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Abstract. Applying random and uniform masks to the processed inter-
mediate values of cryptographic algorithms is arguably the most com-
mon countermeasure to thwart side-channel analysis attacks. So-called
masking schemes exist in various shapes but are mostly used to prevent
side-channel leakages up to a certain statistical order. Thus, to learn any
information about the key-involving computations a side-channel adver-
sary has to estimate the higher-order statistical moments of the leakage
distributions. However, the complexity of this approach increases expo-
nentially with the statistical order to be estimated and the precision of
the estimation suffers from an enormous sensitivity to the noise level.
In this work we present an alternative procedure to exploit higher-order
leakages which captivates by its simplicity and effectiveness. Our ap-
proach, which focuses on (but is not limited to) univariate leakages of
hardware masking schemes, is based on categorizing the power traces ac-
cording to the distribution of leakage points. In particular, at each sample
point an individual subset of traces is considered to mount ordinary first-
order attacks. We present the theoretical concept of our approach based
on simulation traces and examine its efficiency on noisy real-world mea-
surements taken from a first-order secure threshold implementation of
the block cipher PRESENT-80, implemented on a 150nm CMOS ASIC
prototype chip. Our analyses verify that the proposed technique is indeed
a worthy alternative to conventional higher-order attacks and suggest
that it might be able to relax the sensitivity of higher-order evaluations
to the noise level.

1 Introduction

It has become a general knowledge that implementations of cryptographic algo-
rithms are in danger of being attacked by means of side-channel analysis (SCA)
key-recovery attacks, if dedicated countermeasures have not (or incorrectly) been
integrated. Amongst the known and common SCA countermeasures, masking is
by far the most-widely studied scheme and has interested both academia and in-
dustry. Its underlying sound proofs and theoretical foundation should be named
among the reasons for such a popularity. Except particular constructions (e.g., [7,
12]), the security of masking schemes is based on the uniformity of the masks.
More precisely, in an (s+ 1)-sharing construction, which is called s-order mask-

ing, for a particular x each (x1, . . . , xs+1) with x =
s+1⊕
i=1

xi should occur equally



likely1. Otherwise, it can be pretended that the randomness source is biased,
which potentially leads to exploitable leakage.

With respect to the adversary model, security of masking schemes is eval-
uated based on two different models: i) probing model [10], and ii) bounded
moment model [2]. The former one is primarily used for security proofs and
more conservative than the later one, which is usually applied in practical evalu-
ations. Our focus is mainly on the bounded moment model, and we call a device
without first-order leakage if the leakages associated to two different given sets
of operands x and y (of the same operation2) are not distinguishable3 from each
other through average, i.e., first-order statistical moment. Similarly the leakages
should further not be distinguishable through variance, i.e., second-order cen-
tered moment, for second-order security, and likewise for higher orders. Option-
ally, the described setting can be incorporated by a pre-processing step, which
combines different leakage points. Compared to univariate settings, where the
combination of leakage points is not required, in a multi-variate scenario two (or
more) different leakage points are combined prior to evaluation/attack (see [14]
for more details).

In short, in order to attack an s-order masked implementation, multi-variate
(s+1)-order statistical moments should be observed if the operations are serially
performed on the shares (i.e., a typical software implementation with sequen-
tial nature). On the other hand, in case of a hardware implementation usually
univariate (s + 1)-order statistical moments are observed due to the inherent
parallel processing fashion. It is noteworthy that the complexity of higher-order
evaluations increases exponentially with s. Further, estimation of higher-order
statistical moments becomes extremely hard in practice when the leakages are
sufficiently noisy [22].

