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Abstract

We propose new algorithms for constructing multidimensional differential addition
chains and for performing multidimensional scalar point multiplication based on these
chains. Our algorithms work in any dimension and offer some key efficiency and se-
curity features. In particular, our scalar point multiplication algorithm is uniform, it
has high potential for constant time implementation, and it can be parallelized. It
also allows trading speed for precomputation cost and storage requirements. These
key features and our theoretical estimates indicate that this new algorithm may offer
significant performance advantages over the existing point multiplication algorithms in
practice. We also report some experimental results and verify some of our theoretical
findings.
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1 Introduction

Let G be an additive abelian group of order |G| = N . In a typical cryptographic application,
G would be chosen as a prime order group generated by an element P ∈ G. For example,
elliptic curve digital signature algorithm (ECDSA) and elliptic curve Diffie-Hellman key
agreement protocol (ECDH) require a suitably chosen prime order subgroup G of an elliptic
curve defined over a finite field. Efficient implementation of such cryptographic schemes
are only possible through an efficient implementation of point multiplication algorithms.
A single point multiplication algorithm in G takes as input a scalar a ∈ [1, N) and a point
P ∈ G, and outputs aP . More generally, a d dimensional point multiplication algorithm in G
(shortly, a d-point multiplication algorithm) takes as input a sequence of scalars a1, a2, . . . , ad,
and a sequence of points P1, P2, . . . , Pd ∈ G, and outputs

∑d
i=1 aiPi. From security and

efficiency point of views, there are two important cases to consider in a d-point multiplication
algorithm: the use of public vs. secret scalars ai, and the use of variable vs. fixed points Pi.
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Public vs. secret scalars: Point multiplication algorithm in some cryptographic applica-
tions is performed using secret scalars. For example, in the signature generation algorithm in
ECDSA, signer has to compute aP for some randomly chosen secret integer a and a domain
parameter P . A part of the public key in Okamato’s identification scheme [24] is generated
by computing a1P1 + a2P2 for a secret pair of integers (a1, a2), and randomly chosen points
P1 and P2. In ECDH, aP is computed for a secret scalar a. Moreover, it is known that
1-point algorithm (a, P → aP ) may be performed more efficiently using a d-point multipli-
cation algorithm by rewriting aP =

∑d
i=1 aiPi, where ai (|a| ≈ N, |ai| ≈ N1/d) and Pi are

computed as a function of a and P , respectively (see [12, 11, 14] for d = 2, [29] for d = 3,
[19, 13] for d = 4, and [6] for d = 8.).

In some other cryptographic applications, point multiplication algorithm is performed us-
ing publicly known scalars. For example, in the signature verification algorithm on ECDSA,
verifier computes a1P1 + a2P2, where ai are derived as a function of the message and the
signature, P1 is a domain parameter, and P2 is the public key of a signer. Signature verifi-
cation can significantly be improved when the signature verification equation is replaced by
checking whether

∑d
i=1 aiPi (for some d ∈ {4, 6}) is the identity element for some suitably

constructed publicly known scalars ai and points Pi; see [1].
Performing point multiplication algorithm with respect to a secret sequence of scalars is

more challenging from a security point of view because power analysis attacks may recover
some information about the scalars when the execution of the underlying multiplication
algorithm can be distinguished based on the algebraic structure of the scalars (e.g. the size
of ai, or the number of zeros in the binary representation of ai). Therefore, if the scalars ai
are secret, then underlying point multiplication algorithm should perform a uniform sequence
of operations and output

∑
aiPi in constant time. This provides some level of resistance

against simple power analysis attacks.

Variable vs. fixed points: In certain cases in the computation of
∑
aiPi, the base points

Pi are fixed (i.e. known in advance), whereas in some other cases Pi are variable (received
from other parties or generated on the fly). Considering some of our earlier examples, signer
in ECDSA computes aP for a fixed domain parameter P . Communicating parties in ECDH
have to compute aP for a fixed point P , but they also have to compute aQ for a variable
point Q sent by other parties. The base points Pi introduced in the efforts for accelerating
ECDSA verification can possibly be considered as fixed because they can be included in the
signer’s certificate.

