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Abstract. Evaluation of side channel leakage for the embedded crypto
systems requires sound leakage detection procedures. We relate the test
vector leakage assessment (TVLA) procedure to the statistical minimum
p-value (mini-p) procedure, and propose a sound method of deciding
leakage existence in the statistical hypothesis setting. To improve detec-
tion, an advanced statistical procedure Higher Criticism (HC) is applied.
The detection of leakage existence and the identification of exploitable
leakage are separated when there are multiple leakage points. For leakage
detection, the HC-based procedure is shown to be optimal in that, for a
given number of traces with given length, it detects existence of leakage
at the signal level as low as possibly detectable by any statistical proce-
dure. We provide theoretical proof of the optimality of the HC procedure.
Numerical studies show that the HC-based procedure perform as well as
the mini-p based procedure when leakage signals are very sparse, and
can improve the leakage detection significantly when there are multiple
leakages.
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1 Introduction

Side-channel analysis (SCA) has been shown to be a serious threat to modern
cryptographic implementations. For more than a decade now, researchers ac-
tively invented various side-channel attacks and proposed countermeasures to
protect devices against such attacks. As countermeasures are integrated into
commercial customer devices, evaluating the resistance of devices against SCA
becomes an important issue. A leakage detection test procedure, Cryptography
Research (CRI)’s test vector leakage assessment (TVLA) [1, 2], is often used for
blackbox evaluation of SCA resistance. The TVLA procedure scans the leakage
traces (e.g., physical measurements of the power consumption) with a univariate



test, and declares no leakage if the test statistics at all points along the leakage
trace falls below a critical value.

It is preferred to use a generic univariate test in the TVLA procedure to
avoid dependence on a specific leakage model. The CRI’s TVLA proposal runs
the Welch’s t-test [1, 2] on data sets sampled according to a nonspecific partition,
usually the fixed-vs-fixed sampling or the fixed-vs-random sampling, where the
fixed class of measurements come from encryptions of fixed plaintexts while the
random class of measurements come from encryptions of random plaintexts.
Recently several extensions of the t-test (e.g., higher order and multivariate
leakage detection) have been proposed by researchers [3–6].

Durvaux and Standaert [5] at EuroCrypt2016 proposed a correlation-based
test (ρ-test) to detect exploitable leakage aimed at a particular intermediate
computation. Such a specific test yields sparser leakage relating to this targeted
intermediate value, and is better suited for identifying Point-Of-Interest (POI)
for exploitable leakage. While this identification is necessary for practical SCA,
it is not required for the purpose of leakage detection. Both the specific and
non-specific leakage detection tests can be used in the TVLA framework.

In this work we first study the TVLA procedure itself from a theoretical per-
spective. The TVLA procedure declares a device as leaky, if the maximum test
statistic (over all points on the trace) exceeds a critical value. For the Welch’s
t-test, current TVLA procedure generally uses the critical value of 4.5 [2, 7–9],
which corresponds to a statistical significance level of α < 0.00001 for the uni-
variate test. However, this significance level does not consider the total number
of univariate tests, i.e., the total number of points on the trace. The overall sig-
nificance level increases as the number of leakage points on the trace increases.
For long traces, the overall significance level can be quite large, so is the test
statistic value, and therefore a non-leaky device can not pass the TVLA t-testing
with the critical value of 4.5. Hence, Balasch et. al [10] suggested raising the crit-
ical value to 5 for longer traces based on numerical experiments. However, for
even longer traces, the non-leaky devices still can not pass at this higher critical
value of 5 (see Section 3.1). The issue is caused by the multiple univariate tests
at all time points which led [3] to suggest using false discovery rate to decide
the detection limit. However, an explicit rigorous way of setting the threshold
value would help for sound application of the current TVLA procedure.

In view of this state-of-the-art, we make two contributions in this paper.
First, we propose a sound method to set the threshold value according to an
overall statistical significance level. The current TVLA procedure makes the
decision (leaky versus non-leaky) based on the largest test statistic, hence it
is a statistical minimum p-value (mini-p) procedure that decides only with the
minimal p-value of all those univariate tests. The threshold can be set through
the mini-p procedure at any given statistical significance level, taking account of
the trace length. For the t-test based TVLA, we provide explicit expression of
this threshold, which also varies with the number of traces (used as the degree
of freedoms in the test).

2



Second, we propose to improve the (univariate) leakage detection procedure
with a statistically optimal HC metric. For the leakage detection purpose, the
evaluator searches for evidence of key-dependent leakages along the trace, with-
out necessarily identifying the POIs exactly. Hence it is very similar as the
statistical independence scanning procedure [11–17] widely used in other high-
dimensional statistical applications. Depending on the signal strength and signal
sparsity, there is an undetectable region [18] where no statistical test can discern
the existence of leakage. An optimal leakage procedure should be able to detect
any leakage outside this minimal theoretical undetectable region. The current
TVLA (mini-p) procedure is not optimal , as its undetectable region is larger.
We incorporate the “Higher Criticism” (HC), a state-of-art statistical method
for detecting sparse and weak signals, into the TVLA procedure.

Our work improves the TVLA procedure to optimally utilize the multiple
leakages for detection. This is independent of whether the univariate test itself
is optimal. Both specific and nonspecific leakage detection tests above can be
used, with their relative advantages and limitations [5] still apply. Our work is
also orthogonal to the work of combining multiple leakages for a single attack,
e.g., [19–24].

