
KDM-Secure Public-Key Encryption from Constant-Noise LPN

Shuai Han1,2 and Shengli Liu1,2,3

1 Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

{dalen17,slliu}@sjtu.edu.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

3 Westone Cryptologic Research Center, Beijing 100070, China

Abstract. The Learning Parity with Noise (LPN) problem has found many applications in cryptog-
raphy due to its conjectured post-quantum hardness and simple algebraic structure. Over the years,
constructions of different public-key primitives were proposed from LPN, but most of them are based
on the LPN assumption with low noise rate rather than constant noise rate. A recent breakthrough
was made by Yu and Zhang (Crypto’16), who constructed the first Public-Key Encryption (PKE) from
constant-noise LPN. However, the problem of designing a PKE with Key-Dependent Message (KDM)
security from constant-noise LPN is still open.

In this paper, we present the first PKE with KDM-security assuming certain sub-exponential hard-
ness of constant-noise LPN, where the number of users is predefined. The technical tool is two types
of multi-fold LPN on squared-log entropy, one having independent secrets and the other independent
sample subspaces. We establish the hardness of the multi-fold LPN variants on constant-noise LPN.
Two squared-logarithmic entropy sources for multi-fold LPN are carefully chosen, so that our PKE is
able to achieve correctness and KDM-security simultaneously.

Keywords: learning parity with noise, key-dependent message security, public-key encryption

1 Introduction

The search Learning Parity with Noise (LPN) problem asks to recover a random secret binary vector
s ∈ Fn2 from noisy linear samples of the form (a, 〈a, s〉 + e), where a ∈ Fn2 is chosen uniformly at
random and e ∈ F2 follows the Bernoulli distribution Bµ with parameter µ (i.e., Pr[Bµ = 1] = µ).
The decisional LPN problem simply asks to distinguish the samples (a, 〈a, s〉 + e) from uniform.
The two versions of LPN turn out to be polynomially equivalent [BFKL93, KS06].

From a theoretical point, LPN offers a very strong security guarantee. The LPN problem can
be formulated as a well-investigated NP-complete problem, the problem of decoding random linear
codes [BMT78]. An efficient algorithm for LPN would imply a major breakthrough in coding theory.
LPN also becomes a central hub in learning theory: an efficient algorithm for it could be used to
learn several important concept classes such as 2-DNF formulas, juntas and any function with a
sparse Fourier spectrum [FGKP06]. Until now, the best known LPN solvers require sub-exponential
time. Further, there are no quantum algorithms known to have any advantage over classic ones in
solving it. This makes LPN a promising candidate for post-quantum cryptography.

From a practical point, LPN-based schemes are often extremely efficient. The operations of LPN
are simply bitwise exclusive OR (XOR) between binary strings, which are more efficient than other
quantum-secure candidates like the learning with errors (LWE) assumption [Reg05]. Consequently,
LPN-based schemes are very suitable for weak-power devices like RFID tags.

Low-Noise LPN vs. Constant-Noise LPN. Obviously, with the noise rate µ decreasing, the
LPN problem can only become easier. Under a constant noise rate 0 < µ < 1/2, the best known

algorithms for solving LPN require 2O(n/ logn) time and samples [BKW03, LF06] . The time com-
plexity goes up to 2O(n/ log logn) when given only polynomially many poly(n) samples [Lyu05], and
even 2O(n) when given only linearly many O(n) samples [Ste88, MMT11]. Under a low noise rate
µ = O(n−c) (typically c = 1/2), the best LPN solvers need only 2O(n1−c) time when given O(n)
samples [Ste88, CC98, BLP11, Kir11, BJMM12].

The low-noise LPN is mostly believed to be a stronger assumption than constant-noise LPN.
Moreover, low-noise LPN results in less efficient schemes than constant-noise LPN. For example,
to achieve a same security level, the secret length n of low-noise LPN for noise rate µ = O(1/

√
n)

has to be squared compared with constant-noise LPN [DMN12], according to the time complexity
of the attack algorithms.

For public-key primitives, Alekhnovich [Ale03] constructed a chosen-plaintext (IND-CPA) secure
public-key encryption (PKE) scheme based on low-noise LPN for noise rate µ = O(1/

√
n). Recently,

Döttling et al. [DMN12] provided a chosen-ciphertext (IND-CCA2) secure PKE scheme from low-
noise LPN, and Kiltz et al. [KMP14] improved the efficiency of the PKE scheme significantly. David
et al. [DDN14] proposed a universally composable oblivious transfer (OT) protocol from low-noise
LPN. All the above schemes are based on LPN for noise rate µ = O(1/

√
n) or even µ = O(n−1/2−ε)

with some ε > 0.

Though constant-noise LPN provides more security confidence and efficiency than low-noise
LPN, it had been a long-standing open problem to construct public-key primitives based on
constant-noise LPN since Alekhnovich’s work [Ale03]. This problem was not resolved until the
recent work of Yu and Zhang [YZ16], who designed the first IND-CPA secure PKE scheme, the
first IND-CCA2 secure PKE scheme and the first OT protocol from constant-noise LPN.

Key-Dependent Message Security. The traditional IND-CPA (or even IND-CCA2) security
might be sufficient for some scenarios, but not strong enough for high-level systems like hard
disk encryptions [BHHO08] and anonymous credential systems [CL01], where messages are closely
dependent on the secret keys. Such an issue was first identified by Goldwasser and Micali [GM84],
and appropriate security notion for key-dependent messages was formalized as KDM-security by
Black et al. [BRS02]. Over the years, more and more counterexamples were found, suggesting
that IND-CPA/IND-CCA2 security does not imply KDM-security (see [ABBC10, CGH12, MO14,
BHW15, KRW15, KW16, AP16, GKW17], to name a few).

Roughly speaking, a PKE scheme is called KDM-secure, if for any PPT adversary who is given
public keys (pk1, · · · , pkl) of l users, it is hard to distinguish encryptions of functions of secret keys
f(sk1, · · · , skl) from encryptions of a constant say 0, where the functions f are adaptively chosen
by the adversary. In this work, we focus on KDM-CPA security, where the adversary has no access
to a decryption oracle.

The first KDM-secure PKE scheme in the standard model (i.e., without using random oracles)
was proposed by Boneh et al. [BHHO08] and based on the decisional Diffie-Hellman (DDH) as-
sumption. Later, more KDM-secure PKE schemes were constructed from a variety of assumptions,
such as the DDH [CCS09, BHHI10, BGK11, GHV12], the quadratic residuosity (QR) [BG10] and
the decisional composite residuosity (DCR) [BG10, MTY11, Hof13, LLJ15, HLL16] assumptions.
However, these number-theoretic assumptions are succumb to known quantum algorithms. The
only exceptions are the KDM-secure PKE designed by Applebaum et al. [ACPS09] from LWE and
the one proposed by Döttling [Döt15] from low-noise LPN. Until now, the problem of constructing
KDM-secure PKE from constant-noise LPN has remained open.

2

Applebaum [App11] provided a generic KDM amplification for boosting any KDM-secure PKE
for affine functions to a KDM-secure PKE for arbitrary (bounded size) circuits. Thus it suffices
to construct KDM-secure PKE schemes for affine functions to obtain schemes with KDM-security
against more general class of functions.

Our Contributions. In this paper, we present the first KDM-secure PKE scheme for affine
functions from constant-noise LPN, where the number l of users is predefined. Our construction is
neat and enjoys roughly the same efficiency as the IND-CPA secure PKE scheme proposed by Yu
and Zhang [YZ16]. We show a comparison in Table 1.

Table 1. Comparison among known PKE schemes either based on LPN or achieving KDM-security in the standard
model under standard assumptions. “KDM?” asks whether the security is proved in the KDM setting. We kindly note
that, the operations of LWE (i.e., modular additions and multiplications over a large ring) are less efficient than that
of LPN (i.e., bit operations), while low-noise LPN is mostly believed to be a stronger assumption than constant-noise
LPN.

Scheme KDM? Assumption Quantum Resistance?

[Ale03, DMN12, KMP14] 7 Low-noise LPN 4

[YZ16] 7 Constant-noise LPN 4

[BHHO08, CCS09, BHHI10, BGK11, GHV12] 4 DDH 7

[BG10] 4 QR 7

[BG10, MTY11] 4 DCR 7

[Hof13, LLJ15, HLL16] 4 DDH & DCR 7

[ACPS09] 4 LWE 4

[Döt15] 4 Low-noise LPN 4

Ours 4 Constant-noise LPN 4

The starting point of our work is a variant of the LPN problem called LPN on squared-log
entropy, which was developed by Yu and Zhang [YZ16] as a technical tool in their IND-CPA/IND-
CCA2 secure PKE construction. Different from standard LPN, the secret s is not necessarily uniform
but only required to have some squared-logarithmic entropy, and the linear samples a are no longer
uniformly chosen but sampled from a random subspace of sublinear-sized dimension.

We introduce two types of multi-fold version of LPN on squared-log entropy, one having in-
dependent secrets and the other independent sample subspaces. Informally speaking, it stipulates
that the samples (ai, 〈ai, si〉+ ei) are computationally indistinguishable from uniform, even given
multiple instances i = 1, · · · , k for any polynomial k. In the version with independent secrets, si
are independently distributed; in the version with independent sample subspaces, ai are uniformly
chosen from independent subspaces. We establish the hardness of the multi-fold LPN variants on
constant-noise LPN.

Then we construct a PKE scheme and reduce the KDM-security to the multi-fold LPN variants,
which are in turn implied by constant-noise LPN. In contrast to LPN-based PKE constructions
in prior works like [Ale03, DMN12, YZ16], our PKE makes a novel use of two different squared-
logarithmic entropy distributions for LPN secrets in a delicate combination, one of which is em-
ployed in the key generation algorithm and the other is employed in the encryption algorithm. This
is crucial to achieving correctness and KDM-security of our PKE scheme simultaneously.