Performing point multiplication algorithm with respect to a variable basis is more chal-
lenging from an efficiency point of view because, when Pi are fixed, one may precompute
and store a certain number of extra points to speed up the algorithm. For a concrete exam-
ple, consider computing aP for a scalar a ∈ [1, N) and a point P ∈ G. Let m = bN1/2c.
Using the Euclidean algorithm one can write a = a1 + a2m for ai ≈ m, and so aP can be
computed as a1P1 + a2P2, where P1 = P and P2 = mP . If P is a fixed point, then P2

can be precomputed and, using Straus-Shamir’s simultaneous double point multiplication
algorithm (see Algorithm 14.88 in [20]), one can save half of the point doubling (Q → 2Q)
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operations and save one fourth of the point addition (P,Q→ P + Q) operations in a naive
comparison with a traditional double-and-add type algorithm. The efficiency gain would not
be significant if P2 = mP had to be computed each time because computing P2 takes about
half the time of computing aP . On the other hand, we should note that some of the groups
G, such as (hyper)elliptic curve groups with efficiently computable endomorphisms, allow
efficient decomposition of a scalar a into ai, and efficient computation of Pi from a point
P so that multidimensional point multiplication techniques still yield significant speed ups
when computing aP =

∑
aiPi for a variable point P ; see [12, 11, 14, 29, 19, 13, 6].

As a result, it has been very motivating to design efficient and secure (constant-time)
multidimensional point multiplication algorithms, and to evaluate their performance over
cryptographically interesting groups (i.e. binary/prime (hyper)elliptic curves) in software
and hardware; see [26, 3, 8, 9, 6, 2, 13] for some recent work in this field.

Contributions: We investigate multidimensional differential addition chains and multidi-
mensional point multiplication algorithms derived from these chains. Our contributions are
summarized as follows:

• We describe a d-point multiplication algorithm d-MUL (Algorithm 3) that builds upon
a new construction of a d-dimensional differential addition chain. d-MUL takes as input
a sequence of integers a1, a2, . . . , ad and points P1, P2, ..., Pd, d ≥ 1; constructs a differ-
ential addition chain for its input a1, ..., ad as a subroutine; and computes

∑d
i=1 aiPi.

d-MUL has the following key properties:

1. The algorithm d-MUL has a uniform structure (see Section 5) and high potential
for constant-time implementation with respect to the number of bits of the input.
For an input of `-bit scalars ai and points Pi,

∑d
i=1 aiPi can be computed in

exactly ` steps, where each step requires d point additions and a single point
doubling. All the addition and doubling operations in d-MUL can be performed
in parallel at each step. See Remark 5.1 and Section 5.2 for more details.

2. The algorithm d-MUL allows trading speed for precomputation cost and storage
requirements. If differential addition formulas are utilized in d-MUL and if the
cost of negating a point is negligible in the underlying group, then d-MUL requires
a precomputation of (3d − 2d − 1)/2 point additions and a storage of (3d − 1)/2
points in a lookup table. If traditional addition formulas are utilized in d-MUL,
then it requires a precomputation of only (d− 1) point additions. A lookup table
is not required in this case. Note that the second case may make d-MUL more
attractive over other existing d-point multiplication algorithms as they all seem
to require a lookup table of exponential size (exponential in d); see for example
[6]. See Table 1 and Section 5.2 for more details.

• We present a concrete cost analysis of d-MUL for some cryptographically interest-
ing scenarios including (hyper)elliptic curve point multiplication using d-dimensional
GLV/GLS decomposition technique for d = 2, 3, 4, 8. Our analysis shows that d-MUL

