of-2 secret
share of the value v using each of the schemes described in Sections 4.1 and 4.2.

- Commit stage - Algorithm EComd,S :

1. On input security parameter 1n and value v ∈ {0, 1}n, C samples a random n-bit string
r0.

2. C computes a commitment c1 to r0 using EComd. Let d1 be the corresponding decom-
mitment string.

3. C computes a commitment c2 to v ⊕ r0 using EComS . Let d2 be the corresponding
decommitment string.

4. C sends (c1, c2) as the commitment c to R and keeps the decommitment (v, r0, d1, d2)
private.

- Reveal stage - Function EOpend,S :

On receiving the decommitment (v, r0, d1, d2), R accepts it if both EOpend and EOpenS accept
the corresponding decommitments; that is,

EOpend(c1, r0, d1) = 1 ∧ EOpenS(c2, v ⊕ r0, d2) = 1 .

Otherwise, R rejects.

The extractor oEd,S of the scheme proceeds as follows:

- Extraction - Extractor oEd,S :

The extractor oEd,S on input c = (c1, c2) runs the extractors oEd and oES with inputs c1 and
c2, obtaining outputs r′0 and r′1 respectively. If either r′0 or r′1 is ⊥ then oEd,S outputs ⊥.
Otherwise, oEd,S outputs r′0 ⊕ r′1.

Theorem 6. (EComd,S ,EOpend,S) is a non-interactive, perfectly binding, C∨d,S-hiding and (S′, S′′)-
over-extractable commitment scheme w.r.t. extractor oEd,S.

Proof. We discuss each of the properties in the following:

- Perfect binding: The perfect binding follows from the perfect binding of EComd and EComS .
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- Over-extractable: A valid commitment c = (c1, c2) is such that both c1 and c2 are valid com-
mitments for EComd and EComS respectively. Since EComd and EComS are over-extractable
w.r.t. extractors oEd and oES respectively, oEd,S which runs oEd(c1) and oES(c2) extracts
out the unique committed values and hence outputs val(c) with over-whelming probability.
Furthemore, oEd ∈ C∧S′,S′ and oES ∈ C∧poly,S′′ implies that oEd,S belongs to the circuit class
C∧S′,S′′ .

- Hiding: Assume towards a contradiction that there exists a non-uniform circuit family A =
{An}n∈N ∈ C∨d,S , and for some polynomial p(·) and infinitely many n ∈ N, a pair of values
v0, v1 ∈ {0, 1}n,

Pr [b← {0, 1}, c← EComd,S(1n, vb) : b = An(c)] ≥ 1

2
+

1

p(n)
. (2)

Using A, we construct a non-uniform circuit family B = {Bn}n∈N that breaks the hiding of
either EComd or EComS depending on the depth and size of A. Since A ∈ C∨d,S , it could either
be that A ∈ Cd or A ∈ CS . We will consider the two cases separately below.

Case 1 - A ∈ CS : In this case, we construct a B that violates the hiding of EComS as follows:
Bn with v0 and v1 hard-wired in it, samples a random n-bit string r0 and computes a com-
mitment c1 to string r0 using EComd. It sends (v0 ⊕ r0) and (v1 ⊕ r0) as challenges in the
hiding game of EComS and receives a commitment c2 to (vb ⊕ r0), for a randomly chosen bit
b. Finally, Bn sends the tuple (c1, c2) as the commitment to An and forwards the output of
An as its output. B perfectly simulates the hiding game of EComd,S for A while itself partic-
ipating in the hiding game of EComS and hence succeeds with probability at least 1

2 + 1
p(n) .

Furthermore, since B incurs only polynomial blow-up in size over A (while simulating the
game for A), we have B ∈ CS . Therefore, B ∈ CS succeeds in the hiding game of EComS with
non-negligible probability away from 1

2 , which is a contradiction.

Case 2 - A ∈ Cd: The proof for Case 2 is similar to Case 1 but here we, instead, construct
B ∈ Cd which succeeds in the hiding game of EComd with non-negligible probability away
from 1

2 . The only difference from the previous case is that B commits to r0 using the scheme
EComS and forwards (v0⊕ r0) and (v1⊕ r0) as challenges in the hiding game of EComd. Since
the marginal distribution of both random shares of v (i.e., r and v ⊕ r for a random r) are
identical, B still perfectly simulates the hiding game of EComd,S for A.

5 Non-malleable Commitment Scheme w.r.t. Extraction for Short
Identities

Assume that we have the following hierarchy of non-decreasing functions on N,

n << d0 << d1 << . . . << dl−1 << dl << S0 << S1 << . . . << Sl−1 << Sl << S∗ << 2n
ε
,
(3)

such that for every id ∈ [l],

- there exists a depth-robust commitment scheme (EComdid ,EOpendid) that is Cdid-hiding and
(did+1, did+1)-over-extractable w.r.t. an extractor oEdid .
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- there exists a size-robust commitment scheme (EComSid
,EOpenSid

) that is CSid
-hiding and

(poly(n), Sid+1)-over-extractable w.r.t. an extractor oESid
.

By Section 4.3, we can then construct a family of l commitment schemes {(EComid,EOpenid)}id∈[l]

such that for every id ∈ [l],

(EComid,EOpenid) = (EComdid,Sl−id−1
,EOpendid,Sl−id−1

) ,

and by Theorem 6 we have that (EComid,EOpenid) is a non-interactive, perfectly binding,
C∨did,Sl−id−1

-hiding and (did+1, Sl−id)-over-extractable commitment scheme w.r.t. an extractor oEid
(described in Section 4.3). We use this family of l commitment schemes to construct a tag-based
commitment scheme (ENMCom,ENMOpen) for identities of length log l-bits which is one-one non-
malleable w.r.t. extraction by an extractor oENM. We describe the scheme (ENMCom,ENMOpen)
and the extractor oENM below.

- Commit stage - Algorithm ENMCom:

1. On input security parameter 1n, identity id ∈ [l] and a value v ∈ {0, 1}n, C computes a
commitment c to v using EComid. Let d be the corresponding decommitment string.

2. C sends the commitment c to R and keeps the decommitment (v, d) private.

- Reveal stage - Function ENMOpen:
On receiving the decommitment (v, d) and identity id, R computes ENMOpen(id, c, v, d) which
returns 1 if EOpenid(c, v, d) returns 1. Otherwise, returns 0.

The extractor oENM proceeds as follows,

- Extraction - Extractor oENM:
The extractor oENM on input c and identity id outputs the value extracted by oEid from c.

Remark 3. We want ENMCom and ENMOpen to be computable by uniform TMs. This man-
dates that {EComid}id∈[l] and {EOpenid}id∈[l] be uniformly and efficiently computable; that is, there
must exist uniform PPT TMs Mcom and Mopen that on input id can compute EComid and EOpenid
respectively. If l = O(1) then one can simply hard-code all the algorithms {EComid}id∈[l] and
{EOpenid}id∈[l] in Mcom and Mopen respectively. As will see later, l = O(1) is sufficient for con-
structing non-malleable commitment scheme for n-bit identities. When l = ω(1) the hard-coding
approach, in fact, does not work. Nevertheless, we note that the algorithms EComid and EOpenid
described in Section 4.3 are still efficiently and uniformly computable. Since, this case does not
occur in our construction, we omit details here.

Theorem 7. (ENMCom,ENMOpen) is a non-interactive, perfectly binding, C∧d0,S0
-hiding, (dl, Sl)-

over-extractable tag-based commitment scheme for identities of length log l. Furthermore,
(ENMCom,ENMOpen) is one-one C∧d0,S0

-non-malleable w.r.t. extraction by extractor oENM.

We note that both hiding and non-malleability hold only against circuits in the restrictive class
C∧d0,S0

; that is, circuits A whose depth and size are bounded by poly(d0) and poly(S0) respectively,
even though the building blocks EComid’s have the stronger security of being hiding against circuits
in C∨did,Sl−id−1

⊃ C∧d0,S0
; that is, circuits A which are either restricted in their depths or their size but

not both.
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Proof. The perfect binding follows readily from the perfect binding of each of the EComid’s. We
discuss over-extractability and non-malleability in the following:

- Over-extractable: A valid commitment c with identity id is a valid commitment for EComid.
Therefore, the extractor oENM which runs oEid on c extracts the correct unique commit-
ted value due to the over-extractability of EComid w.r.t. oEid. Furthermore, EComid’s are
(did+1, Sl−id)-over-extractable and hence the depth of oEid is at most poly(did+1) and size is
at most poly(Sl−id). Therefore, oENM (which runs oEid) is a circuit with depth bounded by
poly(dl) and size bounded by poly(Sl) (see Inequality 3). Hence, (ENMCom,ENMOpen) is
(dl, Sl)-over-extractable.

- Non-malleability and Hiding: The proof of hiding follows from the proof of non-malleability
(described below). For proving one-one non-malleability w.r.t. extraction by oENM, let us
assume for contradiction that there exists a non-uniform circuit A = {An}n∈N ∈ C∧d0,S0

which
participates in one left and one right interaction such that for infinitely many n ∈ N there ex-
ists v0, v1 ∈ {0, 1}n such that the following distributions are computationally distinguishable,

emimA
ENMCom(v0) ; emimA

ENMCom(v1) . (4)

Equivalently, there exists a non-uniform circuit D = {Dn}n∈N ∈ P/poly and a polynomial
p(·) such that D distinguishes the above distributions with non-negligible advantage 1

p(n) . Let

id and ĩd be the identities chosen by A in the left and right interactions respectively. Note that
since the only message A receives in the execution is the left commitment and identity for
the left interaction needs to be chosen before that, we can assume that the left side identity
id is fixed.

Using A and D, we will construct a non-uniform circuit B = {Bn}n∈N ∈ C∨did,Sl−id−1
that breaks

the hiding of EComid with advantage at least 1
p(n) . More concretely, B internally runs A and

acts as an honest committer in the left interaction with A while as an honest receiver in the
right interaction. In the hiding game of EComid, B sends (v0, v1) as challenges and receives a
commitment c to vb, for a randomly chosen bit b. B forwards c to A as the commitment in
the left interaction. A sends a commitment c̃ to the honest right receiver (simulated by B).
Then, B runs the extractor oEĩd on c̃ obtaining an extracted value ṽ′. Depending on the value
of b, the over-extracted value ṽ′ along with the view of A is identical to emimA

ENMCom(vb). B
runs the distinguisher D with inputs ṽ′ and the view of A. Finally, B returns the output of
D as its output.

By our hypothesis, B succeeds in breaking the hiding of EComid with advantage at least 1
p(n) .

Now to arrive at a contradiction it remains to show that B ∈ C∨did,Sl−id−1
. B runs the extractor

oEĩd ∈ C
∧
did+1,Sl−ĩd

and A ∈ C∧d0,S0
, while the rest of the simulation takes poly(n) time. Therefore

the depth of B is such that,

dep(B) = dep(A) + dep(oEĩd) + poly(n)

≤ poly(d0) + poly(dĩd+1) + poly(n) < poly(dĩd+1) .
(5)

Similarly, the size of B is such that,

size(B) = size(A) + size(oEĩd) + poly(n)

≤ poly(S0) + poly(Sl−ĩd) + poly(n)

< poly(Sl−ĩd) << S∗ .

(6)
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We consider two cases for the identities id and ĩd as follows: 8

Case 1 - id > ĩd: In this case, did ≥ dĩd+1, we have that dep(B) < poly(did) for some polynomial
poly(·). Therefore, B ∈ Cdid and hence B ∈ C∨did,Sl−id−1

.

Case 2 - id < ĩd: In this case, Sl−ĩd ≤ Sl−id−1 we have that size(B) < poly(Sl−id−1) for some
polynomial poly(·). Therefore B ∈ C∨did,Sl−id−1

.

Thus, irrespective of the identity ĩd chosen by A for the right interaction, we can construct
B ∈ C∨did,Sl−id−1

which breaks hiding of EComid with non-negligible advantage, which is a
contradiction.

Remark 4. In the above proof, the reduction B which bases the one-one non-malleability w.r.t.
extraction on the hiding of EComid, runs both A and the extractor oEĩd of the commitment scheme
EComĩd. Therefore, B has depth at most dep(A) + poly(dĩd+1) and has size at most size(A) +
poly(Sl−ĩd) respectively. To reach a contradiction, one must argue that the reduction B belongs to
C∨did,Sl−id

. In other words, either dep(A) + poly(dĩd+1) is at most poly(did) or size(A) + poly(Sl−ĩd)

is at most poly(Sl−id−1). Since A chooses both id and ĩd, this can only hold if dep(A) and size(A)
are both small; that is, o(d1) and o(S1) respectively. As a result, we only show non-malleability of
(ENMCom,ENMOpen) against weak adversaries whose depth and size both are bounded by poly(d0) =
o(d1) and poly(S0) = o(S1) respectively.

Remark 5. Furthermore, we note that even though (ENMCom,ENMOpen) is non-malleable w.r.t.
extraction, we cannot prove that it is non-malleable (w.r.t. commitment). This is because the
underlying commitment schemes EComid’s are only over-extractable. Over-extractability guarantees
that for a valid commitment, the value extracted by the extractor is indeed the value committed
(except with negligible probability). However, when a commitment is invalid, the extracted value can
be arbitrary – hence the name over-extractable. Therefore, there might exist an adversary A that
depending on the value committed on the left sends invalid commitments with different probabilities
on the right. Such an adversary clearly violates the non-malleability (w.r.t. commitment) but may
not violate non-malleability w.r.t. extraction. This is because the over-extracted values may still be
indistinguishable. Hence, we cannot base non-malleability (w.r.t. commitment) on non-malleability
w.r.t. extraction of (ENMCom,ENMOpen).