Our proposed procedure optimally combines the detections of univariate leak-
age existence at all points along the leakage trace. It works as good as the mini-p
for very sparse leakage signals, and significantly improves the detection in sce-
narios where there are multiple leakage signals.

2 Background and Model Notations

2.1 TVLA procedure as a mini-p testing method

In the TVLA leakage detection setup, an evaluator collects many traces of phys-
ical measurements, and tries to find if some points on the traces leak key in-
formation through a key-sensitive intermediate variable V . Let ntr and nL de-
note, respectively, the total number of traces and the total number of points
on each trace. That is, the evaluator has ntr realizations of the random vector
L = [L1, · · · , LnL

]. The scanning procedure such as TVLA do a univariate sta-
tistical test at each time point, and makes decision by combining the results.
That is, we test the null hypothesis (there is no leakage signal):

Li = ri (1)

versus the alternative hypothesis (there is leakage):

Li = V + ri (2)

at the i-th time point, where ri is random noise.
The test is usually done with a test statistic ŝi. Statistically the p-value is the

probability that test statistic value can be observed under null hypothesis, i.e.,
P(|S| ≥ |ŝi|) where S denotes a random variable that follows the distribution of
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the test statistic under the null hypothesis (1). For a single hypothesis test, the
null hypothesis is rejected when |ŝi| is too big or equivalently when the p-value
is too small.

The TVLA procedure decides that leakage exists as long as any one of the
tests rejects the null hypothesis. That is, the device is considered leaky when
max1≤i≤nL

|ŝi| ≥ TH for a threshold value TH (or equivalently when the min-
imum p-value is smaller than a threshold value αTH). Therefore, the current
TVLA procedure is in fact a mini-p test method for considering multiple (nL)
testing but utilizing only the test with the minimal p-value. We will propose
changing this mini-p multiple testing method later.

While the usage of a particular univariate test is not essential to the frame-
work, we first describe two common univariate tests to use as concrete examples
for a better understanding of the overall leakage detection framework.

2.2 Univariate Tests: ρ-test, t-test, Specific versus Nonspecific Tests

Given the leakage model (2) with the known intermediate value V , the most
natural attack is the correlation power analysis (CPA) distinguisher. The CPA
uses the Pearson correlation, ρ, which can also be used for leakage detection in
ρ-test. The correlation is:

ρ̂i = Corr(Li, V ). (3)

The test statistic is taken as the Fisher’s transformation on ρ̂i scaled by
√
ntr:

ŝi =
1

2
ln

(
1 + ρ̂i
1− ρ̂i

)
√
ntr. (4)

Under the null hypothesis (no leakage at the i-th time point), ŝi approximately
follows the standard normal distribution N(0, 1). So the corresponding p-value
is calculated by:

pi = 2× (1− CDFN(0,1)(|ŝi|)), (5)

where CDFN(0,1)(·) is the cumulative distribution function of the standard nor-
mal distribution.

The ρ-test can be considered as an ideal test for perfectly modeled power leak-
age, often Hamming Weight or Hamming Distance of a nonlinear (SBox) output.
A more generic version of ρ-test is proposed by Durvaux and Standaert [5] where
they profiled the leakage on the targeted V , thus allowing implementation in a
blackbox manner.

Another common generic test is the Welch’s t-test [1, 2], where the Li mea-
surements are partitioned into two sets Li,A and Li,B , and compared by the test
statistic

ŝi =
Li,A − Li,B√
ν̂2
i,A

nA
+

ν̂2
i,B

nB

, (6)

where Li,A and Li,B denote the sample means (average values) in each set, ν̂i,A
and ν̂i,B denote the sample standard deviations, nA and nB denote the numbers
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of measurements for the set A and B, respectively. The corresponding p-value is
calculated as the probability, under a t-distribution with νt degree of freedom,
that the random variable exceeds the observed statistic value ŝi:

pi = 2× (1− CDFt(ŝi, ν̂i)), i = 1, · · · , nL, (7)

where CDFt(·, ν̂i) is the cumulative distribution function of t-distribution with
the degree of freedom

ν̂i = (ν̂2i,A/nA + ν̂2i,B/nB)2/[(ν̂2i,A/nA)2/(nA − 1) + (ν̂2i,B/nB)2/(nB − 1)].

In practice, the degree of freedom ν̂i may be big so that the CDFt(·, ν̂i) can be
approximated by CDFN(0,1)(·). In that case, the p-value for t-test can also be
calculated from (5).

Recall that [5] used the ρ-test as a specific test on data partitioned according
to the specific intermediate value. The t-test is naturally used on data with two
classes with nonspecific partition (fixed-vs-fixed and fixed-vs-random). The data
collection methods, specific versus nonspecific, affect how sparse and how strong
the leakage signals are in the data. Those are the two critical factors in the
theoretical analysis in Section 4.

3 Methodology

In this section, we first discuss how to set the threshold for the mini-p procedure
correctly. We then describe the higher criticism (HC) procedure and roughly
compare it with mini-p procedure. In Section 4, we will theoretically show that
HC is an optimal leakage detection method. We summarize the HC leakage
detection framework the step by step.