3



offers significant performance advantages over some recent point multiplication algo-
rithms and their implementations [17, 8, 6, 26]. For d = 2, d-MUL is equivalent to the
2-dimensional differential addition chain construction by Bernstein [4]. For d = 3, we
show that d-MUL saves at least one point addition at each step in the main loop of
the algorithm in comparison with the 3-dimensional Montgomery ladder algorithm in
[26]. This improves the efficiency of the 3 dimensional point multiplication algorithm
in [26] up to 21% when the group arithmetic is performed over a Montgomery curve
defined over large characteristic finite fields; see Table 2. Another advantage of 3-MUL
over the one in [26] is that 3-MUL is uniform whereas the one in [26] is not. For d = 4,
we estimate that if d-MUL is fully parallelized then it offers up to 18% speed-up over
the fully parallelized 4-point multiplication algorithm by Joye and Tunstall [17] at the
128-bit security level; see Table 4. For d = 8, we show that d-MUL can reduce the
precomputation and storage requirements in the implementation of the 8-dimensional
point multiplication algorithm in [6] from computing and storing 32 points down to 7
points. This may be particularly advantageous for implementing curve arithmetic in
resource restricted devices.

• Finally, we confirm our theoretical findings on the increasing efficiency of our algorithm
d-MUL for larger values of d through our experimental results. In our prototype
implementation, we work with a n = 252-bit prime order subgroup G of a Montgomery
curve y2 = x3 +486662x2 +x defined over the prime field of size 2255−19, and compute∑d

i=1 aiPi for d = 1, 2, 3, 4 and scalars ai each of which is ` = bn/dc-bit. See Table 5
and Section 5.2 for more details.

The rest of this paper is organized as follows. In Section 2, we provide a survey of some
known d-point multiplication algorithms. In Section 3, we describe two algorithms towards
constructing d-dimensional differential addition chains. We describe our d-point multiplica-
tion algorithm d-MUL in Section 4, and provide a complexity analysis and comparisons in
Section 5. We provide a toy example in Appendix A and conclude in Section 6.

2 Related Work

In the following, we provide a survey of some known d-point multiplication algorithms fo-
cusing more on the ones with uniform structure. First, we set some notation and state some
of our assumptions.

Notation and assumptions: The underlying group G is always assumed to be an additive
group of prime order N represented by n-bits. For simplicity, we assume that all scalars ai
involved in the computation of

∑
aiPi are `-bit positive scalars unless otherwise stated1. In

1Accurate analysis of algorithms should consider varying length inputs ai because certain properties
(correctness, constant-time, etc.) should ideally be independent of the input size. We do consider this
general case in the paper when necessary.
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typical cryptographic applications, it is common to have ` ≈ n (e.g. signature verification),
or ` ≈ n/d (e.g. speeding up aP by rewriting aP =

∑d
i=1 aiPi). We assume that one

can always rewrite aP =
∑d

i=1 aiPi, where ai and Pi are efficiently derived from a and P 2.
Throughout this paper, we call this technique the d-decomposition technique.

A survey of algorithms: A d-point multiplication
∑d

i=1 aiPi can be achieved after per-
forming d of 1-point multiplications aiPi, and summing them over. If parallelization is not
an option, then this is not a very interesting method because the cost of computing aP with
an n-bit scalar would be comparable to the cost of computing

∑d
i=1 aiPi after deploying the

d-decomposition technique, and performing d of 1-point multiplications in a row with n/d
bit scalars ai. A potentially more efficient method is to compute

∑d
i=1 aiPi simultaneously.

Straus-Shamir’s trick (see Algorithm 14.88 in [20]), interleaving [21], and comb [18] methods
are three such popular methods. Unfortunately, these techniques do not yield constant-time
point multiplication algorithms mainly because the number of point additions strictly de-
pends on the number of non-zero elements in the binary (more generally, q-ary or width-w
NAF) representation of the scalars. These techniques have been modified with a protected
recoding of the scalars that allows constant-time implementations [25, 15, 10, 17]. The signed
digit recoding algorithm in [17] yields a uniform d-point multiplication algorithm, that we
call the JT algorithm. The JT algorithm, with the choice of a parameter m = 2k, requires a
precomputation (and storage) of dm points at a cost of 2d(m/2− 1) + (d− 1) additions and
2d doublings3. After that,