6 Strengthening Non-malleability

The commitment scheme (ENMCom,ENMOpen) described in Section 5 is only stand-alone (one-one)
non-malleable w.r.t. extraction. However, our final goal is to construct a scheme that is concurrent
non-malleable (w.r.t. commitment). In this section, we describe a transformation that transforms
any 2-round commitment scheme which is one-one non-malleable w.r.t. extraction into a 2-round
commitment scheme which is concurrent non-malleable w.r.t. extraction as well as concurrent non-
malleable (w.r.t. commitment). More precisely, let 〈C,R〉 be a 2-round tag-based commitment
scheme for t(n)-bit identities that is non-malleable w.r.t. extraction by an extractor oENM then the
transformation results in a 2-round commitment scheme 〈Ĉ, R̂〉 which is concurrent non-malleable

8Note that the case id = ĩd is not invalid execution and hence not considered.
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w.r.t. extraction by an extractor ôENM and concurrent non-malleable. Given the following hierarchy
of non-decreasing functions on N,

n << d2 << d4 << d3 << d1 << dNM << d′NM <<

S4 << S1 << SNM << S2 << S3 << S′3 << S∗ << 2n
ε
,

(7)

the transformation relies on the following building blocks,

1. 〈C,R〉 is a 2-round, tag-based commitment scheme for t(n)-bit identities that is (d′NM, S2)-
over-extractable by extractor oENM. Furthermore, 〈C,R〉 is one-one C∧dNM,SNM

-non-malleable

w.r.t. extraction by oENM. 9

2. (ECom1,EOpen1) is a perfectly binding commitment scheme which is C∨d1,S1
-hiding and (dNM, SNM)-

over-extractable w.r.t. extractor oE1.

3. (ECom2,EOpen2) is a perfectly binding commitment scheme which is C∨d2,S2
-hiding and (d4, S3)-

over-extractable w.r.t. extractor oE2.

4. (ECom3,EOpen3) is a perfectly binding commitment scheme which is C∨d3,S3
-hiding and (d1, S

′
3)-

over-extractable w.r.t. extractor oE3.

5. (ECom4,ECom4) is a perfectly binding commitment scheme which is C∨d4,S4
-hiding and (d3, S1)-

over-extractable w.r.t. extractor oE4.

6. CS∗-secure NIWI, ZAP and OWP f .

Using the above mentioned buiding blocks, the transformation produces 〈Ĉ, R̂〉 which is a 2-
round, tag-based commitment scheme for t(n)-bit identities that is (dNM, SNM)-over-extractable

w.r.t. an extractor ôENM. Furthermore, 〈Ĉ, R̂〉 is both concurrent C∧d2,S4
-non-malleable w.r.t. ex-

traction by ôENM and concurrent C∧d2,S4
-non-malleable (w.r.t. commitment). Before we formally

describe 〈Ĉ, R̂〉, we first describe a subprotocol puzz used by the receiver R̂ to generate a puzzle
which is sent to the committer Ĉ in the first round.

6.1 Subprotocol puzz

A puzzle scheme puzz is a tuple (Gen,Validity,Ver,Sol) with the following syntax:

- Syntax:

1. Gen is a PPT which takes a security parameter 1n as input and outputs a puzzle Y .

2. Validity is a deterministic polynomial time algorithm that checks whether a puzzle Y is
valid. We say that Y is a valid puzzle iff Validity(1n, Y ) = 1.

3. Ver is a deterministic polynomial time computable function which on input puzzle Y and
a string s′ outputs 0/1. We say that s′ is a solution of a puzzle Y iff Ver(1n, Y, s′) = 1.

4. Sol = {Soln}n∈N is a family of non-uniform circuits that for every n ∈ N and puzzle Y
outputs a string. It guarantees that if the puzzle Y is valid (i.e., Validity(1n, Y ) = 1)
then Sol outputs a solution to the puzzle Y with over-whelming probability.

9The non-interactive scheme (ENMCom,ENMOpen) of Section 5 can be viewed as a 2-round scheme 〈C,R〉 where
the first round message from R is the null string.
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- Puzzle construction: We now describe our construction of a puzzle scheme below. We
will be using the commitment scheme (ECom4,EOpen4), OWP f and NIWI described at the
begining of Section 6 as building blocks in the construction.

– Generation - Algorithm Gen:

1. On input security parameter 1n, Gen samples s1, s2 ← {0, 1}n.

2. Gen computes commitments c1 and c2 to s1 and s2 using ECom4 respectively.

3. Gen computes y1 = f(s1) and y2 = f(s2).

4. Gen uses NIWI to prove that either of the following holds:

(a) either there exists a string s̄1 such that c1 is a valid commitment to s̄1 and
y1 = f(s̄1),

(b) or there exists a string s̄2 such that c2 is a valid commitment to s̄2 and y2 =
f(s̄2).

Let π denote the NIWI proof that proves statement (a) using witness s1.

5. Gen returns the tuple Y = (c1, c2, y1, y2, π) as the puzzle.

– Validation - Algorithm Validity:
On input security parameter 1n and a tuple (c1, c2, y1, y2, π), Validity outputs 1 if the
NIWI proof π is accepting. Otherwise, outputs 0.

– Verification - Function Ver:
On input security parameter 1n, a puzzle (c1, c2, y1, y2, π) and a string s′, Ver returns 1
if either y1 = f(s′) or y2 = f(s′). Otherwise, it returns 0.

– Solve - Solver Sol:
On input security parameter 1n and a puzzle (c1, c2, y1, y2, π), Sol runs the extractor oE4

on both c1 and c2 obtaining outputs s′1 and s′2. If y1 = f(s′1), Sol outputs s′1. Otherwise,
Sol outputs s′2.

Theorem 8. If (ECom4,EOpen4) is C∨d4,S4
-hiding and (d3, S1)-over-extractable w.r.t. oE4, and NIWI

and f are CS∗-secure then puzz = (Gen,Validity,Ver,Sol) has the following properties,

1. Correctness: There exists a negligible function ν(·) such that for every n ∈ N and Y ∈
{0, 1}poly(n),

Pr
[
s′ ← Soln(Y ) : Validity(1n, Y ) = 1 ∧ Ver(1n, Y, s′) = 0

]
≤ ν(n) .

2. C∨d4,S4
-hardness: For every non-uniform circuit family A = {An}n∈N ∈ C∨d4,S4

, there exists a

negligible function ν(·) such that for every n ∈ N,

Pr
[
Y ← Gen(1n), s′ ← An(Y ) : Ver(1n, Y, s′) = 1

]
≤ ν(n) .

3. C∧d3,S1
-solvable: Sol belongs to the circuit class C∧d3,S1

.

Proof. We discuss all the properties in the following:

1. For any Y = (c1, c2, y1, y2, π) ∈ {0, 1}poly(n) if Validity(1n, Y ) = 1 then due to the soundness
of NIWI either c1 is a commitment to s1 and y1 = f(s1) or c2 is a commitment to s2 and
y2 = f(s2). Therefore, at least one of c1 or c2 is a valid commitment for ECom4. Since,
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Sol runs the extractor on both commitments c1 and c2, we can w.l.o.g. assume that c1

is a valid commitment to s1 and y1 = f(s1). Since, Sol runs the extractor oE4 on c1, it
extracts out the correct committed value s1 (except with negligible probability) due to the
over-extractability of ECom4. Moreover, Ver accepts the extracted value as the solution to Y ,
that is, Ver(1n, Y, s1) = 1. Hence, if Validity(1n, Y ) = 1, Sol outputs a solution except with
negligible probability.

2. Let us assume for contradiction that there exists a family of non-uniform circuits A =
{An}n∈N ∈ C∨d4,S4

and a polynomial p(·) such that for infinitely many n ∈ N, A solves honestly

generated puzzles with probability 1
p(n) ; that is,

Pr
[
Y ← Gen(1n), s′ ← An(Y ) : Ver(1n, Y, s′) = 1

]
≥ 1

p(n)
. (8)

By our construction of puzz, an honestly generated puzzle Y is the tuple (c1, c2, y1, y2, π)
where ci is a commitment to a random n-bit string si and yi = f(si) for i ∈ {1, 2}. The proof
π proves that c1 is a commitment to s1 and y1 = f(s1). Furthermore, by the definition of
Ver, Y has two solutions, namely s1 and s2. Therefore, we have,

Pr
[
Y ← Gen(1n), Y = (c1, c2, y1, y2, π), s′ ← An(Y ) : s′ ∈ {s1, s2}

]
≥ 1

p(n)
. (9)

Then, A outputs at least one of s1 or s2 with probability at least 1
2p(n) . W.l.o.g, we assume

that it outputs s1; that is,

Pr
[
Y ← Gen(1n), Y = (c1, c2, y1, y2, π), s′ ← An(Y ) : s′ = s1

]
≥ 1

2p(n)
. (10)

Using A, we construct a non-uniform circuit family B = {Bn}n∈N ∈ C∨d4,S4
that inverts the

OWP f with non-negligible probability 1
3p(n) . B on receiving the OWP challenge y1 = f(s1)

samples a random n-bit string s2. It then computes a commitment c1 to 0n and a commitment
c2 to s2 using ECom4. Furthermore, it assigns y2 = f(s2) and computes a NIWI proof to prove
that c2 is a commitment to s2 and y2 = f(s2) (i.e., statement (b) in Step 4 of Gen). It then
internally runs A with (c1, c2, y1, y2, π) and forwards the output of A as its output. For B to
be able to invert OWP with probability 1

3p(n) , A must output s1 with probability at least 1
3p(n)

on input Y . Note that the distribution of Y generated by B is different from the distribution
of puzzles generated by Gen(1n). Therefore, we need to show that A continues to do well on
this new distribution of Y .

We proceed to prove that A on input Y , sampled from the distribution due to B, outputs s1

with probability 1
3p(n) via a sequence of hybrid distributions of Y .

Hybrid H0 : This hybrid samples Y honestly by running Gen(1n). By Equation (10), the
probability that A on input Y outputs s1 is at least 1

2p(n) .

Hybrid H1 : This hybrid samples Y identically to Hybrid H0 except that the proof π in Y is
generated differently. Instead of generating π that proves c1 is a valid commitment to s1 and
y1 = f(s1), H1 generates π that proves c2 is a valid commitment to s2 and y2 = f(s2). The
only difference between hybrids H1 and H0 is the witness used to generate the proof π. Note
that any A ∈ C∨d4,S4

has size at most poly(S∗). Since, NIWI is CS∗-witness-indistinguishable,

the probability that A on input (c1, c2, y1, y2, π) outputs s1 is then at least 1
2p(n) − negl.
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Hybrid H2 : This hybrid samples Y identically to H1, except that c1 in Y is generated
differently. In H1, c1 is a commitment to s1 such that y1 = f(s1). In this hybrid, c1 is a
commitment to 0n but y1 = f(s1). The rest of the sampling in H2 is the same as that in H1,
that is, c2 is a commitment to s2, y2 = f(s2) and the proof π proves that c2 is a commitment
to s2 and y2 = f(s2). The only difference between H2 and H1 is the commitment c1 which
in H1 commits to s1 but in H2 commits to 0n. One can show that due to the C∨d4,S4

-hiding

of ECom4, the probability that A on input (c1, c2, y1, y2, π) outputs s1 is at least 1
2p(n) −negl.

Infact, note that the distribution of Y sent to A in H2 is identical to the distribution of Y
generated by B on input the OWP challenge y1. Therefore, A on input Y (generated by
B) outputs s1 with probability at least 1

2p(n) − negl ≥
1

3p(n) . Thus, B inverts OWP f with

probability 1
3p(n) , which is non-negligible.

Finally, note that B ∈ C∨d4,S4
, since A ∈ C∨d4,S4

and rest of the computation (generating Y )
takes poly(n) time. Since the maximum size of any such B is bounded by poly(S∗), B violates
the CS∗-security of OWP, which gives a contradiction.

3. Sol on input a valid puzzle Y = (c1, c2, y1, y2, π) runs the extractor oE4 on both c1 and c2.
Since oE4 ∈ C∧d3,S1

and rest of the computation done by Sol (checking the consistency of the
extracted values with OWP images) takes poly(n) time, we have Sol ∈ C∧d3,S1

.

6.2 Commitment Scheme 〈Ĉ, R̂〉

We now describe our transformation from a commitment scheme 〈C,R〉 that is one-one non-
malleable w.r.t. extraction to a commitment scheme 〈Ĉ, R̂〉 that is concurrent non-malleable w.r.t.
extraction and also w.r.t. commitment. Our transformation uses the puzz scheme constructed in
Section 6.1 and four commitment schemes {EComi,EOpeni}i∈{1,2,3,4} and ZAP as described at the
beginning of Section 6.

The committer Ĉ and the receiver R̂ receive the security parameter 1n and identity id ∈ {0, 1}t(n)

as common input. Furthermore, Ĉ gets a private input v ∈ {0, 1}n which is the value to be
committed.

- Commit stage - First round:

1. R̂ samples a puzzle Y ← Gen(1n).

2. R̂ samples the first message aZAP of ZAP.

3. R̂ generates the first message aNM of 〈C,R〉 using the honest receiver R with identity id.

4. R̂ sends (Y, aZAP, aNM) as the first round message to Ĉ.

- Commit stage - Second round:

1. Ĉ checks if the puzzle Y is valid and aborts if Validity(1n, Y ) = 0.

2. (a) Ĉ computes a commitment c1 to the value v using ECom1. Let d1 be the corre-
sponding decommitment string.

(b) Ĉ computes a commitment c3 to the decommitment (v, d1) of c1 using ECom3.

