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Abstract

Distance-bounding protocols have been introduced to thwart relay at-
tacks against contactless authentication protocols. In this context, veri-
fiers have to authenticate the credentials of untrusted provers. Unfortu-
nately, these protocols are themselves subject to complex threats such as
terrorist-fraud attacks, in which a malicious prover helps an accomplice to
authenticate. Provably guaranteeing the resistance of distance-bounding
protocols to these attacks is a complex task. The classical countermea-
sures usually assume that rational provers want to protect their long-term
authentication credentials, even with respect to their accomplices. Thus,
terrorist-fraud resistant protocols generally rely on artificial extraction
mechanisms, ensuring that an accomplice can retrieve the credential of
his partnering prover.

In this paper, we propose a novel approach to obtain provable terrorist-
fraud resistant protocols without assuming that provers have any long-
term secret key. Instead, the attacker simply has to replay the informa-
tion that he has received from his accomplice. Based on this, we present
a generic construction for provably secure distance-bounding protocols,
and give three instances: (1) an efficient symmetric-key protocol, (2) a
public-key protocol protecting the identities of the provers against exter-
nal eavesdroppers, and finally (3) a fully anonymous protocol protecting
the identities of the provers even against malicious verifiers trying to pro-
file them.

1 Introduction

In recent years, contactless communications have become ubiquitous. They are
used in access control cards, electronic passports, payment systems, and nu-
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merous other applications, which often require some form of authentication. In
authentication protocols, the device to authenticate is typically an RFID tag, a
contactless card or more and more frequently an NFC-enabled smartphone, act-
ing as a prover. Before accessing some resources, this device has to authenticate
to a reader, which plays the role of a verifier.

An important concern for contactless communications are relay attacks, in
which an adversary forwards the communications between a prover and a verifier
to authenticate [4]. These attacks cannot be prevented only by cryptographic
tools and thus mechanisms ensuring the physical proximity between a verifier
and a prover must be used. Distance-bounding (DB) protocols [10] have been
proposed to allow the verifier to estimate an upper bound on his distance to
the prover by measuring the time-of-flight of short challenge-response messages
exchanged during time-critical phases. At the end of such a protocol, the verifier
should be able to determine if the prover is legitimate and in his vicinity.

A typical scenario for contactless authentication devices is a public trans-
port system in which users authenticate to access buses or subway stations
through their NFC-enabled smartphones. The transportation company must
deploy controls to prevent misuses of its system. A legitimate user might want
to help a friend to use his credentials illegally for a single trip while he is not
using them, which is known as a terrorist fraud (TF). Nevertheless, this user
would not accept that his friend uses them at will afterwards as the original
user may get caught and accountable. This attack targets the transportation
company. Another threat against DB protocol is a fraudster using the presence
of a legitimate user to authenticate. This is known as a mafia fraud (MF) and
targets the transportation company as well as the end user as he may have to
pay for this extra fare. These two attacks are typical examples of relay attacks
against contactless authentication protocols. Another important aspect for such
a system is the protection of user privacy. Most users would not accept that
their whereabouts can be tracked down by other users or by the transportation
company itself due the wealth of personal information that can be inferred from
such data. Another scenario could be the access to a restricted building. In this
context, third parties may want to enter (MF attacks), or legitimate workers
may want to help friends to access (TF attacks) the building. However, the
verifier is not directly a threat against the privacy of workers.

In this paper, we propose a new approach for developing provably secure DB
protocols resisting to all classical threats against such protocols. The novelty of
our approach is that a prover can fully control the responses to the time-critical
challenges and still prove his proximity. This is particularly appropriate for
coping with terrorist-fraud attacks, since these selected responses can be reused
by malicious parties, only if they have been helped by the prover beforehand.
Moreover, this approach is more flexible than traditional countermeasures to
TF attacks, which rely on extraction mechanisms (e.g., zero-knowledge proofs,
secret-sharing schemes or fuzzy extractors). Indeed, these mechanisms are more
complex than the ones used in this paper and the DB protocols based on them
require more elaborated proofs. Furthermore, these protocols rely on long-term
secret keys, thus inherently exposing the privacy and the anonymity of the
provers.

Note that the TF-resistance property is a concept that is hard to formalize
and numerous attempts have been made [?, 5, 16, 25]. Far from claiming that
the approach that we propose is the only viable alternative to attaining TF-
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resistance, our efforts expand the fundamental understanding of this problem
and how to counter it in practice. Eventually, the best approach will emerge
from all these attempts.

Our main contributions can be summarized as follows.

Novel Approach. The main contribution is to propose a new approach for
provable TF resistance in which the prover can unilaterally select the binary
responses used during the time-critical challenge-response phases. If a malicious
prover transfers this information to his accomplice, the accomplice can then
adapt and replay the information received for a new session. We therefore obtain
an intuitive TF resistance proof without any artificial extraction mechanism.
Surprisingly, this idea has not been considered so far in the literature. As shown
in this paper, it can be used to design protocols achieving the simulation-based
TF resistance notion [15], which is a stronger notion than the ones used for most
existing TF-resistant protocols. Fortunately, even if the prover is responsible
for selecting the response vectors, this impacts only slightly the other security
properties of our protocols.

Generic Construction. The second is TREAD (for Terrorist-fraud Resistant
and Extractor-free Anonymous Distance-bounding), which is a generic construc-
tion implementing the proposed approach. It can be instantiated in several ways
including a lightweight symmetric-key protocol, a public-key protocol protecting
the privacy of provers in the presence of eavesdroppers, and a protocol based on
group signatures protecting the anony-mity of the provers even against malicious
verifiers. The latter one can be used in the public transportation scenario, whilst
the first two are more adapted to the scenario of the restricted-access building.

Extension of DFKO. As a final contribution, the DFKO framework [15] is
extended to deal with distance-hija-cking (DH) attacks [14], in which a malicious
prover tries to fool a verifier on their mutual distance, by taking advantage of
nearby honest provers. This provides a framework to deal with all the potential
attacks against DB protocols. The security of TREAD is proven in this extended
framework.

We provide a comparative analysis of our results and other well-known solu-
tions existing in the literature in Table 1. These results are grouped into three
categories: best unproved protocols, best formally-proven protocols and best
privacy-preserving formally-proven protocols.

TREAD compared favourably to the best published solutions. The instance
based on the group-signature scheme is fully anonymous and provides TF-
resistance, in contrast to the solution presented in [18], while simply having
to slightly relax the MF-resistance probability (from

(
1
2

)n
to
(

3
4

)n
, which forces

the number of time-critical phases to at least double to achieve the same secu-
rity level). In fact, it has the best security properties of any fully anonymous
protocol without any artificial and inefficient extraction mechanism. It almost
matches the TF, MF and distance-fraud (DF) resistance of the best proven so-
lutions [7, 16] while providing full anonymity. Finally, the instance based on
the public-key scheme achieves slightly less MF resistance than the Swiss-Knife
protocol attains with a symmetric key. However, note that the Swiss-Knife pro-
tocol has not been formally proven. In fact, a minor attack has been presented
against it [6].

Related Work. Since the introduction of DB protocols in 1993 by Brands
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Table 1: Comparison. TF denotes the terrorist-fraud resistance. The probabili-
ties of successful mafia-fraud and distance-fraud attacks depend on the number
n of time-critical rounds. P and A respectively denote privacy with respect to
an eavesdropper and anonymity with respect to a malicious verifier. R denotes
if a user can be revoked easily.

Protocol TF MF DF P A R

Not formally proven

Swiss Knife[20] 3
(

1
2

)n (
3
4

)n
3 7 3

Proven-security

SKI[7] 3
(

3
4

)n (
2
3

)n
7 7 3

FO[16] 3
(

3
4

)n (
3
4

)n
7 7 3

Proven-security and privacy

privDB[24] 7
(

1
2

)n (
3
4

)n
3 7 3

GOR[18] 7
(

1
2

)n (
3
4

)n
3 3 3

PDB[1] 3
(

1
2

)n (
3
4

)n
3 3 7

SPADE[12] 3
(

1
20.37

)n (
3
4

)n
3 3 3

TREAD

Secret key 3
(

3
4

)n (
3
4

)n
7 7 3

Public key 3
(

3
4

)n (
3
4

)n
3 7 3

Group Signature 3
(

3
4

)n (
3
4

)n
3 3 3

and Chaum [10], new threats have emerged against contactless communica-
tions. They can be classified depending on whether the adversary is an external
entity or a legitimate but malicious prover. The former case includes attacks
in which the adversary illegitimately authenticates, possibly using a far-away
honest prover (Mafia Fraud), or in which the adversary plays against a sim-
plified version of the protocol without any distance estimation (Impersonation
Fraud). The latter case includes attacks featuring a legitimate but malicious
prover who wants to fool the verifier on the distance between them (Distance
Fraud), sometimes using the presence of an honest prover close to the verifier
(Distance Hijacking). It also tackles a malicious prover who helps an accom-
plice authenticate (Terrorist Fraud). This attack is the most difficult one to
characterize and counter.