Instead of a conventional higher-order attack, we present in this work a trick
that converts higher-order leakages to the first order and exploits them for key re-
covery. The focus of our scheme is univariate higher-order leakages, i.e., mainly
targeting masked hardware implementations. It is essentially based on the prin-
ciple of pruning the traces according to the distribution of leakage points. Its
detailed expression is given in Section 3. Indeed, a similar approach has initially
been considered in [24], to exploit the leakage of a masked dual-rail logic style
(MDPL) [20]. We review the relevant state of the art in Section 2. Compared
to a classical higher-order attack (e.g., mean-free square as an optimal second-
order univariate attack) our scheme can be more efficient in particular cases.
More precisely, it can exploit the leakage and recover the key while the classical
higher-order attacks fail. As a case study, given in Section 4, we present prac-
tical results based on an ASIC prototype chip of a provably first-order secure
threshold implementation (TI) [17] of the block cipher PRESENT [4].

1 In case of Boolean masking.
2 For example, two different plaintexts of an AES encryption with a fixed key.
3 t-test can be used to detect the distinguishability [25].



2 State of the Art

For the majority of masking schemes it is a mandatory requirement that the
masks are drawn from a uniform distribution. If this distribution is not uniform,
but rather stems from a biased randomness source, vital security claims are not
met and exploitable first-order leakage can emerge. Thus, an adversary might be
interested in compromising the security of masked implementations deliberately
by forcing a bias into the masks that conceal key-dependent intermediate values.
One way of achieving this goal is to attack the randomness source directly by
means of fault attacks. Of course, the feasibility of this approach depends highly
on the particular implementation that is investigated. Another, more generic
strategy, which has mainly been applied to compromise software-based masking
schemes on microcontrollers, is to categorize the traces that are recorded in
a power analysis attack into groups that only contain a biased subset of all
possible masks. Intuitively, such an attack can be performed on a software-based
masking scheme by determining a point in the power traces where the mask value
is processed and then discarding all traces with a measured power consumption
above (or below) a certain threshold at that sample point. Assuming now that the
investigated device leaks information about the processed intermediate values by
means of the Hamming weight (HW) model (which is a reasonable assumption for
microcontrollers, see [13]), one has selected a subset of traces with a probability
different from 1

2 for each mask bit to be 1 (or 0). This allows a better-than-
random guess what the mask value would be, e.g. all-one (or all-zero), which
enables successful first-order attacks on the reduced set of traces. Hence, without
preprocessing the power values in the traces, but only by ignoring a subset of the
acquired measurements, one has moved the higher-order leakages to a setting
where they can be exploited in the first order. Technically, due to the prior
selection of power traces, this is still a higher-order attack, but in fact does not
require the estimation of higher-order statistical moments. This kind of attack,
which we extend and generalize for a different setting in the following course of
this work, is referred to as biased mask attack, e.g. in [13] and [26]. Regardless of
the surprisingly simple attack procedure, biased mask attacks have not gained
much popularity since multi-variate higher-order attacks, utilizing the higher-
order statistical moments of the full set of traces, are considered more powerful
in the general case. Indeed, the loss of information due to disregarding a subset
of the measurements is undeniable. Additionally, some kind of initial profiling
has to be performed to find a sample point in the power traces where the mask
value is leaked.

The described procedure can not be mapped directly to hardware imple-
mentations, because in parallel designs the mask is not processed discretely but
usually together with the masked data and a number of further intermediate
values at the same time. Consequently, only the cumulative leakage of mask and
masked data can be observed in a univariate fashion and is not only buried in
electronic noise, like for software implementations, but also in the switching noise
originating from the remaining parts of the circuit (see [13]). On the one hand,
due to the univariate nature of the leakages, the necessity for a profiling phase



