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Abstract

Lin and Tessaro (Eprint 2017/250) recently proposed indistinguishability obfuscation and
functional encryption candidates and proved their security based on a standard assumption on
bilinear maps and a non-standard assumption on “Goldreich-like” pseudorandom generators
(PRG). In a nutshell, they require the existence of pseudo-random generatorsG : Σn → {0, 1}m
for some poly(n)-size alphabet Σ where each output bit depends on at most two input alpha-
bet symbols, and which achieve sufficiently large stretch. We show a polynomial-time attack
against such generators.

Our attack uses tools from the literature on two-source extractors (Chor and Goldreich,
SICOMP 1988) and efficient refutation of 2-CSPs over large alphabets (Allen, O’Donnell and
Witmer, FOCS 2015). Finally, we propose new ways to instantiate the Lin-Tessaro construction
that do not immediately fall to our attacks. While we cannot say with any confidence that these
modifications are secure, they certainly deserve further cryptanalysis.
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1 Introduction

There has been much recent progress on indistinguishability obfuscation (IO) culminating with
the recent result of Lin and Tessaro [LT17] that constructs an IO candidate from standard as-
sumptions on bilinear maps and non-standard assumptions on “Goldreich-like” pseudorandom
generators [Gol00] with locality 2. This is a remarkable development: until recently, we had IO
candidates based on constant degree (most recently, degree-5) multilinear maps and “Goldreich-
like” PRGs with constant locality (most recently, locality 5) [Lin16b, LV16, LT17, AS16]. There
were no secure candidates for the multilinear maps but there are candidates for the locality-5 PRG
that resist many classes of attacks [OW14, AL16]. The Lin-Tessaro result dramatically shifted the
burden of existence from degree-5 multilinear maps to the existence of pseudorandom generators
with (so-called) blockwise locality 2 and polynomial stretch, putting us in a completely different
landscape. (For the formal definitions of all these technical terms, see below and Section 2).

In this work, we first show a polynomial-time attack against such pseudorandom generators.
As such, this constitutes a break of the Lin-Tessaro IO (as well as functional encryption) construc-
tions that use bilinear maps. As a secondary contribution, we show several potential ways to
fix the construction against our attacks. However, these “countermeasures” have so far not been
cryptanalyzed with any care and their security should be highly suspect.

Goldreich-Like Generators with Blockwise Local Predicates. We start by describing the object
we attack. Let P be a predicate from Z2

q to {0, 1}. Let H be a (directed) constraint graph with
n vertices and m edges. The pseudorandom generator GH,P : Znq → {0, 1}m is defined in the
following way. Let e = (i, j) be a directed edge in G. Then, the eth bit of the output of the
generator is computed as P (xi, xj).

Theorem 1.1. There is a poly(n) time algorithm D with the following property: for any m ≥ Ω̃(q · n) and
any predicate P : Z2

q → {0, 1} in two variables, and almost all (1 − o(1)) graphs H with n vertices and
m edges, D(H,P, z) distinguishes (with distinguishing advantage Ω(1)) a random string z ∼ Um from
a random output z ∼ GH,P (Un,q) of Goldreich’s pseudorandom generator GH,P : Znq → {0, 1}m when
instantiated with P and H .

We note here that when q = Ω( n
logn), Theorem 1.1 is trivially true: for anym > n2, any graphH

on n vertices andm edges contains a duplicate pair of edges e and e′, soGH,P is not pseudorandom
because ze and ze′ will always be equal for any z = GH,P (x). Therefore, we restrict to the case of
q = O( n

logn) for the rest of the paper.
This construction can also be thought of as a “block-wise local” pseudo-random generator, a

terminology that Lin and Tessaro introduce and use [LT17]. In an (L,w)-block-wise PRG, the input
is divided into blocks of size w bits each, and each output bit of the PRG can depend on at most
L blocks. It is easy to see that a Goldreich-like PRG as defined above with alphabet size q = 2w

is a (2, w)-block-wise PRG; in fact, the candidate block-wise 2-local PRGs described in [LT17] are
Goldreich-like PRGs.