The classical countermeasure against TF relies on the assumption that a ma-
licious prover does not have enough trust in his accomplice to simply give him
directly his authentication credentials (i.e., any potential long-term secret key).
TF resistance is generally implemented by making the authentication of the ac-
complice very difficult if the prover does not leak away a significant fraction of
his long-term key. While intuitively achieving this objective is not difficult, prov-
ing that a protocol is TF resistant is problematic. So far, all the proofs proposed
in the literature have relied on artificial mechanisms, such as trapdoors, secret
leakage, secret sharing schemes and extractors. These mechanisms allow an ac-
complice to extract the long-term secret key of his companion prover if he can
authenticate with a non-negligible probability. Thus, once the accomplice has
retrieved this key, he can impersonate at will the targeted prover. Hence, these
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artificial mechanisms are mainly used to deter rational provers from helping
potential accomplices. For instance, Fischlin and Onete [16] proposed a special
mode (i.e., a trapdoor) allowing the adversary to authenticate if he knows a tar-
geted string close in terms of Hamming distance to the long-term secret key of
the prover. Very recently, Bultel and co-authors [12] used the same approach to
introduce SPADE, a fully anonymous TF-resistant protocol. Unfortunately in
this case, there is a trade-off to set in the analysis of the MF and TF resistance
probabilities. This trade-off balances the information given to the accomplice
by the prover and the information inferred from the trapdoor, which leads to
unusual resistance probabilities for some properties. An important drawback of
this approach is that it does not support easily scattered verifiers. In such a
case, the verifiers may have to share a common decryption key to respond to the
trapdoor queries. Otherwise, the accomplice would be able to impersonate his
partnering prover only with the given verifier, which is a threat that the prover
may accept. Finally, in this solution, a malicious verifier is unfortunately able
to replay the received information and impersonate a given prover, representing
a major threat against the latter.

In their SKI protocols [5], Boureanu, Mitrokotsa and Vaudenay employed
a leakage scheme allowing an adversary to retrieve the long-term secret key
used several times by a prover. The same technique is reused in the DBopt
protocols [9]. Avoine, Lauradoux, and Martin [3] used a classical secret-sharing
scheme to resist to terrorist frauds. Their approach consists in sharing the
prover’s long-term secret using a (n, k) threshold cryptographic scheme. Upon
reception of a challenge, the provers should send a share back to the verifier.
The key-point is that an accomplice must know all the shares to be able to
successfully respond to any challenge, but then he could retrieve the prover’s
long-term secret. In this case, the challenges sent during the time-critical phase
can no longer be binary messages and in addition the scheme neither considers
distance fraud, nor addresses the privacy issue. Finally, Vaudenay [25] relied
on extractor schemes to recover a string close to the long-term secret key from
the view of all nearby participants after a TF attempt. These solutions de-
pend on computationally-expensive primitives. Overall, TREAD has therefore a
simpler analysis than any of these protocols with the same security properties.
Furthermore, as these solutions rely explicitly on long-term shared secret keys,
they present serious challenges for developing privacy and anonymity-preserving
solutions.

While a lot of effort has gone into designing secure DB protocols, the re-
search community has only recently investigated privacy issues linked to dis-
tance bounding. Considering the amount of information that can be inferred
from the location history of an individual [17], protecting privacy becomes a
critical issue for the wide acceptance of such technology. To address this con-
cern, two aspects have to be considered: (1) the protection of the privacy of the
provers with respect to eavesdroppers and (2) the protection of the anonymity
of the provers with respect to curious verifiers.

Anonymous DB protocol against external adversaries has been introduced
recently [19]. Gambs, Onete, and Robert [18] extended this notion to deal with
honest-but-curious and malicious verifiers, which represent a threat against the
privacy of the legitimate provers as they might profile provers by linking their
authentication sessions. The authors proposed an extension of the HPO proto-
col [19] in which the provers are managed as a group. Though they addressed the
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classical MF, DF and IF attacks, they did not at consider TF. Recently, Vaude-
nay [24] proposed a generic solution to add the privacy property to DB protocols
with respect to external eavesdroppers, which relies on an authenticated key-
exchange added on top of a one-time secure DB protocol. Unfortunately, it
does not provide TF resistance nor anonymity against honest-but-curious or
malicious verifiers.

Finally, Ahmadi and Safavi-Naini [1] gave a TF-resistant DB protocol PDB,
which protects the anonymity of the prover, by fixing the weaknesses of the
DBPK-log protocol [13]. Hence, the prover shows with a classical zero-knowledge
proof that he possesses the secret key used during the protocol and its signature
issued by a trusted authority. Unfortunately, this solution does not permit to re-
voke the credential of a specific prover without adding too much complexity and
damaging the robustness of the overall scheme. In particular, since the authen-
tication is supposed to be anonymous, there is no way to distinguish whether a
session uses a given stolen secret key or not. Compared to this protocol, TREAD
guarantees the anonymity of its users through a group signature scheme. This
enables an efficient management of users (i.e., adding and revoking users) and
a clear separation of duties (e.g., adding, revoking and lifting the anonymity of
a prover can be done by separate authorities).

Note that overall more than forty DB protocols have been proposed since
1993. Unfortunately, based on a recent survey [11] only few of them have not
been broken yet. We refer the reader to this paper for more details.

Outline. In the next section, we describe our generic construction providing
TF resistance and three of its possible instantiations. Then in Section 3, we
introduce the different security models and then prove the essential security
properties of our construction before concluding in Section 4.

2 The TREAD instantiations

In this section, we present TREAD, a generic construction, which encompasses
all the desirable properties of a secure DB protocol. To counter terrorist-fraud
attack, the usual strategy is to ensure that if a malicious prover gives his ac-
complice both responses for a given challenge, he can recover one bit of the
prover’s long-term secret key x as shown in Figure 1. If the accomplice is able
to authenticate with a non-negligible probability, he probably knows a large
part of x and can use it to retrieve the full secret through the available extrac-
tion mechanism. Thus, any rational prover should not accept to go that far.
Even though intuitively clear in general, the security of such approach is hard
to prove formally. Our approach aims at avoiding this pitfall.

2.1 The Generic Construction TREAD

TREAD requires as building blocks an IND-CCA2-secure encryption scheme E
(either symmetric-key or public-key) and an EUF-CMA-secure signature scheme
S. The instantiations gradually move from a computationally-efficient sym-
metric protocol to a prover-anonymous one, in which a secure group-signature
scheme is required.

As shown in Figure 2, our scheme relies on strong design choices. Our first
design choice is to enable a prover to choose the values of the response strings
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Verifier V Prover P
shared secret key: x

NV
$← {0, 1}n NP←−−−−−−−−−−−−−−− NP

$← {0, 1}n
NV−−−−−−−−−−−−−−−→

α = PRFx(NP,NV )
for i = 0 to n

Pick ci ∈ {0, 1}
Start clock

ci−−−−−−−−−−−−−−−→
ri =

{
αi if ci = 0

αi ⊕ xi if ci = 1Stop clock
ri←−−−−−−−−−−−−−−−

Figure 1: The classical countermeasure against terrorist fraud: if the prover
gives both possible responses, i.e. αi and αi ⊕ xi to his accomplice for a given
ci, he leaks one bit of his long-term authentication secret x. Note that PRF is
a pseudorandom function keyed with x.

α and β, which he then sends signed and encrypted in his initial message e
to the verifier. The encryption hides these values from an eavesdropper, but
they can be used by the prover (or a TF accomplice) to replay the protocol. In
addition, a malicious verifier could also do the same and replay the information
against another verifier. The verifier simply responds to the initial message with
a random binary string m to prevent trivial DF attacks in which a malicious
prover selects α = β. During the time-critical phases, the response to challenge
ci is computed as αi if ci = 0 and βi ⊕mi otherwise.

Most existing DB protocols do not enable the prover to generate the response
strings α and β, due to the fact that provers are potentially malicious and may
attempt to cheat by selecting convenient values. Hence, these strings are usually
computed as the output of a pseudo-random function (PRF) on nonces selected
independently by the verifier and the prover. Unfortunately, this is not sufficient
to prevent provers from influencing the values α||β [6, 11]. Indeed as mentioned
earlier, there is a potential attack against the Swiss-Knife protocol [20] based
on the use of a weak PRF [6].

Our first design choice is motivated by a simple observation. If a malicious
prover can control the PRF in some cases, we can further assume that he chooses
the response strings. If a protocol can thwart such provers, it should a fortiori
resist to provers only manipulating the PRF.

A Novel Approach. Our second design choice is to allow for limited replays
to achieve stronger TF resistance. This is a fundamental shift compared to
approaches existing in the distance-bounding literature. More precisely, our
strategy is not to force the prover to leak his secret to his accomplice. Rather, we
design the protocol such that, if the prover helps his accomplice to authenticate,
the latter can simply replay this information in future sessions. The difficulty is
to ensure that only TF accomplices benefit from this strategy, and not regular
external Man-in-the-Middle (MiM) adversaries.

In our construction, anyone knowing proper responses corresponding to a
given initial message e (which is authenticated and encrypted by the prover,
and remains opaque to a MiM adversary) can adapt them to any new string m
generated by the verifier. This seems to go against the intuition that authenti-
cation protocols need to ensure freshness (usually through a verifier-generated

7



nonce) to prevent replay attacks. Indeed, a MiM adversary can observe a session
and learn about half the responses corresponding to a specific e. Then, he may
replay e and the responses that he knows. However, this adversary must still
guess on average n

2 values, which he can only do with negligible probability.
The counter-intuitive second design choice has interesting implications with

regards to TF-resistance. Consider the scenario in which an accomplice is helped
by a malicious prover to authenticate. If the accomplice replays the initial
message e in a latter session, he would be able to adapt the information given
by the prover, which allows him to re-authenticate without the help of the
prover with at least the same probability as in the first attempt. Moreover, if
this probability is non-negligible, he is even able to amplify it in such a way
that, after a polynomial number of interactions with the verifier (without the
prover), he gains the ability to impersonate the prover with an overwhelming
probability.