3.1 Threshold Setting in the Mini-p Procedure

The current TVLA procedure declares a device as leaky when max1≤i≤nL
|ŝi| ≥

TH. However, the threshold value TH was not set at a given significance level
(Type I error rate) as in usual statistical methods. The t-test threshold of TH =
4.5 is suggested originally as it corresponds to a significance level of < 0.00001
for each univariate test [1, 2]. However, the overall significance level varies with
the number of time points nL on the trace, so that the procedure is not doing
a fair testing for traces with different lengths. Particularly, for a long trace, a
leakage free device is often declared as leaky. For this reason, Balasch et al. [10]
suggested raising the threshold to TH = 5 for long traces. In Table 1(a), we
give the type I error rates under both TH = 4.5 and TH = 5 for the current
TVLA procedure. As the number nL increases, the type I error rate increases.
Particularly when nL = 1, 000, 000, a leakage free device will almost always be
declared as leaky (99.9% Type I error rate) under the threshold TH = 4.5, and
still about 44% chance of being declared as leaky with the higher threshold
TH = 5. Either way, we observe that for any such fixed threshold for the test
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statistic, type I error rate varies greatly for different nL. Thus a more formal
way of setting the threshold value according to the trace length is needed, to
allow fair evaluation across different trace lengths.

Table 1: T-test threshold and Type I error rates for varying trace lengths nL.
(a) Type I error rates α under fixed threshold values.

nL 102 103 104 105 106

TH = 4.5 0.00068 0.0068 0.0661 0.4957 0.9987

TH = 5 0.000057 0.00057 0.0057 0.0557 0.4363

(b) Threshold values TH under fixed type I error rates.

nL 102 103 104 105 106 107 108

α = 0.001 4.417 4.892 5.327 5.731 6.110 6.467 6.806

α = 0.01 3.889 4.416 4.891 5.326 5.730 6.109 6.466

Realizing that the current TVLA procedure is in fact a mini-p procedure,
the threshold for the minimum p-value should be set as αTH = 1− (1− α)1/nL

for an overall significance level α. Then for the t-test, the threshold is TH =
CDF−1

t (1 − αTH/2, νs) where CDF−1
t is the inverse of CDF of t-distribution.

This threshold value depends on the number of traces ntr which affects the
degrees of freedom νs in the t-distribution. When νs is big, this can also be
calculated as CDF−1

N(0,1)(1−αTH/2). In Table 1(b), we list the cutoff values, for

the type I error rate of 0.001 and 0.01 under various trace lengths (assuming νs
is big).

Next, we propose an improved leakage detection method based on the higher
criticism (HC) [11, 12] which utilize the information contained in all nL test
statistics more efficiently.

3.2 Higher Criticism

Statistically, the leakage detection can be formulated as testing

H0 : Model (1) holds at all time points (i = 1, ..nL), (8)

versus H1 : Model (2) holds at some time points.. (9)

The current mini-p procedure ignores the information on all other p-values
except for the minimal p-value min1≤i≤nL

pi. The HC method utilizes the infor-
mation stored in the distribution of p-values. Under the null hypothesis (8), all
observed p-values should follow a uniform distribution on the interval [0, 1]. For
the time points where leakage exists as equation (2), the expected p-values will
be smaller than those generated from the uniform distribution. Hence under the
alternative hypothesis (9) of some POIs with leakage (a mixture distribution),
the obtained p-values trend to be smaller than those generated under the uni-
form distribution. Fig. 1 draws two curves of the ordered p-values under these
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two hypothesises. The figure clearly shows the difference of the distributions of
the ordered p-values under H0 and H1.
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Fig. 1: Comparison of the distributions of ordered p-values under the null hy-
pothesis and under the alternative hypothesis.

The leakage detection problem can now be restated as comparing the dis-
tribution of the obtained p-values p1, ..., pnL

with the uniform distribution,
or equivalently as detecting the difference between the two curves in Fig. 1.
Naturally, to detect the difference between the two curves, we can compare
the ordered p-values p(1) ≤ p(2) ≤ ... ≤ p(nL) with their expected values
1/nL, 2/nL, ..., nL/nL under the uniform distribution. The HC procedure is based
on the normalized distances for these comparisons,

ĤCnL,i =

√
nL(i/nL − p(i))√
p(i)(1− p(i))

, i = 1, ...nL. (10)

The HC procedure makes the detection if the maximum of these normalized
distance ĤCnL,i exceeds a threshold. In contrast, the mini-p procedure only use

the first distance ĤCnL,1 corresponding to the smallest p-value p(1) only. That is,
the mini-p procedure focused on the difference between the two curves in Fig. 1
at the lower-left corner only. When nL is big, the maximum normalized distance
often does not occur at ĤCnL,1. Thus the HC procedure can be more effective
in detecting the difference by comparing the whole curves instead of using only
the pair of extreme points at the lower-left corner.

Formally, the HC procedure is as follows:

(1) Sort the p-values in ascending order p(1) ≤ p(2) ≤ ... ≤ p(nL).

(2) Calculate ĤCnL,i, i = 1, ...nL, from equation (10).

(3) The HC statistic ĤCnL,max is defined as,

ĤCnL,max = max
1≤i≤nL/2

ĤCnL,i. (11)
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(4) Compare the obtained HC statistic ĤCnL,max with the HC threshold bHC
nL,α

at a given significance level α. When ĤCnL,max ≤ bHC
nL,α, we accept the

null hypothesis of no leakage. When ĤCnL,max > bHC
nL,α, we reject the null

hypothesis and declare that leakage exists.