The Lin-Tessaro Result and Connection to Goldreich-Like PRGs. Lin and Tessaro [LT17], build-
ing on earlier work [BV15, AJ15, Lin16a, LV16, Lin16b, AS16] showed an IO candidate based on
the hardness of standard assumptions on bilinear maps and the existence of a Goldreich-like PRG
with locality 2 and sufficiently large stretch.
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Theorem 1.2 ([LT17]). Under standard assumptions on bilinear maps and the existence of a subexponen-
tially secure (n,m, q)-Goldreich-like PRG with q = poly(n) and m = (nq)1+ε for some constant ε > 0,
there is an IO scheme. Assuming the existence of such a generator with quasipolynomial security, there is a
compact FE scheme.

In a nutshell, they pre-compute all possible monomials on the bits of each alphabet symbol
xi ∈ Zq (i = 1, . . . , n) and encrypt it in an FE ciphertext. Computing the PRG output, then, can
be written as a degree-2 computation which can be performed using a bilinear map (leveraging
on an earlier result of Lin [Lin16b]). Thus, the number of bits being encrypted is n · q. To achieve
sublinear-compactness (which is necessary to apply the FE-to-IO transformations), they need the
output length of the PRG m to be large enough, namely m = Ω((nq)1+ε) for some constant ε > 0.

Our main theorem (Theorem 1.1) now implies that a natural class of candidates for such PRGs,
proposed and analyzed in [LT17], can be broken in polynomial-time. There are two gaps between
our break and a complete break of the [LT17] candidate: First, Theorem 1.1 breaks “Goldreich-
like” PRGs where the predicate computing each output bit is the same; this is not necessary for
Theorem 1.2. Secondly, our attack works for a 1 − o(1) fraction of constraint graphs H whereas
Theorem 1.2 only requires the existence of some good constraint graph. We discuss these issues
further in Section 5.

In the rest of the introduction, we will briefly describe the techniques behind our proof of
Theorem 1.1.

Outline of Our Attack. We attack GH,P based on the following interpretation of Goldreich’s
PRG. Any graph H , predicate P , and string z ∈ {0, 1}m define an instance I of the constraint
satisfaction problem CSP(P,¬P ): for every edge e = (i, j) ∈ E(H), I includes the constraint
ze⊕P (xi, xj) = 1 (where ze⊕P (xi, xj) is either P (xi, xj) or ¬P (xi, xj)). The task of breakingGH,P
can be thought of as distinguishing instances I in which the negations of P are chosen uniformly
at random from instances I in which the negations of P are determined by a random planted
solution x ∈ Znq .

Allen, O’Donnell, and Witmer [AOW15] developed a polynomial time algorithm for a related
problem, namely that of random CSP refutation: in their setting (specializing to 2CSPs), a ran-
dom instance I is generated by choosing a random graph H along with random negation patterns
(ae, be) ∈ Z2

q for each edge e = (i, j) ∈ E(H), and including constraints P (xi + ae, xj + be) = 1 in
I. Their algorithm can certify, for example, that Opt(I) < 1 provided given at least Ω̃(n · poly(q))
constraints. Intuitively, we would like to break GH,P by attempting to refute the satisfiability of
the CSP instance associated to (G,H, z).

However, there are two main obstacles to this approach: first, the algorithm in [AOW15] re-
quires n · poly(q) clauses where poly(q) is some high (constant) degree polynomial in q; we need
to reduce this to n · q for our purposes. Moreover, the random CSP setting in [AOW15] includes q2

different negation patterns (chosen at random for each clause); it turns out that the naive reduc-
tion from our setting to theirs incurs a loss of q2 (in addition to the large polynomial in q already
present) which we additionally need to avoid.

These problems would both be resolved if we could convert our CSP on an alphabet of size
q = ω(1) to a related CSP on a constant sized alphabet. We achieve this by showing that any
predicate P : Z2

q → {0, 1} is (1
2 + Ω( 1√

q ))-correlated to another predicate P ′ : Z2
q → {0, 1} which

“depends on only a constant number of bits of each input”. This builds off of a lower bound due
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to Chor and Goldreich [CG88] on 2-source extractors. Then, we show that to breakGH,P it suffices
to certify that a random CSP with constant-sized predicate Q is not 1

2 + Ω( 1√
q )-satisfiable, which can

be done using the algorithm of [AOW15] with only Ω̃(n · q) clauses.