Based on our design choices, we propose our generic construction TREAD.
It can be instantiated with a public identity (idpub(P )) in the classical non-
anonymous case (in which the private identity idprv(P ) is useless and can be set
to null) or with a private identity (idprv(P )) in the private and the anonymous
settings (in which the public identity must be set to null). More details are
given in the next section. These identities are used (among other things) to
retrieve the corresponding decryption/verification keys.

Verifier V Prover P
dk: decryption key ek: encryption key
vk: verification key sk: signature key

idpub(P ): public identity of P
idprv(P ): private identity of P

Initialisation

α||β $← {0, 1}2·n, σp = S.sigsk(α||β||idprv(P ))

(α||β||idprv(P )||σp) = E.decdk(e)
e||idpub(P )←−−−−−−−−−−−−−−− e = E.encek(α||β||idprv(P )||σp)

if S.vervk(σp, α||β||idprv(P )) = 0 then abort

m
$← {0, 1}n m−−−−−−−−−−−−−−−→

Distance Bounding
for i = 0 to n

Pick ci ∈ {0, 1}
Start clock

ci−−−−−−−−−−−−−−−→
ri =

{
αi if ci = 0

βi ⊕mi if ci = 1Stop clock
ri←−−−−−−−−−−−−−−−

store ∆ti
Verification

If #{i : ri and ∆ti correct} = n then

OutV := 1; else OutV := 0
OutV−−−−−−−−−−−−−−−→

Figure 2: Our generic and provably secure DB construction TREAD built from
an IND-CCA2-secure encryption scheme E and an EUF-CMA-secure signature
scheme S. We use || for the concatenation operation.

Definition 1 (TREAD). The construction TREAD is composed of five algo-
rithms and parametrized by an IND-CCA2-secure encryption scheme E, an EUF-CMA-
secure signature scheme S, as well as a definition for idprv(·) and idpub(·) and a
distance bound dmax such that messages cover this distance within a time tmax

2 .

DB.gen(1λ) is the algorithm run by an honest party, setting up the encryption
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scheme E and the signature scheme S for a security parameter λ. It returns
the number of the time-critical phases n, which is a function of λ.

DB.prover(ek, sk) is the algorithm executed by the prover described in Figure 2.
The prover starts by drawing a random value α||β from the uniform
distribution on {0, 1}2·n. Then, he computes a signature σp on it with
S.sigsk(α||β||idprv(P )). Afterwards, he generates e = E.encek(α||β||idprv(P )||σp)
and sends e||idpub(P ). Finally, during the n time-critical phases, he re-
ceives a challenge bit ci and responds with ri = (αi∧¬ci)∨((βi⊕mi)∧ci).

DB.verifier(ID, dk, vk,UL,RL) is the algorithm executed by the verifier interact-
ing with a prover identified as ID. Depending on the context, this identifier
can be directly the identity of a prover (idpub(P )), but it can also be the
name of a group (idprv(P )) for anonymous authentication. Moreover de-
pending on the context, the verifier has access to the lists of legitimate
provers UL and revoked ones RL. He expects an initial message e and
deciphers it as (α||β||idprv(P )||σp) = E.decdk(e). If σp is invalid (i.e.,
S.vervk(σp, α||β||idprv(P )) = 0), the verifier aborts. Otherwise, he picks a
random bit string m from the uniform distribution on {0, 1}n and sends
it. Afterwards, during the n time-critical phases, he generates a random
bit ci from a uniform distribution, starts his clock, sends ci, gets back ri,
stops his clock and stores the corresponding time ∆ti. Finally, he verifies
that (1) ∆ti ≤ tmax and (2) ri = (αi∧¬ci)∨((βi⊕mi)∧ci), for all i ≤ n. If
these conditions hold, he sends an accepting bit OutV = 1, while otherwise
he sends OutV = 0.

DB.join(ID,UL) is the algorithm to register a new prover with identifier ID in
the list UL. It returns the keys (ek, dk) for E and (sk, vk) for S. Depending
on the primitives E and S, dk and vk may be public or private, and can
sometimes be equal respectively to ek and sk.

DB.revoke(ID,UL,RL) is the algorithm to revoke a legitimate prover with iden-
tifier ID in UL and transfer him to the revoke list RL.

These last two algorithms depend heavily on the instance of the protocol and
are described in more details in the following section. Note that TREAD adopts
the sign-then-encrypt paradigm instead of the more usual encrypt-then-sign. If
the latter approach were used, an eavesdropper would be able to infer easily the
identity of any prover, by simply verifying the signature on the message e with
all the public keys listed in UL. The security is nonetheless preserved, at the
cost of using an IND-CCA2 secure encryption scheme.

2.2 Instantiations

Our instantiations go from a computationally-efficient sym-metric-key protocol
to a prover-anonymous one.

Efficient symmetric-key scheme. Computational efficiency is critical for
the design of DB protocols as they are usually used in resource-limited de-
vices. To obtain an optimal construction, TREAD can be instantiated with an
IND-CCA2 symmetric-key encryption scheme SKE and an EUF-CMA message-
authentication code scheme MAC. In this case, the public identity idpub(P ) is
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the identity of the prover and the private identity idprv(P ) is set to null. Since
SKE and MAC are symmetric, we have ek = dk and sk = vk. Thus, the prover
and the verifier have the same symmetric key k = (ek, sk). In this construction,
the verifiers have access to a private list UL containing all the secret keys of
legitimate provers. An authority should add any prover in the private list UL
or in the revokation public list RL.

Prover privacy and public-key encryption. In applications such as con-
tactless payment schemes, shared secret keys cannot be used. Thus, with the
emergence of NFC-enabled smartphones, public-key DB protocols are crucial.

TREAD can be instantiated with an IND-CCA2 public-key encryption PKE
and an EUF-CMA digital signature scheme S-SIG. In this case, the public identity
idpub(P ) is set to null, and the private one idprv(P ) is the identity of P (or
his verification key). The keys ek and dk are respectively the public and the
private keys of the verifier, and sk and vk are the (private) signature key and the
(public) verification key of the prover. With such a protocol, two sessions by the
same user are not linkable for an external eavesdropper as the only information
sent about the prover’s identity is encrypted with the public-key of the verifier.
However, verifiers have the power to link sessions. In this construction, the
verifiers have access to a public list UL containing the public keys of legitimate
provers. An authority should add any prover in the public list UL or in the
revokation public list RL.

Prover anonymity and group signature. TREAD can be used to provide
full prover-anonymity with respect to a malicious verifier. As profiling users is
now common, it is crucial to develop anonymity-preserving DB protocols. Both
prover anonymity and revocability can be achieved by instantiating TREAD
with an IND-CCA2 public-key encryption scheme PKE and a revocable group
signature scheme G-SIG. In this case, the public identity idpub(P ) is set to null,
and the private identity idprv(P ) is set to the identity of the group IDG. Inde-
pendent groups may coexist but prover-anonymity with respect to the verifier
is only guaranteed up to a prover’s group. The keys ek and dk are respectively
the public and private keys of the verifier, sk is the prover’s signing key and
vk is the public group verification key. Group signature schemes allow a user
to anonymously sign on behalf of a group he belongs to. Hence, the verifier
can check if the prover belongs to the claimed group, but cannot identify him
precisely nor link his sessions. In this scenario, the join and revoke algorithms
take their full meaning.

Let (gpk,msk) be the group/master key pair of the group signature scheme
G-SIG. Then,

DB.joinmsk(ID, gpk,UL) returns a prover signing key skID for PID. It also outputs
a value regID and adds PID to UL.

DB.revokemsk(ID, gpk,RL,UL) computes the logs revID for PID, using regID and
msk, and moves PID from UL to RL.

3 Models and Security Proofs

In this section, we describe the models for defining DB protocols and to char-
acterize the classical threats against these protocols. Then, we prove the main
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security properties of the instantiations of our TREAD construction.

3.1 Formal Security Models

To the best of our knowledge three security models exist for distance bounding:
the original one by Avoine and co-authors [2], the second one by Dürholz, Fis-
chlin, Kasper and Onete [15] (DFKO), and the last one by Boureanu, Mitrokotsa
and Vaudenay [5]. In this paper, we use the DFKO model and its extension for a
strong TF-resistance notion (SimTF) proposed by Fischlin and Onete [16]. The
DFKO model is even extended to deal with DH attacks [14]. Finally, we intro-
duce the privacy and anonymity models derived from the work of Gambs, Onete
and Robert [18]. These models are compatible with the proposed extension of
the DFKO model and rely on classical security definitions given in Appendix A.

Distance-Bounding Protocols. DB protocols are interactive protocols run-
ning between two participants. The objective of the prover P is to prove to the
verifier V that he is legitimate and located at a distance at most dmax. The
participants interact during rounds, defined as sequences of messages. For some
of these rounds, the verifier uses a clock to measure the time elapsed between
the emission of a challenge ci and the reception of the corresponding response
ri. These back-and-forth rounds are referred to as time-critical rounds while
otherwise they are refer to as slow phases. In most protocols, the DB phase of
a protocol is composed of either n independent time-critical rounds or only one
combined time-critical round. Having measured the elapsed time at the end of
each time-critical round, the verifier then compares this value to a threshold
tmax associated with the maximal allowed distance dmax. If at least one of these
tests fails, the prover will not be considered in the vicinity of the verifier.