3

2 Preliminaries

Let n ∈ N denote the security parameter. For i ∈ N, define [i] := {1, 2, · · · , i}. Vectors are used
in the column form. Denote by x ← $ X the operation of picking an element x according to the
distribution X. If X is a set, then this denotes that x is sampled uniformly at random from X.
For an algorithm A , denote by y ← $ A (x; r), or simply y ← $ A (x), the operation of running
A with input x and randomness r and assigning output to y. Denote by |s| the Hamming weight
of a binary string s. For a random variable X and a distribution D, let X ∼ D denote that X
is distributed according to D. “PPT” is short for Probabilistic Polynomial-Time. Denote by poly
some polynomial function, and negl some negligible function. For random variables X and Y , the
min-entropy of X is defined as H∞(X) := − log(maxx Pr[X = x]), and the statistical distance
between X and Y is defined by ∆(X, Y) := 1

2 ·
∑

x

∣∣ Pr[X = x] − Pr[Y = x]
∣∣. For probability

ensembles X = {Xn}n∈N and Y = {Yn}n∈N, X and Y are called statistically indistinguishable,
denoted by X

s∼ Y , if ∆(Xn, Yn) ≤ negl(n); X and Y are called computationally indistinguishable,
denoted by X

c∼ Y , if for any PPT distinguisher D ,
∣∣ Pr[D(Xn) = 1]− Pr[D(Yn) = 1]

∣∣ ≤ negl(n).

2.1 Useful Distributions and Lemmas

For 0 < µ, µ1 < 1 and integers n,m, q, λ ∈ N, we define some useful distributions as follows.

– Let Bµ denote the Bernoulli distribution with parameter µ, i.e., Pr[Bµ = 1] = µ and Pr[Bµ =
0] = 1− µ, and Bn

µ the concatenation of n independent copies of Bµ.

– Let B̃n
µ1

denote the distribution Bn
µ1

conditioned on (1 −
√

6
3)µ1n ≤ |Bn

µ1
| ≤ 2µ1n, and (B̃n

µ1
)q

an n× q matrix distribution where each column is an independent copy of B̃n
µ1

.

– Let χnm denote the uniform distribution over the set {s ∈ Fn2 | |s| = m}.
– Let Un (resp., Uq×n) denote the uniform distribution over Fn2 (resp., Fq×n2).

– Let D
q×n
λ := Uq×λ · Uλ×n.

– Let Pn denote the uniform distribution over the set of all n × n permutation matrices, i.e.,
matrices that have exactly one entry of 1 in each row and each column and 0s elsewhere.

The distribution B̃n
µ1

was introduced by Yu and Zhang [YZ16] as a very important distribution in

the context of constant-noise LPN. B̃n
µ1

can be efficiently sampleable, e.g., by sampling s ←$ Bn
µ1

repeatedly and outputting s until the condition (1−
√

6
3)µ1n ≤ |s| ≤ 2µ1n is met.

Remark 1. In this work, we are mostly interested in B̃n
µ1

and χnµ1n for µ1 = Θ(log n/n), both of

which have square-logarithmic entropy, i.e., H∞(B̃n
µ1

) = Θ(log2 n) and H∞(χnµ1n) = Θ(log2 n), as
shown in [YZ16].

Lemma 1 (Chernoff Bound [KMP14, YZ16]). For any 0 < µ < 1 and any δ > 0, we have

Pr
[
|Bn

µ| > (1 + δ)µn
]
< e−

min(δ,δ2)
3

µn.

In particular, for any 0 < µ ≤ (1
2 − p) with 0 < p < 1/2, we have

Pr
[
|Bn

µ| > (1
2 −

p
2)n
]
< e−

p2n
8 .

4

Lemma 2 (Piling-up Lemma [Mat93]). For independent random variables ei ∼ Bµi, i ∈ [q],
we have

∑q
i=1 ei ∼ Bσ with σ = 1

2 −
1
2 ·
∏q
i=1(1− 2µi).

Lemma 3 ([YZ16, Lemma 4.3 & Lemma 4.4]). For any 0 < µ ≤ 1/10, any µ1 = Θ(log n/n) ≤
1/8, any e ∈ Fn2 with |e| ≤ 1.01µn, and any s ∈ Fn2 with |s| ≤ 2µ1n, it holds that

Pr
[
ŝ>e = 1

]
≤ 1/2− 2−µ1n/2 and Pr

[
ê>s = 1

]
≤ 1/2− 2−µ1n−1,

where ŝ ∼ B̃n
µ1

and ê ∼ Bn
µ.

We state a simplified version of the leftover hash lemma, by adopting a specific family of
universal hash functions H = {HU : Fn2 −→ Fl2 | U ∈ Fl×n2 }, where HU(x) := U · x ∈ Fl2 for any
x ∈ Fn2 .

Lemma 4 (Leftover Hash Lemma [HILL99]). For any random variable X on Fn2 with min-
entropy H∞(X) ≥ k, we have ∆

(
(U, U · x) , (U, Ul)

)
≤ 2−(k−l)/2, where U ∼ Ul×n and x ∼ X.

2.2 Learning Parity with Noise

Definition 1 (Learning Parity with Noise). Let 0 < µ < 1/2. The decisional LPN problem
LPNµ,n with secret length n and noise rate µ is hard, if for any q = poly(n), it holds that

(A, A · s + e)
c∼ (A, Uq), (1)

where A ∼ Uq×n, s ∼ Un and e ∼ B
q
µ.

We say that LPNµ,n is T -hard, if for any q ≤ T , any probabilistic distinguisher of running time
T , the distinguishing advantage in (1) is upper bounded by 1/T .

A central tool for constructing IND-CPA/IND-CCA2 secure PKE in [YZ16] is a variant of the
LPN problem, called LPN on squared-log entropy. There are two main differences: (i) the secret s is
not necessarily uniform, but only required to have some squared-logarithmic entropy; (ii) the rows
of A are no longer uniformly chosen, but sampled from a random subspace of squared-logarithmic
dimension. It was shown in [YZ16] that under constant-noise LPN with certain sub-exponential
hardness, the LPN problem on squared-log entropy is hard even given some log-sized auxiliary
input about the secret and noise. Formally, we have the following theorem.

Theorem 1 (LPN on Squared-log Entropy [YZ16, Theorem 4.1]). Let 0 < µ < 1/2 be

any constant. Assume that LPNµ,n is 2ω(n
1
2)-hard, then for any λ = Θ(log2 n), q = poly(n), any

polynomial-time sampleable distribution S on Fn2 with H∞(S) ≥ 2λ, and any polynomial-time com-

putable function f : (Fn2 × Fq2)× Z −→ FO(logn)
2 with public coins Z, we have

(A, A · s + e, Z, f(s, e;Z))
c∼ (A, Uq, Z, f(s, e;Z)),

where A ∼ D
q×n
λ , s ∼ S and e ∼ B

q
µ.

By Remark 1, B̃n
µ1

and χnµ1n with µ1 = Θ(log n/n) are suitable candidate distributions for S,

as long as the constant hidden in λ = Θ(log2 n) is small enough such that H∞(B̃n
µ1

) ≥ 2λ and
H∞(χnµ1n) ≥ 2λ holds.

5

2.3 Public-Key Encryption and Key-Dependent Message Security

A public-key encryption (PKE) scheme PKE = (KeyGen,Enc,Dec) with secret key space SK and
message space M consists of a tuple of PPT algorithms: (i) the key generation algorithm KeyGen(1n)
outputs a public key pk and a secret key sk ∈ SK; (ii) the encryption algorithm Enc(pk,m) takes
as input a public key pk and a message m ∈ M, and outputs a ciphertext c; (iii) the decryption
algorithm Dec(sk, c) takes as input a secret key sk and a ciphertext c, and outputs either a message
m or a failure symbol ⊥. Correctness of PKE requires that, for all messages m ∈M, we have

Pr
[
(pk, sk)←$ KeyGen(1n) : Dec(sk, Enc(pk,m)) 6= m

]
≤ negl(n),

where the probability is over the inner coin tosses of KeyGen and Enc.

Definition 2 (KDM-Security for PKE). Let l ∈ N denote the number of users, and let F be a
family of functions from (SK)l to M. A PKE scheme PKE is called l-KDM[F]-CPA secure, if for
any PPT adversary A , in the following l-kdm[F]-cpa game played between A and a challenger C ,
the advantage of A is negligible in n.

KeyGen. C picks b←$ {0, 1} as a challenge bit, and proceeds as follows.

(a) For each user i ∈ [l], invoke (pki, ski)←$ KeyGen(1n).

Finally, C sends the public keys (pk1, · · · , pkl) to A .

Chal(j ∈ [l], f ∈ F). A can query this oracle poly(n) times. Each time, A sends a user identity
j ∈ [l] and a function f ∈ F to C , and C proceeds as follows.

(a) Set f ← 0 (the zero function) if b = 0. Then compute a message m := f(sk1, · · · , skl) ∈M.

(b) Compute the encryption of m under the public key pkj of the j-th user, i.e., c←$ Enc(pkj ,m).

Finally, C returns the challenge ciphertext c to A .

Guess. A outputs a guessing bit b′ ∈ {0, 1}. The advantage of A is defined as
∣∣Pr[b′ = b]− 1

2

∣∣.
3 Multi-fold LPN on Squared-log Entropy

In this section, we present the technical tools used in our construction of KDM-secure PKE from
constant-noise LPN. We develop two types of multi-fold version of LPN on squared-log entropy:
one has independent secrets and the other has independent sample subspaces.

3.1 Multi-fold LPN on Squared-log Entropy with Independent Secrets

Firstly, we state a k-fold version of LPN on squared-log entropy with independent secrets and noise
vectors, where the auxiliary input per fold is a 2-bit linear leakage of the secret and noise.

Lemma 5. Let 0 < µ < 1/2 be any constant. Assume that LPNµ,n is 2ω(n
1
2)-hard, then for any

µ1 = Θ(log n/n) and λ = Θ(log2 n) such that H∞(B̃n
µ1

) ≥ 2λ, and any k = poly(n), it holds that

(A, Ŝ>A + Ê>, (e, s,P), (Ŝ>e, Ê>Ps))
c∼ (A, Uk×n, (e, s,P), (Ŝ>e, Ê>Ps)), (2)

where A ∼ Dn×n
λ , Ŝ ∼ (B̃n

µ1
)k, Ê ∼ Bn×k

µ , e ∼ Bn
µ, s ∼ χnµ1n and P ∼ Pn.

6

Proof of Lemma 5. By instantiating a transposed version of Theorem 1 with q = n, S = B̃n
µ1

and

f : (Fn2 × Fn2)× (Fn2 × Fn2 × Fn×n2) −→ F2
2 being f(ŝ, ê ; (e, s,P)) = (ŝ>e, ê>Ps), we obtain

(A, ŝ>A + ê>, (e, s,P), (ŝ>e, ê>Ps))
c∼ (A, U1×n, (e, s,P), (ŝ>e, ê>Ps)), (3)

where A ∼ Dn×n
λ , ŝ ∼ B̃n

µ1
, ê ∼ Bn

µ, and (e ∼ Bn
µ, s ∼ χnµ1n, P ∼ Pn) are public coins. Observe

that (2) is k-fold version of (3), thus a standard hybrid argument leads to Lemma 5.