The HC threshold bHC
nL,α is set to the 1 − α quantile of the HC statistic

ĤCnL,max’s distribution under the null hypothesis. Since each ĤCnL,j asymptot-
ically follows a standard normal distribution N(0, 1) under the null hypothesis,
this quantile bHC

nL,α can obtained by simulation from the nL standard normal ran-

dom variables. For large nL, the threshold bHC
nL,α can be approximated through

the connection to Brownian bridge, for example the calculation formula provided
in Li and Siegmund [15].

A matlab program for using HC procedure on leakage detection are provided
in the appendix. The user provides the nL test p-values and the type I error rate
α, and the program output the detection results.

When nL ≥ 100, bHC
nL,α ≈ 10.10 and 31.65 for α = 0.01 and 0.001 respectively.

To compare the mini-p procedure and HC procedure, let us assume that the
HC threshold is achieved at the max T-statistic (same as mini-p procedure),
and translate the HC threshold in terms of the max T-statistic. The thresholds
of maximum T-statistics for mini-p and HC procedures are then listed in the
following Table 2.

Table 2: Thresholds of maximum t-test statistics for mini-p and HC procedures.
α nL 102 103 104 105 106 107 108

0.001
Tmaxmini−p 4.417 4.892 5.327 5.731 6.110 6.467 6.806
TmaxHC 4.418 4.892 5.327 5.731 6.110 6.468 6.807

0.01
Tmaxmini−p 3.889 4.416 4.891 5.326 5.730 6.109 6.466
TmaxHC 3.900 4.426 4.899 5.334 5.737 6.116 6.473

In terms of the maximum t-test statistic, we notice that the thresholds for the
two procedures are almost the same, with the HC threshold being barely higher.
The HC procedure gains more detection power than the mini-p procedure when
ĤCnL,max does not occur at the largest t-test statistic. Particularly for devices
with some countermeasures, the remaining hard-to-detect leakage points may
not have strong leakage signals. Then the test statistics corresponding to those
real leakage points may not become the largest, compared to the test statistics
at other noisy points on a long nL trace. However, they do move the curve
downward in Fig. 1 without becoming the largest one, and these differences can
be picked up by the HC procedure but not by the mini-p procedure.
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3.3 HC Framework

Next we present our HC detection framework with salient steps. Fig. 2 gives
the flow chart, where the steps within the dash-circled box are common in the
current TVLA procedure as well.

Measured
traces

Statistic
values
ŝi

P-
values
pi

Detection:
max ĤCi >
THHC

Detection:
max |ŝi| >
THs

Current
TVLA

Univariate Test CDF−1
H0

HC procedure

Fig. 2: HC leakage detection flow chart.

(I) The evaluator collects a set of physical measurements, then calculate a se-
lected univariate test (e.g., tests in [3, 5, 4, 6]) at each time point along the
measurement traces. Therefore, nL statistic values are obtained.

(II) The evaluator finds the cumulative distribution function (CDF) of the above
statistic under the null hypothesis H0 (pure noise model). Using the CDF,
the nL statistic values are translated into nL p-values (which may also be
used by mini-p procedure), e.g., as in equations (5) and (7).

(III) Based on the nL p-values, the HC procedure in Section 3.2 is used to decide
if any leakage exists at a given type I error rate α.

For the last detection step (III), we write a computation module to efficiently
calculate the thresholds of HC (provided in the appendix). The user provides the
nL test p-values and the type I error rate α as inputs, and the leakage detection
module outputs the threshold and the detection results.

The current TVLA does not do step (II) and the threshold is not chosen
according to a statistical type I error rate. We have shown that it is equiva-
lent to doing step (II) and then conducting a mini-p procedure, which can be
made sound by choosing the threshold as in Section 3.1. The proposed approach
conduct the HC procedure in step (III) instead.

4 Theory on optimal leakage procedure using HC.

This section introduces the theory on optimality of the HC procedure in high-
dimensional statistical testing, and apply it to the leakage detection setting.
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4.1 Optimality of the HC Procedure in Mixture Gaussian Testing

We first describe the statistical theory on the optimality of the HC procedure
for the common mixture Gaussian setting in literature. That is, we test

H0 : xi ∼ N(0, 1), versus H1 : xi ∼ (1− q)N(0, 1) + qN(∆, 1), (12)

for observations xi, i = 1, ..nL. We then show how such theory can be used in
the leakage detection testing of (8) versus (9) in the next subsection.

This mixture Gaussian distribution setting can be considered as testing the
q proportion of signals with strength ∆ in a sample of nL dimension. The high-
dimensional statistical theory indicates how strong (∆) a signal can be detected
for any given sparsity level as nL → ∞. The common notations in literature
re-express the sparsity factor and the signal strength as two parameters β =
− log(q) and γ = ∆2/[2 log(nL)]. On the Euclidean space constructed by these
two factors, statistical theory indicates that there is an undetectable region where
no statistical tests can distinguish H0 and H1 well. More precisely, we first
introduce the following definition.

Definition 1. A statistical test procedure is asymptotically powerless (or asymp-
totically powerful) if the sum of its type I and type II error rates converges to 1
(or 0) as nL goes to infinity.

Theoretical Boundary For the mixture Gaussian distribution testing problem
(12), all statistical procedures are asymptotically powerless in the region below
the detection boundary given by equation (1.6) in [11] (proofs in [18]),

g(β) =

{
β − 1/2 1/2 < β < 3/4,
(1−

√
1− β)2 3/4 ≤ β < 1.