3. (a) Ĉ computes a commitment c2 to a random n-bit string r1 using ECom2.
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(b) Given aNM, Ĉ computes the second message bNM of 〈C,R〉 using the honest com-
mitter C with identity id to commit to a random string r2.

4. Given aZAP, Ĉ computes the second message bZAP of ZAP to prove the following OR-
statement:

(a) either there exists a string v̄ such that c1 is a commitment to v̄ and c3 commits to
a decommitment of c1.

(b) or there exists a string s̄ such that c2 is a commitment to s̄ and (aNM, bNM) commit
to a decommitment of c2 and Ver(1n, Y, s̄) = 1.

Ĉ proves the statement (a) by using the witness (v, d1).

5. Ĉ sends (c1, c2, c3, bNM, bZAP) as the second message to R̂ and keeps the decommitment
(v, d1) private.

- Reveal stage:

On receiving (v, d1) from Ĉ, R̂ accepts the decommitment if the ZAP proof is accepting and
if EOpen1(c1, v, d1) = 1. Otherwise, it rejects.

We refer to the entire transcript of the interaction as the commitment c. Moreover, we say
that an interaction (with transcript c) is accepting if the ZAP proof contained in the commitment
c is accepting. According to the reveal stage, the value of a commitment c, val(c) is the value
committed under c1 (contained in c) if c is accepting. Otherwise, val(c) is ⊥.

Next, we describe the extractor ôENM of the scheme below.

- Extraction - Extractor ôENM:

On receiving a commitment c and identity id, ôENM first verifies the ZAP proof and outputs
⊥ if the proof is not accepting. Otherwise, it runs the extractor oE1 on c1 and outputs the
extracted value v′.

Theorem 9. 〈Ĉ, R̂〉 is a 2-round, statistically binding, C∧d2,S4
-hiding, (dNM, SNM)-over-extractable

commitment scheme for identities of length t(n).

Proof. The statistical binding follows from the binding of (ECom1,EOpen1). The proof of hiding
will follow from the proof of Theorem 10, which we present later.

- Over-extractability: A valid commitment c to a value v, from the definition of reveal stage of

〈Ĉ, R̂〉, is such that the ZAP proof contained in c is accepting and c1 (contained in c) is a valid

commitment to v using ECom1. In this case, the extractor ôENM runs oE1 on c1, which by the
over-extractability of ECom1 w.r.t. oE1, outputs v with overwhelming probability. Thus, ôENM

extracts v with overwhelming probability. Moreover, ôENM belongs to the class C∧dNM,SNM
, since

oE1 ∈ C∧dNM,SNM
and the rest of computation by ôENM takes poly(n) time. Hence, the scheme

〈Ĉ, R̂〉 is (dNM, SNM)-over-extractable.

Next, we establish the non-malleability of the scheme 〈Ĉ, R̂〉.

Theorem 10. 〈Ĉ, R̂〉 is concurrent C∧d2,S4
-non-malleable w.r.t. extraction by ôENM.

Theorem 11. 〈Ĉ, R̂〉 is concurrent C∧d2,S4
-non-malleable (w.r.t. commitment).
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In order to prove concurrent non-malleability w.r.t. commitment, Lin, Pass and Venkitasub-
ramaniam [LPV08] showed that it is sufficient to prove non-malleability against adversaries par-
ticipating in one left interaction and many right interactions. We refer to such an adversary as a
one-many adversary. More precisely, they presented a reduction that, given an adversary A and
a distinguisher D that break concurrent non-malleability, builds a one-many adversary Ã and a
distinguisher D̃ that violate one-many non-malleability. Their reduction blows up the size and
the depth of the adversary Ã and the distinguisher D̃ (over A and D respectively) by a poly(n)
factor and thereby inccurs a polynomial loss in security. We claim that the same reduction ap-
plies to the new notion of non-malleability w.r.t. extraction, therefore establishing that one-many
non-malleability w.r.t. extraction implies concurrent non-malleability w.r.t. extraction. Moreover,
we consider non-malleability (w.r.t. commitment and extraction) against circuit classes C which
are closed under composition with P/poly, hence their reduction preserves security in terms of the
circuit class against which (concurrent and one-many) non-malleability is considered — a C-one-
many non-malleable commitment scheme is C-concurrent non-malleable. We omit a formal proof
here but for completeness state the extended version of their theorem below.

Theorem 12 (one-many to concurrent [LPV08]). Let 〈Ĉ, R̂〉 be a commitment scheme and C be a
class of circuits that is closed under composition with P/poly.

1. If 〈Ĉ, R̂〉 is C-one-many non-malleable then it is also C-concurrent non-malleable.

2. If 〈Ĉ, R̂〉 is C-one-many non-malleable w.r.t. extraction (by an extractor ôENM) then it is also

C-concurrent non-malleable w.r.t. extraction (by ôENM).

Proof of Theorem 10,11: Let us consider a fixed family of circuits A = {An}n∈N belonging to
the class C∧d2,S4

which participates in one-left interaction and m = poly(n) right interactions, and
any fixed sequences of values {v0}n∈N and {v1}n∈N. By Theorem 12, to show Theorems 10, 11,
it suffices to show the following: for any fixed A ∈ C∧d2,S4

participating in one-left interaction and
m = poly(n) many right interactions and any fixed sequences {v0}n∈N and {v1}n∈N, the following
computational indistinguishability holds,

a)
emimA

〈Ĉ,R̂〉(v0) ≈c emimA
〈Ĉ,R̂〉(v1) , (11)

where the random variable emimA
〈Ĉ,R̂〉(v) describes the view of A and values extracted from right

interactions by ôENM when the value committed in the left interaction is v.

b)
mimA

〈Ĉ,R̂〉(v0) ≈c mimA
〈Ĉ,R̂〉(v1) , (12)

where the random variable mimA
〈Ĉ,R̂〉(v) describes the view of A and values A commits to in the

right interactions when the value committed in the left interaction is v.

We prove the indistinguishability of the above pairs of random variables (Equations (11), (12))
via a sequence of hybrids {Hj(v)}j∈[6] for v ∈ {v0, v1}. Each hybrid Hj(v) runs a MIM execution
with A and commits to the value v in the left interaction. We will use the following notation
throughout our proof: By x̃i we denote a value associated with the ith right interaction. For
example, Ỹi is the puzzle sent by the honest receiver R̂ to A in the ith right interaction. For each
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hybrid Hj(v), we denote by emimA
Hj

(v), the random variable that describes the view of A and the

values {ṽ′i}i∈[m] extracted from commitments {c̃i}i∈[m], where c̃i is the commitment in the ith right

interaction. Similarly, we denote by mimA
Hj

(v), the random variable that describes the view of A
in Hj(v) and the values {ṽi}i∈[m] that A commits to in right interactions. Recall that, if for any

right interaction i, the identity ĩdi equals the left identity id then we set ṽ′i = ⊥ (resp., ṽi = ⊥).
Moreover, for notational convenience, we will say that a right interaction i is successful if it is
accepting and the identity ĩdi is different from the left interaction identity id.

For v ∈ {v0, v1} and each pair of neighbouring hybrids Hj and Hj+1, we show that the view of
A along with the values extracted from right interactions are indistinguishable. That is,

Lemma 2. For v ∈ {v0, v1} and j ∈ [5], the following are computationally indistinguishable,

emimA
Hj (v) ; emimA

Hj+1
(v) ,

and emimA
H0

(v) = emimA
〈Ĉ,R̂〉(v) and emimA

H5
(v) = emimA

H4
(v0).

Furthermore, we show that in each of the hybrids Hj(v) the view of A and the values extracted
from right interactions are statistically close to the view of A and the values A commits to in the
right interactions. That is,

Lemma 3. For v ∈ {v0, v1} and j ∈ [6], the following are statistically close,

emimA
Hj (v) ; mimA

Hj (v).

Therefore, if Lemma 2 holds for all adjacent hybrids and Lemma 3 holds for all hybrids Hj(v)
then it is clear that Equation (11),(12) hold.

Recall that, the honest committer Ĉ (while committing to a value v) computes a ZAP proof for
an OR-statement (see Step 4 of Ĉ in 〈Ĉ, R̂〉). For a commitment c generated by any committer,
to be accepting, the committer must prove at least one of statement (a) or (b) as described in
Step 4, with an appropriate witness w. Otherwise, with over-whelming probabiltity the ZAP proof
(aZAP, bZAP) will not verify and hence the commitment c will not be accepting.

We refer to a witness w = (v, d1) used to prove statement (a) — c3 commits to (v, d1) which
is a decommitment of c1 — as a honest witness. Note that, the honest committer Ĉ uses a honest
witness to compute the ZAP proof. Similarly, we refer to the the witness (s, d) used to prove the
statement (b) — (aNM, bNM) commit to (s, d) which is a decommitment of c2 to a solution s of the
puzzle Y — as a fake witness. We say that A (acting as a committer) commits to a fake witness
in a right interaction i, if the pair (s̃i, d̃i) committed by A under (ãNMi, b̃NMi) is a fake witness —
a decommitment of c̃2i to a solution s̃i of the puzzle Ỹi. Furthermore, for A to be able to use the
fake witness to compute the ZAP proof in an interaction, it must commit to it using 〈C,R〉.

No-fake-witness invariant. We show that in all hybrids Hj it is only with negligible probability
that A commits to a fake witness in any successful interaction. We refer to this condition as the
No-fake-witness invariant (defined below). We show that this invariant holds in all hybrids Hj(v)
for v ∈ {v0, v1}.

Invariant 1 (No-fake-witness invariant). For all right interactions i in hybrid Hj(v), the probability
that i is successful and A commits to a fake witness in the interaction, is negligible.
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Let us, for now, assume that Invariant 1 holds for v ∈ {v0, v1} and hybrid Hj(v). Furthermore,
let us consider the values ṽ′i (extracted) and ṽi (committed) described by random variables emim
and mim respectively, for some right interaction i. If the interaction i is not successful, that is, either
the ZAP proof (ãZAPi, b̃ZAPi) is not accepting or the identity ĩdi equals the left identity id, then we

know that ṽ′i = ṽi = ⊥. When the right interaction i is successful, ṽ′i is the value extracted by ôENM

from c̃i (commitment in the ith interaction). For a successful right interaction the ZAP proof is

accepting, then by the construction of ôENM we know that ṽ′i is the value extracted by oE1 from c̃1i.
Since we assumed that Invariant 1 holds, A does not commit to a fake witness in this (successful)
interaction. Then, by the soundness of ZAP, A must have used the honest witness to compute the
accepting ZAP proof (ãZAPi, b̃ZAPi). That is, A must have proved that c̃1i is a valid commitment

for ECom1. By the over-extractability of ECom1 w.r.t. oE1, ôENM extracts val(c̃i) from c̃i, except
with negligible probability. That is, both ṽ′i and ṽi are identical except with negligible probability.
Therefore, if Invariant 1 holds for v ∈ {v0, v1} then the extracted values ṽ′i are identical to the
committed values ṽi. Hence, emimA

Hj
(v) is identical to mimA

Hj
(v), except with negligible probability

(i.e., Lemma 3 holds).
However, instead of proving about A committing to a fake witness, we prove that the value

(s̃′i, d̃
′
i) extracted from (ãNMi, b̃NMi) is not a fake witness. That is, for a right interaction i the

probability that it is successful and the extracted value (s̃′i, d̃
′
i) satisfies the following, is negligible.

Ver(1n, Ỹi, s̃i
′) = 1 ∧ EOpen2(c̃2i, s̃i

′, d̃i
′
) .

This is captured in the following,

Invariant 2. For all right interactions i in hybrid Hj(v), the probability that i is successful and
the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.

We would like to argue that if Invariant 2 holds in Hj(v) then so does Invariant 1. Let us
assume for contradiction that Invariant 2 holds and Invariant 1 fails to hold. Then, there exists a
right interaction k for which the probability that it is successful and the value committed under
(ãNMk, b̃NMk) is a fake witness is 1/p(n), for some polynomial p(n). By the over-extractability
of 〈C,R〉 w.r.t. extractor oENM, the value extracted from (ãNMk, b̃NMk) is identical to the value
committed, except with negligible probability. Therefore, for this right interaction k, the probability
that it is successful and the value extracted from (ãNMi, b̃NMi) is a fake witness is at least 1

2p(n) ,
which is non-negligible. This contradicts that Invariant 2 holds.

By the above observation we can infer that Invariant 2 implies Lemma 3. This implication is
captured in the following,

Lemma 4. For v ∈ {v0, v1} and j ∈ [6], if for every right interaction i in hybrid Hj(v), the
probability that interaction i is successful and the value extracted from ( ˜aNMi, ˜bNMi) is a fake witness,
is negligible, then the following are statistically close,

emimA
Hj (v) ; mimA

Hj (v) .

Finally, we claim that to conclude the proofs of Theorem 10 and Theorem 11, it is sufficient to
prove that Lemma 2 holds for all adjacent hybrids and Invariant 2 holds for all hyrbids. Next, we
describe our hybrids {Hj(v)}j∈[6] and show that Lemma 2 and Invariant 2 indeed hold.

Hybrid H0(v) : HybridH0(v) emulates an honest MIM execution with A by honestly committing
the value v on the left and simulating honest receivers on the right. Therefore,

emimA
H0

(v) = emimA
〈Ĉ,R̂〉(v) .
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Next, we show that Invariant 2 holds in H0(v).

Claim 1. For v ∈ {v0, v1} and for every right interaction i in H0(v), the probability that i is
successful and the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.