We also develop a k-fold version of LPN on squared-log entropy with independent secrets and
noise vectors, where the auxiliary input per fold is a 1-bit linear leakage of a special form. We show
that the auxiliary input is also computationally indistinguishable from uniform.

Lemma 6. Let 0 < µ < 1/2 be any constant. Assume that LPNµ,n is 2ω(n
1
2)-hard, then for any

µ1 = Θ(log n/n) and λ = Θ(log2 n) such that H∞(B̃n
µ1

) ≥ 2λ, and any k = poly(n), it holds that

(A, Ŝ>A + Ê>, y, Ŝ>y + e)
c∼ (A, Uk×n, y, Uk), (4)

where A ∼ Dn×n
λ , Ŝ ∼ (B̃n

µ1
)k, Ê ∼ Bn×k

µ , y ∼ Un and e ∼ Bk
µ.

Proof of Lemma 6. By instantiating a transposed version of Theorem 1 with q = n, S = B̃n
µ1

and

f : (Fn2 × Fn2)× (Fn2 × F2) −→ F2 being f(ŝ, ê ; (y, e)) = ŝ>y + e, we have

(A, ŝ>A + ê>, (y, e), ŝ>y + e)
c∼ (A, U1×n, (y, e), ŝ>y + e)

⇒ (A, ŝ>A + ê>, y, ŝ>y + e)
c∼ (A, U1×n, y, ŝ

>y + e), (5)

where A ∼ Dn×n
λ , ŝ ∼ B̃n

µ1
, ê ∼ Bn

µ, and (y ∼ Un, e ∼ Bµ) are public coins. Again, by instantiating

a transposed version of Theorem 1 with q = 1, S = B̃n
µ1

and f that always outputs nothing, we get

(y, ŝ>y + e)
c∼ (y, U1)

⇒ (A, U1×n, y, ŝ
>y + e)

c∼ (A, U1×n, y, U1), (6)

where A ∼ Dn×n
λ , y ∼ Dn×1

λ = Un, ŝ ∼ B̃n
µ1

and e ∼ Bµ.
By combining (5) with (6), we immediately obtain

(A, ŝ>A + ê>, y, ŝ>y + e)
c∼ (A, U1×n, y, U1). (7)

Observe that (4) is k-fold version of (7), thus a standard hybrid argument leads to Lemma 6.

3.2 Multi-fold LPN on Squared-log Entropy with Independent Sample Subspaces

We introduce an l-fold version of LPN on squared-log entropy, with independent sample subspaces
and noise vectors, but shared a same secret s, i.e.,

(Ai, Ai · s + ei, Z, f(s, ei;Z))i∈[l]
c∼ (Ai, Uq, Z, f(s, ei;Z))i∈[l].

The name of “sample subspaces” originates from the fact that, each Ai ∼ D
q×n
λ is associated with

a random subspace of dimension λ, from which the rows of Ai are sampled.

7

We stress that this cannot be implied by Theorem 1, for two reasons: (i) for l independent

Ai ∼ D
q×n
λ , the distribution of their concatenation

A1
...

Al

 does not follow the form of Dlq×n
λ any

more; (ii) we cannot resort to a hybrid argument since the secret s is shared by the l folds and
unknown to the simulator.

For our KDM-secure PKE, it suffices to consider the case free of auxiliary input.

Theorem 2. Let 0 < µ < 1/2 and l ∈ N be any constant. Assume that LPNµ,n is 2ω(n
1
2)-hard, then

for any µ1 = Θ(log n/n) and λ = Θ(log2 n) such that H∞(χnµ1n) ≥ (l + 1)λ, it holds that

(Ai, Ai · s + ei)i∈[l]
c∼ (Ai, ui)i∈[l],

where s ∼ χnµ1n, Ai ∼ Dn×n
λ , ei ∼ Bn

µ and ui ∼ Un for i ∈ [l].

Proof of Theorem 2. Since H∞(χnµ1n) ≥ (l + 1)λ, by the leftover hash lemma (i.e., Lemma 4), we
have

(V, V · s)
s∼ (V, y),

where V ∼ Ulλ×n, s ∼ χnµ1n and y ∼ Ulλ.

By expressing V =

V1
...

Vl

 with Vi ∼ Uλ×n and y =

y1
...
yl

 with yi ∼ Uλ, we get

(Vi, Vi · s)i∈[l]
s∼ (Vi, yi)i∈[l]

⇒ ((Ui, Vi), Ui ·Vi · s + ei)i∈[l]
s∼ ((Ui, Vi), Ui · yi + ei)i∈[l], (8)

where Ui ∼ Un×λ, and ei ∼ Bn
µ.

Next, consider the LPNµ,λ problem on uniform string yi of length λ (instead of n), which is

assumed to be 2ω(λ
1
2) (= nω(1))-hard. It implies that

(Ui, Ui · yi + ei)
c∼ (Ui, ui),

where ui ∼ Un, for any i ∈ [l]. Through a standard hybrid argument, we have

(Ui, Ui · yi + ei)i∈[l]
c∼ (Ui, ui)i∈[l]

⇒ ((Ui, Vi), Ui · yi + ei)i∈[l]
c∼ ((Ui, Vi), ui)i∈[l]. (9)

Finally, by combining (8) with (9) and setting Ai := Ui ·Vi ∼ Dn×n
λ , Theorem 2 follows.

4 Construction of KDM-Secure PKE from Constant-Noise LPN

In this section, we present a PKE scheme with KDM-security for affine functions assuming certain

sub-exponential hardness (i.e., 2ω(n
1
2) for secret size n) of constant-noise LPN.

8

4.1 The Construction

Our PKE scheme uses the following parameters and building blocks.

– Let 0 < µ ≤ 1/10, α > 0 and l ∈ N be any constants, and let µ1 = α log n/n.

– Let λ = β log2 n with a constant β > 0 such that both H∞(B̃n
µ1

) ≥ 2λ and H∞(χnµ1n) ≥ (l+1)λ
holds. By Remark 1, such a λ can be easily found by setting β small enough.

– Let G ∈ Fk×n2 be the generator matrix of a binary linear error-correcting code together with
an efficient decoding algorithm Decode, which can correct at least (1

2 −
2

5n3α/2) · k errors. Such

a code exists for k = O(n3α+1), and explicit constructions of the code can be found in [For66].

We present the construction of PKE = (KeyGen,Enc,Dec) with secret key space Fn2 and message
space Fn2 in Fig. 1.

(pk, sk)←$ KeyGen(1n):

A←$ Dn×n
λ .

s←$ χnµ1n.

e←$ Bnµ.

y := As + e ∈ Fn2 .

Return pk := (A,y),

sk := s ∈ Fn2 .

c←$ Enc(pk,m): // m ∈ Fn2
Parse pk = (A,y).

Ŝ←$ (B̃nµ1
)k.

Ê←$ Bn×kµ .

C1 := Ŝ>A + Ê> ∈ Fk×n2 .

ê←$ Bkµ.

c2 := Ŝ>y + ê + Gm ∈ Fk2 .

Return c := (C1, c2).

m← Dec(sk, c):

Parse sk = s.

Parse c = (C1, c2).

z := c2 −C1s ∈ Fk2 .

m := Decode(z) ∈ Fn2 .

Return m.

Fig. 1. Construction of PKE with KDM-security from constant-noise LPN.

Remark 2. In contrast to LPN-based PKE constructions in prior works like [Ale03, DMN12,
YZ16], our PKE scheme makes a novel use of two squared-log entropy distributions for LPN secrets

in a delicate combination, i.e., χnµ1n in the KeyGen algorithm and B̃n
µ1

in the Enc algorithm. This is
crucial to achieving correctness and KDM-security of our scheme simultaneously. Jumping ahead,

• For KDM-security, the distribution χnµ1n employed in KeyGen allows us to express secret keys
of l users, si ∼ χnµ1n with i ∈ [l], as random permutations of a base secret key s∗ ∼ χnµ1n, i.e.,
si := Pi · s∗ for Pi ∼ Pn. Then we are able to reduce KDM-security for l users to that for a
single user. This approach makes the KDM-security proof possible. (See Subsect. 4.3 for the
formal security proof.)

• For correctness, the distribution B̃n
µ1

employed in Enc helps us to use Lemma 3 to bound the

error term Ŝ>e in decryption, where Ŝ ∼ (B̃n
µ1

)k, and decode the message m successfully. (See
Subsect. 4.2 for the formal correctness analysis.)

We stress that χnµ1n and B̃n
µ1

are carefully selected so that both the correctness and KDM-security
can be satisfied. If χnµ1n is adopted in both KeyGen and Enc, it will be hard for us to show the

correctness; if B̃n
µ1

is adopted in both KeyGen and Enc, it will be hard for us to prove the KDM-
security.

9

4.2 Correctness

Theorem 3. Our PKE scheme PKE in Fig. 1 is correct.

Proof of Theorem 3. For (pk, sk)←$ KeyGen(1n) and c←$ Enc(pk,m), we have

pk = (A,y) = (A,As + e) and c = (C1, c2) = (Ŝ>A + Ê>, Ŝ>y + ê + Gm),

where s ∼ χnµ1n, e ∼ Bn
µ, Ŝ ∼ (B̃n

µ1
)k, Ê ∼ Bn×k

µ and ê ∼ Bk
µ. Then in Dec(sk, c), it follows that

z = c2 −C1s = Ŝ>y + ê + Gm− (Ŝ>A + Ê>) · s
= Ŝ> · (As + e) + ê + Gm− (Ŝ>A + Ê>) · s
= Gm + ê + Ŝ>e− Ê>s.

We analyze the error term ê+ Ŝ>e− Ê>s. By the Chernoff bound (i.e., Lemma 1), |e| ≤ 1.01µn
holds except with negligible probability 2−Ω(n). Besides, |s| = µ1n ≤ 2µ1n. Thus, by Lemma 3,
we have Ŝ>e ∼ Bk

σ1
for σ1 ≤ 1/2 − 2−µ1n/2 = 1/2 − n−α/2, and Ê>s ∼ Bk

σ2
for σ2 ≤ 1/2 −

2−µ1n−1 = 1/2− n−α/2. Then by the Piling-up Lemma (i.e., Lemma 2), ê + Ŝ>e− Ê>s ∼ Bk
σ for

σ ≤ 1/2− 4
5 · n

−3α/2. Finally, by Lemma 1,

Pr
[∣∣ê + Ŝ>e− Ê>s

∣∣ ≤ (1
2 −

2
5n3α/2) · k

]
≥ 1− 2−Ω(n−3αk) = 1− 2−Ω(n).