(13)

Detection Boundaries of HC and mini-p Procedures The HC procedure is
optimal [11] for testing (12) because the HC procedure is asymptotically powerful
when γ > g(β), i.e., for all parameters (β, γ) above the theoretical minimum
detection boundary (13). In contrast, a mini-p procedure is not optimal since it is
asymptotically powerless for all parameters (β, γ) below the following boundary,
according to the Theorem 1.4 of [11],

gmax(β) = (1−
√

1− β)2, 1/2 ≤ β < 1. (14)

Fig. 3 draws these two detection boundaries (13) and (14). The solid red line
is the detection boundary for HC procedure which coincides with the theoretical
minimum detection boundary. Below this line (the yellow shade area) is the
undetectable region, and above this line is the detectable region. The mini-p
procedure’s detection boundary curve is plotted as the black dash line, higher
than the red line. In the next subsection, we show that these optimality theory
do apply to the leakage detection setting.
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Fig. 3: The undetectable/detectable regions for mini-p test and HC test.

4.2 Leakage Detection Boundaries and Optimal Procedures

For any test statistic ŝi based on Li and for any linear transformation f(Li),
there is always an equivalent test statistics based on f(Li) that gives exactly the
same p-value. Therefore, without loss of generality, we consider the noise and
the intermediate variables in (1) and (2) are normalized so that

Li = Ṽ δi + ri, i = 1, · · · , nL (15)

where ri ∼ N(0, 1) is standard Gaussian distributed noise, Ṽ is the normalized
intermediate variable so that E(Ṽ ) = 0 and V ar(Ṽ ) = 1. Hence the model
SNR = V ar(Ṽ δi)/V ar(ri) = δ2i at the i-th time point.

Theoretical Boundary For simplicity, we consider the simple model where
there are n0 = qnL POIs with same SNR ∆2. That is, q proportion of δi
taking a common non-zero value ∆ (and the rest of δi = 0). There are ntr
observations for each Li: Li,1, ..., Li,ntr . The most powerful test for the i-th uni-
variate hypothesis test must be based on the sufficient statistic [25] for (15):
Ui = (1/ntr)

∑ntr

j=1 ṼjLi,j . Clearly Ui follows the N(δi, 1/ntr) distribution, and
hence ∼ N(0, 1/ntr) at time points with no leakage(δi = 0). Let xi =

√
ntrUi.

Then the leakage detection problem becomes a mixture Gaussian distribution
testing problem, using the sample x1, ..., xnL

, for

H0 : xi ∼ N(0, 1), versus H1 : xi ∼ (1− q)N(0, 1) + qN(
√
ntr∆, 1). (16)

This is same as the problem (12) except the factor
√
ntr. Therefore, the theo-

retical minimum detection boundary is given by (13), but with

γ = ntr∆
2/[2 log(nL)]. (17)
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Detection Boundaries of HC and mini-p Procedures We now compare
the detection boundaries of HC and mini-p Procedures for the earlier concrete
examples in section 2.2. Given a test statistic ŝi, either the t-test in (6) or the
ρ-test in (4), we can consider its test SNR |E(ŝ)|2/Var(ŝ) which grows linearly
in ntr. Thus we denote its test SNR as ntrδ

2
si . Next we should that ŝi converges

to a N(
√
ntrδ2si , 1) distribution as ntr → ∞, and hence can be related to the

results for (16) above.
First, at non-leaky time points (δi = 0), the test SNR also equals zero, and

ŝi ∼ N(0, 1) as described in section 2.2.
Second, at POIs with δi = ∆ 6= 0, we summarize the asymptotic distribution

of ŝi in the following Theorem, with proofs in Appendix 7.2.

Theorem 1. When the total number of traces ntr →∞:
For the fixed-vs-fixed data partition, the t-test statistic in (6)

ŝi → N(
√
ntr∆2, 1); (18)

For the fixed-vs-random data partition and a constant Ṽcons < 1, the t-test statis-
tic in (6)

ŝi → N(
√
ntr∆2Ṽcons, 1)[1 +O(∆2)]; (19)

In all settings, the ρ-test statistic in (4)

ŝi → N(
√
ntr∆2, 1)[1 +O(∆2)]. (20)

From this theorem, at POIs with δi 6= 0, δsi = δi for the ρ-test statistic (4) in
all cases and for the t-test statistic (6) in the fixed-vs-fixed test setup. In the
fixed-vs-random setting, δsi = δiṼcons < δi.

Therefore, for the ρ-test statistic (4) in all cases and for the t-test statistic
(6) in the fixed-vs-fixed test setup, {ŝi : i = 1, ..., nL} consists a data sample of
size nL for (16). Hence the HC-based leakage procedure achieves the theoretical
minimum detection boundary above. But the current TVLA (mini-p) procedure
is not optimal with boundary (14).

Remark 1. For the fixed-vs-random t-test, {ŝi : i = 1, ..., nL} consists a data
sample for a problem similar to (16) but with SNR reduced by a factor Ṽ 2

cons.
Thus the HC-procedure’s detection boundary g(β)/Ṽ 2

cons is the theoretical min-
imum detection boundary given {ŝi : i = 1, ..., nL}. In contrast, the mini-p
procedure’s detection boundary is gmax(β)/Ṽ 2

cons. Our proposed HC-based leak-
age procedure is optimal in combining the nL given univariate tests in this case
too. We do not claim that the univariate test itself (such as the fixed-vs-random
t-test, a generic test) is optimal, but rather claim that the procedure framework
is optimal in combining the given univariate tests.