∑d
i=1 aiPi, for `-bit scalars ai, can be computed in d`/ke steps

performing k doublings and d additions at each step in a uniform pattern.
Simultaneous d-point multiplication algorithms generally require non-trivial precomputa-

tion and storage of group elements (exponential in dimension d or width w). More recently,
several new protected recoding algorithms have been introduced in [9] which seem to offer
better performance over the previously known algorithms [25, 15, 10] in terms of precom-
putation cost and storage requirements. For example, deploying the so-called GLV-SAC
recoding algorithm [9] in a d-point multiplication algorithm requires a precomputation (and
storage) of 2d−1 points at a cost of (2d−1 − 1) group additions. After that,

∑d
i=1 aiPi can

be computed with ` doublings and ` additions in a uniform sequence of add, double, add,
double, ..., add operations; see [9] for more details. This point multiplication algorithm is
called the d-GLV-SAC algorithm in this paper.

Constructing a d-dimensional differential addition chain for a vector of scalars [a1, a2, ..., ad]
naturally yields a d-point multiplication algorithm where the chain sequence describes ex-
plicitly how to compute

∑d
i=1 aiPi; see [4] for an overview and examples of multidimensional

differential addition chains and their applications. Differential addition chains are of par-
ticular interest in certain groups G (such as elliptic curve groups) where addition can be
performed more efficiently using differential addition and doubling formulas when the dif-

2As we pointed out before, this is a fairly reasonable assumption when d is small (d ≤ 8) and P is fixed,
or when G is an (hyper)elliptic curve with efficiently computable endomorphisms.

3Precomputation cost and storage requirements can be reduced by half at an expense of computing the
inverse of points.
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ferences of the input points are known. In the elliptic curves setting, differential addition
and doubling formulas are generalization of Montgomery’s formulas, which use only the x-
coordinates of points [22]. In general, addition becomes much faster when differences of the
points are fixed and precomputed in advance. For example, in the elliptic curves setting, one
may represent the difference of points in affine coordinates rather than projective coordinates
for improved performance.

One dimensional and two dimensional differential addition chains have extensively been
studied [23, 22, 28, 4, 2]. One of the challenges in this area is to construct a d-dimensional
differential addition chain that yields a constant time d-point multiplication algorithm per-
forming a uniform sequence of operations. The Montgomery ladder constructed from a one-
dimensional differential addition chain yields a uniform 1-point multiplication algorithm,
which we call the ML algorithm (reads as the Montgomery ladder algorithm). The ML
algorithm computes aP , for an `-bit scalar a, in (` − 1) steps performing one addition and
doubling at each step. Bernstein [4] proposed two dimensional differential addition chain
constructions one of which yields a uniform 2-point multiplication algorithm, also known
as the DJB algorithm. The DJB algorithm computes a1P1 + a2P2, for `-bit scalars ai, in `
steps performing two additions and one doubling at each step. Azarderakhsh and Karabina
[2] proposed a two dimensional differential addition chain construction that yields a uniform
2-point multiplication algorithm, also known as the AK algorithm. The AK algorithm com-
putes a1P1 + a2P2, for `-bit scalars ai, in about 1.4` steps4 performing one addition and one
doubling at each step. Brown, in an unpublished paper [7] in 2006, proposed a d-dimensional
differential addition chain construction for general d. We believe that the idea of using d-
dimensional addition chains in d-point multiplication algorithms have been overlooked in the
literature since 2006. For example, we are not aware of any efficiency analysis or implemen-
tation results for general d. Similarly, we are not aware of any performance comparisons
between a differential addition chain based d-point multiplication algorithm and others like
JT [17] and d-GLV-SAC [9]. In fact, the following is noted in [7]: “Careful analysis is needed
in each case to ascertain whether the algorithm presented outperforms existing efficient al-
ternatives.”. In this paper, we are trying to close this gap by presenting explicit construction
of multidimensional differential addition chains and simultaneous scalar point multiplication
algorithms. We also provide rigorous correctness and efficiency analysis of our algorithms,
and discuss some cryptographically interesting features such as uniformity, constant time,
and parallelization. We should note that our starting point for this work was Brown’s paper
[7], and that our construction has some similarities with [7]. Therefore, we inherit some
notation from [7] as appropriate for the ease of presentation and for convenient comparisons
with [7].