is removed, but on the other hand the categorization of the traces based on the
leakage of the mask value is much less precise. Nevertheless several attempts
have been made to perform biased mask attacks on hardware implementations
of gate- and algorithmic-level masking schemes. In [27], such an approach is
considered for the first time. It is shown by toggle count simulations of a small
test circuit (S-box + key XOR) that categorizing power traces with a simple
threshold filter is sufficient to remove the one bit of entropy that is introduced
by the use of the logic style Random Switching Logic (RSL). The affiliated work
in [24] utilizes gate-level simulations of an AES chip design to show that routing
imbalances in the DPA-resistant logic style MDPL [20] can be exploited to esti-
mate the mask bit. Again, this can be used to remove the effect of the masking
scheme by performing conventional first-order DPA attacks exclusively on the
subset of traces that is obtained through a simple filtering operation. In [8] the
authors extend their approach to an algorithmic-level hardware masking scheme
for the first time. In accordance to the biased mask attacks on software-based
implementations the authors are able to verify that a secure hardware masking
scheme can equally be compromised by means of simple first-order distinguish-
ers, when only a subset of the traces is considered. Unfortunately, the article
fails to investigate how to select a suitable subset of traces that is most infor-
mative for an attack. Even more importantly it is not examined at all whether
a first-order attack on their specific (or any other choice of) subset can outper-
form a univariate second-order attack using the mean-free square on the full set
of traces. Finally, none of the listed works on hardware masking schemes ver-
ified the described attack procedures with practical measurements, taken from
a physical hardware device. To the best of our knowledge, no subsequent work
explores any of these data points either.

The last branch of research that can be considered related to our approach
uses a subset of power traces to enhance the correlation in CPA [6] attacks
in general, without concentrating on protected implementations or circumvent-
ing specific countermeasures in particular. These works, presented e.g., in [11]
and [19], focus on selecting power traces with a high Signal-to-Noise ratio (SNR).
They come to the conclusion that, considering the distribution of power values
at the point of interest, especially those traces with a small probability den-
sity function value, have the highest SNR. In a simplified phrasing this means
that concentrating on the power traces whose value at the point of interest is ex-
traordinarily low or high (leftmost or rightmost slices of the leakage distribution)
leads to the best correlation for the correct key candidate.

3 Underlying Approach

In this section we introduce and define our novel approach to exploit higher-
order leakages. For the sake of simplicity, let us focus on a single sample point
of side-channel leakages. The main idea is to observe the distribution of the
univariate leakages, categorize them into e.g., two non-overlapping parts, and
then perform the attack(s) on each part independently. This indeed is the same



concept which has been applied in [11] on unprotected implementations with
the goal of improving the attacks with respect to the required number of traces
(see Section 2). However, we employ more-or-less the same technique to exploit
higher-order leakages. Let us express the underlying concept with simulation
results. Suppose that the leakage of a device under test (DUT) can be represented
by a noisy Hamming weight (HW) model as

l(x) = HW (x) +N (µ, δ2),

with mean µ = 0 and standard deviation δ. Further, suppose that the interme-
diate values of the DUT are masked following the concept of first-order Boolean
masking. Hence, every value x is represented by (xm,m) with xm = x⊕m and
m being a random mask with uniform distribution. In a univariate setting, the
leakage of the DUT associated to x is represented by

l(xm) + l(m) = HW (xm) +HW (m) +N (0, δ2).

If we simulate 1, 000, 000 times the leakage for two different x ∈ {0, 1}8 values
and a particular δ = 2, two different distributions are observed, that are de-
picted in Figure 1(a). These two distributions are not distinguishable from each
other through their means, i.e., a first-order distinguisher would not be able to
differentiate them. Along the same lines, t statistics of a Welch’s t-test would
give a low-confidence result as well, i.e., t being smaller than 4.5.

However, if we consider only those leakages which are less than a threshold,
see Figure 1(b), the leakages are distinguishable from each other through their
means. For example, in this case the t statistics yields the value 133, i.e., high
confidence of a first-order distinguisher. The threshold in this example has been
defined in such a way that 20% of the leakages are below the threshold and the
remaining 80% above. As shown in Figure 1(c) to Figure 1(e), considering the
upper 80%, lower 80% or upper 20% leakages would lead to distinguishability
through means as well. However, in case of Figure 1(f) and Figure 1(g) when
the middle part or the side parts of the distributions are considered, the mean
does not reveal any distinguishability. This is indeed due to the symmetric form
of the original distributions shown in Figure 1(a).