2 Preliminaries

Notation. We let Un denote the uniform distribution on n bits, i.e., on the set {0, 1}n. Addi-
tionally, we let Un,q denote the uniform distribution on the set Znq . Let negl(n) : N → R denote
any function that is smaller than any inverse polynomial in n. That is, we require that for every
polynomial p, there is an np ∈ N such that for all n > np, negl(n) < 1/p(n).

2.1 Pseudorandom Generators

We say that a function G : {0, 1}n → {0, 1}m is a pseudorandom generator (PRG) if it has the follow-
ing properties: (1)G is computable in (uniform) time poly(n), and (2) any probabilistic polynomial
time adversary A : {0, 1}m → {0, 1} has the property that∣∣∣∣ E

x←Un

[A(G(x))]− E
y←Um

[A(y)]

∣∣∣∣ = negl(n)

We say that a PRG G : {0, 1}n → {0, 1}m has stretch m− n = m(n)− n. In this paper, we focus on
the polynomial stretch regime, namely where m = O(nc) for some constant c > 1.

IfG is computable in NC0, then we define the locality ofG to be the maximum number of input
bits on which any output bit of G depends.

2.2 Constraint Satisfaction Problems (CSPs)

Let P : Zkq → {0, 1} be a q-ary predicate. We denote by CSP(P ) the set of instances of the
constraint satisfaction problem (CSP) with predicate P and arbitrary negation patterns, as defined
below. An instance I = {C1, C2, ..., Cm} of CSP(P ) consists of m equations “Ci(x) = 1” in n
variables x = (xi)

n
i=1, xi ∈ Zq. Each equation (also called a constraint), is of the form C(x) :=

P (xi1 +a1, xi2 +a2, ..., xik +ak) for some collection of k indices (i1, ..., ik) and k “negation patterns”
(a1, ..., ak) ∈ Zkq . Equivalently, an instance I is a labelled k-uniform hypergraph H , where a clause
C = ((i1, i2, ..., ik), a1, a2, ..., ak)) corresponds to a hyperedge (i1, i2, ..., ik) with label (a1, a2, ..., ak).

Given an instance I ∈ CSP(P ), an important quantity of interest is the maximum fraction of con-
traints simultaneously satisfiable by some input x ∈ Znq , which is denoted Opt(I). For a particular
x ∈ Znq , we let ValI(x) = E

i∼[m]
[Ci(x)], so that Opt(I) = max

x∈Zn
q

(ValI(x)).

Following [AOW15], we consider a model for random CSP(P ) instances in which a random
instance I ∈ CSP(P ) is generated by including each possible constraintC(x) = P (xi1 +a1, ..., xik +
ak) = 1 with probability p. In this model, a random instance I typically has m = m(1 ± O( 1√

m
))

constraints, where m = p · qknk. We call a sample instance I from this model “a random instance
of density p”.

The above definitions can be naturally extended to constraint satisfaction problems with t > 1
predicates P1, ..., Pt. In particular, we denote by CSP(P1, ..., Pt) the set of instances of such a CSP,
and an instance I = (I1, ..., It) to consist of an instance Ij of CSP(Pj) for each j.
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2.3 Refutation of random CSPs

One of the key tools used in our algorithm that breaks the PRGs of Lin and Tessaro is a refutation
algorithm for random CSPs developed by Allen, O’Donnell, and Witmer in [AOW15]. We state the
relevant definitions and results here.

Definition 1. Let P : Zkq → {0, 1} be a predicate, and let P = P (x1, ..., xk)
(x1,...,xk)∼Uk,q

. An algorithm A is said

to (P + ε)-refute random density p instances of CSP(P ) if A has the following properties: (1) A
returns “fail” for any instance I ∈ CSP(P ) with Opt(I) ≥ P + ε , and (2) with probability 1− o(1),
A returns “Opt(I) < P + ε” for a random instance I ∈ CSP(P ) of density p.

In [AOW15], the problem of refuting random CSPs is solved by certifying that a random CSP
satisfies a property, called ε-quasirandomness, which is strictly stronger than “Opt(I) < P + ε.”

Definition 2. An instance I ∈ CSP(P ) is ε-quasirandom if for all x ∈ Znq , the probability distribution

πx,I(y) = Pr
((i1,i2,...,ik),a)∼E(H)

[xil + al = yl for all 1 ≤ l ≤ k]

is ε-close to the uniform distribution Um,q in statistical distance, where H denotes the labelled
hypergraph associated to I.