Therefore, with overwhelming probability, it holds that
∣∣ê + Ŝ>e− Ê>s

∣∣ ≤ (1
2 −

2
5n3α/2) · k, and

in this case, Decode will be able to decode m from z.

4.3 KDM-Security for Affine Functions

Theorem 4. Let Faff =
{
f : (Fn2)l −→ Fn2

}
be a family of affine functions. Assume that LPNn,µ is

2ω(n
1
2)-hard, then our PKE scheme PKE in Fig. 1 is l-KDM[Faff]-CPA secure.

Proof of Theorem 4. Suppose that A is a PPT adversary against the l-KDM[Faff]-CPA security of
PKE with advantage ε. We prove the theorem by defining a sequence of games G1 –G12 and showing
that ε is negligible in n. (We also illustrate the games in Fig. 2-3 in Appendix A.1.) The changes

between adjacent games will be highlighted by red underline. In the sequel, by a
Gi= b we mean that

a equals b or is computed as b in game Gi, and by Pri[·] we denote the probability of a particular
event occurring in game Gi.

Game G1. This is the l-kdm[Faff]-cpa security game of PKE, which is played between A and a
challenger C .

KeyGen. C picks b ← $ {0, 1} as the challenge bit, and generates the public keys of l users as
follows.

(a) For each user i ∈ [l], choose Ai ←$ Dn×n
λ , si ←$ χnµ1n, ei ←$ Bn

µ, and compute yi := Aisi+ei.

Finally, C sends the public keys pki := (Ai,yi), i ∈ [l], to A .

Chal(j ∈ [l], f ∈ Faff). A can query this oracle Q = poly(n) times. Each time, A sends a user

identity j ∈ [l] and an affine function f ∈ Faff to C , and C proceeds as follows.

10

(a) Set f ← 0 (the zero function) if b = 0. Then compute the message m := f(sk1, · · · , skl) ∈ Fn2 ,
which essentially is m :=

∑
i∈[l] Tisi + t ∈ Fn2 , where Ti ∈ Fn×n2 and t ∈ Fn2 are 0s in the

case of b = 0 and are specified by A as the description of the affine function f in the case
of b = 1.

(b) Compute the encryption of m under the public key pkj = (Aj ,yj) of the j-th user, i.e.,

choose Ŝ ← $ (B̃n
µ1

)k, Ê ← $ Bn×k
µ , ê ← $ Bk

µ, and compute C1 := Ŝ>Aj + Ê> and c2 :=

Ŝ>yj + ê + Gm.

Finally, C returns the challenge ciphertext c := (C1, c2) to A .

Guess. A outputs a guessing bit b′ ∈ {0, 1}.

Let Win denote the event that b′ = b. Then by definition, ε =
∣∣Pr1[Win]− 1

2

∣∣.
Game G2. This game is the same as G1, except that, the oracle KeyGen is changed as follows.

KeyGen. C picks b←$ {0, 1} uniformly, and proceeds as follows.

(a) Choose a master secret s∗ ←$ χnµ1n.

(b) For each user i ∈ [l], choose Ai ←$ Dn×n
λ , Pi ←$ Pn, ei ←$ Bn

µ, and compute si := Pis
∗ ∈ Fn2

and yi := AiPis
∗ + ei ∈ Fn2 .

Finally, C sends the public keys pki := (Ai,yi), i ∈ [l], to A .

Claim 1. Pr1[Win] = Pr2[Win].

Proof of Claim 1. Since s∗ ∼ χnµ1n, we have |s∗| = µ1n. Then as Pi ∼ Pn, si = Pis
∗ follows the

distribution χnµ1n and is independent of s∗, the same as that in game G1. Besides, yi
G1= Aisi + ei

G2=
AiPis

∗ + ei. Consequently, the changes are just conceptual, and Pr1[Win] = Pr2[Win].

Game G3. This game is the same as G2, except that, the oracle Chal is changed as follows.

Chal(j ∈ [l], f ∈ Faff). C proceeds as follows.

(a) Set f ← 0 if b = 0. Then compute Tf :=
∑

i∈[l] TiPi ∈ Fn×n2 and m := Tfs
∗ + t ∈ Fn2 .

(b) Choose Ŝ ←$ (B̃n
µ1

)k, Ê ←$ Bn×k
µ , ê ←$ Bk

µ, and compute C1 := Ŝ>Aj + Ê> ∈ Fk×n2 and

c2 := (C1Pj + GTf) · s∗ − Ê>Pjs
∗ + Ŝ>ej + ê + Gt ∈ Fk2.

Finally, C returns the challenge ciphertext c := (C1, c2) to A .

Claim 2. Pr2[Win] = Pr3[Win].

Proof of Claim 2. Observe that m
G2=
∑

i∈[l] Tisi + t =
∑

i∈[l] Ti · (Pis
∗) + t

G3= Tfs
∗ + t, and

c2
G2= Ŝ>yj + ê + Gm = Ŝ> · (AjPjs

∗ + ej) + ê + G · (Tfs
∗ + t)

= (Ŝ>AjPj + GTf) · s∗ + Ŝ>ej + ê + Gt

= ((C1 − Ê>)Pj + GTf) · s∗ + Ŝ>ej + ê + Gt

G3= (C1Pj + GTf) · s∗ − Ê>Pjs
∗ + Ŝ>ej + ê + Gt,

where the penultimate equality is due to C1 = Ŝ>Aj+Ê>. Thus, the changes are just conceptual.

Game G4. This game is the same as G3, except that, the oracle Chal is changed as follows.

11

Chal(j ∈ [l], f ∈ Faff). C proceeds as follows.

(a) Set f ← 0 if b = 0. Then compute Tf :=
∑

i∈[l] TiPi ∈ Fn×n2 .

(b) Choose Ŝ←$ (B̃n
µ1

)k, Ê←$ Bn×k
µ , ê←$ Bk

µ, U←$ Fk×n2 , and compute C1 := U ∈ Fk×n2 and

c2 := (C1Pj + GTf) · s∗ − Ê>Pjs
∗ + Ŝ>ej + ê + Gt ∈ Fk2.

Finally, C returns the challenge ciphertext c := (C1, c2) to A .

Claim 3. If LPNµ,n is 2ω(n
1
2)-hard, then

∣∣ Pr3[Win]− Pr4[Win]
∣∣ ≤ negl(n).

Proof of Claim 3. Firstly, we introduce a sequence of games {G3,κ}κ∈[Q+1] between G3 and G4.

– Game G3,κ, κ ∈ [Q+1]. This game is a hybrid of game G3 and game G4: for the first κ−1 times
of Chal queries, C computes C1 as in game G4; for the remaining Chal queries, C computes
C1 as in game G3.

Clearly, game G3,1 is identical to G3 and game G3,Q+1 is identical to G4. It suffices to show that∣∣ Pr3,κ[Win]− Pr3,κ+1[Win]
∣∣ ≤ negl(n) for any κ ∈ [Q].

The only difference between game G3,κ and game G3,κ+1 is the distribution of C1 in the κ-th
Chal(j ∈ [l], f ∈ Faff) query: in game G3,κ, C1 is computed according to game G3, i.e., C1 =

Ŝ>Aj + Ê>; in game G3,κ+1, it is computed according to game G4, i.e., C1 = U.

We construct a PPT distinguisher D to solve the multi-fold LPN problem described in Lemma
5. Given a challenge (A,C, (e, s,P), (Ŝ>e, Ê>Ps)), D wants to distinguish C = Ŝ>A + Ê> from

C = U, where A ← $ Dn×n
λ , Ŝ ← $ (B̃n

µ1
)k, Ê ← $ Bn×k

µ , e ← $ Bn
µ, s ← $ χnµ1n, P ← $ Pn and

U←$ Fk×n2 . D is constructed by simulating game G3,κ or game G3,κ+1 for A as follows, where we
highlight the challenge received by D .

KeyGen. D picks b←$ {0, 1} uniformly, and proceeds as follows.

(a) Set the master secret s∗ := s .

(b) Pick j∗ ←$ [l]. For each user i ∈ [l],

– if i 6= j∗, choose Ai ←$ Dn×n
λ , Pi ←$ Pn, ei ←$ Bn

µ;

– if i = j∗, set Aj∗ := A , Pj∗ := P , ej∗ := e ,

and compute si := Pis
∗ ∈ Fn2 and yi := AiPis

∗ + ei ∈ Fn2 .

Finally, D sends the public keys pki := (Ai,yi), i ∈ [l], to A .

Chal(j ∈ [l], f ∈ Faff). D proceeds as follows.

(a) Set f ← 0 if b = 0. Then compute Tf :=
∑

i∈[l] TiPi ∈ Fn×n2 .

(b) – For the first κ− 1 queries, D computes C1 and c2 according to game G4.

– For the κ-th query, D aborts immediately if j 6= j∗; otherwise D chooses ê←$ Bk
µ, and

computes C1 := C and c2 := (C1Pj∗ + GTf) · s∗ − Ê>Ps + Ŝ>e + ê + Gt.

– For the remaining queries, D computes C1 and c2 according to game G3.

Finally, D returns the challenge ciphertext c := (C1, c2) to A .

Guess. A outputs a guessing bit b′ ∈ {0, 1}.

12

D finally outputs 1 if and only if j = j∗ holds in the κ-th Chal query (i.e., D does not abort) and
b′ = b.

We analyze the distinguishing advantage of D .

• In KeyGen, s∗, Aj∗ , Pj∗ and ej∗ have the same distributions as in both game G3,κ and game
G3,κ+1. Besides, j∗ is completely hidden from A ’s view.

• In the κ-th query of Chal(j ∈ [l], f ∈ Faff), j = j∗ holds with probability at least 1/l.

– If C = Ŝ>A + Ê>, then C1 = Ŝ>A + Ê> = Ŝ>Aj∗ + Ê> and c2 = (C1Pj∗ + GTf) · s∗ −
Ê>Pj∗s

∗ + Ŝ>ej∗ + ê + Gt. Thus, D computes (C1, c2) for the κ-th Chal query exactly
like game G3.

– If C = U, then C1 = U and c2 = (C1Pj∗ + GTf) · s∗ − Ê>Pj∗s
∗ + Ŝ>ej∗ + ê + Gt. Thus,

D computes (C1, c2) for the κ-th Chal query exactly like game G4.