We should highlight that these observations are not limited to first-order
masking. As an example, we repeated the same simulation under second-order
Boolean masking with univariate leakage

l(xm) + l(m1) + l(m2) = HW (xm) +HW (m1) +HW (m2) +N (0, δ2),

where xm = x ⊕ m1 ⊕ m2 and the uniform distribution for m1 and m2. The
distributions and the t statistics as distinguishability measure after classifying
the leakages based on a particular threshold are shown in Figure 2. Following
the concept of second-order masking, the distributions are distinguishable only
through their skewness (see Figure 2(a)). However, by categorizing them based
on a 20% threshold (either above or below the threshold) the means reveal
the difference between the distributions. Interestingly, the symmetric forms, i.e.,
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Fig. 1. Simulated leakage distributions of two different values represented by first-order
masking, t represents the statistics of the t-test.

middle part or the sides (Figure 2(f) and Figure 2(g)), also lead to high-evidence
first-order distinguishability.

When evaluating the effectiveness of this approach it is important to know
for which threshold value the attack performs best. To identify the optimal
threshold, we conducted another simulation based on first-order masking. We
have randomly selected a vector of n elements as X : (x1, . . . , xn), where xi ∈
{0, 1}8. Then, by two separate uniformly-distributed n−element mask vectors
M1 and M2 we formed XM1

= (x1m1
, . . . , xnm1

), where xim1
= xi ⊕mi

1 (resp. for
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Fig. 2. Simulated leakage distributions of two different values represented by second-
order masking, t represents the statistics of the t-test.

XM2
). Following the univariate noisy Hamming weight leakage model, we formed

two leakage vectors L1 : (l11, . . . , l
n
1 ) and L2 : (l12, . . . , l

n
2 ) in such a way that for

example
li1 = HW (xim1

) +HW (mi
1) +N (0, δ2).

Following the concept of Moments-Correlating DPA (MC-DPA) [15], we first
formed a model L̇1 : (l̇11, . . . , l̇

n
1 ) as

l̇i1 = µ
(
{∀lj1|xj = xi}

)
,



and finally estimated the correlation ρ(L̇1, L2) as the first-order correlation. For
the second-order correlation, we first formed a model L̈1 : (l̈11, . . . , l̈

n
1 ) as

l̈i1 = δ2
(
{∀lj1|xj = xi}

)
,

and respectively made L′
2 as mean-free square of L2 as

l′i2 =
(
li2 − µ

(
{∀lj2|xj = xi}

))2
.

Hence, correlation ρ(L̈1, L
′
2) can be estimated as the second-order correlation.

On the other hand, we selected a part of L1 and L2 based on a threshold and fol-
lowing the above procedure estimated the first-order correlation. We conducted
this simulation for n = 1, 000, 000 and several values for noise standard deviation
δ. For each setting, we examined different thresholds to split the leakages. More
precisely, from lower 5% up to lower 50% and from upper 50% to upper 95%,
each with steps of 5%. The results are shown in Figure 3(a).

As shown by the graphics, none of the cases, where over 50% of the leak-
ages are considered, can compete with the optimal second-order distinguisher.
In contrast, when less than 50% of the leakages are considered, the underlying
approach outperforms the second-order one. Further, by increasing the noise
level they all become similar and close to the second-order distinguisher. It is
noteworthy that due to the symmetry of the distributions in case of this simu-
lation (i.e., first-order masking) the results of the other cases, i.e., upper < 50%
and lower > 50%, are not shown.

This simulation has been repeated following the above-explained univariate
leakage of second-order Boolean masking. Figure 3(b) shows the corresponding
results. As expected, the first- and second-order distinguishers would not reveal
any dependency. Interestingly, the underlying approach extremely outperforms
the optimal third-order distinguisher, and even by increasing the noise standard
deviation it still performs better.