The verifier is assumed to behave honestly during the authentication of a
prover. However, he may try to lift the anonymity of a prover if this is possible.
In such a case, the verifier may try to link sessions to a given prover. Addition-
ally, provers can potentially behave maliciously and attempt to fool the verifier,
either by themselves or by using (voluntary or unwilling) accomplices.

Adversary Model. In this DFKO model, an adversary can interact with
provers and verifiers in three kinds of sessions:

• Prover-verifier sessions, in which he observes an honest execution of the
protocol between a prover and a verifier.

• Prover-adversary sessions, in which he interacts with a honest prover as a
verifier.

• Adversary-verifier sessions, in which he interacts with a legitimate verifier as
a prover.

Each session is associated with a unique identifier sid.
The adversaries are defined in terms of their computational power t, the num-

ber of prover-verifier sessions qobs they may observe, the number qv of adversary-
verifier sessions and the number qp of prover-adversary sessions they initiate, and
their winning advantage for the corresponding security games.

To capture the notion of relays, the DFKO framework uses an abstract clock
keeping track of the sequence of the adversary’s actions. It is given as a function
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marker : N× N→ N, such that marker(·, ·) is strictly increasing. It can be used
to define tainted time-critical rounds. This indicates that an attack scenario is
ruled out by definition, due for instance to the verifier’s ability to detect pure
relays through his accurate clock. More precisely, an adversary cannot win a
game in a tainted session. In the following definitions, Πsid[i, . . . , j] denotes
a sequence of messages (mi, . . . ,mj) exchanged during the session sid of the
protocol.

Following the terminology introduced by Vaudenay [23] and later re-used
to define prover-anonymity [19], if an adversary is assumed to know the final
result of an authentication session (i.e., accept or reject), he is said to be wide,
while otherwise he is narrow. Orthogonally, if the adversary may never cor-
rupt provers, he is considered to be weak while if a corruption query is only
followed by other such queries, the adversary is forward. Finally, if there is no
restriction on the corruption queries, the adversary is said to be strong. In this
paper, we consider the strongest adversary model possible, namely wide-strong
adversaries.

Security analysis. We give the proofs of the main properties of our construc-
tion: (1) TF resistance, (2) MF resistance, (3) DH resistance (implying DF
resistance), (4) prover privacy and finally (5) prover anonymity. In the context
of this paper, the last property is the strongest one as it protects the privacy of
the provers against the verifiers themselves.

The slow-phase impersonation-security threat is discarded in our analy-
sis [15]. This notion has been introduced for resource-limited provers and states
that the authentication of a prover should be difficult even if only a reduced
number of time-critical rounds is supported. It is relatively ambiguous and
makes slow-phase impersonation resistance hard to achieve. Furthermore, hav-
ing multiple rounds of communication is no longer a problem for contactless
devices, which are faster and more efficient in their interactions. Therefore, we
believe that the need for slow-phase authentication is no longer a constraint for
the design of DB protocols.

Game structure. The threat models are represented as security games involv-
ing an adversary A and a challenger simulating the environment for him. All
these game-based proofs start with the challenger building the simulation envi-
ronment using DB.gen(1λ). For clarity, this step is omitted in their descriptions.
The adversary interacts with the simulated environment through oracles that
he is allowed to run concurrently. These include a prover oracle (for prover-
adversary sessions), a verifier oracle (for adversary-verifier sessions) as well as
a session oracle to simulate an honest exchange between the prover and the
verifier. The challenger may have to simulate the following oracles:

Verifier runs the protocol DB.verifier(ID, dk, vk,UL,RL).

Prover(·) runs the protocol DB.prover(ek, sk).

Session(·) returns the transcript of a new honest run of the protocol DB.auth(R,n).

Joinc(·) simulates the join of a corrupted prover Ui by running DB.join(i,UL)
and returning the secret keys.

Corrupt(·) simulates the corruption of a prover Ui by returning his secret keys.

12



Notation. In what follows, qp (respectively qv) refers to the number of times
the prover (respectively verifier) is used.

3.2 Terrorist-Fraud Resistance

Dürholz, Fischlin, Kasper and Onete defined the simulation-based TF-resistance
notion SimTF [15]. In this model, a far-away malicious prover P wants to use
an accomplice A close to the verifier to authenticate. For any rational prover
P , A should not receive during the attack enough information allowing him
to impersonate P later on in any MF or IF. This is formalized as a two-phase
game. During the first phase, A tries to authenticate with the help of P . Let pA
denote his success probability. During the second phase, a simulator S takes the
internal view of A and tries to authenticate without any interaction with any
other legitimate prover. Let pS denote its success probability. The TF attack
by the pair (P,A) is successful, if the help of P during the attack does make
any difference in the attack (i.e., if pA > pS).

In this attack model, the malicious prover is not allowed to communicate with
his accomplice at all during the time-critical phases. Thus, any communication
between them during any time-critical phase taints the session, which can be
formalized by the following definition:

Definition 2 (Tainted Session (TF)). An adversary-verifier session sid, with
time-critical phases Πsid[k, k+1] = (mk,mk+1), for k ≥ 1, with the k-th message
being received by the adversary, is tainted if there is a session sid′ between the
adversary and P such that, for any i,

marker(sid, k) < marker(sid′, i) < marker(sid, k + 1).

This definition is very strong since a single interaction between the accom-
plice and the prover, while the accomplice is running a time-critical round in
an adversary-verifier session sid, is enough to taint all the time-critical rounds
of sid. The malicious prover may not have any feedback from his accomplice
during the time-critical phases of the protocol, making the prover’s strategy non-
adaptive to the challenges sent by the verifier. This simplifies the construction
of a simulator that can match the adversary’s winning probability.

The TF-resistance notion SimTF can be defined as follows:

Definition 3 (TF Resistance). For a DB authentication scheme DB, a (t, qv, qp, qobs)-
terrorist-fraud adversary pair (A, P ) and a simulator S running in time tS , the
malicious prover P and his accomplice A win against DB if A authenticates in at
least one of qv adversary-verifier sessions without tainting it with probability pA,
and if S authenticates in one of qv sessions with the view of A with probability
pS , then pA ≤ pS .

As stated in Table 1, TF resistance is a binary property. Indeed, the accom-
plice (i.e., the simulator) is either able to impersonate independently the prover
with at least the same probability in later sessions having the initial information
received from the prover (i.e., TF-resistant) or not.

We first prove that the TREAD construction is SimTF-resistant without using
any artificial extraction mechanism. This simply means that if the prover gives
some information to his accomplice to succeed in the first phase of the TF attack,
his accomplice can succeed similarly later without the help of the prover.
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Theorem 4. If the challenges ci are drawn uniformly at random by the verifier,
TREAD is SimTF-resistant.

Proof. The theorem simply states that, for any prover P helping an adversary
A to authenticate in a session sid, there exists a simulator sim that can perform
at least as good as A by using him as a black-box.

Let p be the initial success probability of A with the help of P in a session
sid. Let sid′ denote a new session played a posteriori by the simulator sim with
the verifier V . Assume that m is the initial message sent by V in sid and m′ is
the corresponding message sent by V in sid′.

To build sim, the idea is to place A in the same situation as in sid. The first
step is to rewind A to his initial state, after it received information from P and
sent e in sid. Then, sim sends m to A, even though V has sent a different m′

to sim. If P sent any additional message to A in sid before the beginning of the
time-critical phases, sim relays it to A. Hence, from A’s point of view, this is
the same as in sid.

Next, the simulator sim simply forwards the challenges ci from V to A. If
ci = 0, sim sends the response ri of A to V . Otherwise, if ci = 1, sim needs to
adapt the response to m′: he sends r′i = ri ⊕mi ⊕m′i.

Using this strategy, it is clear that sim can respond to any challenge with a
probability at least equal to that the success probability of A. Hence, sim can
authenticate sid′ with a probability psim, such that psim ≥ p.

This result relies on a näıve simulator, which can only win with the same
probability as the accomplice A. While this is sufficient to prove the result, a
more advanced simulator can amplify any non-negligible advantage of A until it
becomes overwhelming after a polynomial number of sessions to the verifier ora-
cle and no further session with the prover himself. Therefore, no rational prover
should attempt any TF attack with an accomplice, since any non-negligible
success probability in the first phase of the attack can lead to successful imper-
sonation attacks by the accomplice.

Theorem 5. For any adversary A authenticating with the help of a prover with
non-negligible probability, there is an algorithm amplify using the internal view
of A and oracle access to a verifier, such that after a polynomial number of
steps, Pr[amplify authenticates ] = 1, almost surely.

The objective of the proof is to show that the simulator can retrieve the re-
sponse vectors associated with the message e, allowing successful impersonations
afterwards.

Proof. Let A be the accomplice of a malicious prover P trying to conduct a TF
attack, and SimTF() be a simulator having access to the same internal view of
A. Assume that A can only access the prover before the time-critical phases.
Then, he starts this phase with an initial knowledge IK given by P , and succeeds
with a probability pTF. This information IK (i.e., the internal view of A) can
be described as one of these two possibilities:

• The prover sends two n-bit vectors to his accomplice: c0 and c1. These
vectors represent respectively the (not necessarily correct) responses to the
0-challenges and the 1-challenges.

14



• The prover sends the description of an algorithm A to generate these vectors.

Intuitively, if A is memoryless (i.e., the response to the ith challenge does
not depend on the previous challenges), the two cases are equivalent. Since the
challenges are drawn honestly by the verifier, they are unpredictable and inde-
pendent. Thus, the memoryless hypothesis is reasonable and the information
IK can be described as IK = (c0, c1).