4This is based on a heuristic estimate with small variance in practice; see [2].
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3 A construction of multidimensional differential ad-

dition chains

Throughout this section, A,A(k), B, etc. will denote matrices of size (d + 1) × d for some
positive integer d, unless otherwise specified. For any matrix A, we will denote by Ai the
ith row of A, and by Ai,j the entry of A in the ith row and jth column. All row and column
indices start at 1. We will let ej be the row matrix consisting of a 1 in the jth column and
0s elsewhere.

Definition 3.1. A (d+ 1)× d state matrix A satisfies:

i) each row Ai has (i− 1) odd entries.

ii) for 1 ≤ i ≤ d, we have Ai+1 − Ai ∈ {ej,−ej} for some 1 ≤ j ≤ d.

An easy consequence of this definition is the following. Row A1 consists of all even entries,
while row Ad+1 consists of all odds. Since there are d many columns and the difference be-
tween successive rows is ej, the number of rows forces each column’s entries to change exactly

once. In other words, each column inA has the form
[
x · · · x x+ (−1)k · · · x+ (−1)k

]T
for some integer k, where the index at which x changes to x + (−1)k must be distinct for
each column.

In the following, we describe two algorithms: initialization and chain sequence generation.
These two algorithms yield a d-dimensional differential addition chain algorithm that takes
as input a sequence of integers a1, a2, . . . , ad, d ≥ 1, and constructs a differential addition
chain for its input. For a convenient comparison of our algorithms to that of Brown’s [7], we
choose our notation similar to the notation in [7].

3.1 Initialization step

The initialization step takes as input a sequence of integers a1, a2, . . . , ad, d ≥ 1 and generates
a state matrix.

Algorithm 1. Initialization

input : Integers a1, . . . , ad
output: A (d+ 1)× d state matrix A

1 Let h ∈ {0, 1, . . . , d} be the number of ai which are odd.

2 Define Ah+1 =
[
a1 a2 · · · ad

]
.

3 Define the remaining rows Ai recursively in the following way:
4 If 0 ≤ i < h+ 1, define Ai = Ai+1 ± ej, where j is chosen such that Ai+1,j is odd.

The choice of adding or subtracting ej is left to the user.
5 If h+ 1 < i ≤ d+ 1, define Ai = Ai−1 ± ej, where j is chosen such that Ai−1,j is

even. The choice of adding or subtracting ej is left to the user.
6 return A
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The choice in adding or subtracting ej does not make much of a difference for our pur-
poses, however in the rare event that increasing the magnitude of an entry would push the
integer into the next bit level, this could add one extra iteration in Algorithm 3 to come.

Correctness of the algorithm: We must prove that the output of the algorithm, the
matrix A, is indeed a state matrix. For the remainder, the notation A1(i) will be used to
refer to line i in Algorithm 1. Step A1(2) ensures row h+ 1 of A is defined to have h many
odd entries, satisfying (i) of the definition of a state matrix for this row. Each row above
Ah+1 defined in A1(3) will have one less odd entry than the row below it, preserving (i) as we
move up the rows from Ah+1. Similarly, the rows after Ah+1 are defined so that they contain
exactly one additional odd entry than the row above them, making (i) preserved throughout
the entire matrix. As for property (ii), the successive rows are defined by Ai = Ai±1 ± ej,
and so Ai − Ai±1 = ±ej.

We’ll justify that A1(3) is always valid within the bounds 1 ≤ i ≤ d + 1. By the choice
of h in (1), the initial row Ah+1 contains h many odd entries. There are h many rows to
define above Ah+1, and each new row turns exactly one odd entry into an even one. The
number of odd entries will decrease to zero exactly when the top row, A1, is constructed.
Similarly, there are (d+ 1)− (h+ 1) = d− h many rows below Ah+1 to be constructed, and
each new row turns an even into an odd. Since there are d−h many evens in Ah+1, they will
be switched to odds one by one until row Ad+1 is reached, which will have zero even entries.