We should note that any other distinguisher, where instead of any particular
statistical moment the distribution of the leakages are considered, would also
differentiate the univariate higher-order leakages. But, these distinguishers (e.g.,
MIA [9]) would need to predict the probability distributions, e.g., by histogram
where the number of bins and the size of each bin play an important role for
the efficiency of the distinguisher, alternatively by Kernel where the important
issues include the type of the Kernel function and the associated parameters.
The diversity of their results based on the selected parameters can make such
distinguishers more complicated or less efficient compared to higher-order at-
tacks. However, in the approach presented here we just consider the distribution
obtained based on pure histogram. More precisely, the histogram made by the
nature of the SCA measurements (i.e., 256 bins as the result of the 8-bit ADC4 of
the acquisition equipment digital oscilloscope) would suffice to find the threshold
for a given percentage, e.g., lower 20%.

4 Analog to Digital Converter.
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Fig. 3. Correlation (based on MC-DPA), simulated univariate (a) second-order and (b)
third-order leakages, comparison between different distinguishers for different threshold
values over noise standard deviation.

4 Practical Results

Now that we have presented the theoretical concept of our approach, it is time
to evaluate the soundness of the technique based on real-world measurements
taken from the physical implementation of a hardware masking scheme. After a
description of the target device and the measurement setup we analyze the side-
channel leakage of the test chip by means of conventional higher-order attacks,
which are based on the estimation of higher-order statistical moments. As a
second step we present the results of our novel approach for different threshold
values. At the end, both types of attacks are compared in terms of the required
number of measurements for a successful key recovery and the convenience of
the procedure from an attacker’s point of view.

Target. The target platform for our practical evaluations is a 150 nm CMOS
ASIC prototype chip. A layered view of the fabricated chip can be seen in Fig-
ure 4. The prototype contains 6 different cores and was specifically developed to



Fig. 4. ASIC prototype with 6
cores in 150 nm CMOS.

Fig. 5. Threshold implementation of the 4-
bit PRESENT S-box with 3 shares.

evaluate the side-channel resistance of state-of-the-art block ciphers and DPA
countermeasures in practice. The core of the ASIC that is targeted in the follow-
ing experiments realizes the block cipher PRESENT-80 under 3-share first-order
threshold implementation concept. PRESENT-80 is an ultra-lightweight block
cipher (ISO/IEC 29192-2:2012 lightweight cryptography standard) that features
a block size of 64 bit as well as a key length of 80 bit and consists of 31 compu-
tation rounds [4], whereas threshold implementations have been introduced as
an efficient hardware masking scheme in [18].

Concerning hardware implementations of masking schemes, it has historically
been a challenging task to ensure that glitches in the combinatorial parts of the
circuit do not recombine the shares and thus lead to exploitable leakage. Thresh-
old implementations prevent this issue by adding the so-called non-completeness
property to the masked computations [2]. Non-completeness means here that
each fully combinatorial circuit must be independent of at least one of the shares.
This is achieved by splitting the non-linear parts of a circuit into several shared
functions that do not operate on all shares at once, but rather perform only one
part of the overall computation that refers to its respective inputs. Accordingly,
glitches can never recombine all shares at once, meaning that an adversary is
not able to learn any information about the secret from the side-channel leakage
of only one of these circuits. Indeed, multiple leakages of multiple combinatorial
(sub-) circuits need to be combined to perform a successful (higher-order) attack.
Following this concept, which is based on Boolean secret sharing and multi-party
computation, the threshold implementation technique can be used to implement
non-linear functions of symmetric block ciphers in such a way that provable se-
curity against first-order power analysis attacks can be guaranteed, even in the
presence of glitches. Higher-order threshold implementations can furthermore be
used to conceal the leakages at higher-order statistical moments [3]. A second
property that has to be fulfilled when sharing a non-linear function is the uni-
formity of the outputs. For each unshared input to the non-linear function, each
shared output should occur equally likely. In this way the output of the shared
functions is still uniformly distributed and a remasking is not required. More
precisely during the full execution of a block cipher that is implemented in this
masking scheme no fresh masks needs to be fed. The plaintext is split up into



the required number of shares at the beginning of the algorithm (see [18]), which
implies the generation of two or more plaintext-sized masks, and all further com-
putations are performed on those shares. Compared to conventional masking, the
drawback of this method is a higher number of required shares. In particular at
least three shares (two masks) are required to realize each non-linear part of
a circuit5. Additionally the number of shares increases with the degree of the
function that needs to be implemented [18]. Hence, larger S-boxes, e.g. 8-bit,
are difficult to implement efficiently in this scheme [5]. Nevertheless, for ciphers
with small S-boxes, e.g., PRESENT-80, threshold implementation has become
the de facto standard for hardware masking [2].