The information provided to A can be described by two different scenarii.
In the missing bits scenario, either c0

i = αi and c1
i = βi ⊕ mi (Case 1 – full

information), or c0
i = αi and c1

i = ⊥ or, equivalently, c0
i = ⊥ and c1

i = βi ⊕mi

(Case 2 – partial information). For a round, the probability that A responds
correctly to the verifier’s challenge is either 1 in Case 1 or qCase2 = 1

2 ·1+ 1
2 ·

1
2 = 3

4
in Case 2.

In the flipped bits scenario, Case 2 is redefined as c0
i = αi and c1

i = βi ⊕mi or
c0
i = αi and c1

i = βi⊕mi. The probability qCase2 is then equal to 1
2 ·1+ 1

2 ·0 = 1
2 ,

i.e., the probability that the verifier is asking for the unflipped bit.
The following lemma follows straightforwardly:

Lemma 6. Assume that a malicious prover gives to his accomplice A the vectors
(c0, c1) s.t. Case 1 has been used n−r times and Case 2 r times. The probability
that the TF succeeds is pTF = Pr[A is not detected] = 1n−r · qrCase2.

Assume now that r is such that qrCase2 is non-negligible (i.e., ∃c,∀nc,∃n >
nc, q

r
Case2 ≥ 1

nc ). This hypothesis implies that r ∈ O(log n) – in both scenarii.
Consider now the simulator SimTF(e, c0, c1) that tries to impersonate P to

the verifier with no further interaction with P . The simulator must authenticate
with the same probability pTF that A had to succeed before helped by P .

This advantage can be amplified arbitrarily close to one. We define a simu-
lator amplify(e, c0, c1) using SimTF(e, c0, c1) internally. This simulator can try
k · n · nc authentication experiments with the verifier, for some constant k > 2.
Thus, amplify(e, c0, c1) should win at least n experiments with an overwhelming
probability.

For any challenge, the prover can either send beforehand both valid answers,
only one valid answer, or one valid one and one invalid one, which can not
be distinguished one for another. Hence, for memoryless information, these
scenarios are the only ones possible. There is no value to send only one invalid
answer or both invalid answers to the accomplice. This assumes that the prover
does get any clue from the verifier on which challenges have been rejected.

In fact, we have the following lemma:

Lemma 7. For a valid view (e, c0, c1), the probability that amplify(e, c0, c1)

wins less than n of the k · n · nc experiments is less than e−
kn
2 ( k−1

k )
2

.

The last lemma is derived from the Chernoff bound. The average number of
wins µ should be equal to k · n · nc · 1

nc = k · n. In contrast, n = (1 − δ) · µ, if

1− δ = 1
k and thus δ = k−1

k . The lemma follows directly and, as a corollary, if
k = 4, the probability is smaller than 1

e1.125n < 1
2n .

Assume that amplify(e, c0, c1) has won n independent experiments. Their
independence follows from the initial assumption on the independence of the
challenges. Depending on the scenarios, two different questions have to be
considered. In the missing bits scenario, A has to properly guess different
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missing bits (i.e., αij or βij ⊕ mij , for 1 ≤ j ≤ r). We need to compute the
probability that A has discovered all his r missing bits. Consider a missing bit
bij , for 1 ≤ j ≤ r. After n successful experiments, A does not have discovered
the bit only if the verifier has always asked for the opposite known bit – let Ej
be such an event. This happens only with probability Pr[Ej ] = 1

2n .
The following result follows directly from the union bound for finite sets of

events:

Lemma 8. Assume that amplify(e, c0, c1) has won n experiments. Thus, he
should have discovered all its r missing bits (of Case 2) with an overwhelming
probability. In fact, the probability that some bits are still unknown is simply
Pr[∪jEj ] ≤

∑
j Pr[Ej ] = r

2n .

Using the last two lemmas, we obtain the next result:

Lemma 9. Assume that amplify(e, c0, c1) has done 4 · n · nc authentication
experiments. After these experiments, he should have retrieved all its r missing
bits and be able to impersonate P with an overwhelming probability. Thus,

AdvMF
amplify,TREAD(n) ≥

(
1− 1

2n

)
·
(

1− r

2n

)
> 1− r + 1

2n
.

In the flipped bits scenario, the verifier should not have asked for any flipped
bit in the winning experiments. In these experiments, amplify(e, c0, c1) may
assume that the bits for which the verifier has always asked the same challenges
in fact correspond to the instances of Case 2. The simulator would be wrong
only if the verifier has asked always for the same challenges for at least one of
the n − r instances of Case 1 (this happens with a probability at most n−r

2n ).

Thus, AdvMF
amplify,TREAD(n) ≥ 1 − n−r+1

2n in this case, which concludes the proof
of Theorem 5.

3.3 Mafia Fraud

During an MF, an active MiM adversary, interacting with a single prover and a
single verifier during several sessions, tries to authenticate. However, he is not
able to purely relay information between the verifier and the prover during the
time-critical phases. To discard such attacks, the tainted time-critical phases
are redefined as follows.

Definition 10 (Tainted Time-Critical Phase (MF)). A time-critical phase Πsid[k, k+
1] = (mk,mk+1), for k ≥ 1, of an adversary-verifier session sid, with the mes-
sage mk being received by the adversary as the kth challenge from the verifier,
is tainted by the time-critical phase Πsid∗ [k, k + 1] = (m∗k,m

∗
k+1) of a prover-

adversary session sid∗ if

(mk,mk+1) = (m∗k,m
∗
k+1),

marker(sid, k) < marker(sid∗, k),

and marker(sid, k + 1) > marker(sid∗, k + 1).

Once this definition is given, the game-based definition of MF resistance
notion can be stated as follows.

16



Definition 11 (MF Resistance). For a DB authentication scheme DB, a (t, qv, qp, qobs)-
MF adversary A wins against DB if the verifier accepts A in one of the qv
adversary-verifier sessions sid, which does not have any critical phase tainted
by a prover-adversary session sid∗. Thus, the MF-resistance is defined as the
probability AdvMF

DB(A) that A wins this game.

We now prove that TREAD is MF-resistant.

Theorem 12. If the challenges are drawn randomly from a uniform distribution
by the verifier, E is an IND-CCA2-secure encryption scheme and S is EUF-CMA-
secure, then TREAD is MF resistant and

AdvMF
TREAD(λ) ≤

q2
p

22n
+ AdvEUF-CMA

S (λ) + AdvIND-CCA2
E (λ) +

(
3

4

)n
.

The prover and verifier oracles are simulated as defined in Section 2, except
that after generating e, the prover adds an entry to a witness list WL containing
(e, α||β).

The proof of the above theorem is more complex than others. It can be
reduced to the security analysis of a simpler version of the protocol, using the
game-hopping technique formalized by Shoup in [22]. In essence, the initial
security game Γ0 is reduced to a final game in which the adversary has no
information (other than by guessing) about the values α and β before the DB
phase. This is done by reducing his means of attacks at each game (e.g. by
forbidding nonces reuse from prover oracles), while showing that the resulting
loss is negligible. More formally, if Pr[Γi] represents the winning probability of
the adversary A in the game Γi, the transition between Γi and Γi+1 is such that
|Pr[Γi]− Pr[Γi+1]| ≤ ελ, in which ελ is a negligible function of λ.

Proof. We start from the initial game Γ0 as given in Definition 11 and build the
following sequence of games.

Γ1: In this game, no value α||β is outputted more than once by the prover oracle.

In the ith session, the probability to have a collision with any of the pre-
vious i − 1 α||β values is bounded by i

22·n . If A runs qp prover sessions,
the probability of a collision for a given session is bounded by

qp
22·n . From

the union bound, the probability that a collision occurs at least once is

bounded by
∑qp
i=0

qp
22·n , which is in turn bounded by

q2p
22n . Thus, using

Shoup’s difference lemma, |Pr[Γ0]− Pr[Γ1]| ≤ q2p
22n , which is negligible.

Γ2: This game aborts if σp was not generated by the prover oracle, and S.vervk(σp, α||β) 6=
0.

In this game, we rule out the possibility that A produces a valid signature
without the key, which is trivially forbidden by the EUF-CMA resistance of
S. The reduction simply consists in starting EUF-CMA experiments (one
for each prover) with a challenger and using queries to the corresponding
signing oracle to generate the signatures of a prover. Then, if A sends
a valid signature on behalf of one of the provers, we can return it to
the challenger and win the EUF-CMA experiment. From the difference
lemma, we have Pr[Γ1]−Pr[Γ2] ≤ AdvEUF-CMA

S (1λ), which is negligible by
hypothesis.
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Γ3: In this game, e is replaced by the encryption of a random string (of equal
length).

This transition is based on indistinguishability, aiming at removing any
leakage of α||β from e by making α||β only appear during the DB phase.
We prove that the probability ε = Pr[Γ3]−Pr[Γ2] is negligible by building
a distinguisher B such that its advantage against the IND-CCA2 experi-
ment is polynomial in ε. Hence, if ε is non-negligible, we reach a con-
tradiction. By assumption, the advantage of any adversary against the
IND-CCA2 experiment on E is negligible.

To build B, we replace E.encek(α||β||idprv(P )||σp) by a string given by the
IND-CCA2 challenger. Using the adversary A, the distinguisher B can be
built as follows.