Therefore, if D does not abort (which occurs with probability at least 1/l), D simulates game G3,κ

perfectly for A in the case of C = Ŝ>A+Ê> and simulates game G3,κ+1 perfectly for A in the case
of C = U. Consequently, D ’s distinguishing advantage is at least 1

l ·
∣∣ Pr3,κ[Win] − Pr3,κ+1[Win]

∣∣,
which is negl(n) by Lemma 5.

In conclusion,
∣∣ Pr3[Win] − Pr4[Win]

∣∣ =
∣∣ Pr3,1[Win] − Pr3,Q+1[Win]

∣∣ ≤ ∑κ∈[Q]

∣∣ Pr3,κ[Win] −
Pr3,κ+1[Win]

∣∣ ≤ Ql · negl(n), which is also negligible in n. This completes the proof of Claim 3.

Game G5. This game is the same as G4, except that, the oracle Chal is changed as follows.

Chal(j ∈ [l], f ∈ Faff). C proceeds as follows.

(a) Set f ← 0 if b = 0. Then compute Tf :=
∑

i∈[l] TiPi ∈ Fn×n2 .

(b) Choose Ŝ←$ (B̃n
µ1

)k, Ê←$ Bn×k
µ , ê←$ Bk

µ, U←$ Fk×n2 , and compute C1 := U−GTfP
−1
j ∈

Fk×n2 and c2 := (C1Pj + GTf) · s∗ − Ê>Pjs
∗ + Ŝ>ej + ê + Gt ∈ Fk2.

Finally, C returns the challenge ciphertext c := (C1, c2) to A .

Claim 4. Pr4[Win] = Pr5[Win].

Proof of Claim 4. Since U is uniformly chosen and independent of other parts of the game, C1 = U
in game G4 has the same distribution as C1 = U−GTfP

−1
j in game G5. Thus, this change is just

conceptual, and Pr4[Win] = Pr5[Win].

Game G6. This game is the same as G5, except that, the oracle Chal is changed as follows.

Chal(j ∈ [l], f ∈ Faff). C proceeds as follows.

(a) Set f ← 0 if b = 0. Then compute Tf :=
∑

i∈[l] TiPi ∈ Fn×n2 .

(b) Choose Ŝ←$ (B̃n
µ1

)k, Ê←$ Bn×k
µ , ê←$ Bk

µ, and compute C1 := Ŝ>Aj + Ê> −GTfP
−1
j ∈

Fk×n2 and c2 := (C1Pj + GTf) · s∗ − Ê>Pjs
∗ + Ŝ>ej + ê + Gt ∈ Fk2.

Finally, C returns the challenge ciphertext c := (C1, c2) to A .

Claim 5. If LPNµ,n is 2ω(n
1
2)-hard, then

∣∣ Pr5[Win]− Pr6[Win]
∣∣ ≤ negl(n).

13

The proof of Claim 5 is essentially the same as that for Claim 3, since the change from game G5

to game G6 is symmetric to the change from game G3 to game G4. For completeness, we put the
proof in Appendix A.2.

Game G7. This game is the same as G6, except that, the oracle Chal is changed as follows.

Chal(j ∈ [l], f ∈ Faff). C proceeds as follows.

(a) Set f ← 0 if b = 0. Then compute Tf :=
∑

i∈[l] TiPi ∈ Fn×n2 .

(b) Choose Ŝ←$ (B̃n
µ1

)k, Ê←$ Bn×k
µ , ê←$ Bk

µ, and compute C1 := Ŝ>Aj + Ê> −GTfP
−1
j ∈

Fk×n2 and c2 := Ŝ>yj + ê + Gt ∈ Fk2.

Finally, C returns the challenge ciphertext c := (C1, c2) to A .

Claim 6. Pr6[Win] = Pr7[Win].

Proof of Claim 6. Observe that

c2
G6= (C1Pj + GTf) · s∗ − Ê>Pjs

∗ + Ŝ>ej + ê + Gt

= ((Ŝ>Aj + Ê>)Pj) · s∗ − Ê>Pjs
∗ + Ŝ>ej + ê + Gt

= Ŝ> · (AjPjs
∗ + ej) + ê + Gt

G7= Ŝ>yj + ê + Gt,

where the second equality follows from the fact that C1 = Ŝ>Aj + Ê> −GTfP
−1
j . Consequently,

this change is just conceptual, and Pr6[Win] = Pr7[Win].

Game G8. This game is the same as G7, except that, the oracle KeyGen is changed as follows.

KeyGen. C picks b←$ {0, 1} uniformly, and proceeds as follows.
(a) Choose a master secret s∗ ←$ χnµ1n.

(b) For each user i ∈ [l], choose Bi ←$ Dn×n
λ , Pi ←$ Pn, ei ←$ Bn

µ, and compute Ai := BiP
−1
i ∈

Fn×n2 and yi := Bis
∗ + ei ∈ Fn2 .

Finally, C sends the public keys pki := (Ai,yi), i ∈ [l], to A .

Claim 7. Pr7[Win] = Pr8[Win].

Proof of Claim 7. For each i ∈ [l], the permutation Pi ∼ Pn is invertible. Then as Bi ∼ Dn×n
λ ,

Ai = BiP
−1
i also follows the distribution Dn×n

λ and independent of Pi. The reason is as follows.
Bi ∼ Dn×n

λ basically means that Bi = UiVi for Ui ∼ Un×λ and Vi ∼ Uλ×n. Then Ai = BiP
−1
i =

Ui(ViP
−1
i), where ViP

−1
i follows the distribution Uλ×n since Vi is. Consequently, Ai is distributed

according to Dn×n
λ , the same as that in game G7.

Besides, yi
G7= AiPis

∗ + ei = (BiP
−1
i) · Pis

∗ + ei
G8= Bis

∗ + ei. Thus, the changes are just
conceptual, and Pr7[Win] = Pr8[Win].

Game G9. This game is the same as G8, except that, the oracle KeyGen is changed as follows.

KeyGen. C picks b←$ {0, 1} uniformly, and proceeds as follows.
(a) For each user i ∈ [l], choose Bi ←$ Dn×n

λ , Pi ←$ Pn, and compute Ai := BiP
−1
i ∈ Fn×n2

and yi ←$ Fn2 .

14

Finally, C sends the public keys pki := (Ai,yi), i ∈ [l], to A .

Claim 8. If LPNµ,n is 2ω(n
1
2)-hard, then

∣∣ Pr8[Win]− Pr9[Win]
∣∣ ≤ negl(n).

Proof of Claim 8. The only difference between game G8 and game G9 is that yi = Bis
∗ + ei in

G8 is replaced by yi ←$ Fn2 in G9. Observe that the master secret key s∗ and the noise vectors ei,
i ∈ [l], are never used in the Chal oracle in both G8 and G9. Therefore, we can directly bound the
difference by constructing a PPT distinguisher D to solve the multi-fold LPN problem described
in Theorem 2.

Given a challenge (Bi,yi)i∈[l], D wants to distinguish yi = Bis + ei from yi ← $ Fn2 , where

s←$ χnµ1n, Bi ←$ Dn×n
λ and ei ←$ Bn

µ. D is constructed by simulating game G8 or game G9 for A
as follows, where we highlight the challenge received by D .

KeyGen. D picks b←$ {0, 1} uniformly, and proceeds as follows.
(a) For each user i ∈ [l], set Bi := Bi ∈ Fn×n2 , choose Pi ←$ Pn, and compute Ai := BiP

−1
i ∈

Fn×n2 and yi := yi ∈ Fn2 .
Finally, D sends the public keys pki := (Ai,yi), i ∈ [l], to A .

Chal(j ∈ [l], f ∈ Faff). D computes C1 and c2 in the same way as both G8 and G9. That is,

(a) Set f ← 0 if b = 0. Then compute Tf :=
∑

i∈[l] TiPi ∈ Fn×n2 .

(b) Choose Ŝ←$ (B̃n
µ1

)k, Ê←$ Bn×k
µ , ê←$ Bk

µ, and compute C1 := Ŝ>Aj + Ê> −GTfP
−1
j ∈

Fk×n2 and c2 := Ŝ>yj + ê + Gt ∈ Fk2.
Finally, D returns the challenge ciphertext c := (C1, c2) to A .

Guess. A outputs a guessing bit b′ ∈ {0, 1}.

D finally outputs 1 if and only if b′ = b holds (i.e., A wins).

Clearly, if yi = Bis + ei, D simulates game G8 perfectly for A ; if yi ←$ Fn2 , D simulates game
G9 perfectly for A . Consequently, D ’s distinguishing advantage is at least

∣∣ Pr8[Win]− Pr9[Win]
∣∣,

which is negligible in n by Theorem 2. This completes the proof of Claim 8.

Game G10. This game is the same as G9, except that, the oracle KeyGen is changed as follows.

KeyGen. C picks b←$ {0, 1} uniformly, and proceeds as follows.
(a) For each user i ∈ [l], choose Ai ←$ Dn×n

λ , Pi ←$ Pn, and yi ←$ Fn2 .

Finally, C sends the public keys pki := (Ai,yi), i ∈ [l], to A .

Claim 9. Pr9[Win] = Pr10[Win].

Proof of Claim 9. The proof is essentially the same as that for Claim 7. The key observation is
that Ai = BiP

−1
i in game G9 is distributed according to Dn×n

λ and independent of Pi, the same as
that in game G10. Thus, this change is just conceptual, and Pr9[Win] = Pr10[Win].

Game G11. This game is the same as G10, except that, the oracle Chal is changed as follows.

Chal(j ∈ [l], f ∈ Faff). C proceeds as follows.

(a) Set f ← 0 if b = 0. Then compute Tf :=
∑

i∈[l] TiPi ∈ Fn×n2 .

15

(b) Choose U←$ Fk×n2 , u←$ Fk2, and compute C1 := U−GTfP
−1
j ∈ Fk×n2 and c2 := u + Gt

∈ Fk2.

Finally, C returns the challenge ciphertext c := (C1, c2) to A .

Claim 10. If LPNµ,n is 2ω(n
1
2)-hard, then

∣∣ Pr10[Win]− Pr11[Win]
∣∣ ≤ negl(n).

Proof of Claim 10. Firstly, we introduce a sequence of intermediate games {G10,κ}κ∈[Q+1] between
G10 and G11.

– Game G10,κ, κ ∈ [Q+ 1]. This game is a hybrid of games G10 and G11: for the first κ− 1 times
of Chal queries, C computes C1 and c2 as in game G11; for the remaining Chal queries, C
computes C1 and c2 as in game G10.