Remark 2. When there is only a single POI (n0 = 1, corresponding to sparsity
β = 1), the detection efficiencies are the same for the HC procedure and for
the mini-p procedure. As more POIs exist on the trace (i.e., as β decreases),
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the detection of leakage existence also becomes much easier using HC procedure
than using mini-p procedure, which is reflected by the smaller ntr needed to
raise γ in (17) above the detection boundary g(β) than gmax(β).

Remark 3. To find exploitable leakage about a particular V , [5] sampled random
plaintexts with varying V values for the ρ-test, to detect and locate sparse sig-
nals for this targeted V . The fixed-versus-fixed and fixed-versus-random t-tests,
being nonspecific, would find more leakage signals along the trace. The choice
of sampling scheme and tests affects both the SNR and the sparsity of the leak-
age signals. The HC procedure can lead to better detection than the mini-p
procedure when there are multiple leakages, as likely in the fixed-versus-fixed
and fixed-versus-random settings. Note that the identification of the exploitable
leakage is a harder question than simply detecting leakage existence. For certi-
fication of non-leaky device, the optimal leakage detection procedure proposed
here should be applied. To identify exploitable leakage, after leakage detection,
specific test such as the ρ-test should be conducted and possibly more traces
need to be collected for identification.

Remark 4. The HC procedure above assumed that the noise are independent
among different time points along the trace. However, the performance of HC
procedure is not affected under the likely short-range dependence [26] (i.e., the
dependence among noises is concentrated to nearby time points) in practice.
Extending generalized HC procedure [27] for strongly dependent noise for leakage
detection can be considered in the future work.

5 Numerical Results

In this section, we investigate the performance of HC procedure and mini-p pro-
cedure on synthetic data and real implementations. The results on synthetic data
validate the theoretical analysis of Section 4 on the impact of the signal strength
and the signal sparsity on the leakage detection performances. Then, the exper-
iments on real traces clearly show the relevance of making use the HC metrics
in typical case-studies: (i) an unprotected and (ii) a masked implementation of
the AES.

5.1 Validation on Synthetic Data

Setup description For these experiments, we simulate traces of a complete ex-
ecution of a 8-bit AES-128 implementation (10 rounds) with a Hamming weight
leakage function and Gaussian noise. The 16 Hamming weights corresponding to
the 16 intermediate bytes are computed for the plaintext and the result of every
AddRoundKey, SubBytes, and MixColumns operation. Each of the 496 calculated
values is uniquely reflected in one time sample (hence dictating the traces length)
on which random noise following a Gaussian distribution is added. We consider
two cases with levels of noise corresponding to SNRs of 0.1 and 0.01. For both
cases, the three detection tests discussed in Section 4 are applied: (i) non-specific
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t-test with fixed-vs-random plaintexts, (ii) non-specific t-test with fixed-vs-fixed
plaintexts, and (iii) specific ρ-test with random plaintexts.

In order to test the performance of the HC and mini-p procedures, we oberve
their evolution when adding more and more traces. If a statistic is greater than
its respective threshold, we consider that a leakage is detected (returning 1),
and that there is no detected leakage otherwise (returning 0). This experiment
is repeated 100 times on independent trace sets. The 100 obtained vectors are
then averaged to build success curves. Fig. 4 shows the success rates of the HC
(red curve) and mini-p (blue curve) procedures that are applied on the p-values
output by these three detection tests.

Note: the purpose of these experiments is not to directly compare non-specific
and specific leakage detection tests. They are rather chosen because of the dif-
ferent signals they exploit. In the first case, a non-specific detection test aims
at finding leakages in a non-sparse signal with a larger amplitude: every sam-
ple can lead to detection regardless of its actual usability (i.e. to retrieve the
key). In the second case, a specific detection test aims at finding leakages in a
sparse signal with lower amplitude: it only spots the useful points-of-interest.

Fig. 4: Success rates curves for the HC (red) and mini-p (blue) procedures applied
on the fixed-vs-random, fixed-vs-fixed, and ρ leakage detection tests.

Results interpretation The results depicted in Fig. 4 allow us to make the
following observations:
(I) On the signal sparsity : the detection based on the HC procedure performs
better than the one based on the mini-p only with the non-specific tests, i.e.
when the signal is not sparse (all data-dependent samples can be spotted by the
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test, independent of their exploitability). Conversely, the specific test targets a
very specific value. Therefore, the signal is very sparse (there is a single point-
of-interest) and the HC and mini-p success rate curves completely match. This
first observation support the detectable region boundaries depicted in Section 4.
The single point-of-interest in the specific test here is a simulated extreme case.
In practice, a single leaky instruction can also lead to multiple points-of-interest
on the measured traces (e.g., due to high sampling rate). Then, even for the
specific tests, the HC procedure will detect the leakage faster than the mini-p
procedure in practice.
(II) On the impact of the noise: as previously observed in the literature [28],
increasing the noise leads to decreasing the detection speed by the same factor
for a given procedure. Therefore, the ratio between the detection speed of the
HC and mini-p procedures remains constant. However, although it does not
change much for devices with low levels of noise, it can have an impact on the
certification outcome for devices with large levels of noise.
(III) Non-specific detection tests: as previously stated by Durvaux et al. [5] one
can notice that appropriately choosing the input of a non-specific test can lead to
a better detection: the fixed-vs-fixed test performs approximately twice better
than the fixed-vs-random test. Due to our Hamming weight leakage function,
the maximum distances are twice larger with the fixed-vs-fixed than with the
fixed-vs-random test. Similarly to the impact of the noise, the larger is the noise,
the bigger is the potential impact on a certification outcome.