3.2 Chain sequence generation

Algorithm 2 below takes a state matrix A as input and constructs a new state matrix B
having the property that each row in A is the sum of two (not necessarily distinct) rows of
B. We use an array D to store the information pertaining to which of the rows of B sum to
the rows in A, and we also keep track of the differences of the rows involved in those sums
(also in D using a row matrix R).

The variables above deserve explanation. Perhaps the most convoluted variable used here
is σ. By definition of a state matrix, we have that Ai − Ai−1 = ±ej for some index j. σ
is defined so that σ(i) = j, meaning that σ(i) is column number which has changed when
moving from Ai−1 to Ai. Since each column changes exactly once, and only one for each
row, σ is a bijection. The cj represents whether the jth column has increased or decreased.

The variables x and y represent the upper and low bounds, respectively, on the rows
of the matrix B which have been defined at each step of the algorithm. They both are
initialized to h + 1 since that is the only row for B which is initially defined. As rows are
appended to the top of B, x will decrease; as rows are appended to the bottom of B, y will
increase.

A typical column of D will look like
[
k x y R

]T
, which is interpreted as

Bx +By = Ak

Bx −By = R
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Algorithm 2. Chain sequence generation

input : A (d+ 1)× d state matrix A
output: A (d+ 1)× d state matrix B,

An array D having 4 rows and d+ 1 columns.

1 Let
[
2α1 2α2 · · · 2αd

]
denote A1.

2 Define σ : {2, . . . , d+ 1} → {1, . . . , d} such that σ(i) is the position in which the row
matrix Ai − Ai−1 is nonzero.

3 For 1 ≤ j ≤ d, set cj ← Ad+1,j − A1,j. // Each cj is either 1 or −1
4 Define h as the number of αi which are odd. Set x← h+ 1 and y ← h+ 1.

5 Set Bh+1 ←
[
α1 α2 · · · αd

]
. Let R be a 1× d zero matrix.

6 Set D =
[
1 h+ 1 h+ 1 R

]T
.

7 for k = 2 to d+ 1 do
8 if ασ(k) is odd then
9 Bx−1 ← Bx + cσ(k)eσ(k) , R← R + cσ(k)eσ(k).

10 x← x− 1.

11 if ασ(k) is even then
12 By+1 ← By + cσ(k)eσ(k) , R← R− cσ(k)eσ(k).
13 y ← y + 1.

14 end

15 Append the column
[
k x y R

]T
to the end of D.

16 end
17 return B and D.

where R is a row matrix consisting of only the integers 0, 1,−1 and having k − 1 nonzero
entries. When the algorithm completes, we will have x = 1, y = d+ 1, and R = B1 −Bd+1.

Correctness of the algorithm: We must prove that the output matrix B is both a state
matrix and has the property that each row of A is the sum of two rows from B. For the
remainder, the notation A2(i) will be used to refer to line i in Algorithm 2.

First, note that σ defined in A2(2) is a bijection. This follows from the definition of a
state matrix. σ denotes the order in which the ±1 is introduced as we move down the rows
of the state matrix.

We show that B is a state matrix of the correct size. The rows of B are built to satisfy
(ii) of the definition of a state matrix when we define them in A2(7). As for (i), row Bh+1

meets the condition by construction in A2(5). Rows above are constructed exactly when we
find an odd αi, in which we define the new row using the previous one and changing the αi’s
parity. Thus the number of odds in each row will decrease by one as we move up the rows,
beginning at Bh+1 with h odds and ending at B1 with 0 odds. Similarly, the number of odds
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increases as we move down the rows from Bh+1.
Now we show that each row in A is the sum of two rows in B by proving the following.

Theorem 3.1. In the kth iteration of the loop in A2(7), let xk denote the least index of
the rows of B which have been defined by the end of the iteration, and let yk denote the
greatest index of the rows of B which have been defined by the end of the iteration; then
Ak = Bxk +Byk .

Proof. Naturally, we prove this by induction on k. The base case k = 1 actually happens
outside of the loop during A2(5): we have A1 = 2Bh+1 = Bx1 + By1 , using the values
x1 = y1 = h + 1. These definition of x1 and y1 are consistent with the definitions stated in
the theorem, since by step (5) only Bh+1 has been defined.