Note that quasirandomness of an instance I is solely a property of the hypergraph H associ-
ated to I and has nothing to do with the predicate P .

Definition 3. LetP : Zkq → {0, 1} be a predicate. An algorithmA is said to certify ε-quasirandomness
of random density p instances of CSP(P ) if A has the following properties: (1) A returns “fail” for
any instance I ∈ CSP(P ) which is not ε-quasirandom, and (2) with probability 1− o(1), A returns
“I is ε-quasirandom” for a random instance I ∈ CSP(P ) of density p.

Theorem 2.1 ([AOW15], Theorem B.6). Let P : Zkq → {0, 1}. Then, there is a poly(n)-time algorithm
Aε which certifies ε-quasirandomness of random density p instances of CSP(P ), as long as m = pqknk ≥
Ω̃(n

k/2qO(k)

ε2
). Moreover, this algorithm is oblivious to the predicate P .

2.4 Goldreich’s Candidate PRG

Goldreich’s candidate pseudorandom generator, first introduced in [Gol00] (then as a candidate
one-way function), can be instantiated with any k-ary predicate P : {0, 1}k → {0, 1} and any k-
uniform (directed) hypergraph H on n vertices and m hyperedges. (To the best of our knowledge,
the generalization to predicates P that take symbols from a larger alphabet was first considered
by Lin and Tessaro under the name of “block-wise local” PRGs). Given H and P , we identify each
vertex in H with an index in [n] and each hyperedge with an index i ∈ [m]. For each i ∈ [m],
let ΓH(i) ∈ [n]k be the sequence of k vertices in the ith hyperedge. Then, Goldreich’s PRG is the
function from {0, 1}n to {0, 1}m defined by

GH,P (x) =
(
P (x|ΓH(i))

)
i∈[m]

.

That is, the ith bit of GH,P (x) is the output of P when given the ΓH(i)-restriction of x as input.
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Goldreich’s generator is often instantiated with a uniformly random choice of hypergraph H ; in
this setting, we say that “Goldreich’s generator instantiated with P is a PRG” for some predicate
P if for a random k-uniform hypergraph H , GH,P is a PRG with high probability (say, probability
1 − o(1)). Often (see [AL16], [OW14], [ABR12]) instead of proving hardness results for random
hypergraphs it suffices to use hypergraphs with “good expansion” for varying definitions of ex-
pansion. For a more in-depth survey and discussion of Goldreich’s PRG, see [App16].

In this paper, we use a slightly different model of “random hypergraph”, which we later call
Gdir(n, p) in the case of k = 2, in which instead of fixing the number of hyperedges m and choos-
ing a uniformly random hypergraph with m edges, we fix an average number of edges m and
sample H by including each hyperedge independently with probability p = m

nk . This results in a
hypergraph H whose number of hyperedges m is highly concentrated around m but is not con-
stant. Our main result, Theorem 1.1, applies for both of these random models; we formally prove
our result in the Gdir(n, p) model, but it easily extends to the standard Goldreich random model.
Essentially, if we are handed a random graph with exactly 2m edges, we can simulate the distribu-
tion Gdir(n, p) for p = m

n2 with negligible error; see [AOW15] Appendix D for an analogous transfer
theorem in the setting of random CSP refutation.

Note that given a hypergraph H and predicate P used to instantiate Goldreich’s PRG, the
pair (H,P ) along with any string y ∈ {0, 1}m define an instance I ∈ CSP(P,¬P ) with clauses
Gi(x) = yi (where Gi(x) denotes the ith bit of the output of G(x)) giving either the constraint
P (x|ΓH(i)) = 1 (if yi = 1) or ¬P (x|ΓH(i)) = 1 (if yi = 0). The task of breaking Goldreich’s PRG
can be thought of distinguishing a “random instance” (in the sense that y is chosen uniformly at
random in {0, 1}m from a “random planted instance” (where y is chosen from G(Um)). However,
even when the graphH is chosen uniformly at random, these instances do not directly correspond
to “random instances” in the sense of Section 2.2. For each clause, instead of having random
negation patterns applied to x, we randomly negate the entire predicate P with probability 1

2 .
This distinction is especially relevant in the generalization to large alphabet size, as then only a
1
qk

fraction of clauses in a random CSP (as defined in Section 2.2) have the (non-)negation pattern
appearing in Goldreich’s PRG.