The realization of the PRESENT-80 block cipher as a threshold implementa-
tion was introduced in [21]. The authors proposed several implementation profiles
with different levels of security. Our targeted ASIC core implements profile 2,
which refers to a nibble-serial implementation of the block cipher with a shared
data path (with 3 shares) but an unshared key schedule. Hence, one instance of
the shared S-box is implemented and the 4-bit nibbles of the cipher state are
processed in a pipelined manner. A schematic view of the shared S-box, based on
a decomposition to quadratic functions F and G with S(x) = F (G (x)), can be
seen in Figure 5. Due to the register stage between the G- and the F functions
one full cipher-round takes 18 clock cycles6. It is noteworthy that although first-
order threshold implementation corresponds to Boolean masking with 3 shares it
provides only first-order security due to its underlying quadratic functions (i.e.,
G and F in Figure 5). In other words, this implementation is supposed to exhibit
second- and third-order leakages.

Measurement Setup. We performed our measurements on a Side-channel At-
tack Standard Evaluation Board (SASEBO-R) [1] that was specifically developed
to evaluate the side-channel resistance of cryptographic hardware. For this pur-
pose it provides a socket for an ASIC prototype, which is connected by a 16-bit
bidirectional data bus as well as a 16-bit address signal to a Xilinx Virtex-II
Pro control FPGA, clocked by a 24-MHz oscillator. For the side-channel mea-
surements a Teledyne LeCroy HRO 66zi oscilloscope was used. We collected 5
million measurements for random plaintexts and a fixed key by measuring the
voltage drop over a 1Ω resistor in the Vdd path, while the ASIC was operated
at a frequency of 3 MHz and a supply voltage of 1.8 V. Each of the power traces
contains 100,000 sample points recorded at a sampling rate of 500 MS/s with
a resolution of 8 bits. Due to a very low amplitude of the signal two × 10 AC
amplifiers in series have been employed, resulting in a × 100 gain. Figure 6(a)
depicts a sample trace over the two clock cycles that we are referring to in the
following course of this analysis. The two random and uniform 64-bit masks that
are needed for the initial sharing of the plaintext are generated and delivered by
a PRNG (AES-128 in counter mode) on the control FPGA of the SASEBO-R,
which in turn is seeded by the PC via UART.

5 Lower number of shares can be achieved at the price of additional fresh masks [23].
6 The permutation layer in one separate clock cycle.



(a) sample power trace (b) first-order CPA

(c) second-order CPA (d) correlation trend (2nd-order)

(e) third-order CPA (f) correlation trend (3rd-order)

Fig. 6. Sample power trace and conventional first-, second- and third-order CPA with
5 million measurements using the HW of the G-box output.

Results of Conventional Attacks. To evaluate the effectiveness of the pre-
sented approach on noisy real-world measurements it is necessary to assess the
vulnerability of the underlying hardware masking scheme by means of conven-
tional DPA attacks in a first step. To this end, we performed first-, second- and
third-order Correlation Power Analysis (CPA) attacks [6] using the Hamming
weight (HW) of the S-box output (which is the same as the output of the F
function in Figure 5). This did not lead to a successful recovery of any key nib-
ble. Hence, we performed the same attack using the HW of the output of the
G function (i.e., the value of the intermediate register) and obtained the results
which are depicted in Figure 6. All results are plotted over the two clock cycles
that leak the targeted intermediate value. This is on the one hand the clock
cycle in which the G-boxes are evaluated in parallel and on the other hand the
succeeding clock cycle where the outputs of the F -boxes are computed based
on the G-box outputs. As expected the first-order attack is not successful. The
second-order CPA, on the other hand, reveals the correct key nibble, but only
by a slight margin. The third-order attack does not succeed since the correct key
candidate does not lead to the overall highest correlation during the targeted two