Prover simulation: the reduction B generates two challenge messages:
m0 = (δ||idprv(P )||S.sigsk(δ||idprv(P ))) andm1 = (α||β|| S.sigsk(α||β||
idprv(P ))), in which α||β and δ are random binary strings of length
2 ·n. Then, he sends them to the challenger to obtain cb, the encryp-
tion of mb (depending on a random bit b picked by the challenger
before the experiment). He also adds (cb, α||β) to the list WL. Af-
terwards, he sends cb as the initial message and uses α||β during the
challenge-response phase.

Verifier simulation: When the verifier oracle gets the initial message e,
he reads the tuple (e, α||β) in WL and uses the corresponding α||β to
verify the responses. If no such tuple exists, then he is allowed to use
the decryption oracle on e (as it is not a challenge cb). As Γ2 enforces
that only invalid or prover generated signatures are contained in e,
then either A loses for sending an invalid signature, or e is a new
encryption for values contained in one of the challenges. In the latter
case, B readily obtains the bit b by verifying whether the decryption
of e corresponds to a m0 or a m1.

Return value: B returns OutV.

If b = 1, B simulates Γ2 (e is the encryption of α||β). In this case, B wins
if OutV = 1. By definition, Pr[OutV = 1] in Γ2 = Pr[Γ2]. Otherwise, if
b = 0, then B simulates Γ3 (e is the encryption of δ). In this case, B returns
0 if A loses (i.e., with probability 1 − Pr[Γ3]). The winning probability

of B is then Pr[Γ2]+1−Pr[Γ3]
2 = 1+(Pr[Γ2]−Pr[Γ3])

2 , giving an advantage of
ε = Pr[Γ2]− Pr[Γ3]. It follows that any significant probability difference
between the two games can be transformed into an IND-CCA2 advantage
and |Pr[Γ2]− Pr[Γ3]| ≤ AdvIND-CCA2

E (λ).

We are left to prove that Pr[Γ3] is negligible. First remark that in Γ3, A has
absolutely no way to predict the value ri for any round i (as neither αi nor βi
appears before round i). Hence, A can either try to guess ci or ri. His success
probability in the second case is 1

2 . In the first case, he succeeds if he guesses the
challenge properly (as he can obtain the response from the prover), but also if
he wrongly guesses the challenge but guesses correctly the other response. The
corresponding probability is 1

2 · 1 + 1
2 ·

1
2 = 3

4 for each round. As there are n

such rounds, Pr[Γ3] ≤
(

3
4

)n
.
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3.4 Distance Hijacking

One of our contribution extends the distance-fraud (DF) model in the DFKO
framework to take into account distance-hijacking (DH) attacks [14]. In DF
attacks, the adversary is a malicious prover who aims to authenticate from a
distance greater than dmax. In DH attacks, the adversary attempts to do the
same, but he uses the unintentional help of legitimate provers located close to
the verifier. The remote adversary may initiate the DB protocol and let the
nearby prover complete the DB phase. Although this is generally true in most
of the DB literature, it does not hold for DB protocols preserving anonymity.
Indeed, such attacks make only sense if the verifier may differentiate between
two provers. For instance, if a remote member of a group X of legitimate provers
initiates the DB protocol and a nearby prover of the same group involuntarily
completes the DB phase, the verifier would simply conclude that a member of
X has just been authenticated. He would end up with the same conclusion
if the nearby prover has completed the scheme without any intervention from
the remote party. To capture DH in the DFKO framework, we consider an
adversary (here a malicious prover) able to use the help of an honest prover in
the verifier’s proximity and having two choices.

In the DB phase, he commits to a response in advance, before the challenge
of that specific round, and sends that commitment. These commitments do not
refer to cryptographic commitments, with the properties of binding and hiding,
but rather they indicate the prover’s choice with regards to a response, which
he must transmit to the verifier. In any phase, he commits to a special message
Prompt, triggering the response by a close-by honest prover.

If the adversary either (1) fails to commit or prompt for one specific phase,
or (2) sends a different value than committed after receiving the time-critical re-
sponses, he taints the phase and the session. More formally, when the adversary
opens a verifier-adversary session sid, he also opens two associated dummy ses-
sions sidCommit for committed responses and sidPrompt for the responses prompted
from the prover. Technically, such an adversary is more powerful than in a typ-
ical DH attack [8], since the adversary can intercept time-critical responses that
are sent by the honest prover, and replace them with his own committed re-
sponses. More precisely, the formal definition of tainted phases is as follows.

Definition 13 (Tainted Time-Critical Phase (DH)). A critical phase Πsid[k, k+
1] = (mk,mk+1) of an adversary-verifier session sid,with the message mk being
received by the adversary as the kth challenge from the verifier, is tainted if one
of the following conditions holds.

• The maximal j with ΠsidCommit
[j] = (sid, k + 1,m∗k+1) for m∗k+1 6= Prompt and

marker(sid, k) > marker(sidCommit, j) satisfies m∗k+1 6= mk+1 (or no such j
exists).

• The maximal j with ΠsidCommit
[j] = (sid, k + 1,m∗k+1) for m∗k+1 = Prompt

satisfies mk+1 6= mPrompt
k+1 , in which mPrompt

k+1 denotes the message mk+1 in
sidPrompt.

This definition rules out some potential actions of attackers. Once this is
done, the game-based definition of DH resistance notion can be stated as follows.

Definition 14 (DH Resistance). For a DB authentication scheme DB with DB
threshold tmax, a (t, qp, qv, qobs)-DH adversary A (with idA) wins against DB
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if the verifier accepts idA in one of qv adversary-verifier sessions, which does
not have any critical phase tainted. Thus, the DH resistance is defined as the
probability AdvDH

DB(A) that A wins this game.

The following theorem covers both DH and DF resistance. The idea is that
a DF can be seen as a special case of DH in which the adversary does not use
nearby provers. The proof consists in showing that the responses corresponding
to an initial message e∗ sent by the adversary have a negligible probability to
match those of any nearby honest prover.

Theorem 15. If the challenges follow a uniform distribution, TREAD is DH
resistant, and

AdvDHTREAD(λ) ≤
(

3

4

)n
.

The proof of this theorem is given in Appendix B.1.

3.5 Privacy

We show now that the public-key instance of our protocol preserves the privacy
of the provers against eavesdroppers. An adversary who intercepts information
transmitted during the protocol cannot infer the identity of the prover from the
information he has seen. Otherwise, he would be able to break the security of
the encryption scheme.

The private construction is an instance of TREAD using E = PKE and S =
S-SIG, for a public key encryption PKE and a digital signature scheme S-SIG.
In such protocols, idpub(P ) is set to null. Since all the information allowing to
identify the prover is encrypted, only the verifier can learn his identity. This
property [18] is formalized as follows:

Definition 16 (Privacy Protection). Let DB be a DB scheme. The privacy
experiment ExpPriv

A,DB(λ) for an adversary A on DB is defined as follows. A
interacts with a challenger who runs the algorithm DB.gen(1λ) to generate the
set-up and sends all the public set-up parameters to A. During the experiment,
A has access to the following oracles:

DB.Joinc(·): On input i, it returns the public/secret key pair (pki, ski) of a new
prover Pi using DB.join(λ).

DB.Prover(·): On input i, it simulates a session by the prover Pi using ski.

DB.Verifier simulates a session by the verifier V using skv.

Then, A sends the pair of provers (i0, i1) to the challenger who picks b
$←

{0, 1}. Thereafter, A has now access to the following challenge oracle:

DB.Proverb simulates a session by the prover Pib using skib .

Finally, A returns b′. If b = b′, the challenger returns 1 (i.e., the guess of A is
correct), while otherwise he returns 0.

We define A’s advantage on this experiment as

AdvPrivA,DB(λ) =

∣∣∣∣Pr[ExpPriv
A,DB(λ) = 1]− 1

2

∣∣∣∣
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and the advantage on the privacy experiment as

AdvPrivDB (λ) = max
A∈Poly(λ)

{AdvPrivA,DB(λ)}.

DB is privacy preserving if AdvPrivDB (λ) is negligible.

Theorem 17. If PKE is an IND-CCA2 secure public key encryption scheme and
if for any prover P values idpub(P ) is set to null, then TREADPub is privacy-
preserving and

AdvPrivTREADPub(λ) ≤ AdvIND-CCA2
PKE (λ).

The proof of this theorem is given in Appendix B.2.

3.6 Prover Anonymity

We finally show that the anonymous version of our protocol preserves the
anonymity of the provers against malicious verifiers. By anonymity, we mean
that the verifier can not distinguish who is the user with whom he interacts
during a session. In TREAD, the only information on a prover identity that a
verifier can get during the protocol is the signatures produced by the prover.
Since a secure group signature scheme is used, the protocol does not leak any
information on the identity of the provers. Otherwise, a verifier would be able
to break the security of the group signature scheme.

The anonymous construction is defined as an instance of TREAD using
E = PKE and S = G-SIG, for a public key encryption PKE and a group signature
scheme G-SIG. In such protocols, idprv(P ) should only identify the correspond-
ing group identity. Thus, the verifier should not get any information on a prover
identity. This notion is formalized by the Prover Anonymity property defined
in [12].

Definition 18 (Prover Anonymity). Let DB be a DB scheme. The anonymity
experiment ExpAnon

A,DB(λ) for an adversary A on DB is defined as follows. A
interacts with a challenger who runs the algorithm DB.gen(1λ) to generate the
set-up and sends all the public set-up parameters to A. During the experiment,
A has access to the following oracles:

DB.Joinh(·): On input i, it creates a new prover Pi using DB.joinMK(i,UL).