3 A Structural Result on Predicates P : Z2
q → {0, 1}

Our first result says that any predicate P : Z2
q → {0, 1} is non-trivially correlated to a decomposed

predicate P ′ where P ′(x, y) = Q(f(x), g(y)) for some functions f , g, and Q where f maps from Zq
to {0, 1}4, andQmaps from {0, 1}4×{0, 1}4 to {0, 1}. Our result is a consequence of a lower bound
on the possible error of two-source extractors, due to Chor and Goldreich [CG88].

Theorem 3.1. Suppose that P : Z2
q → {0, 1} is a balanced predicate and q = 16q′ is divisible by 16. Then,

there is a pair of q′-to-one maps f1, f2 : Zq → Z16, a balanced predicate Q : Z16 × Z16 → {0, 1}, and some
constant c such that P (x, y) is at least 1

2 + c√
q -correlated to P ′(x, y) := Q(f1(x), f2(y)).

Proof. We start with the result of Chor and Goldreich [CG88], which says that given any P : Z2
q →

{0, 1}, there exists a set S ⊂ Zq of size q′ and a set T̃ ⊂ Zq of size q
2 = 8q′ such that

E
x,y←S×T̃

[P (x, y)] ≥ 1

2

(
1 +

1√
8q′

)
.
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This implies the existence of a set T ⊂ T̃ of size q′ such that

E
x,y←S×T

[P (x, y)] ≥ 1

2

(
1 +

1√
8q′

)
.

The intuition behind the rest of the solution is as follows: we have identified a q′ × q′ rectangle
S×T on which P is biased towards 1 on average. The decomposed predicate P ′ we construct will
map each input x, y to a rectangle (one of which is S×T ) and then output 0 or 1 depending on the
expected value of P inside that rectangle.

More formally, let S = {S1, S2, ..., S16} and T = {T1, T2, ..., T16} be partitions of Zq into 16
equally sized subsets with S1 = S and T1 = T . Let f1 : Zq → Z16 send x to the unique i such
that x ∈ Si, and let f2 : Zq → Z16 send y to the unique j such that y ∈ Sj . By construction, every
i ∈ Z16 has a preimage of size exactly q′ under both f1 and f2.

Finally, for each i, j, consider the quantity

Eij := E
x,y←Si×Tj

[P (x, y)],

and let Q : Z16 × Z16 → {0, 1} be defined by Q(i, j) = 1 if and only if Eij is one of the 128 largest
elements of the multiset {Eij , (i, j) ∈ Z16 × Z16}. We claim that P (x, y) is at least 1

2 + Ω( 1√
q )-

correlated to Q(f1(x), f2(y)). To see this, we note that

Pr[P (x, y) = Q(f1(x), f2(y))] =
1

2
+

1

256

16∑
i=1

16∑
j=1

(−1)Q(i,j)+1discSi,Tj (P )

where discSi,Tj (p) := Eij − 1
2 . Now, we claim that

16∑
i=1

16∑
j=1

(−1)Q(i,j)+1discSi,Tj (P ) ≥ 1

2

16∑
i=1

16∑
j=1

∣∣discSi,Tj (P )
∣∣ , (∗)

in which case we are done, since

16∑
i=1

16∑
j=1

∣∣discSi,Tj (P )
∣∣ ≥ discS,T (P ) = Ω(

1
√
q

).

To prove the claim, note that if every term in (∗) is non-negative, the claim is true; otherwise,
suppose without loss of generality that Eij > 1

2 for some (i, j) such that Q(i, j) = 0 (implying that
Q(i, j) = 0 for all i, j such that Eij < 1

2 ). Then, we note that by definition of Q,

∑
(i,j):Q(i,j)=0,Eij>

1
2

(
Eij −

1

2

)
≤

∑
(i,j):Q(i,j)=1,Eij>

1
2

(
Eij −

1

2

)
,

which implies that∑
i,j

(−1)Q(i,j)+1discSi,Tj (P ) ≥
∑

i,j:Eij<
1
2

−discSi,Tj (P ) =
1

2

∑
i,j

∣∣discSi,Tj (P )
∣∣ ,

as desired.
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4 Reduction to CSPs in the AOW15 setting

We now prove Theorem 1.1 by combining our structure theorem for predicates (Theorem 3.1) with
quasirandomness certification (Theorem 2.1) over constant-sized alphabets. Recall the statement of
Theorem 1.1.