clock cycles. In particular several ghost peaks with a higher correlation can be
identified. For both, the second- and the third-order CPA, we have plotted the
evolution of the correlation for the most leaking time sample (marked by a cross
in Figure 6(c) and Figure 6(e)). In this way we obtain a quantitative measure to
express how many traces are required to reveal the higher-order leakages. For the
second-order attack at least 200,000 traces are required, whereas for the third-
order attack even with the entire 5,000,000 measurements the correct candidate
might not be detectable. We observed the same results targeting several other
key nibbles. Indeed, it can be concluded that our measurements are sufficiently
noisy to serve as a suitable data source for our further analysis.

The efficiency of CPA attacks relies on the linear dependency between the
hypothetical power model (here HW of the G-box output) and the actual leakage
of the device. Alternatively, Moments-Correlating DPA (MCDPA) [15] can relax
such a necessity at the price of (usually) requiring more traces compared to a
corresponding CPA with a suitable power model. To examine whether a collision
setting can improve the number of required measurements here, which would
indicate an imperfect choice of the leakage model in the CPA evaluations, we
performed an MCDPA on the same traces. Hereby, the leakage of one S-box is
used to build a model which is then used in an attack on another S-box, leading
to a recovery of the linear difference between the corresponding key nibbles.
In our case the same hardware instance of the S-box is used for both steps,
which ensures a similar leakage model. Figure 7 shows the results indicating
that only the third-order MCDPA is able to reveal the correct key difference
with 5 million measurements 7. And even this is only true when exclusively the
second leaking clock cycle is considered. Otherwise, there are again ghost peaks
with a higher correlation. Nevertheless, 1.5 million measurements are required
to exploit the third-order leakage. This result enhances our confidence that the
Hamming weight of the output of the G-box is a suitable leakage model for our
target.

Results of Our Novel Approach. Hereafter, we concentrate on applying our
novel approach (expressed in Section 3) on the same traces. In this regard we
first obtained a histogram for each sample point using all 5,000,000 traces. The
histograms – as given before – have been made by 256 bins, i.e., the full range of
signed 8-bit integers -128 to 127 which reflect the sampled power consumption
values unaltered (direct result of the oscilloscope ADC). Therefore, for each given
x% threshold we obtain a threshold trace. This trace contains a threshold value
for each sample point individually in such a way that x% of the traces have a
value smaller than the threshold at that sample point and (100 − x)% have a
higher value. As the next step, we conducted the attacks on a subset of traces
either as “lower x%” or “upper (100 − x)%”. It should be noted that such a
separation of traces as well as the attack is performed on each sample point
separately. In other words, for each sample point it is individually decided which
traces to be considered in the attack.

7 Only positive correlation values indicate a collision in an MCDPA attack.



(a) first-order MCDPA (b) second-order MCDPA

(c) third-order MCDPA (d) correlation trend (3rd-order)

Fig. 7. Conventional first-, second- and third-order MCDPA with 5 million measure-
ments.

We have examined the threshold values between 5% and 95% with intervals
of 5%. In Figure 8 we represent the result of the attacks (CPA with HW of the
G-box output) for the most successful settings, i.e., 20% and 30% thresholds.
Interestingly it can be noted that attacks on subsets with a power consumption
below the threshold, i.e., lower 80% and lower 70%, lead to a positive correlation
for the correct key candidate, and vise versa for the corresponding upper 20%
and upper 30%. This is in fact due to the different biases that are introduced
into the three shares by selecting measurements with a power consumption either
above or below a certain threshold.