Proof. To show that Claim 1 holds, it suffices to show that for every right interaction i, the
probability that it is successful and the value s̃′i extracted from c̃2i (the commitment using ECom2) is
a solution to the puzzle Ỹi, is negligible. This is because for the value extracted from (ãNMk, b̃NMk) to
be a fake witness in a successful interaction i, it must hold that c̃2i is committing to a solution to the
puzzle Ỹi. Therefore, if the value extracted from c̃2i is not a solution then the value committed under
c̃2i is not a solution, except with negligible probability. This is because of the over-extractability
of (ECom2,EOpen2) which guarantees that the value committed under c̃2i is identical to the value
extracted from it, except with negligible probability.

Now, assume for contradicton that there exists v ∈ {v0, v1}, a polynomial p and a right in-
teraction k such that k is successful and the value s̃′k, extracted from c̃2k, is a solution of the
puzzle Ỹk with probability at least 1/p(n). Then, using A, we construct a non-uniform circuit
B = {Bn}n∈N ∈ C∨d4,S4

that inverts honestly generated puzzles with probability at least 1/p(n).
More concretely, B with v and k hard-wired in it, on receiving an honestly generated puzzle Y ∗,
emulates H0(v) for A except for the kth right interaction. In the kth right interaction, B honestly
computes the first message ãNMk of 〈C,R〉 and the first message ãZAPk of ZAP (as in H0(v)) and
sends the tuple (Ỹk = Y ∗, ãZAPk, ãNMk) as its first round message to A. On receiving the second
round message from A in the kth interaction, B runs the extractor oE2 on c̃2k to extract the value
s̃′k and returns it as its output (irrespective of whether k is successful or not). Note that B perfectly
emulates H0(v) for A as the distribution of the puzzle received by B is identical to the distribution
of the puzzle sent by the honest receiver R̂ of 〈Ĉ, R̂〉. Then by our hypothesis, s̃′k is the solution of
the puzzle Ỹk = Y ∗ with probability at least 1/p(n).

Furthermore, we argue that B belongs to the circuit class C∨d4,S4
: B internally runs A and

oE2, and the rest of computation performed by B for emulating H0(v) takes poly(n) time. Since
oE2 ∈ C∧d4,S3

and A ∈ C∧d2,S4
we have,

dep(B) = dep(A) + dep(oE2) + poly(n)

≤ poly(d2) + poly(d4)

< poly(d4) (since, d4 >> d2 from Equation (7))

and size(B) < poly(S∗). Therefore, B belongs to the class Cd4 which contradicts the C∨d4,S4
-hardness

of puzz.

Hybrid H1(v) : Hybrid H1(v) proceeds identically to H0(v) except that the ECom2 commitment
c2 sent to A in the left interaction is generated differently. In H0(v), c2 is a commitment to
a random string r1 whereas in H1(v) c2 is a commitment to a solution s to the puzzle Y .
More precisely, H1(v) first runs Sol(Y ) to obtain a solution s and then commits to s using
ECom2. By Theorem 8, we know that Sol succeeds in computing a solution for a valid Y with
over-whelming probability. The rest of the execution is simulated identically to H0(v). We
note that only difference between hybrids H0(v) and H1(v) is the commitment c2 which in
H0(v) commits to a random string r1 and in H1(v) commits to a solution s of the puzzle Y .

First, we show that Invariant 2 holds in H1(v).

Claim 2. For v ∈ {v0, v1} and for every right interaction i in H1(v), the probability that i is
successful and the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.
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Proof. Let us assume for contradiction that there exists v ∈ {v0, v1}, a polynomial p and a right
interaction k such that k is successful and the value (s̃′k, d̃

′
k), extracted from (ãNMk, b̃NMk), is a

fake witness with probability at least 1/p(n). Then, using A we construct a non-uniform circuit
B ∈ C∨d2,S2

that violates the hiding of (ECom2,EOpen2) with advantage at least 1/2p(n).
The circuit B with v and k hard-wired in it, participates in the hiding game of (ECom2,EOpen2)

and internally emulates an execution of H1(v) with A as follows: 10

- Step 1: On receiving the first message (Y, aZAP, aNM) from A, B obtains a solution s to the
puzzle Y by running Sol.

- Step 2: It samples a random string r1, and in the hiding game of (ECom2,EOpen2) it sends
r1 and s as challenges and receives a commitment c∗ to either r1 or s.

- Step 3: B generates the second message of the left interaction identically to H1(v) except that
it embeds c∗ as the ECom2 commitment in the message. That is, B computes (c1, c3, bNM)
as in H1(v) (and H0(v)) and then computes the second message of ZAP (bZAP) by setting
c2 = c∗. It then sends (c1, c2, c3, bNM, bZAP) as second round message in the left interaction
to A.

- Step 4: Once, B receives the second round message in the kth right interaction, if the interac-
tion is not successful then B outputs a random bit. Otherwise, it runs the extractor oENM on
(ãNMk, b̃NMk) and outputs 1 iff the extracted value (s̃′k, d̃

′
k) is a fake witness (i.e., B outputs

1 iff s̃′k is a solution of the puzzle Ỹk and EOpen2(c̃2k, s̃
′
k, d̃
′
k) = 1).

It is easy to see that if B receives a commitment to the random string r1, then it perfectly
emulates H0(v) for A and if it receives a commitment to the solution s of the puzzle Y then it
perfectly emulates H1(v) for A. By Claim 1, in the former case, the extracted value is a fake
witness with only negligible probability. Therefore, B outputs 1 with negligible probability. In the
latter case, by our assumption that k is successful and the value extracted is a fake witness with
probability 1/p(n); B outputs 1 with probability at least 1/p(n). Therefore, B has advantage at
least 1/2p(n) in violating the hiding of (ECom2,EOpen2).

Moreover, we show that B ∈ C∨d2,S2
: B internally runs A ∈ C∧d2,S4

, Sol ∈ C∧d3,S1
, oENM ∈ C∧d′NM,S2

,

and the rest of the computation done by B takes poly(n) time. Thus, we have,

dep(B) ≤ size(B) = size(A) + +size(Sol) + size(oENM) + poly(n)

≤ poly(S4) + poly(S1) + poly(S2)

< poly(S2) (since, S2 >> S1, S4 from Equation (7))

Therefore, B belongs to the circuit class CS2 (resp., B ∈ C∨d2,S2
) which contradicts the C∨d2,S2

-hiding
of (ECom2,EOpen2). Hence, the claim holds.

Claim 3. For v ∈ {v0, v1}, the following are indistinguishable,

emimA
H0

(v); emimA
H1

(v) .

Proof. Let us assume for contradiction that there exists v ∈ {v0, v1}, a distinguisher D ∈ P/poly
and a polynomial p such that D distinguishes emimA

H0
(v) from emimA

H1
(v) with probability 1

p(n) .

Then using A and D, we construct a non-uniform circuit B ∈ C∨d2,S2
that violates the hiding of

10For right interactions, B sends the first-round message by running the honest receiver R̂.
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(ECom2,EOpen2) with non-negligible advantage 1
p(n) . B is similar in spirit to the circuit described

in the proof of Claim 2.
B with v and k hard-wired in it, participates in the hiding game of ECom2 and internally

emulates an execution of H1(v) with A as follows:

- Steps 1,2 and 3 are identical to the hiding circuit described in Claim 2.

- Step 4: After A terminates, for every successful right interaction i, B runs the extractor oE1

on c̃1i to obtain values ṽ′i. For every unsuccessful right interaction i, B sets ṽ′i = ⊥.

- Step 5: B then runs D with the view of A and the values {ṽi′}i∈[m] as inputs, and returns
the output of D as its output.

It is easy to see that if B receives a commitment to the random string r1, then it perfectly
emulates H0(v) for A and if it receives a commitment to the solution s of the puzzle Y then it
perfectly emulates H1(v) for A. Moreover, for every successful interaction i, B sets ṽ′i to the value
extracted by oE1 from c̃1i and for every unsuccessful interaction, it sets ṽ′i = ⊥. Therefore, the
input to D (by B) is identical to emimA

H0
(v) in the former case and it is identical to emimA

H1
(v) in

the latter case. Since D distinguishes the distributions with probability 1/p(n), B wins the hiding
game with advantage at least 1/p(n).

Next, we argue that B ∈ C∨d2,S2
: Apart from running A and Sol, B runs oE1 on at most

m = poly(n) commitments c̃1i, and the rest of the computation takes polynomial time (includes
running D). Since, A ∈ C∧d2,S4

, Sol ∈ C∧d3,S1
and oE1 ∈ C∧dNM,SNM

, we have,

dep(B) ≤ size(B) = size(A) + size(Sol) +m · size(oE1) + poly(n)

≤ poly(S4) + poly(S1) + poly(n) · poly(SNM)

< poly(S2) (since, S2 >> S4, SNM, S1 from Equation (7))

Therefore, B belongs to the circuit class CS2 (resp., B ∈ C∨d2,S2
) which contradicts the C∨d2,S2

-
hiding of (ECom2,EOpen2). Hence, the claim holds.

Hybrid H2(v) : Hybrid H2(v) proceeds identically to H1(v) except that the second message
bNM of 〈C,R〉 sent to A in the left interaction is generated differently. In H1(v), bNM is
such that (aNM, bNM) commits to a random string r2 whereas in H2(v) bNM is such that
(aNM, bNM) commit to a decommitment of c2 to a solution to the puzzle Y . More precisely,
H2(v) generates a commitment c2 to the solution s (obtained by running Sol(Y )). Let d
be the corresponding decommitment string. Then, given aNM, H2(v) computes the second
message bNM to commit to (s, d). The rest of the execution is simulated identically to H1(v).
We note that only difference between hybrids H1(v) and H2(v) is the second message bNM

which is such that in H1(v) (aNM, bNM) commits to a random string r2 whereas in H2(v)
(aNM, bNM) commits to (s, d).

First, we show that Invariant 2 holds in H2(v).

Claim 4. For v ∈ {v0, v1} and for every right interaction i in H2(v), the probability that i is
successful and the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.

Proof. Let us assume for contradiction that there exists v ∈ {v0, v1}, a polynomial p and a right
interaction k such that k is successful and the value (s̃′k, d̃

′
k), extracted from (ãNMk, b̃NMk), is a

fake witness with probability at least 1/p(n). Then, using A we construct a non-uniform circuit
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ANM ∈ C∧dNM,SNM
, that participates in one left interaction with C and one right interaction with R,

and a distinguisher DNM that violate the one-one non-malleability of 〈C,R〉 with advantage at least
1/2p(n). We detail the circuits ANM and DNM below.

The circuit ANM with v and k hard-wired in it, participates in one left interaction with C and
one right interaction with R and internally emulates an execution of H2(v) with A as follows:

- Step 1: ANM waits for A to select identities for the left interaction with C and the kth right
interaction with R. Let id and ĩdk be the respective identities.

- Step 2: ANM selects identity idl = id for its left interaction and identity idr = ĩdk for its right
interaction r. On receiving the first-round message aNMr from R, ANM samples a puzzle Ỹk
and the first message of ZAP, ãZAPk. It sends the tuple (Ỹk, ãNMk = aNMr, ãZAPk) as the
first-round message to A in the kth right interaction.

- Step 3: On receiving the first message (Y, aZAP, aNM) from A, ANM obtains a solution s to
the puzzle Y by running Sol.

- Step 4: ANM computes commitments (c1, c2, c3) honestly (as in H2(v)). Let d be the decom-
mitment string of the commitment c2, which commits to the solution s.

- Step 5: ANM samples a random string r2 and sends aNMl = aNM as the first message to C
along with the values r2 and (s, d) as challenges and receives the second message bNMl such
that (aNMl, bNMl) either commit to r2 or (s, d).

- Step 6: ANM computes the second message of ZAP (bZAP) by setting bNM = bNMl. Then, it
sends (c1, c2, c3, bNM, bZAP) as the second round message to A in the left interaction.

- Step 7: On receiving the second message (c̃1k, c̃2k, c̃3k, b̃NMk, b̃ZAPk) from A in the kth right
interaction, B forwards bNMr = b̃NMk as the second message to R.

The distinguisherDNM with input the view ofANM and the value v′r, extracted from (aNMr, bNMr)
by oENM, runs as follows:

- DNM reconstructs the entire transcript of the kth right interaction of ANM with A from the
view.

- If the ZAP proof (ãZAPk, b̃ZAPk) in the kth interaction is not accepting then DNM outputs a
random bit.

- Otherwise, DNM outputs 1 iff the extracted value v′r is such that it is a decommitment of c̃2k
to a solution of the puzzle Ỹk.

It is easy to see that if ANM receives bNMl such that (aNMl, bNMl) commit to a random string r2
then it perfectly emulates H1(v) for A and if bNMl is such that (aNMl, bNMl) commit to (s, d) then
it perfectly emulates H2(v) for A. By Claim 2, in the former case, the extracted value v′r is a fake
witness with only negligible probability. Therefore, DNM outputs 1 with negligible probability. In
the latter case, by our assumption that k is successful and the value extracted is a fake witness
with probability 1/p(n); DNM outputs 1 with probability at least 1/p(n). Therefore, DNM has
advantage at least 1/2p(n) in distinguishing the two cases. Therefore, ANM and DNM break the
one-one non-malleability w.r.t. extraction of 〈C,R〉.