Theorem 4.1. There is a poly(n) time algorithm D with the following property: for any m ≥ Ω̃(q · n) and
any predicate P : Z2

q → {0, 1} in two variables, and almost all (1 − o(1)) graphs H with n vertices and
m edges, D(H,P, z) distinguishes (with distinguishing advantage Ω(1)) a random string z ∼ Um from
a random output z ∼ GH,P (Un,q) of Goldreich’s pseudorandom generator GH,P : Znq → {0, 1}m when
instantiated with P and H .

We already mentioned in Section 2.4 that it is sufficient to prove the theorem when H is drawn
from the distribution Gdir(n, p), i.e. by independently including each directed edge (i, j) ∈ [n]× [n]
with probability p = m

n2 , so we will focus on this modified theorem.
Fix any predicate P : Z2

q → {0, 1}. Let GH,P : Znq → {0, 1}m be a randomly drawn instance
of Goldreich’s PRG, where the graph H is sampled according to the distribution Gdir(n, p). We
now describe an algorithm D which, given P,H , and a string z ∈ {0, 1}m (where m is the number
of edges in H), outputs a bit b ∈ {0, 1} such that E

z∼Um

[D(P,H, z)] is noticeably different from

E
z∼GH,P (Un)

[D(P,H, z)]. The algorithm D does the following:

1. Set H(0,0) = H , z(0,0) = z.

2. Draw an additional 164 − 1 graphs H(a,b) (for (a, b) 6= ((0, 0), (0, 0)) ∈ Z4
16 ' Z2

16 × Z2
16)

independently from the distribution Gdir(n, p), and sample 164 − 1 strings z(a,b) ∈ {0, 1}mab

uniformly at random (where mab denotes the number of edges in H(a,b)).

3. Define CSP “instances” I1 and I2 (with the predicate unspecified) based on the graphsH(a,b)

and strings z(a,b), in which I1 contains the clauses corresponding to z(a,b)
i = 1 (included with

negation pattern (a, b)) and I2 contains the clauses corresponding to z
(a,b)
i = 0 (included

with negation pattern (a, b)).

4. Call Aε(I1) and Aε(I2), where A is the algorithm from Theorem 2.1, ε = c
220
√
q
, and c is the

constant in Theorem 3.1. Recall that A is predicate-oblivious, so this can be done.

5. Return 1 if and only if both calls to A return “this instance is ε-quasirandom”.

Let Q be a predicate satisfying the conclusion of Theorem 3.1 applied to P , and let Q̃ : (Z16 ×
Z16)2 → {0, 1} be the 2-variable predicate Q̃((x, y), (x′, y′)) = Q(x, y′). We will be thinking of I1

above as an instance of CSP(Q̃) and I2 as an instance of CSP(¬Q̃), so that the graphs H(a,b) and
strings z(a,b) define an instance (I1, I2) of CSP(Q̃,¬Q̃).

We now need to analyze the behavior of D(P,H, z) when (1) z ∼ Um is truly random, and
when (2) z ∼ GH,P (Un,q) is pseudorandom.

Lemma 4.2. Suppose that m ≥ Ω̃(qn). Then, for a 1− o(1) fraction of graphs H as drawn from Gdir(n, p),
the following holds: with probability 1 − o(1) over z ∼ Um and the randomness of D, both I1 and I2 as
constructed in D(P,H,GH,P (z)) will be certified to be c

220
√
q
-quasirandom.
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Proof. We prove the lemma separately for I1 and I2, which suffices by a union bound. To see that
I1 will almost surely be certified quasirandom, consider the distribution

{z(a,b) ∼ Um, H(a,b) ∼ Gdir(n,
m

n2
) : I1}.