To summarize, these preliminary results mostly show that there is a clear
practical improvement of the HC procedure over the mini-p in cases where (i) the
signal is not sparse, and (ii) the SNR is low. In the next experiments, we focus
on the ρ leakage detection test.

5.2 Leakage Detection on Real Traces: Unprotected AES

Setup description In this section, we investigate the performances of the HC
and mini-p procedures on real power traces for non-sparse signal and high SNR.
For this purpose, we consider an unprotected AES implementation running on an
AVR 8-bit micro-controller embedded on a SASEBO-W board. Power traces are
sampled with a LeCroy WaveRunner 640zi oscilloscope that produces 50, 000-
sample leakage traces. The results based on a fixed-vs-random ρ leakage detection
test are given in Fig. 5 (a). Instead of previous success rate curves, we show that
statistical values of HC and mini-p procedures as what evaluators do during
the leakage examination. They are displayed with respectively the blue and the
black curves (scales are respectively labeled on the left and right sides).

Results interpretation Under the significance level of 0.01, with nL = 50, 000,
the thresholds of maximum ρ test statistic (Fisher’s transformation) and HC
statistic are 5.2 and 10.1, respectively. (Note: they can be easily calculated by the
code we provided.) In Fig. 5, the red line denotes these cutoffs. Once the obtained
statistic value exceeds the red line, evaluators declare that the leakage is detected.
The HC procedure detects the existence of leakage with about ntr = 350 while
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the mini-p procedure requires ntr = 450. HC procedure is a little more efficient
than mini-p procedure, and it coincides with the strong leakage signal strength
(estimated SNR around 0.2).
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Fig. 5: Statistic Values of Mini-p and HC procedures on two AES implementa-
tions.

5.3 Leakage Detection on Real Traces: Masked AES

Setup description We then illustrate the application of HC procedure on de-
tecting second order leakage on a masked AES implementation, i.e. low SNR
(sparsity in this case is hard to estimate, but the results indicate that there are
multiple leakage points for masked values). For this purpose, we make use of
traces available on the website of the TeSCASE project [29]. The masked im-
plementation of the AES follows the scheme described in [30] and runs on the
Virtex-5 FPGA embedded on a SASEBO-GII board. This set of traces contains
N = 1, 400, 000 power traces of nw = 3125 samples. It was previously verified
that the traces embed no first-order leakage. Then, HC and mini-p procedures
are compared for detecting the second-order leakage existence for this protected
implementation. Since the centered-product is the natural candidate when at-
tacking second-order leakages [31–33], we use it to combine all pairs of leakages.
The result is then used as observations for leakage detection [4]. That is, for a nw
long trace, we examine correlations of the nL = n2w centered-product leakages
with the Hamming distance of a targeted SBox (1st SBox byte in last round).
The detection results based on ρ test are given in the Fig. 5 (b).

Results interpretation Under the significance level of 0.01, with nL = n2w,
the thresholds of maximum ρ test statistic and HC statistic are 6.1 and 10.1,
respectively. Compared to unmasked AES, its leakage signal strength is lower,
both mini-p and HC procedure require much more measurements to detects
the existence of second-order leakages. The HC procedure requires about ntr =
40, 000 measurements while the mini-p procedure requires ntr = 620, 000. In
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other words, in this case-study, the HC procedure allows detecting the leakages
more than 15 times faster than the mini-p procedure.

6 Conclusions

We put the leakage detection procedure on a sound footing by proposing detec-
tion criterions based on the overall statistical Type I error rate. The proposed
HC-based leakage detection procedure is shown to be theoretically optimal at
combining detections from multiple leakage points, and can greatly improve the
leakage certification process in practice.
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7 Appendix

7.1 Matlab code for Conducting the HC-test

The following code implements the step (III) of the proposed leakage detection
procedure. It takes in the p-values calculated in step (II) and returns the decision
of leaky/non-leaky.

function [d hc_threshold] = hctest(x,alpha)

%HCTEST Leakage detection test.

% [D HC_THRESHOLD] = HCTEST(X,ALPHA) returns the results and the threshold

% of HC test at the significance level (100*ALPHA)%.

% X is a vector of p values.

% ALPHA must be a scalar. If missing, then default value of 1% is used.

%

% The hc-test test the hypothesis that the p vlaues in the vector X come

% from a uniform distribution U(0,1), i.e., the corresponding data is

% leakage-free, and returns the result of the test in D.

% D=0 indicates that the null hypothesis ("leakage-free") cannot

% be rejected at the alpha significance level.

% D=1 indicates that the null hypothesis can be rejected at the alpha level.

% That is, the corresponding data contains some secret information.

%

if nargin < 2

alpha = 0.01;

elseif ~isscalar(alpha) || alpha <= 0 || alpha >= 1

error(message(’stats:ttest:BadAlpha’));

end

% Calculate the threshold of HC test at the significance level (100*ALPHA)%.

myfun = @(nl,th) hcpvalue(nl,th);

nl = length(x);

fun = @(th) myfun(nl,th)-alpha;

hc_threshold = 0.5;

x0 = 0.1;

while hc_threshold<1.07

x0 = x0*10;

hc_threshold = fzero(fun,x0);

end

% Calculate the value of the HC statistic

x_sort = sort(x,’ascend’);

hc = sqrt(nl)*([1:nl]/nl-x_sort)./sqrt(x_sort.*(1-x_sort+1e-50));

hc_max = max(hc(1:floor(nl/2)));

20



% Determine if the data is leakage-free.

if hc_max>hc_threshold

d = 1;

else

d = 0;

end

%% The following function

function pvalue = hcpvalue(nl,th)

%HCPVALUE The pvalue of the variable HC under the null hypothesis.