Assume now that Ak = Bxk +Byk holds during the kth iteration of the loop (or the base
case of k = 1). During the (k + 1)th iteration, we construct one new row of B depending on
the parity of ασ(k+1). We look at each case in turn.

Suppose ασ(k+1) is odd. Then the first if statement would be executed in A2(7), and so
we get

Bxk−1 = Bxk + cσ(k+1)eσ(k+1)

Bxk−1 = (Ak −Byk) + cσ(k+1)eσ(k+1)

Bxk−1 +Byk = Ak + cσ(k+1)eσ(k+1)

Bxk+1
+Byk+1

= Ak+1

where the last equality follows since

• xk+1 = xk − 1 (the least index decreased by one during this iteration)

• yk+1 = yk (the greatest index hasn’t increased during this iteration)

• by definition, σ(k+ 1) satisfies Ak+1−Ak = ±eσ(k+1), where the sign is determined by
cσ(k+1).

This proves the statement in the odd case.
Suppose instead that ασ(k+1) is even. Similarly, executing the second if statement, we

find

Byk+1 = Byk + cσ(k+1)eσ(k+1)

Byk+1 = (Ak −Bxk) + cσ(k+1)eσ(k+1)

Byk+1 +Bxk = Ak + cσ(k+1)eσ(k+1)

Byk+1
+Bxk+1

= Ak+1,

where the substitutions on the last line follow similarly to the odd case. �

We also claim the correctness of the differences, stored in row 4 of D.
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Theorem 3.2. Let xk and yk be as in Theorem 3.1, and let Rk be the current state of the
row matrix R upon completion of the kth iteration of the loop A2(7). Then Rk = Bxk−Byk .

Theorem 3.2 can be proved by induction on k similar to Theorem 3.1, with R1 = 0 =
Bh+1 −Bh+1 being the initialization of R as the base case.

At this time we should mention the array D. The only purpose for D’s existence is to
keep track of which rows in B sum to the rows in A, as well as their differences. That the
algorithm chooses the correct rows is reflected by Theorems 3.1 and 3.2.

4 d-MUL: A d-point multiplication algorithm

We are now ready to describe our d-point multiplication algorithm d-MUL. First, we make
the following definition for the ease of presentation.

Definition 4.1. For a matrix A, we define the magnitude of A to be |A| = max{|Ai,j|}.

Algorithm 3. d-MUL: d-point multiplication

input : Positive integers a1, . . . , ad and points P1, . . . , Pd.
output: a1P1 + · · ·+ adPd.

1 Run Algorithm 1 with the input a1, . . . , ad. Let A(1) be the output.
2 Let h be the number of ai which are odd. Assign k ← 1.

3 while
∣∣A(k)

∣∣ > 1 do
4 Run Algorithm 2 with the input A(k). Let A(k+1) and D(k) be the respective

outputs.
5 k ← k + 1.

6 end

7 For 1 ≤ i ≤ d+ 1, assign Q
(k)
i ← A

(k)
i ·

[
P1 · · · Pd

]T
.

8 k ← k − 1.
9 while k > 0 do

10 For n = 1 to d+ 1, assign Q
(k)

D
(k)
1,n

← Q
(k+1)

D
(k)
2,n

+Q
(k+1)

D
(k)
3,n

.

/* The above addition can be performed using differential addition

formulas, where the difference is given by D
(k)
4,n ·

[
P1 · · · Pd

]T
*/

11

12 k ← k − 1.

13 end

14 return Q
(1)
h+1.

The idea here is to construct an initial state matrix A(1) out of the integers a1, . . . , ad using
Algorithm 1, and then repeatedly apply Algorithm 2 to create a sequence of state matrices
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A(k) until we arrive at one having only 0 and 1 entries. Then we add the corresponding
linear combinations of the Pi together using D(k) while working our way back through the
sequence until we arrive at the initial state matrix, upon which we have computed Q

(1)
h+1 =

a1P1 + · · ·+ adPd.