This is exactly a random instance in CSP(Q̃) where each clause-negation pattern pair is chosen
with probability m

2n2 . Therefore, [AOW15] tells us that with probability 1 − o(1) over the choice
of graphs (H(a,b)) and bit strings (z(a,b)) (which together determine the graph defining I1), as
long as m ≥ Ω̃(qn), I1 will successfully be certified to be c

220
√
q
-quasirandom. Suppose that the

certification is successful for a 1 − ε(n) fraction of collections of graphs and bit strings. Then,
by a union bound, we conclude that for at least a 1 −

√
ε(n) fraction of graphs H = H(0,0), the

quasirandomness certification succeeds with probability at least 1 −
√
ε(n) over the randomness

of D and input z ∼ Um.
The same argument as above applies to I2 as well (as the quasirandomness certification algo-

rithm is oblivious to the predicate), so we have obtained the desired result.

Lemma 4.3. Suppose that m ≥ Ω̃(qn). Then, for a 1− o(1) fraction of graphs H as drawn from Gdir(n, p),
the following holds: with constant probability over x = (xi)

n
i=1 ∼ Un,q and the randomness of D, at least

one of I1 and I2 as constructed by D(P,H,GH,P (x)) is not c
220
√
q
-quasirandom.

Proof. We will show that with constant probability over x ∼ Un,q and the randomness of D, the
particular input x̃ = ((f1(xi), f2(xi))

n
i=1 ∈ Zn2562 will satisfy at least a 1

2 + c
220
√
q

fraction of the

combined instance (I1, I2) ∈ CSP(Q̃,¬Q̃), which suffices to prove the lemma. We first focus on
the clauses defined by H(0,0) = H . Suppose that E[P (x, y) ⊕ Q(x, y)] = α. Then, in expectation
over x, the fraction of clauses from H in (I1, I2) satisfied by x̃ is given by

E := E
x∼Un,q

[
Pr

(i,j)∼E(H)
[Q(xi, xj) = P (xi, xj)]

]
≥ α− n

m
≥ 1

2
+

c
√
q
− n

m
.

where the n
m term comes from the fraction of edges in H which are self loops (we cannot say that

P (xi, xi) is necessarily correlated to Q(xi, xi)). Now, we compute the variance (over x) of this
fraction of clauses to be

Var = E
x∼Un,q

[(
Pr

(i,j)∼E(H)
[Q(xi, xj) = P (xi, xj)]

)2
]
− E2

= E
x∼Un,q

 1

m2

∑
(i,j)∈E(H),(k,l)∈E(H)

χ (Q(xi, xj) = P (xi, xj))χ (Q(xk, xl) = P (xk, xl))

− E2

=
1

m2

∑
(i,j)∈E(H),(k,l)∈E(H)

Pr
x∼Un,q

[Q(xi, xj) = P (xi, xj) and Q(xk, xl) = P (xk, xl)]− E2

Note that if the edges (i, j), (k, l) ∈ E(H) have no vertices in common, the events “Q(xi, xj) =
P (xi, xj)” and “Q(xk, xl) = P (xk, xl)” are independent. This means that our variance is bounded
by
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Var ≤ 1

m2

∑
(i,j)∈E(H),(k,l)∈E(H)

Pr
x∼Un,q

[Q(xi, xj) = P (xi, xj)] Pr
x∼Un,q

[Q(xk, xl) = P (xk, xl)]+
mbad

m2
−E2 =

mbad

m2
,

where

mbad = |{((i, j), (k, l)) ∈ E(H)× E(H) : (i, j) and (k, l) have a vertex in common}| ≤
∑
i∈[n]

degH(i)2.

Now, we note that since degH(i) ≤ 2n for all i, we obtain the bound

mbad ≤
∑
i∈[n]

degH(i)2 ≤ 2n ·
∑
i∈[n]

degH(i) = 4mn.

Moreover, with probability 1 − negl(n) over the choice of H we have that m ≥ m
2 , in which case

the variance is bounded by

Var ≤ 4mn

m2
=

4n

m
≤ 8n

m
≤ 8

q log(n)
,

as we are assuming that m ≥ Ω̃(nq). By Chebyshev’s inequality, this means that with constant
probability over x ∼ Un,q, we have that

Pr
(i,j)∼E(H)

[Q(xi, xj) = P (xi, xj)] ≥ α−
n

m
− 4√

q log(n)
≥ 1

2
+

c
√
q
− 2n

m
− 4√

q log(n)
≥ 1

2
+

c

2
√
q
.