Clearly, game G10,1 is identical to G10 and game G10,Q+1 is identical to G11. It suffices to show
that

∣∣ Pr10,κ[Win]− Pr10,κ+1[Win]
∣∣ ≤ negl(n) for any κ ∈ [Q].

The only difference between game G10,κ and game G10,κ+1 is the distribution of C1 and c2 in the
κ-th Chal(j ∈ [l], f ∈ Faff) query: in game G10,κ, C1 and c2 are computed according to game G10,

i.e., C1 := Ŝ>Aj + Ê> −GTfP
−1
j and c2 = Ŝ>yj + ê + Gt; in game G10,κ+1, they are computed

according to game G11, i.e., C1 = U−GTfP
−1
j and c2 = u + Gt.

We construct a PPT distinguisher D to solve the multi-fold LPN problem described in Lemma
6. Given a challenge (A,C,y, c), D wants to distinguish C = Ŝ>A + Ê> and c = Ŝ>y + ê from

C = U and c = u, where A ←$ Dn×n
λ , Ŝ ←$ (B̃n

µ1
)k, Ê ←$ Bn×k

µ , y ←$ Fn2 , ê ←$ Bk
µ, U ←$ Fk×n2

and u ← $ Fk2. D is constructed by simulating game G10,κ or G10,κ+1 for A as follows, where we
highlight the challenge received by D .

KeyGen. D picks b←$ {0, 1} uniformly, and proceeds as follows.

(a) Pick j∗ ←$ [l]. For each user i ∈ [l],

– if i 6= j∗, choose Ai ←$ Dn×n
λ , Pi ←$ Pn, and yi ←$ Fn2 ;

– if i = j∗, set Aj∗ := A , yj∗ := y , and choose Pj∗ ←$ Pn.

Finally, D sends the public keys pki := (Ai,yi), i ∈ [l], to A .

Chal(j ∈ [l], f ∈ Faff). D proceeds as follows.

(a) Set f ← 0 if b = 0. Then compute Tf :=
∑

i∈[l] TiPi ∈ Fn×n2 .

(b) – For the first κ− 1 queries, D computes C1 and c2 according to game G11.

– For the κ-th query, D aborts immediately if j 6= j∗; otherwise D computes C1 :=
C −GTfP

−1
j∗ and c2 := c + Gt.

– For the remaining queries, D computes C1 and c2 according to game G10.

Finally, D returns the challenge ciphertext c := (C1, c2) to A .

Guess. A outputs a guessing bit b′ ∈ {0, 1}.

D finally outputs 1 if and only if j = j∗ holds in the i-th Chal query (i.e., D does not abort) and
b′ = b.

Next, we analyze the distinguishing advantage of D .

16

• In KeyGen, Aj∗ and yj∗ have the same distributions as in both game G10,κ and game G10,κ+1.
Besides, j∗ is completely hidden from A ’s view.

• In the κ-th query of Chal(j ∈ [l], f ∈ Faff), j = j∗ holds with probability at least 1/l.
– If C = Ŝ>A + Ê> and c = Ŝ>y + ê, then C1 = Ŝ>A + Ê> −GTfP

−1
j∗ = Ŝ>Aj∗ + Ê> −

GTfP
−1
j∗ and c2 = Ŝ>y + ê + Gt = Ŝ>yj∗ + ê + Gt. Thus, D computes (C1, c2) for the

κ-th Chal query exactly like game G10.
– If C = U and c = u, then C1 = U−GTfP

−1
j∗ and c2 = u+Gt. Thus, D computes (C1, c2)

for the κ-th Chal query exactly like game G11.

Therefore, if D does not abort (which occurs with probability at least 1/l), D simulates game G10,κ

perfectly for A in the case of C = Ŝ>A + Ê> and c = Ŝ>y + ê, and simulates game G10,κ+1

perfectly for A in the case of C = U and c = u. Consequently, D ’s distinguishing advantage is at
least 1

l ·
∣∣ Pr10,κ[Win]− Pr10,κ+1[Win]

∣∣, which is negl(n) by Lemma 6.
In conclusion,

∣∣ Pr10[Win]−Pr11[Win]
∣∣ =

∣∣ Pr10,1[Win]−Pr10,Q+1[Win]
∣∣ ≤∑κ∈[Q]

∣∣ Pr10,κ[Win]−
Pr10,κ+1[Win]

∣∣ ≤ Ql · negl(n), which is also negligible in n. This completes the proof of Claim 10.

Game G12. This game is the same as G11, except that, the oracle Chal is changed as follows.

Chal(j ∈ [l], f ∈ Faff). C proceeds as follows.

(a) Choose U←$ Fk×n2 , u←$ Fk2, and compute C1 := U ∈ Fk×n2 and c2 := u ∈ Fk2.
Finally, C returns the challenge ciphertext c := (C1, c2) to A .

Claim 11. Pr11[Win] = Pr12[Win] = 1
2 .

Proof of Claim 11. Since U and u are uniformly chosen and independent of other parts of the
game, C1 = U−GTfP

−1
j and C2 = u + Gt in game G11 have the same distributions as C1 = U

and C2 = u in game G12, respectively. Therefore, the changes are just conceptual, and Pr11[Win] =
Pr12[Win].

Moreover, the challenge bit b is never used in game G12, thus completely hidden from A ’s view.
Consequently, we have Pr12[Win] = 1

2 .

Taking all things together, by Claim 1-11, it follows that ε =
∣∣Pr1[Win] − 1

2

∣∣ ≤ negl(n). This
completes the proof of Theorem 4.

Acknowledgments. We thank the anonymous reviewers for their comments and suggestions. The
authors are supported by the National Natural Science Foundation of China Grant (Nos. 61672346,
61373153).

References

[ABBC10] Acar, T., Belenkiy, M., Bellare, M., Cash, D.: Cryptographic agility and its relation to circular encryp-
tion. In: Gilbert, H. (ed.) EUROCRYPT 2010, LNCS, vol. 6110, pp. 403–422. Springer (2010)

[ACPS09] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure
encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009, LNCS, vol. 5677, pp.
595–618. Springer (2009)

[Ale03] Alekhnovich, M.: More on average case vs approximation complexity. In: FOCS 2003, pp. 298–307.
IEEE Computer Society (2003)

17

[AP16] Alamati, N., Peikert, C.: Three’s compromised too: Circular insecurity for any cycle length from (Ring-
)LWE. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II, LNCS, vol. 9815, pp. 659–680. Springer
(2016)

[App11] Applebaum, B.: Key-dependent message security: Generic amplification and completeness. In: Paterson,
K.G. (ed.) EUROCRYPT 2011, LNCS, vol. 6632, pp. 527–546. Springer (2011)

[BFKL93] Blum, A., Furst, M.L., Kearns, M.J., Lipton, R.J.: Cryptographic primitives based on hard learning
problems. In: Stinson, D.R. (ed.) CRYPTO 1993, LNCS, vol. 773, pp. 278–291. Springer (1993)

[BG10] Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption under subgroup
indistinguishability - (or: Quadratic residuosity strikes back). In: Rabin, T. (ed.) CRYPTO 2010,
LNCS, vol. 6223, pp. 1–20. Springer (2010)

[BGK11] Brakerski, Z., Goldwasser, S., Kalai, Y.T.: Black-box circular-secure encryption beyond affine functions.
In: Ishai, Y. (ed.) TCC 2011, LNCS, vol. 6597, pp. 201–218. Springer (2011)

[BHHI10] Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message security. In: Gilbert,
H. (ed.) EUROCRYPT 2010, LNCS, vol. 6110, pp. 423–444. Springer (2010)

[BHHO08] Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from decision Diffie-
Hellman. In: Wagner, D. (ed.) CRYPTO 2008, LNCS, vol. 5157, pp. 108–125. Springer (2008)

[BHW15] Bishop, A., Hohenberger, S., Waters, B.: New circular security counterexamples from decision linear
and learning with errors. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part II, LNCS, vol. 9453,
pp. 776–800. Springer (2015)

[BJMM12] Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes in 2n/20: How 1+1 = 0
improves information set decoding. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012, LNCS,
vol. 7237, pp. 520–536. Springer (2012)

[BKW03] Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical
query model. Journal of the ACM vol. 50(4), pp. 506–519 (2003)

[BLP11] Bernstein, D.J., Lange, T., Peters, C.: Smaller decoding exponents: Ball-collision decoding. In: Rogaway,
P. (ed.) CRYPTO 2011, LNCS, vol. 6841, pp. 743–760. Springer (2011)

[BMT78] Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the inherent intractability of certain coding
problems. IEEE Transactions on Information Theory vol. 24(3), pp. 384–386 (1978)

[BRS02] Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence of key-dependent
messages. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002, LNCS, vol. 2595, pp. 62–75. Springer (2002)

[CC98] Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words in a linear code: Ap-
plication to mceliece’s cryptosystem and to narrow-sense BCH codes of length 511. IEEE Transactions
on Information Theory vol. 44(1), pp. 367–378 (1998)

[CCS09] Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme secure against key dependent
chosen plaintext and adaptive chosen ciphertext attacks. In: Joux, A. (ed.) EUROCRYPT 2009, LNCS,
vol. 5479, pp. 351–368. Springer (2009)

[CGH12] Cash, D., Green, M., Hohenberger, S.: New definitions and separations for circular security. In: Fischlin,
M., Buchmann, J.A., Manulis, M. (eds.) PKC 2012, LNCS, vol. 7293, pp. 540–557. Springer (2012)

[CL01] Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with
optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001, LNCS, vol. 2045, pp.
93–118. Springer (2001)

[DDN14] David, B., Dowsley, R., Nascimento, A.C.A.: Universally composable oblivious transfer based on a
variant of LPN. In: Gritzalis, D., Kiayias, A., Askoxylakis, I.G. (eds.) CANS 2014, LNCS, vol. 8813,
pp. 143–158. Springer (2014)

[DMN12] Döttling, N., Müller-Quade, J., Nascimento, A.C.A.: IND-CCA secure cryptography based on a variant
of the LPN problem. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012, LNCS, vol. 7658, pp. 485–503.
Springer (2012)

[Döt15] Döttling, N.: Low noise LPN: KDM secure public key encryption and sample amplification. In: Katz,
J. (ed.) PKC 2015, LNCS, vol. 9020, pp. 604–626. Springer (2015)

[FGKP06] Feldman, V., Gopalan, P., Khot, S., Ponnuswami, A.K.: New results for learning noisy parities and
halfspaces. In: FOCS 2006, pp. 563–574. IEEE Computer Society (2006)