Moreover, we argue that ANM ∈ C∧dNM,SNM
and DNM ∈ P/poly: Firstly, it is easy to see that

DNM ∈ P/poly as all the computation done by DNM only takes polynomial time. Next, for ANM:
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ANM internally runs A ∈ C∧d2,S4
, Sol ∈ C∧d3,S1

, and the rest of the computation done by ANM takes
poly(n) time. Therefore, the depth dep(ANM) and size size(ANM) of ANM satisfies the following,

dep(ANM) = dep(A) + dep(Sol) + poly(n)

≤ poly(d2) + poly(d3)

< poly(dNM) (since, dNM >> d2, d3 from Equation (7))

size(ANM) = size(A) + size(Sol) + poly(n)

≤ poly(S4) + poly(S1)

< poly(SNM) (since, SNM >> S4, S1 from Equation (7))

(13)

Therefore, ANM belongs to the circuit class C∧dNM,SNM
which contradicts the C∧dNM,SNM

-one-one
non-malleability w.r.t. extraction of 〈C,R〉. Hence, the claim holds.

Remark 6. Note that in the above reduction to one-one non-malleability w.r.t. extraction, we allow
ANM to send the challenge values r2 and (s, d) along with the first message aNM. The committer
C is expected to commit to either r2 or (s, d). Note that the challenges r2 and (s, d) could depend
on the right interaction whereas for the notions of non-malleability used in this work, the value
committed on the left is independent of the right interaction and fixed before the MIM execution
begins. Therefore, the adversary ANM is stronger than the ones considered in the non-malleability
definitions making the above reduction void. However, this issue can be fixed by one of the following,

1. Defining non-malleability w.r.t. adversaries that can adaptively sample the challenge values
analogous to choosing the identities. We note that all the commitment schemes defined in
this work actually satisfy this stronger notion of non-malleability.

2. Adopting the approach taken by [COSV16] where instead of committing to the preimage s of
the OWP challenge Y under the non-malleable commitment scheme, their protocol commits
to a random share s0 of the solution using the non-malleable commitment scheme and sends
the other share s1 in the clear to the receiver. This allows the challenge messages to be fixed
before the execution. Note that a similar approach can be adopted in our case. However, for
ease of explanation we avoid the fix in our protocol.

Claim 5. For v ∈ {v0, v1}, the following are indistinguishable,

emimA
H1

(v); emimA
H2

(v) .

Proof. Let us assume for contradiction that there exists v ∈ {v0, v1}, a distinguisher D ∈ P/poly
and a polynomial p such that D distinguishes emimA

H1
(v) from emimA

H2
(v) with probability 1

p(n) .

Then using A and D, we construct a non-uniform circuit B ∈ C∧dNM,SNM
that violates the hiding of

〈C,R〉 with non-negligible advantage 1
p(n) . B is similar in spirit to the circuit ANM described in the

proof of Claim 4.
B with v and k hard-wired in it, participates in the hiding game of 〈C,R〉 and internally

emulates an execution of H2(v) with A as follows:

- Step 1: On receiving the first message (Y, aZAP, aNM) from A, B obtains a solution s to the
puzzle Y by running Sol.
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- Step 2: B computes commitments (c1, c2, c3) honestly (as in H2(v)). Let d be the decommit-
ment string of the commitment c2, which commits to the solution s.

- Step 3: B samples a random string r2 and sends aNM as the first message to C along with the
values r2 and (s, d) as challenges and receives the second message bNM such that (aNM, bNM)
either commit to r2 or (s, d).

- Step 4: ANM computes the ZAP proof and sends (c1, c2, c3, bNM, bZAP) as the second round
message to A in the left interaction.

- Step 5: After A terminates, for every successful right interaction i, B runs the extractor oE1

on c̃1i to extract values ṽ′i. For every unsuccessful right interaction i, B sets ṽ′i = ⊥.

- Step 6: B then runs D with the view of A and the values {ṽi′}i∈[m] as inputs, and returns
the output of D as its output.

It is easy to see that if second message bNM received by B is such that (aNM, bNM) commit to
a random string r2, then B is perfectly emulating H1(v) for A and if bNM is such that (aNM, bNM)
commits to (s, d), then it perfectly emulating H2(v) for A. Moreover, for every successful interaction
i, B sets ṽ′i to the value extracted by oE1 from c̃1i and for every unsuccessful interaction B sets
ṽ′i = ⊥. Therefore, the input to D (by B) is identical to emimA

H1
(v) in the former case and it is

identical to emimA
H2

(v) in the latter case. Since D distinguishes the distributions with probability
1/p(n), B wins the hiding game with advantage at least 1/p(n).

Next, we argue that B ∈ C∧dNM,SNM
: Apart from running A and Sol, B runs oE1 on at most

m = poly(n) commitments c̃1i, and the rest of the computation takes polynomial time (including
running D). Since, A ∈ C∧d2,S4

, Sol ∈ C∧d3,S1
and oE1 ∈ C∧dNM,SNM

, the depth dep(ANM) and size
size(ANM) of ANM satisfies the following,

dep(ANM) = dep(A) + dep(Sol) +m · size(oE1) + poly(n)

≤ poly(d2) + poly(d3) + poly(n) · poly(dNM)

< poly(dNM) (since, dNM >> d2, d3 from Equation (7))

size(ANM) = size(A) + size(Sol) +m · size(oE1) + poly(n)

≤ poly(S4) + poly(S1) + poly(n) · poly(SNM)

< poly(SNM) (since, SNM >> S4, S1 from Equation (7))

(14)

Therefore, B belongs to the circuit class C∧dNM,SNM
which contradicts the C∧dNM,SNM

-hiding of 〈C,R〉.
Hence, the claim holds.

Hybrid H3(v) : Hybrid H3(v) proceeds identically to H2(v) except that the second message bZAP
of ZAP sent to A in the left interaction is generated differently. In H2(v), bZAP is computed
using the witness (v, d1) which is the decommitment of the commitment c1 whereas in H3(v)
bZAP is computed using the witness (s, d) which is the decommitment of c2 to a solution of
the puzzle Y . More precisely, H3(v) computes (c1, c2, c3, bNM) identical to H2(v). Using the
witness (s, d) and the first message aNM, B runs the ZAP prover to computes the second
message bZAP where (s, d) is the decommitment of c2 to a solution s of the puzzle Y . The
rest of the execution is simulated identically to H2(v). We note that only difference between
hybrids H2(v) and H3(v) is the second message bZAP, or more precisely the witness used to
compute the second message bZAP. In H2(v), the witness used is (v, d1) whereas in H3(v) the
witness used is (s, d).
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First, we show that Invariant 2 holds in H3(v).

Claim 6. For v ∈ {v0, v1} and for every right interaction i in H3(v), the probability that i is
successful and the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.

Proof. Let us assume for contradiction that there exists v ∈ {v0, v1}, a polynomial p and a right
interaction k such that k is successful and the value (s̃′k, d̃

′
k), extracted from (ãNMk, b̃NMk), is a fake

witness with probability at least 1/p(n). Then, using A we construct a non-uniform circuit B ∈ CS∗
that violates the CS∗-WI of ZAP with advantage at least 1/2p(n).

The circuit B with v and k hard-wired in it, participates in the WI game of ZAP and internally
emulates an execution of H3(v) with A as follows:

- Step 1: On receiving the first message (Y, aZAP, aNM) from A, B obtains a solution s to the
puzzle Y by running Sol.

- Step 2: B computes commitments (c1, c2, c3, bNM) (as in H3(v)). Let d1 be the decommitment
string of the commitment c1, which commits to the value v, and d be the decommitment string
of the commitment c2, which commits to the solution s.

- Step 3: B sends aZAP as the first message in the WI game of ZAP with the statement
x = (Y, c1, c2, c3, aNM, bNM) and witnesses w0 = (v, d1) and w1 = (s, d). B receives the second
message bZAP of ZAP that is either computed by using the witness w0 or w1.

- Step 4: B sends (c1, c2, c3, bNM, bZAP) as the second message in the left interaction to A.

- Step 5: Once, B receives the second round message in the kth right interaction, if the interac-
tion is not successful then B outputs a random bit. Otherwise, it runs the extractor oENM on
(ãNMk, b̃NMk) and outputs 1 iff the extracted value (s̃′k, d̃

′
k) is a fake witness (i.e., B outputs

1 iff s̃′k is a solution of the puzzle Ỹk and EOpen2(c̃2k, s̃
′
k, d̃
′
k) = 1).

It is easy to see that if the second message bZAP of ZAP is computed using the witness w0 =
(v, d1) then B perfectly emulates H2(v) for A and if the second message bZAP of ZAP is computed
using the witness w1 = (s, d) then B perfectly emulates H3(v) for A. By Claim 4, in the former
case, the extracted value is a fake witness with only negligible probability. Therefore, B outputs 1
with negligible probability. In the latter case, by our assumption that k is successful and the value
extracted is a fake witness with probability 1/p(n); B outputs 1 with probability at least 1/p(n).
Therefore, B has advantage at least 1/2p(n) in violating the WI of ZAP.

Moreover, we show that B ∈ CS∗ : B internally runs A ∈ C∧d2,S4
, Sol ∈ C∧d3,S1

, oENM ∈ C∧d′NM,S2
,

and the rest of the computation done by B takes poly(n) time. Thus, we have,

size(B) = size(A) + +size(Sol) + size(oENM) + poly(n)

≤ poly(S4) + poly(S1) + poly(S2)

< poly(S∗) (since, S∗ >> S2, S1, S4 from Equation (7))

Therefore, B belongs to the circuit class CS∗ which contradicts the CS∗-witness-indistinguishability
of ZAP. Hence, the claim holds.

Claim 7. For v ∈ {v0, v1}, the following are indistinguishable,

emimA
H2

(v); emimA
H3

(v) .
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Proof. Let us assume for contradiction that there exists v ∈ {v0, v1}, a distinguisher D ∈ P/poly
and a polynomial p such that D distinguishes emimA

H2
(v) from emimA

H3
(v) with probability 1

p(n) .
Then using A and D, we construct a non-uniform circuit B ∈ CS∗ that violates the CS∗-WI of
ZAP with advantage at least 1/p(n). B is similar in spirit to the circuit described in the proof of
Claim 6.

B with v and k hard-wired in it, participates in the WI game of ZAP and internally emulates
an execution of H3(v) with A as follows:

- Steps 1,2,3 and 4 are identical to the circuit described in Claim 6.

- Step 5: After A terminates, for every successful right interaction i, B runs the extractor oE1

on c̃1i to extract values ṽ′i. For every unsuccessful right interaction i, B sets ṽ′i = ⊥.

- Step 6: B then runs D with the view of A and the values {ṽi′}i∈[m] as inputs, and returns
the output of D as its output.

It is easy to see that if the second message bZAP of ZAP is computed using the witness w0 =
(v, d1) then B perfectly emulates H2(v) for A and if the second message bZAP of ZAP is computed
using the witness w1 = (s, d) then B perfectly emulates H3(v) for A. Moreover, for every successful
interaction i, B sets ṽ′i to the value extracted by oE1 from c̃1i and for every unsuccessful interaction,
it sets ṽ′i = ⊥. Therefore, the input to D (by B) is identical to emimA

H2
(v) in the former case and it

is identical to emimA
H3

(v) in the latter case. Since D distinguishes the distributions with probability
1/p(n), B wins the hiding game with advantage at least 1/p(n).

Next, we argue that B ∈ CS∗ : Apart from running A and Sol, B runs oE1 on at most m = poly(n)
commitments c̃1i, and the rest of the computation takes polynomial time (includes running D).
Since, A ∈ C∧d2,S4

, Sol ∈ C∧d3,S1
and oE1 ∈ C∧dNM,SNM

, we have,

size(B) = size(A) + size(Sol) +m · size(oE1) + poly(n)

≤ poly(S4) + poly(S1) + poly(n) · poly(SNM)

< poly(S∗) (since, S∗ >> S2, S4, SNM, S1 from Equation (7))

Therefore, B belongs to the circuit class CS∗ which contradicts the CS∗-WI of ZAP. Hence, the
claim holds.

Hybrid H4(v) : Hybrid H4(v) proceeds identically to H3(v) except that the ECom3 commitment
c3 sent to A in the left interaction is generated differently. In H3(v) c3 is committing to the
decommitment (v, d1) of c1 whereas in H4(v) c3 is committing to the decommitment (v0, d0)
of c1∗. More precisely, H4(v) computes (c1, c2, bNM) identical to H3(v). Furthermore, it
computes another ECom1 commitment c1∗ which commits to v0. Let d0 be the corresponding
decommitment string. Then, H4(v) computes the ECom3 commitment c3 to commit to the
decommitment (v0, d0) of c1∗. The rest of the execution is simulated identically to H3(v).
We note that only difference between hybrids H3(v) and H4(v) is the ECom3 commitment
c3 which in H3(v) commits to the decommitment of c1 (to the value v) whereas in H4(v) c3
commits to a decommitment of c1∗ (to the value v0).

First, we show that Invariant 2 holds in H4(v).

Claim 8. For v ∈ {v0, v1} and for every right interaction i in H4(v), the probability that i is
successful and the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.
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Proof. Let us assume for contradiction that there exists v ∈ {v0, v1}, a polynomial p and a right
interaction k such that k is successful and the value (s̃′k, d̃

′
k), extracted from (ãNMk, b̃NMk), is a

fake witness with probability at least 1/p(n). Then, using A we construct a non-uniform circuit
B ∈ C∨d3,S3

that violates the hiding of (ECom3,EOpen3) with advantage at least 1/2p(n).
The circuit B with v and k hard-wired in it, participates in the hiding game of (ECom3,EOpen3)

and internally emulates an execution of H4(v) with A as follows:

- Step 1: On receiving the first message (Y, aZAP, aNM) from A, B obtains a solution s to the
puzzle Y by running Sol.

- Step 2: It computes (c1, c2, bNM) as in H4(v). Let d1 be the decommitment string of the
commitment c1.

- Step 3: It computes a commitment c1∗ to the (fixed) value v0 using ECom3. Let d0 be the
corresponding decommitment string.