% PVALUE = HCPVALUE(nL,TH) calculates the pvalue at the value TH

% for the variable HC under the hypothesis that p values

% come from a uniform distribution U(0,1),

% i.e., the corresponding data is leakage-free.

%

% NL is an interger: the number of leakage points.

% TH is a value

%

% References:

% [1] M. Li and D. Siegmund "Higher criticism: $ p $-values and criticism",

% The Annals of Statistics, 2015, vol. 43, no. 3, pp. 1323--1350.

f1 = @(x,y) (x + (y^2-y*(y^2+4.*(1-x).*x).^0.5)/2 ) / (1+y^2);

f2 = @(x,y) 1/(1+y^2) - y*(1-2.*x) ./ ((1+y^2) * (y^2+4*x.*(1-x)).^0.5);

k = [1:floor(nl/2)];

c1 = f1(k/nl,th/nl^0.5);

c2 = f2(k/nl,th/nl^0.5);

pvalue = sum(betapdf(c1,k,nl+1-k) .* (c1./k) .* (1-(1-k/nl).*c2./(1-c1)));

7.2 Proof of Theorem 1

(1) First we consider the fixed versus fixed setting, where each Ṽj takes on one

of two fixed values with equal probability of 1/2, for j = 1, ..., ntr. Since Ṽj is
already normalized in (15) to have mean zero and variance of one, the two fixed
values have to be transformed into 1 and −1 here. Hence with δi = ∆, E[L̄Ṽ=1−
L̄Ṽ=−1] = [∆(1)−∆(−1)] = 2∆, V ar[L̄Ṽ=1− L̄Ṽ=−1] = ntrV ar(rj)/(ntr/2)2 =
4/ntr. We have, from Central Limit Theorem, the t-test statistic

ŝi →
L̄Ṽ=1 − L̄Ṽ=−1√

4/ntr
→ N(∆

√
ntr, 1). (21)

21



The correlation in ρ-test of equation (3) in the main text becomes

ρ̂i =
Cov(Li, Ṽ )√
V ar(Li)V ar(Ṽ )

→
(1/ntr)

∑ntr

j=1(δiṼj + ri,j)Ṽj√
(1 + δ2i )

. (22)

Therefore, under the alternative hypothesis of δi = ∆,

E(ρ̂i) =
∆E(Ṽ 2) + E(riṼ )√

(1 +∆2)
=

∆√
(1 +∆2)

,

and V ar(ρ̂i) = (1/ntr)E[∆2Ṽ 4 + r2Ṽ 2]/(1 + ∆2) = 1/ntr. For small ∆ = o(1)
and ntr → ∞, omitting the smaller order term ∆2 from 1 + ∆2, the ρ-test
statistic ŝi in equation (4) also follows N(∆

√
ntr, 1) distribution.

(2) Now we consider the fixed versus random setting, where Ṽ has half probabil-
ity being fixed to a constant Ṽcons, and half probability being assigned random
value Ṽrand. Since Ṽj is already normalized to have mean zero, 0 = E(Ṽ ) =

(1/2)Ṽcons + (1/2)E(Ṽrand), we have

E(Ṽrand) = −Ṽcons.

Also Ṽj is already normalized to have variance one, 1 = V ar(Ṽ ) = E(Ṽ 2) =

(1/2)Ṽ 2
cons + (1/2){[E(Ṽrand)]

2 + V ar(Ṽrand)} = Ṽ 2
cons + (1/2)V ar(Ṽrand), we

have V ar(Ṽrand) = 2(1−Ṽ 2
cons). Clearly this implies that the constant Ṽcons < 1.

Hence under the alternative hypothesis of δi = ∆, then E[L̄Ṽcons
− L̄Ṽrand

] =

∆Ṽcons −∆E(Ṽrand) = 2∆Ṽcons, and V ar[L̄Ṽcons
− L̄Ṽrand

] = [(ntr/2)V ar(rj) +

(ntr/2)(∆2V ar(Ṽrand) + V ar(rj))]/(ntr/2)2 = (2/ntr)[1 + ∆22(1 − Ṽ 2
cons) + 1].

Hence the t-test statistic

ŝi →
L̄Ṽcons

− L̄Ṽrand√
[2 +∆22(1− Ṽ 2

cons)]2/ntr

→ N(∆
√
ntr

Ṽcons√
1 +∆2(1− Ṽ 2

cons)
, 1).

Omitting the smaller order term ∆2, this is

ŝi → N(∆
√
ntrṼcons, 1)[1 +O(∆2)]. (23)

Using the same calculations under equation (22), the mean and variance of
the ρ-test statistic are

E(ρ̂i) =
∆√

1 +∆2
V ar(ρ̂i) =

1

ntr

1 +∆2E(Ṽ 4)

1 +∆2
. (24)

Thus the ρ-test statistic, omitting the smaller order term, follows theN(∆
√
ntr, 1)

distribution.
(3) For the specific data partition setting. Notice now, Ṽ have mean zero and
variance ∆2. The calculations under equation (22) apply similarly to get that
ρ-test statistic follows the N(∆

√
ntr, 1) distribution approximately.
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