[For66] Forney, G.D.: Concatenated codes. MIT Press (1966)

[GHV12] Galindo, D., Herranz, J., Villar, J.L.: Identity-based encryption with master key-dependent message
security and leakage-resilience. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012, LNCS,
vol. 7459, pp. 627–642. Springer (2012)

18

[GKW17] Goyal, R., Koppula, V., Waters, B.: Separating IND-CPA and circular security for unbounded length
key cycles. In: Fehr, S. (ed.) PKC 2017, Part I, LNCS, vol. 10174, pp. 232–246. Springer (2017)

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sciences vol. 28(2),
pp. 270–299 (1984)

[HILL99] H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way
function. SIAM J. Comput. vol. 28(4), pp. 1364–1396 (1999)

[HLL16] Han, S., Liu, S., Lyu, L.: Efficient KDM-CCA secure public-key encryption for polynomial functions.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II, LNCS, vol. 10032, pp. 307–338 (2016)

[Hof13] Hofheinz, D.: Circular chosen-ciphertext security with compact ciphertexts. In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013, LNCS, vol. 7881, pp. 520–536. Springer (2013)

[Kir11] Kirchner, P.: Improved generalized birthday attack. IACR Cryptology ePrint Archive, Report 2011/377
(2011)

[KMP14] Kiltz, E., Masny, D., Pietrzak, K.: Simple chosen-ciphertext security from low-noise LPN. In: Krawczyk,
H. (ed.) PKC 2014, LNCS, vol. 8383, pp. 1–18. Springer (2014)

[KRW15] Koppula, V., Ramchen, K., Waters, B.: Separations in circular security for arbitrary length key cycles.
In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II, LNCS, vol. 9015, pp. 378–400. Springer (2015)

[KS06] Katz, J., Shin, J.S.: Parallel and concurrent security of the HB and HB+ protocols. In: Vaudenay, S.
(ed.) EUROCRYPT 2006, LNCS, vol. 4004, pp. 73–87. Springer (2006)

[KW16] Koppula, V., Waters, B.: Circular security separations for arbitrary length cycles from LWE. In:
Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II, LNCS, vol. 9815, pp. 681–700. Springer (2016)

[LF06] Levieil, É., Fouque, P.: An improved LPN algorithm. In: Prisco, R.D., Yung, M. (eds.) SCN 2006,
LNCS, vol. 4116, pp. 348–359. Springer (2006)

[LLJ15] Lu, X., Li, B., Jia, D.: KDM-CCA security from RKA secure authenticated encryption. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I, LNCS, vol. 9056, pp. 559–583. Springer (2015)

[Lyu05] Lyubashevsky, V.: The parity problem in the presence of noise, decoding random linear codes,
and the subset sum problem. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) AP-
PROX 2005 and RANDOM 2005, LNCS, vol. 3624, pp. 378–389. Springer (2005)

[Mat93] Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993,
LNCS, vol. 765, pp. 386–397. Springer (1993)

[MMT11] May, A., Meurer, A., Thomae, E.: Decoding random linear codes in Õ(20.054n). In: Lee, D.H., Wang,
X. (eds.) ASIACRYPT 2011, LNCS, vol. 7073, pp. 107–124. Springer (2011)

[MO14] Marcedone, A., Orlandi, C.: Obfuscation ⇒ (IND-CPA security !⇒ circular security). In: Abdalla, M.,
Prisco, R.D. (eds.) SCN 2014, LNCS, vol. 8642, pp. 77–90. Springer (2014)

[MTY11] Malkin, T., Teranishi, I., Yung, M.: Efficient circuit-size independent public key encryption with KDM
security. In: Paterson, K.G. (ed.) EUROCRYPT 2011, LNCS, vol. 6632, pp. 507–526. Springer (2011)

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N.,
Fagin, R. (eds.) STOC 2005, pp. 84–93. ACM (2005)

[Ste88] Stern, J.: A method for finding codewords of small weight. In: Cohen, G.D., Wolfmann, J. (eds.) Coding
Theory and Applications 1988, LNCS, vol. 388, pp. 106–113. Springer (1988)

[YZ16] Yu, Y., Zhang, J.: Cryptography with auxiliary input and trapdoor from constant-noise LPN. In:
Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I, LNCS, vol. 9814, pp. 214–243. Springer (2016)

A Omitted Figures and Proofs in the Proof of Theorem 4

A.1 Figures for Proof of Theorem 4

19

Game G1

KeyGen:

b←$ {0, 1}. // challenge bit

For i ∈ [l],

Ai ←$ Dn×n
λ . si ←$ χnµ1n. ei ←$ Bnµ.

yi := Aisi + ei ∈ Fn2 .

pki := (Ai,yi), ski := si ∈ Fn2 .

Return (pk1, · · · , pkl).

Chal(j ∈ [l], f ∈ Faff):

If b = 0,

f ← 0.

m := f(sk1, · · · , skl) =
∑
i∈[l] Tisi + t ∈ Fn2 .

Ŝ←$ (B̃nµ1
)k. Ê←$ Bn×kµ . ê←$ Bkµ.

C1 := Ŝ>Aj + Ê> ∈ Fk×n2 .

c2 := Ŝ>yj + ê + Gm ∈ Fk2 .

Return c := (C1, c2).

Game G2

KeyGen:

b←$ {0, 1}. // challenge bit

s∗ ←$ χnµ1n.

For i ∈ [l],

Ai ←$ Dn×n
λ . Pi ←$ Pn. ei ←$ Bnµ.

si := Pis
∗ ∈ F2. yi := AiPis

∗ + ei ∈ Fn2 .

pki := (Ai,yi), ski := si ∈ Fn2 .

Return (pk1, · · · , pkl).

Chal(j ∈ [l], f ∈ Faff):

If b = 0,

f ← 0.

m := f(sk1, · · · , skl) =
∑
i∈[l] Tisi + t ∈ Fn2 .

Ŝ←$ (B̃nµ1
)k. Ê←$ Bn×kµ . ê←$ Bkµ.

C1 := Ŝ>Aj + Ê> ∈ Fk×n2 .

c2 := Ŝ>yj + ê + Gm ∈ Fk2 .

Return c := (C1, c2).

Game G3

KeyGen:

b←$ {0, 1}. // challenge bit

s∗ ←$ χnµ1n.

For i ∈ [l],

Ai ←$ Dn×n
λ . Pi ←$ Pn. ei ←$ Bnµ.

yi := AiPis
∗ + ei ∈ Fn2 .

pki := (Ai,yi).

Return (pk1, · · · , pkl).

Chal(j ∈ [l], f ∈ Faff):

If b = 0,

f ← 0.

Tf :=
∑
i∈[l] TiPi ∈ Fn×n2 . m := Tfs

∗ + t ∈ Fn2 .

Ŝ←$ (B̃nµ1
)k. Ê←$ Bn×kµ . ê←$ Bkµ.

C1 := Ŝ>Aj + Ê> ∈ Fk×n2 .

c2 := (C1Pj + GTf) · s∗ − Ê>Pjs
∗ + Ŝ>ej + ê + Gt ∈ Fk2 .

Return c := (C1, c2).

Game G4

KeyGen:

b←$ {0, 1}. // challenge bit

s∗ ←$ χnµ1n.

For i ∈ [l],

Ai ←$ Dn×n
λ . Pi ←$ Pn. ei ←$ Bnµ.

yi := AiPis
∗ + ei ∈ Fn2 .

pki := (Ai,yi).

Return (pk1, · · · , pkl).

Chal(j ∈ [l], f ∈ Faff):

If b = 0,

f ← 0.

Tf :=
∑
i∈[l] TiPi ∈ Fn×n2 .

Ŝ←$ (B̃nµ1
)k. Ê←$ Bn×kµ . ê←$ Bkµ.

U←$ Fk×n2 . C1 := U ∈ Fk×n2 .

c2 := (C1Pj + GTf) · s∗ − Ê>Pjs
∗ + Ŝ>ej + ê + Gt ∈ Fk2 .

Return c := (C1, c2).

Game G5

KeyGen:

b←$ {0, 1}. // challenge bit

s∗ ←$ χnµ1n.

For i ∈ [l],

Ai ←$ Dn×n
λ . Pi ←$ Pn. ei ←$ Bnµ.

yi := AiPis
∗ + ei ∈ Fn2 .

pki := (Ai,yi).

Return (pk1, · · · , pkl).

Chal(j ∈ [l], f ∈ Faff):

If b = 0,

f ← 0.

Tf :=
∑
i∈[l] TiPi ∈ Fn×n2 .

Ŝ←$ (B̃nµ1
)k. Ê←$ Bn×kµ . ê←$ Bkµ.

U←$ Fk×n2 . C1 := U−GTfP
−1
j ∈ Fk×n2 .

c2 := (C1Pj + GTf) · s∗ − Ê>Pjs
∗ + Ŝ>ej + ê + Gt ∈ Fk2 .

Return c := (C1, c2).

Game G6

KeyGen:

b←$ {0, 1}. // challenge bit

s∗ ←$ χnµ1n.

For i ∈ [l],

Ai ←$ Dn×n
λ . Pi ←$ Pn. ei ←$ Bnµ.

yi := AiPis
∗ + ei ∈ Fn2 .

pki := (Ai,yi).

Return (pk1, · · · , pkl).

Chal(j ∈ [l], f ∈ Faff):

If b = 0,

f ← 0.

Tf :=
∑
i∈[l] TiPi ∈ Fn×n2 .

Ŝ←$ (B̃nµ1
)k. Ê←$ Bn×kµ . ê←$ Bkµ.

C1 := Ŝ>Aj + Ê> −GTfP
−1
j ∈ Fk×n2 .

c2 := (C1Pj + GTf) · s∗ − Ê>Pjs
∗ + Ŝ>ej + ê + Gt ∈ Fk2 .

Return c := (C1, c2).

Fig. 2. Games G1 –G6 for l-KDM[Faff]-CPA security of PKE (see also Fig. 3).

20

Game G7

KeyGen:

b←$ {0, 1}. // challenge bit

s∗ ←$ χnµ1n.

For i ∈ [l],

Ai ←$ Dn×n
λ . Pi ←$ Pn. ei ←$ Bnµ.

yi := AiPis
∗ + ei ∈ Fn2 .

pki := (Ai,yi).

Return (pk1, · · · , pkl).

Chal(j ∈ [l], f ∈ Faff):

If b = 0,

f ← 0.

Tf :=
∑
i∈[l] TiPi ∈ Fn×n2 .