- Step 4: In the hiding game of (ECom3,EOpen3), B sends (v, d1) and (v0, d0) as challenges
and receives a commitment c∗ to either (v, d1) or (v0, d0).

- Step 5: B generates the second message of ZAP (bZAP) by setting c3 = c∗. It then sends
(c1, c2, c3, bNM, bZAP) as second round message in the left interaction to A.

- Step 6: Once, B receives the second round message in the kth right interaction, if the interac-
tion is not successful then B outputs a random bit. Otherwise, it runs the extractor oENM on
(ãNMk, b̃NMk) and outputs 1 iff the extracted value (s̃′k, d̃

′
k) is a fake witness (i.e., B outputs

1 iff s̃′k is a solution of the puzzle Ỹk and EOpen2(c̃2k, s̃
′
k, d̃
′
k) = 1).

It is easy to see that if B receives a commitment to (v, d1), then it perfectly emulates H3(v) for
A and if it receives a commitment to (v0, d0) then it perfectly emulates H4(v) for A. By Claim 6,
in the former case, the extracted value is a fake witness with only negligible probability. Therefore,
B outputs 1 with negligible probability. In the latter case, by our assumption that k is successful
and the value extracted is a fake witness with probability 1/p(n); B outputs 1 with probability at
least 1/p(n). Therefore, B has advantage at least 1/2p(n) in violating the hiding of ECom3.

Next, we argue that B ∈ C∨d3,S3
: B internally runs A ∈ C∧d2,S4

, Sol ∈ C∧d3,S1
, oENM ∈ C∧d′NM,S2

, and

the rest of the computation done by B takes poly(n) time. Thus, we have,

size(B) = size(A) + size(Sol) + size(oENM) + poly(n)

≤ poly(S4) + poly(S1) + poly(S2)

< poly(S3) (since, S3 >> S2, S1, S4 from Equation (7))

Therefore, B belongs to the circuit class CS3 (resp., B ∈ C∨d3,S3
) which contradicts the C∨d3,S3

-hiding
of (ECom3,EOpen3). Hence, the claim holds.

Claim 9. For v ∈ {v0, v1}, the following are indistinguishable,

emimA
H3

(v); emimA
H4

(v) .

Proof. Let us assume for contradiction that there exists v ∈ {v0, v1}, a distinguisher D ∈ P/poly
and a polynomial p such that D distinguishes emimA

H3
(v) from emimA

H4
(v) with probability 1

p(n) .

Then using A and D, we construct a non-uniform circuit B ∈ C∨d3,S3
that violates the hiding of
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(ECom3,EOpen3) with non-negligible advantage 1
p(n) . B is similar in spirit to the circuit described

in the proof of Claim 8.
B with v and k hard-wired in it, participates in the hiding game of (ECom3,EOpen3) and

internally emulates an execution of H4(v) with A as follows:

- Steps 1-5 are identical to the hiding circuit described in Claim 8.

- Step 6: After A terminates, for every successful right interaction i, B runs the extractor oE1

on c̃1i to extract values ṽ′i. For every unsuccessful right interaction i, B sets ṽ′i = ⊥.

- Step 7: B then runs D with the view of A and the values {ṽi′}i∈[m] as inputs, and returns
the output of D as its output.

It is easy to see that if B receives a commitment to (v, d1), then it perfectly emulates H3(v)
for A and if it receives a commitment to (v0, d0) then it perfectly emulates H4(v) for A. Moreover,
B for every successful interaction i, sets ṽ′i to the value extracted by oE1 from c̃1i and for every
unsuccessful interaction, it sets ṽ′i = ⊥. Therefore, the input to D (by B) is identical to emimA

H3
(v)

in the former case and it is identical to emimA
H4

(v) in the latter case. Since D distinguishes the
distributions with probability 1/p(n), B wins the hiding game with advantage at least 1/p(n).

Next, we argue that B ∈ C∨d3,S3
: Apart from running A and Sol, B runs oE1 on at most

m = poly(n) commitments c̃1i, and the rest of the computation takes polynomial time (includes
running D). Since, A ∈ C∧d2,S4

, Sol ∈ C∧d3,S1
and oE1 ∈ C∧dNM,SNM

, we have,

size(B) = size(A) + size(Sol) +m · size(oE1) + poly(n)

≤ poly(S4) + poly(S1) + poly(n) · poly(SNM)

< poly(S3) (since, S3 >> S4, SNM, S1 from Equation (7))

Therefore, B belongs to the circuit class CS3 (resp., B ∈ C∨d3,S3
) which contradicts the C∨d3,S3

-
hiding of (ECom3,EOpen3). Hence, the claim holds.

Hybrid H5(v) : Hybrid H5(v) proceeds identically to H4(v) except that the ECom1 commitment
c1 sent to A in the left interaction is generated differently. In H4(v), c1 is committing to the
value v whereas in H5(v) c1 is committing to the value (fixed) v0 instead. The rest of the
execution is simulated identically to H4(v). We note that only difference between hybrids
H4(v) and H5(v) is the ECom1 commitment c1 which in H4(v) commits to v but in H5(v) c1
commits to v0.

First, we show that Invariant 2 holds in H5(v).

Claim 10. For v ∈ {v0, v1} and for every right interaction i in H5(v), the probability that i is
successful and the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.

Proof. We claim that H5(v) is identical to H4(v0). Then by Claim 8, Claim 10 holds.

Claim 11. For v ∈ {v0, v1}, the following are indistinguishable,

emimA
H4

(v); emimA
H5

(v) .
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Proof. Let us assume for contradiction that there exists v ∈ {v0, v1}, a distinguisher D ∈ P/poly
and a polynomial p such that D distinguishes emimA

H4
(v) from emimA

H5
(v) with probability 1

p(n) .

Then using A and D, we construct a non-uniform circuit B ∈ C∨d1,S1
that violates the hiding of

(ECom1,EOpen1) with non-negligible advantage 1
2p(n) .

The circuitB with v, v0 and k hard-wired in it, participates in the hiding game of (ECom1,EOpen1)
and internally emulates an execution of H5(v) with A as follows:

- Step 1: On receiving the first message (Y, aZAP, aNM) from A, B sends v and v0 as challenges
in the hiding game of (ECom1,EOpen1) and receives a commitment c∗ to either v or v0.

- Step 2: B generates the second message of the left interaction identically to H5(v) except that
it embeds c∗ as the ECom1 commitment in the message. That is, B computes (c2, c3, bNM) as
in H5(v) and then computes the second message of ZAP (bZAP) by setting c1 = c∗. It then
sends (c1, c2, c3, bNM, bZAP) as second round message in the left interaction to A.

- Step 3: After A terminates, for every successful right interaction i, B runs the extractor oE3

on c̃3i to extract values (ṽ′i, d̃1
′
i). For every unsuccessful right interaction i, B sets ṽ′i = ⊥.

- Step 4: B then runs D with the view of A and the values {ṽi′}i∈[m] as inputs, and returns
the output of D as its output.

It is easy to see that if B receives a commitment to v, then it perfectly emulates H4(v) for A
and if it receives a commitment to v0 then it perfectly emulates H5(v) for A. We claim that the
input to D (by B) is identical to emimA

H4
(v) in the former case and it is identical to emimA

H5
(v)

in the latter case, except with negligible probability. Since D distinguishes the distributions with
probability 1/p(n), B wins the hiding game with advantage at least 1/2p(n).

Next, we argue that B ∈ C∨d1,S1
: Apart from running A and Sol, B runs oE3 on at most

m = poly(n) commitments c̃3i, and the rest of the computation takes polynomial time (includes
running D). Since, A ∈ C∧d2,S4

, Sol ∈ C∧d3,S1
and oE3 ∈ C∧d1,S′3 ,

dep(B) = dep(A) + dep(Sol) +m · dep(oE3) + poly(n)

≤ poly(d2) + poly(d3) + poly(n) · poly(d1)

< poly(d1) (since, d1 >> d3, d2 from Equation (7))

Furthermore, size(B) < poly(S∗). Therefore, B belongs to the circuit class Cd1 (resp., B ∈ C∨d1,S1
)

which contradicts the C∨d1,S1
-hiding of (ECom1,EOpen1).

The only thing remaining to show to conclude the proof is that the input to D is identical to
emimA

H4
(v) (resp., emimA

H5
(v)) even though B passes the values extracted by running oE3 on c̃3i

as input to D, instead of running oE1 on c̃1i. Moreover, it is sufficient to only consider successful
interactions.

For every successful right interaction i, B runs oE3 on c̃3i to obtain (ṽ′i, d̃1
′
i). We claim that the

value ṽ′i is identical to the value extracted by oE1 from c̃1i, except with negligible probability. Since
i is successful, by Claim 10 we know that with over-whelming probability A does not commit to a
fake witness in i. Then by the soundness of ZAP, A must have proved that the commitments c̃1i
and c̃3i are valid and c̃3i commits to a decommitment of c̃1i. Therefore, by the over-extractability

of (ECom3,EOpen3) the value (ṽ′i, d̃1
′
i) extracted from c̃3i is identical to val(c̃3i) with over-whelming

probability, where val(c̃3i) is a decommitment of c̃1i — (ṽi, d̃1i). Next, due to the over-extractability
of ECom1, the value extracted by oE1 from c̃1i is identical to val(c̃1i) = ṽi. Therefore, the value ṽi
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obtained by B is identical to the value that oE1 extracts from c̃1i. This is now sufficient to conclude
that the input to D is identical to emimA

H4
(v) (resp., emimA

H5
(v)) when B receives a commitment

to v (resp., v0), except with negligible probability. Hence the claim holds.

This concludes the proof of Theorem 10 and Theorem 11.

6.3 Amplifying Length of Identities

Given a tag-based commitment scheme 〈Ĉ, R̂〉 for t(n)-bit identities which is concurrent non-
malleable w.r.t. commitment, Dolev, Dwork and Naor [DDN00] construct a tag-based commitment
scheme 〈C̃, R̃〉 for identities of length significantly larger than t(n)-bits (i.e., 2t(n)−1-bits). In their
work [DDN00], they show that their transformation results in a commitment scheme that can ac-
comodate significantly larger lengths of identities but degrades concurrent non-malleability w.r.t.
commitment to stand-alone non-malleability w.r.t. commitment. Furthermore, their reduction also
inccurs a polynomial loss.

The commitment schemes considered in this work are non-malleable w.r.t. extraction and we
claim that their transformation can be used to amplifying the length of identities at the cost
of degrading concurrent non-malleability w.r.t. extraction to standalone non-malleability w.r.t.
extraction. That is, we show that if 〈Ĉ, R̂〉 is concurrent non-malleable w.r.t. extraction then
commitment scheme 〈C̃, R̃〉 is standalone non-malleable w.r.t. extraction. The description of the
protocol from [DDN00] is given below. We refer to the protocol as the “log-n” trick for brevity.

The committer C̃ and receiver R̃ receive the security parameter 1n and identity id ∈ {0, 1}t′(n)

as common input where t′(n) = 2t(n)−1. Furthermore, C̃ gets a private input v ∈ {0, 1}n which is
the value to be committed.

- Commit stage:

1. To commit to a value v ∈ {0, 1}n, C̃ chooses t′ random shares r0, r1, . . . , rt′−1 ∈ {0, 1}n
such that v = r0 ⊕ r1 ⊕ . . .⊕ rt′−1.

2. For each 0 ≤ i ≤ t′ − 1, C̃ and R̃ run 〈Ĉ, R̂〉 to commit to ri (in parallel) using identity
(i, id[i]) where id[i] is the ith bit of id. Let di be the corresponding decommitment string.

Let ci be the transcript of 〈Ĉ, R̂〉 committing to ri with identity (i, idi). Then we denote by
c = {ci}i∈[t′] the entire transcript of the interaction.

- Reveal stage:

On receiving the decommitment (v, {ri}i, {di}), R̃ verifies that

1. For each i ∈ [t′], ci is a commitment to ri using 〈Ĉ, R̂〉.
2. v = r0 ⊕ r1 ⊕ . . .⊕ rt′−1.

R̃ accepts the decommitment iff the above conditions hold.

Furthermore, let us assume that 〈Ĉ, R̂〉 is over-extractable w.r.t. extractor ôENM then we con-

struct an extractor õENM for 〈C̃, R̃〉 as follows,

- Extraction - Algorithm õENM:

On receiving id ∈ {0, 1}t′ and commitment c = {ci}i∈[t′], õENM runs ôENM on each ci obtaining
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output r′i. If any of the r′i is ⊥ then õENM outputs a ⊥. Otherwise, it outputs v′ = r′0 ⊕ r′1 ⊕
. . .⊕ r′l−1 as the extracted value.

Theorem 13 (Log-n trick [DDN00]). Let 〈Ĉ, R̂〉 be a commitment scheme and C be a class of
circuits that is closed under composition with P/poly.

1. If 〈Ĉ, R̂〉 is a tag based statistically binding commitment scheme for t(n)-bit identities then
〈C̃, R̃〉 is a tag based statistically binding commitment scheme for identities of length 2t(n)−1

bits.

2. If 〈Ĉ, R̂〉 is concurrent C-non-malleable w.r.t. commitment then 〈C̃, R̃〉 is one-one C-non-
malleable w.r.t. commitment.

3. If 〈Ĉ, R̂〉 is (d, S)-over-extractable by ôENM then 〈C̃, R̃〉 is (d, S)-over-extractable by õENM.

Furthermore, if 〈Ĉ, R̂〉 is concurrent C-non-malleable w.r.t. extraction by ôENM then 〈C̃, R̃〉
is standalone C-non-malleable w.r.t. extraction by õENM.