Comparison. When comparing our approach to the corresponding conven-
tional second-order CPA, the value of the highest correlation for the correct key
candidate is not very meaningful. Due to the fact that a much smaller number of
measurements contributes to the results of our approach the correlation values
are usually significantly higher compared to the conventional attacks. Hence we
have to rely on the required number of measurements as well as a visual inspec-
tion of the results as the only available metrics for a comparison. Regarding the
required number of measurements we can refer to Figure 8(b) and Figure 8(f)
that only 50,000 and respectively 70,000 measurements are required to reveal
the leakage with our approach. It should be noted that these numbers as well
as Figure 8(b) and Figure 8(f) reflect the number of traces used to both, find
the threshold and perform the attack on. In other words, when it is shown that
50,000 traces are required for a “upper 20%” attack, all 50,000 traces are used to
find the threshold. Amongst them, around 50,000×20%=10,000 traces are used
in the attack. Hence, compared to the conventional second-order attack, the at-



(a) upper 20% first-order CPA (b) correlation trend

(c) lower 80% first-order CPA (d) correlation trend

(e) upper 30% first-order CPA (f) correlation trend

(g) lower 70% first-order CPA (h) correlation trend

Fig. 8. First-order CPA on different slices of the 5 million measurements using the
Hamming weight of the G-box output.

tack with “upper 20%” required 4 times less traces altogether and, due to the
fact that only a subset is considered, includes 20 times less traces in the actual
CPA computations. In accordance to the simulation results (in Section 3) we
can see that the attacks on subsets of traces, that include more than 50% of the
measurements, are not able to outperform the conventional attack. More pre-
cisely, the “lower 80%” and “lower 70%” attacks (Figure 8(d) and Figure 8(h))
need respectively around 2,500,000 and 700,000 traces while the conventional
second-order attack requires 200,000 traces.

All of the presented attacks have been repeated for other key nibbles and
therefore on other parts of the power traces as well. These experiments revealed



that concentrating on the “upper 30%” part (for each sample point individually)
was indeed most commonly the best choice, although the particular threshold
values vary slightly between different key nibbles. Another tendency that could
be observed is that the subsets which have been selected from above a threshold
were generally significantly more informative than the subsets below a threshold
(independent of being each others counterpart). However, for all targeted key
nibbles our approach was able to outperform the conventional second-order at-
tack in terms of the required number of measurements for at least one choice of
subset.

5 Conclusions

In this work we have presented and examined an alternative approach to analyze
the higher-order leakages of masked hardware implementations. The proposed
technique is able to turn higher-order leakages with a simple selection procedure
into a setting where they can be exploited by a first-order distinguisher. This
does not only remove the necessity to estimate higher-order statistical moments
when attacking masking schemes, which becomes exponentially more complex
with an increasing statistical order, but it may also be able to relax the sensitiv-
ity of higher-order attacks to the noise level. We have presented the theoretical
foundation of our approach by means of simulations and carried out several ex-
periments on noisy real-world measurements to back up our claims. Our analyses
lead to the conclusion that our approach indeed represents an alternative to con-
ventional higher-order attacks, and even more importantly is able to outperform
them in specific settings. In our setup for example a standard first-order CPA
on the subset of traces, that contains only the 20% highest power consump-
tion values (individuality at each sample point), is able to exploit the leakage
with 4 times less traces than the conventional second-order CPA attack (i.e.,
by mean-free square). Hence, a significant improvement could be achieved by
simply ignoring a specific part of the traces (at each sample point).

It has been given in literature that masking and hiding countermeasures
should be combined to achieve a high level of security. In works like [16] hard-
ware masking is implemented by power-equalization schemes to practically com-
plicate higher-order attacks. As a future work, we will investigate the feasibility
of the approach introduced here on such implementations. Another interesting
approach to explore is whether it is worthwhile to combine the result of the at-
tacks after splitting the traces. More precisely, we have shown the result of the
attacks for “upper 20%” and “lower 80%”. The question is whether combining
these results would lead to a more effective attack.
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