Ŝ←$ (B̃nµ1
)k. Ê←$ Bn×kµ . ê←$ Bkµ.

C1 := Ŝ>Aj + Ê> −GTfP
−1
j ∈ Fk×n2 .

c2 := Ŝ>yj + ê + Gt ∈ Fk2 .

Return c := (C1, c2).

Game G8

KeyGen:

b←$ {0, 1}. // challenge bit

s∗ ←$ χnµ1n.

For i ∈ [l],

Bi ←$ Dn×n
λ . Pi ←$ Pn. ei ←$ Bnµ.

Ai := BiP
−1
i ∈ Fn×n2 . yi := Bis

∗ + ei ∈ Fn2 .

pki := (Ai,yi).

Return (pk1, · · · , pkl).

Chal(j ∈ [l], f ∈ Faff):

If b = 0,

f ← 0.

Tf :=
∑
i∈[l] TiPi ∈ Fn×n2 .

Ŝ←$ (B̃nµ1
)k. Ê←$ Bn×kµ . ê←$ Bkµ.

C1 := Ŝ>Aj + Ê> −GTfP
−1
j ∈ Fk×n2 .

c2 := Ŝ>yj + ê + Gt ∈ Fk2 .

Return c := (C1, c2).

Game G9

KeyGen:

b←$ {0, 1}. // challenge bit

For i ∈ [l],

Bi ←$ Dn×n
λ . Pi ←$ Pn.

Ai := BiP
−1
i ∈ Fn×n2 . yi ←$ Fn2 .

pki := (Ai,yi).

Return (pk1, · · · , pkl).

Chal(j ∈ [l], f ∈ Faff):

If b = 0,

f ← 0.

Tf :=
∑
i∈[l] TiPi ∈ Fn×n2 .

Ŝ←$ (B̃nµ1
)k. Ê←$ Bn×kµ . ê←$ Bkµ.

C1 := Ŝ>Aj + Ê> −GTfP
−1
j ∈ Fk×n2 .

c2 := Ŝ>yj + ê + Gt ∈ Fk2 .

Return c := (C1, c2).

Game G10

KeyGen:

b←$ {0, 1}. // challenge bit

For i ∈ [l],

Ai ←$ Dn×n
λ . Pi ←$ Pn. yi ←$ Fn2 .

pki := (Ai,yi).

Return (pk1, · · · , pkl).

Chal(j ∈ [l], f ∈ Faff):

If b = 0,

f ← 0.

Tf :=
∑
i∈[l] TiPi ∈ Fn×n2 .

Ŝ←$ (B̃nµ1
)k. Ê←$ Bn×kµ . ê←$ Bkµ.

C1 := Ŝ>Aj + Ê> −GTfP
−1
j ∈ Fk×n2 .

c2 := Ŝ>yj + ê + Gt ∈ Fk2 .

Return c := (C1, c2).

Game G11

KeyGen:

b←$ {0, 1}. // challenge bit

For i ∈ [l],

Ai ←$ Dn×n
λ . Pi ←$ Pn. yi ←$ Fn2 .

pki := (Ai,yi).

Return (pk1, · · · , pkl).

Chal(j ∈ [l], f ∈ Faff):

If b = 0,

f ← 0.

Tf :=
∑
i∈[l] TiPi ∈ Fn×n2 .

U←$ Fk×n2 . u←$ Fk2 .

C1 := U−GTfP
−1
j ∈ Fk×n2 .

c2 := u + Gt ∈ Fk2 .

Return c := (C1, c2).

Game G12

KeyGen:

b←$ {0, 1}. // challenge bit

For i ∈ [l],

Ai ←$ Dn×n
λ . yi ←$ Fn2 .

pki := (Ai,yi).

Return (pk1, · · · , pkl).

Chal(j ∈ [l], f ∈ Faff):

U←$ Fk×n2 . u←$ Fk2 .

C1 := U ∈ Fk×n2 .

c2 := u ∈ Fk2 .

Return c := (C1, c2).

Fig. 3. Games G7 –G12 for l-KDM[Faff]-CPA security of PKE (see also Fig. 2).

21

A.2 Proof of Claim 5

Firstly, we introduce a sequence of intermediate games {G5,κ}κ∈[Q+1] between G5 and G6.

– Game G5,κ, κ ∈ [Q+1]. This game is a hybrid of game G5 and game G6: for the first κ−1 times
of Chal queries, C computes C1 as in game G6; for the remaining Chal queries, C computes
C1 as in game G5.

Clearly, game G5,1 is identical to G5 and game G5,Q+1 is identical to G6. It suffices to show that∣∣ Pr5,κ[Win]− Pr5,κ+1[Win]
∣∣ ≤ negl(n) for any κ ∈ [Q].

The only difference between game G5,κ and game G5,κ+1 is the distribution of C1 in the κ-th
Chal(j ∈ [l], f ∈ Faff) query: in game G5,κ, C1 is computed according to game G5, i.e., C1 = U−
GTfP

−1
j ; in game G5,κ+1, it is computed according to game G6, i.e., C1 = Ŝ>Aj + Ê>−GTfP

−1
j .

We construct a PPT distinguisher D to solve the multi-fold LPN problem described in Lemma
5. Given a challenge (A,C, (e, s,P), (Ŝ>e, Ê>Ps)), D wants to distinguish C = Ŝ>A + Ê> from

C = U, where A ← $ Dn×n
λ , Ŝ ← $ (B̃n

µ1
)k, Ê ← $ Bn×k

µ , e ← $ Bn
µ, s ← $ χnµ1n, P ← $ Pn and

U←$ Fk×n2 . D is constructed by simulating game G5,κ or game G5,κ+1 for A as follows, where we
highlight the challenge received by D .

KeyGen. D picks b←$ {0, 1} uniformly, and proceeds as follows.

(a) Set the master secret s∗ := s .

(b) Pick j∗ ←$ [l]. For each user i ∈ [l],

– if i 6= j∗, choose Ai ←$ Dn×n
λ , Pi ←$ Pn, ei ←$ Bn

µ;

– if i = j∗, set Aj∗ := A , Pj∗ := P , ej∗ := e ,

and compute si := Pis
∗ ∈ Fn2 and yi := AiPis

∗ + ei ∈ Fn2 .

Finally, D sends the public keys pki := (Ai,yi), i ∈ [l], to A .

Chal(j ∈ [l], f ∈ Faff). D proceeds as follows.

(a) Set f ← 0 if b = 0. Then compute Tf :=
∑

i∈[l] TiPi ∈ Fn×n2 .

(b) – For the first κ− 1 queries, D computes C1 and c2 according to game G6.

– For the κ-th query, D aborts immediately if j 6= j∗; otherwise D chooses ê←$ Bk
µ, and

computes C1 := C −GTfP
−1
j∗ and c2 := (C1Pj∗ +GTf) · s∗− Ê>Ps + Ŝ>e + ê+Gt.

– For the remaining queries, D computes C1 and c2 according to game G5.

Finally, D returns the challenge ciphertext c := (C1, c2) to A .

Guess. A outputs a guessing bit b′ ∈ {0, 1}.

D finally outputs 1 if and only if j = j∗ holds in the κ-th Chal query (i.e., D does not abort) and
b′ = b.

We analyze the distinguishing advantage of D .

• In KeyGen, s∗, Aj∗ , Pj∗ and ej∗ have the same distributions as in both game G5,κ and game
G5,κ+1. Besides, j∗ is completely hidden from A ’s view.

• In the κ-th query of Chal(j ∈ [l], f ∈ Faff), j = j∗ holds with probability at least 1/l.

22

– If C = Ŝ>A + Ê>, then C1 = Ŝ>A + Ê> − GTfP
−1
j∗ = Ŝ>Aj∗ + Ê> − GTfP

−1
j∗ and

c2 = (C1Pj∗ + GTf) · s∗ − Ê>Pj∗s
∗ + Ŝ>ej∗ + ê + Gt. Thus, D computes (C1, c2) for the

κ-th Chal query exactly like game G6.
– If C = U, then C1 = U−GTfP

−1
j∗ and c2 = (C1Pj∗+GTf)·s∗−Ê>Pj∗s

∗+Ŝ>ej∗+ê+Gt.
Thus, D computes (C1, c2) for the κ-th Chal query exactly like game G5.

Therefore, if D does not abort (which occurs with probability at least 1/l), D simulates game G5,κ+1

perfectly for A in the case of C = Ŝ>A + Ê> and simulates game G5,κ perfectly for A in the case
of C = U. Consequently, D ’s distinguishing advantage is at least 1

l ·
∣∣ Pr5,κ[Win] − Pr5,κ+1[Win]

∣∣,
which is negl(n) by Lemma 5.

In conclusion,
∣∣ Pr5[Win] − Pr6[Win]

∣∣ =
∣∣ Pr5,1[Win] − Pr5,Q+1[Win]

∣∣ ≤ ∑κ∈[Q]

∣∣ Pr5,κ[Win] −
Pr5,κ+1[Win]

∣∣ ≤ Ql · negl(n), which is also negligible in n. This completes the proof of Claim 5.

23

Contents

1 Introduction . 1
2 Preliminaries . 4

2.1 Useful Distributions and Lemmas . 4
2.2 Learning Parity with Noise . 5
2.3 Public-Key Encryption and Key-Dependent Message Security . 6

3 Multi-fold LPN on Squared-log Entropy . 6
3.1 Multi-fold LPN on Squared-log Entropy with Independent Secrets 6
3.2 Multi-fold LPN on Squared-log Entropy with Independent Sample Subspaces 7

4 Construction of KDM-Secure PKE from Constant-Noise LPN . 8
4.1 The Construction . 9
4.2 Correctness . 10
4.3 KDM-Security for Affine Functions . 10

A Omitted Figures and Proofs in the Proof of Theorem 4. 19
A.1 Figures for Proof of Theorem 4 . 19
A.2 Proof of Claim 5 . 22

	KDM-Secure Public-Key Encryption from Constant-Noise LPN
	Introduction
	Preliminaries
	Useful Distributions and Lemmas
	Learning Parity with Noise
	Public-Key Encryption and Key-Dependent Message Security

	Multi-fold LPN on Squared-log Entropy
	Multi-fold LPN on Squared-log Entropy with Independent Secrets
	Multi-fold LPN on Squared-log Entropy with Independent Sample Subspaces

	Construction of KDM-Secure PKE from Constant-Noise LPN
	The Construction
	Correctness
	KDM-Security for Affine Functions

	Omitted Figures and Proofs in the Proof of Theorem 4
	Figures for Proof of Theorem 4
	Proof of Claim 5