Proof. We prove each of the above in the following:

- Statistically binding and tag lengths: The statistical binding of 〈C̃, R̃〉 follows from the sta-
tistical binding of 〈Ĉ, R̂〉. Furthermore, 〈C̃, R̃〉 as defined above accomodates identities of
length t′ = 2t(n)−1-bits.

- Non-malleability w.r.t. commitment: The proof follows from the proof presented in [DDN00].

- Over-extractability: A valid commitment c = {ci}i∈[t′] is such that every ci is a valid commit-

ment for 〈Ĉ, R̂〉. Due to the over-extractability of 〈Ĉ, R̂〉 w.r.t. ôENM, for every i ∈ [t′], the

extractor õENM extracts the correct value r′i except with negligible probability ν(n). There-

fore, õENM extracts the correct value from c except with probability at most t′ · ν(n). Since,

t′ ≤ n, õENM fails with negligible probability. Moreover, õENM runs ôENM on t′ ≤ n commit-
ments and rest of the computation takes poly(n) time. Therefore, if ôENM ∈ C∧d,S then so does

õENM. Therefore, 〈C̃, R̃〉 is (d, S)-over-extractable w.r.t. õENM.

- Non-malleability w.r.t. extraction: The proof follows from the proof presented in [DDN00].

7 Concurrent Non-malleable Commitment Scheme for Identities
of Length n

In this section, we describe the construction of a concurrent non-malleable commitment scheme
that can accomodate n-bit identities. The idea is to start with a basic commitment scheme with
some non-malleability properties and then apply the log-n trick from Section 6.3 and the strength-
ening technique described in Section 6.2 repeatedly. More precisely, we will start with the basic
commitment scheme (ENMCom,ENMOpen) from Section 5 which is one-one non-malleable (w.r.t.
extraction) for identities of length t(n) < n and then apply the strengthening technique to construct
〈C0, R0〉, a commitment scheme which is instead concurrent non-malleable albeit accomodating only
t(n)-bit identities.
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Since, 〈C0, R0〉 is concurrent non-malleable (w.r.t. extraction and commitment), we can apply
the log-n trick to increase the length of identities to 2t(n)−1-bits while degrading concurrent non-
malleability to stand-alone non-malleability. The concurrent non-malleability can then be restored
by applying the strengthening technique. 11 We refer to applying the log-n trick and the strength-
ening technique successively as an iteration which is represented by the index j. Let 〈Cj−1, Rj−1〉
be the commitment scheme obtained at the end of j − 1 iterations starting with 〈C0, R0〉. In
the jth iteration, the log-n trick is applied to 〈Cj−1, Rj−1〉 resulting in the commitment scheme

〈 ˜Cj−1, ˜Rj−1〉 to which the strengthening technique is applied to construct 〈Cj , Rj〉. Let complexj(n)
be the computational complexity of 〈Cj , Rj〉 and idj(n) be the maximum length of identities that
〈Cj , Rj〉 can accomodate. Then, id0(n) = t(n) and complex0(n) = poly(n).

Number of iterations to reach n-bit identites: Due to the log-n trick, the identities in
successive iterations satisfy,

idj(n) = 2id
j−1(n)−1 . (15)

Lin and Pass (see Section 5 in [LP09]) showed that starting with t(n)-bit identities, one needs
to apply the log-n trick r(n) = O(log∗ n− log∗ t(n)) times to reach n-bit identities. More precisely,
they show that for r(n) as defined above, idr(n)(n) ≥ log n+1. Then, assuming that 〈Cr(n), Rr(n)〉 is
a commitment scheme on (log n+ 1)-bit identities, performing another iteration with 〈Cr(n), Rr(n)〉
will give us the commitment scheme 〈Cr(n)+1, Rr(n)+1〉 for n-bit identities.

Efficiency of 〈Cr(n)+1, Rr(n)+1〉: Similar to [LP09], we want to start with a commitment scheme
〈C0, R0〉 on O(1)-bit identities, that is, t(n) = O(1). This implies that we will need super-constant
iterations — O(log∗ n). This is always a concern w.r.t. the efficiency of the commitment scheme
obtained at the end of super-constant iterations. However, if the complexity function complexj(n)
in successive iterations were to satisfy the following,

complexj+1(n) = O(idj+1(n) · complexj(n)) + poly(n) , (16)

then by the same analysis as in [LP09], we can conclude that complexr(n)(n) is upper-bounded
by some polynomial poly(n). That is, 〈Cr(n), Rr(n)〉 is efficient and so the commitment scheme
〈Cr(n)+1, Rr(n)+1〉 for n-bit identities is also efficient.

For now, let us assume that complexj(n) satisfies Equation (16). We will revisit the efficiency
of 〈Cr(n), Rr(n)〉 later. Next, we describe the hierarchy of functions di and Sk that we will use in
our iterations.

Number of functions in the hierarchy: Consider the strengthening technique described in
Section 6.2. It upgrades the one-one non-malleability (w.r.t. extraction) of the commitment scheme
〈C,R〉 to concurrent non-malleability w.r.t. extraction and commitment. The technique relies on
the security of other primitives (e.g., (EComi,EOpeni)) to achieve concurrent non-malleability.
The security of these primitives is defined by a hierarchy of non-decreasing functions as shown in
Equation (7) (recalled below).

d2 << d4 << d3 << d1 << dNM << d′NM <<

S4 << S1 << SNM << S2 << S3 << S′3 .

11Note that the strengthening technique can be applied because the scheme obtained from applying the log-n trick
to 〈C0, R0〉 is one-one non-malleable w.r.t. extraction.

47



More precisely, given that 〈C,R〉 is C∧dNM,SNM
one-one non-malleable (w.r.t. extraction) and

(d′NM, S2)-over-extractable, the technique considers functions d1, d2, d3, d4, S1, S4, S3 and S′3
as above. Then, considering appropriate primitives with their security based on above described
functions, the strengthening technique produces the commitment scheme 〈Ĉ, R̂〉 which is concurrent
non-malleable (w.r.t extraction and commitment) but only against circuits in the class C∧d2,S4

.
Therefore, the strengthening technique uses four auxiliary functions corresponding to depths (d1,
d2, d3 and d4) and four corresponding to sizes (S1, S4, S3 and S′3) to upgrade to concurrent
non-malleability. Note that while applying the log-n trick, no such auxiliary functions are used.
Therefore, in an iteration, we end up using four auxiliary functions each for depths and sizes.

Infact, a careful observation enables us to fix the functions S2, S3 and S′3 through all the
iterations. This implies that for the strengthening technique we need four auxiliary functions
correpsonding to depths and four auxiliary functions corresponding to size for the first application
of the strengthening technique. For successive iterations, we only need two size functions in addition
to four depth functions.

As mentioned before, 〈C0, R0〉 only accomodates O(1)-bit identities, that is t(n) = O(1). Then,
let r = r(n)+1 be the number of times we have to apply the transformation to the scheme 〈C0, R0〉
accomodating O(1)-bit identities to construct 〈Cr, Rr〉 that accomodates n-bit identities. Next, we
define a O(r) hierarchy of depth and size functions and clearly define the functions used in each
iteration j, where r is the number of iterations to be applied to reach n-bit identities.

7.1 Instantiations

Consider the following hierarchy of functions,

n << d1 << d2 << . . . << d4r << d4r+1 << . . . << d4r+13

<< S1 << S2 << . . . << S2r << S2r+1 << . . . << S2r+13 << S2r+14 = S∗ .
(17)

such that for each i ∈ {1, . . . , 4r + 12} and k ∈ {1, . . . , 2r + 12},

- there exists a depth-robust commitment scheme (EComdi ,EOpendi) that is Cdi-hiding and
(di+1, di+1)-over-extractable.

- there exists a size-robust commitment scheme (EComSk ,EOpenSk) that is CSk -hiding and
(poly(n), Sk+1)-over-extractable.

We next describe the functions in the hierarchy that are used to instantiate the basic commit-
ment schemes (ENMCom,ENMOpen) and 〈C0, R0〉. Then, we describe the functions used in all
iterations j ∈ {1, . . . , r}.

Instantiating (ENMCom,ENMOpen) for 3-bit identities: The scheme (ENMCom,ENMOpen)
from Section 5 is constructed to accomodate log l-bit identities from a family of 2l+2 non-decreasing
functions d̄0, . . . , d̄l, S̄0, . . . , S̄l. We set l = 8 and therefore (ENMCom,ENMOpen) accomodates 3-bit
identities. We set the functions d̄0, . . . , d̄8, S̄0, . . . , S̄8 as,

d̄0 = d4r+5, . . . , d̄8 = d4r+13 ,

S̄0 = S2r+3, . . . , S̄8 = S2r+11 .
(18)

Therefore, (ENMCom,ENMOpen) is non-malleable against circuits of depth at most poly(d̄0) =
poly(d4r+5) and size at most poly(S̄0) = poly(S2r+3). Furthermore, it is (d4r+13, S2r+11)-over-
extractable.
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Constructing 〈C0, R0〉: Given (ENMCom,ENMOpen) which is one-one non-malleable against
circuits of size at most poly(d0

NM) and size at most poly(S0
NM), we apply the strengthening technique

to construct the commitment scheme 〈C0, R0〉. Recall that (ENMCom,ENMOpen) is (d′0NM, S
0
2)-over-

extractable where,

d0
NM = d4r+5 , S

0
NM = S2r+3 , d

′0
NM = d4r+13 , S

0
2 = S2r+11 . (19)

The auxiliary functions used by the strengthening technique are as follows,

d0
2 = d4r+1, d

0
4 = d4r+2, d

0
3 = d4r+3, d

0
1 = d4r+4,

S0
4 = S2r+1, S

0
1 = S2r+2, S

0
3 = S2r+12, S

′0
3 = S2r+13 ,

(20)

where the superscript 0 is to denote the functions used in the strengthening technique applied to
(ENMCom,ENMOpen). More generally, we will use superscript j to denote the functions used in the
jth iteration. Therefore, 〈C0, R0〉 is non-malleable against circuits with depth at most poly(d4r+1)
and size at most poly(S2r+1). Furthermore, it is (d4r+13, S2r+11)-over-extractable. 12

Functions used in the jth iteration: Given 〈Cj−1, Rj−1〉 which is non-malleable against
circuits of depth at most poly(d4(r−(j−1))+1) and size at most poly(S2(r−(j−1))+1) and which is
(d4r+13, S2r+11)-over-extractable, that is,

djNM = d4(r−(j−1))+1 , S
j
NM = S2(r−(j−1))+1 , d

′j
NM = d4r+13 , S

j
2 = S2r+11 . (21)

To construct 〈Cj , Rj〉 we set the depths and sizes functions used in the strengthening technique as
follows,

dj2 = d4(r−j)+1, d
j
4 = d4(r−j)+2, d

j
3 = d4(r−j)+3, d

j
1 = d4(r−j)+4,

Sj4 = S2(r−j)+1, S
j
1 = S2(r−j)+2, S

j
3 = S2r+12, S

′j
3 = S2r+13 .

(22)

The resulting scheme 〈Cj , Rj〉 is concurrent non-malleable against circuits of depth at most poly(dj2) =

poly(d4(r−j)+1) and size at most poly(Sj4) = poly(S2(r−j)+1) and is (d4r+13, S2r+11)-over-extractable.
Finally, it is easy to see that at the end of r iterations, the resulting commitment scheme

〈Cr, Rr〉 accomodates n-bit identities and is concurrent non-malleable w.r.t. commitment against
circuits of depth at most poly(d1) and size at most poly(S1). Since S1 >> d1 >> n, we have that
〈Cr, Rr〉 is non-malleable against all ciruits in P/poly.

Description of functions di and Sk: We derive the functions di and Sk. Let us assume that for
some 0 < δ, ε < 1, there exists a (poly(2t

δ
), 2n

ε
)-TL puzzle where the hardness holds for difficulty

parameters t > c log n for some sufficiently large constant c. Furthermore, we assume the existence
of poly(2n

δ
)-secure OWPs. Let imax = 4r + 13 and kmax = 2r + 14 be the number of depths and

size levels required (see Equation 17) for r = O(log∗ n) iterations. Furthermore, let t1(n) be the
smallest function for which the hardness of TL holds and

2t
δ
1 >> n . (23)

An example of such a function is t1(n) = (log n)
2
δ . Based on the above defined difficulty parameter

function t1, we define a sequence of depths {di} and size {Sk} functions.

12Note that 〈C0, R0〉 is actually (d4r+5, S2r+3)-over-extractable which implies that it is also (d4r+13, S2r+11)-over-
extractable.
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Depth Functions di: For i ∈ {1, . . . , imax}, we set the ith depth function in the hierarchy di as,

di = 2(ti)
δ
, (24)

where ti is the difficulty parameter of the puzzles sampled by EComdi and is given by,

ti = (t1)(
1
δ )
i−1

. (25)

Therefore, it is easy to see that depths di as defined in Equation (7.1) satisfy the following,

di >> di−1 ; d1 = 2t1
δ
>> n .

Therefore for the hierarchy of depth functions defined above, for every i, there exists (EComdi ,EOpendi)
which is Cdi-hiding and (di+1, di+1)-over-extractable.