DB.Joinc(·): On input i, it creates a corrupted prover Pi using DB.joinMK(i,UL),
returns the secret key pski, and adds Pi to CU.

DB.Revoke(·): On input i, it runs DB.revokeMK(i,RL,UL) to revoke the prover
Pi.

DB.Corrupt(·): On input i, it simulates the corruption of Pi by returning his
secret key pski, and adds Pi to CU.

DB.Prover(·): On input i, it simulates a session by the honest prover Pi using
pski.

DB.Verifier simulates a session by the verifier V using skv.
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First, A sends the pair of provers (i0, i1) to the challenger. If i0 or i1 is

in CU, the challenger aborts the experiment. Otherwise, he picks b
$← {0, 1}.

Then, A loses access to DB.Revoke(·) and DB.Corrupt(·) on i0 and i1 (the oracles
return ⊥ if A uses these inputs). Thereafter, A has now access to the following
challenge oracle:

DB.Proverb simulates a session by the prover Pib using pskib .

Finally, A returns b′. If b = b′, the challenger returns 1 (i.e., the guess of A is
correct), while otherwise he returns 0.

We define A’s advantage on this experiment as

AdvAnonA,DB(λ) =

∣∣∣∣Pr[ExpAnon
A,DB(λ) = 1]− 1

2

∣∣∣∣
and the advantage on the PA experiment as

AdvAnonDB (λ) = max
A∈Poly(λ)

{AdvAnonA,DB(λ)}.

DB is prover anonymous if AdvAnonDB (λ) is negligible.

Theorem 19. If G-SIG is an anonymous revokable group signature scheme [21]
and if for any prover P values idpub(P ) and idprv(P ) are either set to null or
the group identity, then TREADANO is prover-anonymous and

AdvAnonTREADANO (λ) ≤ AdvAnonG-SIG(λ).

The proof of this theorem is given in Appendix B.3.

4 Conclusion

In this paper, we introduce a novel approach for provable TF resistance. More
precisely, instead of relying on extraction mechanisms to make sure that a TF ac-
complice can impersonate the malicious prover helping him, we build a generic
yet simple construction relying on replay. In this construction, an adversary
helped by a malicious prover is given the ability to directly adapt the authen-
tication information he learnt to perform a new authentication with the same
probability. However, this comes at the cost of a slightly lower mafia-fraud and
distance-fraud resistance.

We have also reinforce the already strong notion of SimTF and prove that if
an adversary successfully authenticates with the help of a malicious prover with
a non-negligible success probability, he can amplify his winning probability to an
overwhelming probability. Three instances of the protocol have been presented.
The first one is a symmetric-key lightweight DB protocol with no privacy, the
second one is a public-key protocol private against external eavesdroppers, while
the last one provides full prover anonymity with respect to malicious verifiers.
Our design is generic and may be used to extend existing DB protocols.
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A Definitions

In this section, we present the classical definitions used implicitly in our formal
proofs.

Definition 20. A symmetric key encryption scheme SKE is a triplet of algo-
rithms (SKE.gen,SKE.enc,SKE.dec) s.t.:

SKE.gen(1λ): returns a secret key sk from the security parameter λ.
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SKE.encsk(m): returns a ciphertext c from the message m and the key sk.

SKE.decsk(c): returns a plaintext m from the ciphertext c and the key sk.

A symmetric key encryption scheme is said correct if and only if SKE.decsk(SKE.encsk(m)) =
m for any message m and any secret key sk generated by SKE.gen.

Definition 21. A public key encryption scheme PKE is a triplet of algorithms
(PKE.gen,PKE.enc,PKE.dec) s.t.:

PKE.gen(1λ): returns a public/private key pair (pk, sk) from the security pa-
rameter λ.

PKE.encpk(m): returns a ciphertext c from the message m and the public key
pk.

PKE.decsk(c): returns a plaintext m from the ciphertext c and the private key
sk.

A public key encryption scheme is said correct if and only if PKE.decsk(PKE.encpk(m)) =
m for any message m and any key pair (pk, sk) generated by PKE.gen.

Definition 22. Let SKE = (SKE.gen,SKE.enc,SKE.dec) be a symmetric key
encryption scheme. SKE is said to be indistinguishable against adaptive cho-
sen ciphertext attack (IND-CCA2) when for any adversary A = (A0,A1), the
following advantage probability AdvIND-CCA2

A,SKE (1λ) is negligible:∣∣∣∣∣Pr

[
k← SKE.gen(1λ), b

$← {0, 1}
b′ ← ASKE.enck(LRb),SKE.deck

0 (λ)
: b = b′

]
− 1

2

∣∣∣∣∣
where the oracles SKE.enck(LRb),SKE.deck are defined as:

SKE.enck(LRb(m0,m1)): returns SKE.enck(mb) on the message pair (m0,m1),
for a random bit b.

SKE.deck(c): if c has been generated by SKE.enck(LRb) returns ⊥, else returns
SKE.deck(c).

Definition 23. Let PKE = (PKE.gen,PKE.enc,PKE.dec) be a public key en-
cryption scheme. PKE is said to be indistinguishable against adaptive chosen
ciphertext attack when for any adversary A = (A0,A1), the following advantage
probability AdvIND-CCA2

A,PKE (1λ) defined is negligible:∣∣∣∣∣Pr

[
(pk, sk)← PKE.gen(1λ), b

$← {0, 1}
b′ ← APKE.encpk(LRb),PKE.decsk(pk, λ)

: b = b′

]
− 1

2

∣∣∣∣∣
where the oracles PKE.encpk(LRb),PKE.decsk are defined as:

PKE.encpk(LRb(m0,m1): returns PKE.encpk(mb) on the message pair (m0,m1),
for a random bit b.

PKE.decsk(c): if c has been generated by PKE.encpk(LRb) returns ⊥, else returns
PKE.decsk(c).
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Definition 24. A message authentication scheme MAC is a triplet of algorithms
(MAC.gen,MAC.sig,MAC.ver) s.t.:

MAC.gen(1λ): returns a secret key sk from the security parameter λ.

MAC.sigsk(m): returns a tag s from the message m and the key sk.

MAC.versk(s,m): returns a verification bit v from the tag s and the key sk.

A message authentication scheme is said correct if and only if MAC.versk(m,MAC.sigsk(m)) =
1 for any message m and any key sk generated by MAC.gen.

Definition 25. A digital signature scheme SIG is a triplet of algorithms (SIG.gen,SIG.sig,SIG.ver)
s.t.:

SIG.gen(1λ): returns a key pair (sk, vk) from the security parameter λ.

SIG.sigsk(m): returns a signature s from the message m and the signing key sk.

SIG.vervk(s,m): returns a verification bit v from the signature s and the verifi-
cation key vk.

A digital signature scheme is said correct if and only if SIG.verpk(m,SIG.sigsk(m)) =
1 for any message m and any key pair (sk, vk) generated by SIG.gen.

Definition 26. Let MAC = (MAC.gen,MAC.sig,MAC.ver) be a message au-
thentication scheme. MAC is said to be unforgeable against chosen massage
attack (EUF-CMA) when for any adversary A, the following advantage proba-
bility AdvEUF-CMA

A,MAC (1λ) is negligible:

Pr

[
k← MAC.gen(1λ)

(s,m)← AMAC.signk,MAC.verk(λ)
: MAC.verk(s,m) = 1

]
where the oracles MAC.signk,MAC.verk are defined as:

MAC.signk(m): returns (m,MAC.sigk(m)) on input m.

MAC.verk(s,m): if s has been generated by MAC.signk(m) returns ⊥, else re-
turns MAC.verk(m, s).

Definition 27. Let SIG = (SIG.gen,SIG.sig,SIG.ver) be a digital signature
scheme. SIG is said to be unforgeable against chosen massage attack when for
any adversary A, the following advantage probability AdvEUF-CMA

A,SIG (1λ) is negli-
gible:

Pr

[
k← SIG.gen(1λ)

(s,m)← ASIG.signsk,SIG.vervk(vk, λ)
: SIG.vervk(s,m) = 1

]
where the oracles SIG.signsk,SIG.vervk are defined as:

SIG.signsk(m): returns (m,SIG.sigsk(m)) on message m.

SIG.vervk(s,m): if s has been generated by SIG.signsk(m) returns ⊥, else returns
SIG.vervk(s,m).

In this case, the verification oracle is optional since the adversary knows the
verification key and can simulate it.
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Definition 28. A revocable group signature scheme G-SIG is defined by six
algorithms:

G.gen(1λ): According to a security parameter k, returns a group/master key
pair (gpk,msk) and two empty lists: the user list UL and the revoked user
list RL.

G.joinmsk(i, gpk,UL): is a protocol between a user Uis (using gpk) and a group
manager GM (using msk and gpk). Ui interacts with GM to obtain a
group signing key sski. Finally, GM outputs a value regi and adds Ui to
UL.

G.revmsk(i,UL,RL, gpk): computes revocation logs revi for Ui, using regi, gpk and
msk, and moves Ui from UL to RL.

G.sigsski(m): returns a group signature σ for the message m.

G.vergpk(σ,m,RL): returns 1 if σ is valid for the message m and the signing key
sski of a non-revoked user, and 0 otherwise.

G.opemsk(σ,m,UL, gpk): outputs the identity of Ui who generated the signature
σ.