This in turn implies that with constant probability over x, the string x̃ will satisfy at least 1
2 + c

2
√
q

of the clauses in (I1, I2) corresponding to H .
Finally, we consider the other graphs H(a,b) and their corresponding clauses. Since we chose

the negations z(a,b) uniformly at random, we see that for any x and all collections of graphs (H(a,b))
with sufficiently many (at least m2 ) edges (all but a negligible fraction of collections of graphs), with
constant probability over the choice of (z(a,b)) ∈ {0, 1}

∑
a,bmab we have that the fraction of non-H

clauses satisfied by x̃ is at least 1
2 −

1
100
√
m

.

Finally, for all collections of graphs (H(a,b)) with sufficiently few (at most 2m) edges (all but
a negligible fraction of collections of graphs), we conclude that with constant probability over x
and the randomness of D,

Opt(I1, I2) ≥ ValI1,I2(x̃) ≥ 1

2
+

1

217
· c

2
√
q
− 1

100
√
m
≥ 1

2
+

c

220√q
,

since we are assuming that m ≥ Ω̃(qn). This completes the proof of Lemma 4.3.

To conclude, we summarize how Lemma 4.2 and Lemma 4.3 together imply Theorem 1.1.
Lemma 4.2 tells us that with probability 1 − o(1) over the choice of H , Aε(I1) and Aε(I2) will
both output “this instance is quasirandom” with probability 1 − o(1), so D(P,H, z) will output 1
with probability 1 − o(1). Lemma 4.3 tells us that with probability 1 − o(1) over the choice of H ,
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either I1 or I2 will not be ε-quasirandom with constant probability, which by Theorem 2.1 means
thatAε(I1) orAε(I2) will not output “this instance is quasirandom”, in which case D(P,H, z) will
return 0. Thus, by a union bound, we conclude that with probability 1 − o(1) over H , D achieves
a constant distinguishing advantage between the “truly random z” case and the “pseudorandom
z” case, as desired.

5 Potential Strategies for Repairing the IO Candidate

We outline three possible strategies for fixing the blockwise 2-local PRG and thus the IO candidate.

Non-Uniform Constraint Graphs. We showed that for any block-wise 2-local predicate P and a
uniformly random constraint graph, the corresponding Goldreich-like PRG is broken, as long as its
stretch meets the minimum requirement from the Lin-Tessaro construction.

On the other hand, for the construction to work, it is sufficient that there is some constraint
graph and some 2-local predicate P for which the Goldreich-like PRG is secure. This possibility
remains open.

We note that even in the case of the standard Goldreich PRG (with Boolean predicates), we
know of few attacks known to work on all graphs. Mossel, Shpilka and Trevisan in [MST06] suc-
ceed in breaking Goldreich’s PRG for Boolean predicates of locality at most 4 and all hypergraphs
with sufficiently many hyperedges, but later attacks [AL16, OW14, ABR12, BQ12] focus on uni-
formly random hypergraphs.

Different Predicates for Each Output Bit. Our algorithm breaks the PRG as long as each output
bit is computed by applying the same predicate on some subset of input bits. A potential fix is to
allow for different predicates, one for each output bit.

A potential way to come up with such a family of predicates is to fix a good predicate P and
consider the family P = {Pc1,c2 : c1, c2 ∈ Zq × Zq} where Pc1,c2(x, y) = P (x + c1, y + c2) with
addition done mod q.

Local PRGs with Lazy Evaluation? A third and final strategy is to consider a generalization of
blockwise local PRGs into what we call “preprocessed locality-2 PRGs”. Consider a PRG from
n bits to m bits which permits computation in two stages: in the first stage, there is an arbitrary
algorithm that takes the n bits of input and produces s bits of output, with s = m1−ε for some
constant ε > 0, and in the second stage, there is a degree-2 function that takes the s bits to the
actual m bits of PRG output.

Clearly, a blockwise 2-local PRG with appropriate alphabet size and stretch would have given
us such a preprocessed locality-2 PRG. It seems to us that preprocessed locality-2 PRGs are the
minimal primitive necessary for the Lin-Tessaro framework to bear fruit. The existence of such
PRGs remains open.

None of the three potential countermeasures we suggest have been subject to any rigorous
cryptanalysis. Doing so and coming up with polynomial-time attacks would definitively lay to
rest the question of building IO from bilinear maps.
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