Size Functions Sk: We set the first size function S1 as follows,

S1 = dimax+1 >> dimax . (26)

For every k ∈ {1, . . . , kmax}, we require that there exist a size-robust commitment scheme which
is CSk -hiding and (poly(n), Sk+1)-over-extractable. Using the concrete construction of size-robust
commitment schemes described in Section 4.2, we set the security parameter of the OWP as,

nk = (logSk)
1
δ , (27)

to achieve hiding against poly(Sk)-sized circuits. Therefore, the security parameter n1 corresponding
to S1 satisfies,

n1 = (logS1)
1
δ = t1

( 1
δ )
imax

. (28)

Once we have set n1, we describe all the security parameters nk’s and thereby describe the
functions Sk’s. We set nk as follows,

nk = (n1)( 1
δ

)k−1
= t1

( 1
δ )
imax+k−1

. (29)

Then it is easy to see that {Sk} satisfies the following,

Sk+1 >> Sk ;Sk+1 ≥ 2nk . (30)

Finally, we require that nkmax is still upper-bounded by some polynomial. We show the existence
of a polynomial upper-bounding nkmax below.

nkmax = t1
( 1
δ )
imax+kmax−1

.

Since, both imax, kmax ∈ O(log∗ n),

nkmax = t1
( 1
δ )
O(log∗ n)

.

Moreover, t1 = (log n)
2
δ and the exponent belongs to O(log log n). Therefore,

nkmax = (log n)O(log logn) = poly(n) .

Therefore, assuming the existence of (2t
δ
, 2n

ε
)-TL puzzles and poly(2n

δ
)-secure OWPs, we have

defined a hierarchy of non-decreasing functions as required in Equation (17).
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7.2 Efficiency Revisited

We had mentioned above that if the computational complexity complexj+1(n) of the scheme 〈Cj+1, Rj+1〉
obtained from 〈Cj , Rj〉 satisfies Equation (16) then the complexity of the commitment scheme ob-
tained at the end of super-constant (i.e., O(log∗ n)) iterations is upper bounded by a polynomial.
However, our transformation (log-n trick + strengthening technique) in its current form does not

satisfy Equation (16). More precisely, let ˜complexj(n) denote the complexity of the 〈C̃j , R̃j〉 ob-
tained by applying the log-n trick to 〈Cj , Rj〉. Then it is easy to see that,

˜complexj(n) = poly(n) + idj+1(n) · complexj(n) . (31)

After applying our strengthening technique to 〈C̃j , R̃j〉, the resulting complexity complexj+1(n) is
such that,

complexj+1(n) = poly(n) + ˜complexj(n) + poly( ˜complexj(n))

= poly(n) + idj+1(n) · complexj(n) + poly(complexj(n)) ,
(32)

since idj+1(n) ≤ n and complexj(n) ≥ n. For complexj+1(n) as defined above and r = O(log∗ n), it
is infeasible to find a polynomial poly(n) such that the complexity of the scheme 〈Cr, Rr〉 is upper-
bounded by poly(n), that is, complexr(n) < poly(n). The blow up in the complexity from polynomial
(i.e., complex0(n) = poly(n)) to super-polynomial is due to the term poly(complexj(n)) in the ex-
pression of complexj+1(n) which corresponds to the complexity of computing the ZAP proof in our
strengthening technique. Recall that the ZAP proof proves the following OR-statement — (a) either
c1 and c3 are valid and c3 commits to a decommitment of c1 (b) or c2 and (aNM, bNM) are valid and
(aNM, bNM) commits to a decommitment of c2 to a solution of the puzzle Y , where the commitment

(aNM, bNM) is generated using 〈C̃j , R̃j〉. Since, the reveal phase (checking the validity) of 〈C̃j , R̃j〉
runs in time at most ˜complexj(n), the corresponding ZAP statement has length O( ˜complexj(n)),
thereby contributing the term poly(complexj(n)) in the expression for complexj+1(n). The poly-
nomial dependence of complexj+1(n) on complexj(n) can be reduced by designing a more efficient

validity check for 〈C̃j , R̃j〉 allowing ZAP to then run only in poly(n) time.
We note that the commitment schemes generated by our strengthening technique (and then by

the log-n trick) are such that the reveal stage of 〈Cj , Rj〉 can be decomposed into two functions:
PrivOpenj and PubOpenj such that the PubOpenj runs independent of the private decommitment
information while PrivOpenj depends on the decommitment information but is very efficient. Us-
ing these two functions, one can then modify the strengthening technique to run the PubOpen
function at the end of the commit stage and ask ZAP to prove that PrivOpen accepts the commit-
ment (aNM, bNM). Then ZAP’s complexity depends on the running time of PrivOpen and not on
complexj(n). Furthermore, we show for all iterations j, there exists a universal polynomial t∗(n)
that upper-bounds the running time of PrivOpen. The complexity function complexj+1(n) then
satisfies,

complexj+1(n) = poly(n) + idj+1(n) · complexj(n) + poly(t∗(n)) ,

implying that complexr(n) = poly(n) for some polynomial poly(n).
Next, we build some notation, describe modifications to the log-n trick and our strengthening

technique and show the existence of the universal polynomial t∗(n).

Open-decomposability of a commitment scheme: Let 〈C,R〉 be a commitment scheme
where C and R interact in the Commit phase to generate a commitment c. Then in the reveal
phase C sends private inputs (v, d) as decommitment to R which R accepts iff Open(c, v, d) = 1.
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Consider two functions PubOpen and PrivOpen: PubOpen(c) is a function which takes as input
a commitment c and returns 1/0. PubOpen executes independently of the private inputs (v, d),
hence the name PubOpen. PrivOpen(c∗, v, d) is a function which takes as input a small section c∗

of the commitment c along with private inputs (v, d) and returns 1/0.

Definition 18 (t-open-decomposability). We say that a commitment scheme 〈C,R〉 is t-open-
decomposable w.r.t. (PubOpen,PrivOpen) if the following hold:

1. PubOpen is polynomial time computable.

2. PrivOpen is computable in time t.

3. For all c = c′||c∗, v and d,

Open(c, v, d) = 1 ⇐⇒ PubOpen(c) = 1 ∧ PrivOpen(c∗, v, d) = 1 , (33)

where Open is the function executed by R in the reveal phase to accept/reject a commitment.

Note that any commitment scheme 〈C,R〉 with open function Open is t-open-decomposable for
a sufficiently large t with PubOpen being the function that always returns 1 and PrivOpen being
the function Open.

Using the open-decomposability notation, we next discuss the modifications to be made to the
log-n trick and the strengthening technique. We consider the commitment scheme 〈Cj , Rj〉 and
assume that it is tj(n)-open-decomposable. We consider applying the log-n trick and strengthening
technique to 〈Cj , Rj〉 and transform it to the commitment scheme 〈Cj+1, Rj+1〉.

We modify the log-n trick as below and show that the resulting scheme is also open-decomposable.

Modifications to log-n trick described in Section 6.3: Let 〈Cj , Rj〉 be concurrent non-
malleable (w.r.t. commitment and extraction) for idj(n)-bit identities. Let it be tj(n)-open-
decomposable w.r.t. (PubOpenj ,PrivOpenj). The log-n trick results in a commitment scheme

〈C̃j , R̃j〉 which is one-one non-malleable (w.r.t. commitment and extraction) for identities of

length idj+1(n) = 2id
j(n)−1. We show that 〈C̃j , R̃j〉 is idj+1(n) · tj(n)-open-decomposable w.r.t.

( ˜PubOpenj , ˜PrivOpenj) described below.

- Commit stage:

The commit stage is same as earlier but at the end R̃j executes ˜PubOpenj which runs idj+1(n)
independent instances of PubOpenj and aborts if one of the instances of PubOpenj returns 0.

- Reveal stage: In the reveal stage, R̃j executes ˜PrivOpenj which runs idj+1(n) instances of

PrivOpenj and rejects iff one of the instances of PrivOpenj returns 0.

Note that the running time of ˜PrivOpenj is at most idj+1(n) · tj(n). Therefore, due to the open-

decomposability of 〈Cj , Rj〉 it follows that 〈C̃j , R̃j〉 is idj+1(n) · tj(n)-open-decomposable w.r.t.

( ˜PubOpenj , ˜PrivOpenj).

Next, we modify the strengthening technique to be applied to 〈C̃j , R̃j〉 and show that the
resulting scheme 〈Cj+1, Rj+1〉 is also open-decomposable.
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Modifications to the strengthening technique described in Section 6.2: Let 〈C̃j , R̃j〉 be
the one-one non-malleable commitment scheme as above. The strengthening technique transforms
〈C̃j , R̃j〉 to a commitment scheme 〈Cj+1, Rj+1〉 which is concurrent non-malleable. Furthermore,
we show that 〈Cj+1, Rj+1〉 is open-decomposable w.r.t. (PubOpenj+1,PrivOpenj+1).

- Commit stage - First round is the same as before.

- Commit stage - Second round: Steps 1-3 and 5 are same as before.

4. Given aZAP, Cj+1 computes the second message bZAP of ZAP to prove the following
OR-statement:

(a) either there exists a string v̄ such that c1 is a commitment to v̄ and c3 commits to
a decommitment of c1.

(b) or there exists a string s̄ such that c2 is a commitment to s̄ and ˜PrivOpenj accepts
(aNM, bNM) as a commitment to a decommitment of c2 and Ver(1n, Y, s̄) = 1.

Cj+1 proves the statement (a) by using the witness (v, d1).

- Commit stage - Function PubOpenj+1:

Rj+1 aborts iff the ZAP proof is not accepting or ˜PubOpenj((aNM, bNM)) = 0.

- Reveal stage - Function PrivOpenj+1:

On receiving (v, d1) from Ĉ, R̂ accepts the decommitment if EOpen1(c1, v, d1) = 1. Otherwise
it rejects.

Let the t(n) be the upper-bound on the running time of ECom1 for security parameter n. Then,
PrivOpenj+1 is a t(n)-time computable function. Hence, 〈Cj+1, Rj+1〉 is t(n)-open-decomposable
w.r.t. (PubOpenj+1,PrivOpenj+1), that is tj+1(n) = t(n). Infact it is easy to see that for all itera-
tions j ∈ {1, . . . , r}, PrivOpenj verifies the validity of a commitment generated using (ECom1,EOpen1)
with security parameter n. Therefore, tj(n) = t(n) for j ∈ {1, . . . , r}.

Claim 12. For j ∈ {1, . . . , r}, the commitment scheme 〈Cj , Rj〉 is t(n)-open-decomposable w.r.t.
(PubOpenj ,PrivOpenj) where t(n) is the upper-bound on the running time of EOpen1 for security
parameter n.

Furthermore, let ˜complexj(n) be the computational complexity of 〈C̃j , R̃j〉 and let PrivOpenj

be tj(n)-time computable. Then, the computational complexities complexj+1(n) and complexj(n)
satisfies the following,

˜complexj(n) = poly(n) + idj+1(n) · complexj(n) ,

˜complexj+1(n) = poly(n) + idj+1(n) · complexj(n) + poly(idj+1(n) · tj(n)) .
(34)

We claim that there exists a polynomial t∗(n) which upper-bounds the running time of all
˜PrivOpenj for j ∈ {0, . . . , r − 1} where ˜PrivOpenj is the private open function for the commitment

scheme 〈C̃j , R̃j〉. This would then imply that the complexity function complexj+1(n) satisfies,

complexj+1(n) = poly(n) + idj+1(n) · complexj(n) + poly(t∗(n)) , (35)

which is the desired expression for complexj+1(n).
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Claim 13. There exists a universal polynomial t∗(n) such that for every j ∈ {0, . . . , r}, 〈C̃j , R̃j〉
is t∗(n)-open-decomposable w.r.t. ( ˜PubOpenj , ˜PrivOpenj).

Proof. Let us consider the commitment scheme 〈C0, R0〉 which has computational complexity
complex0(n) = poly(n). Furthermore, let Open0 be the corresponding open function. As observed
earlier, any commitment scheme is t-open-decomposable for a sufficiently large t, we conclude that
〈C0, R0〉 is complex0(n)-open-decomposable where the PubOpen0 function always returns 1 and the
PrivOpen0 function is the function Open0. Furthermore, we let t∗(n) = n · max(complex0(n), t(n))
where t(n) is the upper-bound on the running time of EOpen1 with security parameter n.

Base Case - ˜PrivOpen0: The commitment scheme 〈C̃0, R̃0〉 is the result of applying the modified

log-n trick to 〈C0, R0〉. We note that 〈C̃0, R̃0〉 is open-decomposable w.r.t. ( ˜PubOpen0, ˜PrivOpen0)

which are described above in the log-n trick. Furthermore, the running time of ˜PrivOpen0 is id1(n)
times the running time of PrivOpen0. Since id1(n) ≤ n and running time of PrivOpen0 is at most

complex0(n), we have that n · complex0(n) ≤ t∗(n) upper-bounds the running time of ˜PrivOpen0.
The claim is true in the base case.

General Case - ˜PrivOpenj for j ∈ {1, . . . , r}: For any j, consider the commitment scheme 〈Cj , Rj〉.
Furthermore, it is tj(n)-open-decomposable w.r.t. (PubOpenj ,PrivOpenj). From Claim 12 we know
that tj(n) = t(n).

On applying the modified log-n trick to 〈Cj , Rj〉 we obtain a commitment scheme 〈C̃j , R̃j〉 which

is open-decomposable w.r.t. ( ˜PubOpenj , ˜PrivOpenj). Furthermore, the running time of ˜PrivOpenj

is bounded by idj+1(n) times the running time of ˜PrivOpenj . Since idj+1(n) ≤ n and running
time of PrivOpenj is at most t(n), we have that n · t(n) ≤ t∗(n) upper-bounds the running time of

˜PrivOpenj .

Therefore by Claim 13 we have that the complexity complexj+1(n) satisfies the following,

complexj+1(n) = poly(n) + idj+1(n) · complexj(n) + poly(t∗(n)) , (36)

and hence the resulting commitment scheme 〈Cr, Rr〉 is efficient. Furthermore, 〈Cr, Rr〉 accomo-
dates identities of length n-bits and is concurrent non-malleable against all circuits in the class
P/poly.
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