Definition 29. Let G-SIG be a group signature scheme. The anonymity ex-
periment ExpAnon

A,G-SIG(λ) for the adversary A on G-SIG is defined as follows. A
interact with a challenger who creates (UL,RL,msk, gpk) using G.gen(1λ), gives
gpk to A, and sets the lists CU and Σ. During this phase A has access to
G-oracles:

G.Joinh(·): On input i, creates Pi with G.joinmsk(i, gpk,UL).

G.Joinc(·): On input i, creates Pi with G.joinmsk(i, gpk,UL) with A, and adds
him to CU.

G.Revoke(·): On input i, revokes Pi with G.revmsk(i,RL,UL, gpk).

G.Corrupt(·): On input i, returns the secret information of an existing Pi. If
Pi ∈ UL, it sends sski to A and adds Pi to CU.

G.Sign(·, ·): On input i, returns a signature σp on behalf of Pi, using G.sigsski(m),
and adds the pair (m,σp) to Σ.

G.Open(·, ·): On input i, opens a signature σ on m and returns Pi to A, using
the algorithm G.opemsk(σ,m,UL, gpk). This oracle rejects all signatures
produced by G.Signb(·, ·).

A outputs (i0, i1) to the challenger. If i0 and i1 ∈ CU, the challenger stops.

Otherwise, he picks b
$← {0, 1} and sends it to A. A cannot henceforth use

G.Corrupt(·) and G.Revoke(·) on i0 or i1. Moreover, A has access to the G-
oracle:

G.Signb(·, ·): On input m, returns G.sigsskib
(m).

Finally, A outputs b′. If (b = b′) the challenger outputs 1, else he outputs 0.
Define AdvAnonG-SIG(λ) as in Definition 18. A group signature G-SIG is anony-

mous when AdvAnonG-SIG(λ) is negligible.
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B Security Proofs

B.1 Distance-Hijacking resistance

Proof of Thm 15. First note that if A uses Prompt for the initial message, i.e.,
he lets an honest prover send it and then his authentication automatically fails,
as idpub(P ) and/or idprv(P ) do not correspond to the identity of A.

Hence, consider the case in which A initiated the protocol with a message
e∗ (associated with α∗, β∗). Let e (and α||β) denote the values picked by the
nearby honest prover P . For each challenge ci, either A uses Prompt to let P
respond or he uses Commit to respond himself before receiving ci.

• If he uses Prompt, his response is valid with probability 1
2 . This is the prob-

ability to have αi = α∗i (or βi = β∗i ).

• If he uses Commit, either α∗i = β∗i ⊕ mi, and he can commit to a correct
response with probability 1, or α∗i 6= β∗i ⊕mi, and he must guess the challenge
to commit to the correct response. Since m is uniformly distributed and
unknown to A at the time when he picks α||β, Pr[α∗i = β∗i ⊕ mi] = 1

2 .
Hence, the probability to commit to the valid response is Pr[α∗i = β∗i ⊕mi] ·
1 + Pr[α∗i 6= β∗i ⊕mi] · 1

2 = 3
4 .

It follows that the best strategy for A is to respond by himself, as in a classical
DF, using Commit. For n challenges, his advantage AdvDH

DB(A) is at most
(

3
4

)n
,

which is negligible.

B.2 Privacy preserving property

Proof of Thm 17. Assume that there is a polynomial-time adversary A such
that AdvPrivA,TREADPub(λ) is non-negligible. We show how to build an adversary B
such that AdvIND-CCA2

B,PKE (λ) is also non-negligible.

Initially, the challenger sends a key pkv to B. Then, B runs DB.gen(1λ) to
generates the setup parameters of the scheme and sends to A the public set-ups
and pkv. Having access to PKE-oracles from his challenger, B can simulate the
DB-oracles for A as follows.

DB.Joinc(·): On input i, B returns the public/secret key pair (pki, ski) of a new
prover Pi using DB.join(λ).

DB.Prover(·): B simulates Pi for A using ski and pkv.

DB.Verifier: B simulates V for A as follows:

Initialization phase B receives e fromA and computes (α||β||idprv(Pi)||σp) =
PKE.decskv (e) using his oracle. If S.vervki(σp, α||β||idprv(Pi)) = 0 (vki
is the verification key of Pi), B returns ⊥ and aborts this simulation.

Finally, he picks m
$← {0, 1}n and returns it.

Distance-bounding phase B picks cj ∈ {0, 1}, sends it to A and waits
for the response rj . He repeats this protocol for all j in {0, . . . , n}.

Verification phase If, for all j in {0, . . . , n}, rj = αj when cj = 0 and
rj = βj⊕mj when cj = 1 then B returns 1 to A, otherwise he returns
0.
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A sends (i0, i1) to B. Then, B instantiates a counter l := 0 and simulates the
challenge oracle DB.Proverb as follows.

Initialization phase B picks α||β $← {0, 1}2·n and computes the signatures
σ0
p = S.sigski0

(α||β||idprv(Pi0)) and σ1
p = S.sigski1

(α||β||idprv(Pi1)). He

sends the messagesm0 = (α||β||idprv(Pi0)||σ0
p) andm1 = (α||β||idprv(Pi1)||σ1

p)
to his challenge encryption oracle SKE.enck(LRb(·, ·)) in order to obtain e.
Afterwards, he sets Listl = (α, β, e) and increments the counter l by one.
Finally, he returns e and receives m.

Distance-bounding phase B uses α, β and m to correctly respond to the
challenges ci sent by A.

Verification phase B receives OutV from A.

After the challenge phase, the oracles DB.Joinc(·) and DB.Prover(·) are sim-
ulated by B as in the first phase of the experiment. DB.Verifier is simulated as
follows:

Initialization phase B receives e from A. If there is no 0 ≤ d ≤ l such that
Listd = (α, β, e), B simulates the oracle as in the first phase. Otherwise,

B picks m
$← {0, 1}n and returns it.

Distance-bounding phase B picks cj ∈ {0, 1}, sends it to A and waits the
response rj . It repeats this protocol for all j in {0, . . . , n}.

Verification phase Using Listd = (α, β, e), if for all j ∈ {0, . . . , n}, rj = αj
when cj = 0 and rj = βj ⊕mj when cj = 1, B returns 1 to A. Otherwise,
he simply returns 0.

Finally, A returns b′ to B who returns it to the challenger.
The experiment is perfectly simulated for A, and in consequence B wins his

experiment with the same probability thatA wins his. Thus, AdvPrivA,TREADPub(λ) =

AdvIND-CCA2
B,PKE (λ), contradicting the assumption on PKE.

B.3 Anonymity preserving property

Proof of Thm 19. Assume that there is a polynomial-time adversary A such
that AdvAnonA,TREADANO (λ) is non-negligible. We show how to construct an adver-

sary B such that AdvAnonB,G-SIG(λ) is also non-negligible.
Initially, the challenger sends a key gpk and a revoked list RL to B. Then, B

generates a public/private key pair pkv, skv for the verifier using PKE.gen(1λ).
Thus, B sends (pkv, gpk,RL) to A and creates the empty list CU. Having access
to G-SIG-oracles from his challenger, B can simulate the DB-oracles for A as
follows:

DB.Joinh(·): On input i, creates Pi with G.Joinh(·), and adds Pi to UL.

DB.Joinc(·): On input i, creates a corrupted Pi with G.Joinc(·), adds Pi to UL
and CU, and returns sski.

DB.Revoke(·): On input i, revokes Pi with G.Revoke(·), which updates RL and
returns it.
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DB.Corrupt(·): On input i, corrupts Pi with G.Corrupt(·) and gets sski. B adds
Pi to CU, and returns sski.

DB.Prover(·): B simulates Pi for A as follows.

Initialization phase B picks α||β $← {0, 1}2·n and uses his oracleG.Sign(·, ·)
to get the signature σp = G.sigsski(α||β). He computes e = PKE.encpkv (α||β||σp)
and returns it. He then gets m.

Distance-bounding phase B uses α, β and m to correctly respond to
the challenges ci sent by A.

Verification phase B receives OutV from A.

DB.Verifier: B simulates V for A as follows:

Initialization phase B receives e from A and computes (α||β||σp) =
PKE.decskv (e). If the verification G.vergpk(σp, α||β,RL) = 0 then B
returns ⊥ and aborts this oracle simulation. Finally, he picks m

$←
{0, 1}n and returns it.

Distance-bounding phase B picks cj ∈ {0, 1}, sends it to A and waits
the response rj . He repeats this protocol for all j in {0, . . . , n}.

Verification phase If, for all j in {0, . . . , n}, rj = αj when cj = 0 and
rj = βj ⊕mj when cj = 1 then B returns 1 to A, else he returns 0.

A sends (i0, i1) to B. If i0 or i1 ∈ CU, B aborts the experiment. Otherwise, B
sends (i0, i1) to the challenger. Then, B returns ⊥ when he simulates Corrupt(·)
and Revoke(·) on inputs i0 and i1 . Afterward, B simulates the challenge oracle
DB.Proverb for Pib as follows:

Initialization phase B picks α||β $← {0, 1}2·n, uses his oracle G.Signb(·, ·) to
get the signature σp = G.sigsski(α||β), and returns e = PKE.encpkv (α||β||σp).
He then gets m.

Distance-bounding phase B uses α, β and m to correctly respond to the
challenges ci sent by A.

Verification phase B receives OutV from A.

Finally, A returns b′ to B who returns it to the challenger.
The experiment is perfectly simulated for A and in consequence, B wins his

experiment with the same probability that A wins his. Thus, AdvAnonB,G-SIG(λ) =

AdvAnonA,TREADAno(λ), contradicting the assumption on G-SIG.

30