Correctness of the algorithm It suffices to prove that the first while loop in Algorithm
3 eventually terminates because Q

(1)
h+1 = a1P1 + · · · + adPd follows immediately from the

description of Algorithm 2. In Theorem 4.1, we show that the sequence |A(k)| as generated
in Algorithm 3 is a strictly decreasing sequence, as required.

Theorem 4.1. Let A be the input to Algorithm 2 and B be the output. If |A| > 1, then
|B| < |A|.

Proof. Let |B| = β. It follows from the description of Algorithm 2 that there exists a pair
of indices (j, k) such that β + βj = αk, where βj and β are in the same column of B (that
is, β − βj = 0 or β − βj=1), and αk is an entry of A. There are two cases to consider: αk is
even or αk is odd. If αk is even, then we must have β + βj = αk and β − βj = 0. This yields
β = αk/2. Now, if αk = 0, then β = 0 < |A|, by the assumption of the theorem. If αk > 0,
then β = αk/2 < αk ≤ |A|. If αk is odd, then we must have β + βj = αk and β − βj = 1.
This yields β = (αk + 1)/2. Now, if αk = 1, then β = 1 < |A|, by the assumption of the
theorem. If αk > 1, then β = (αk + 1)/2 < αk ≤ |A|, as required. �

Next, we use Theorem 4.1 and derive stronger results on the complexity of Algorithm 3.

Lemma 4.1. Let {A(k)}`+1
k=1 be a sequence of matrices generated as in Algorithm 3 with

|A(1)| > 1, |A(`+1)| ≤ 1, and ` > 0. Then |A(`+1)| = 1 and |A(`)| = 2.

Proof. If |A(`+1)| ≤ 1 then all entries in A(`+1) must be either 0 or 1 because A(`+1) is a state

matrix as shown before. In particular, the row A
(`+1)
1 consists of all zeros, the row A

(`+1)
d+1

consists of all ones, and |A(`+1)| = 1. By the description of Algorithm 2, any row in A(`)

is either twice a row of A(`+1), or is a sum of two distinct rows of A(`+1). In both cases,
we obtain |A(`)| ≤ 2 because |A(`+1)| = 1. We must also have |A(`)| ≥ 2 because otherwise,
|A(`)| < 2, which implies |A(`)| = 1 = |A(`+1)|. This is a contradiction because if |A(`)| = 1,
then Algorithm 3 would not generate the next state matrix A(`+1). �

Lemma 4.2. Let {A(k)}`+1
k=1 be a sequence of matrices generated as in Algorithm 3. Then

|A(i)| ≤ 2|A(i+1)| for any i = 1, .., `.

Proof. Choose an arbitrary i ∈ {1, ..., `} and set A = A(i), B = A(i+1). Note that B is an
output of Algorithm 2 given A as input. Let α = |A| and β = |B|. As observed previously
in the proof of Theorem 4.1, we have α = β1 +β2, where β1 ≤ β2 are two entries in the same
column of B such that β1 − β2 ∈ {0, 1}. There are two possible cases. In the first case, α
is even, β1 = β2, and α = 2β2. This implies |A| = α = 2β2 ≤ 2|B|. In the second case, α is
odd, β2 = β1 + 1, and α = 2β2 − 1. This implies |A| = 2β2 − 1 ≤ 2|B| − 1. In both cases,
|A| ≤ 2|B|, as required. �
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Lemma 4.3. Let {A(k)}`+1
k=1 be a sequence of matrices generated as in Algorithm 3. Then

|A(i)| ≥ 2|A(i+1)| − 1 for any i = 1, .., `.

Proof. Choose an arbitrary i ∈ {1, ..., `} and set A = A(i), B = A(i+1). Note that B is
an output of Algorithm 2 given A as input. Let β = |B|. It follows from the proof of
Theorem 4.1 that there exists an element α in A such that α ∈ {2β − 1, 2β, 2β + 1}. Hence,
|A(i)| ≥ α ≥ 2β − 1 ≥ 2|A(i+1)| − 1. �

Theorem 4.2. Let {A(k)}`+1
k=1 be a sequence of matrices generated as in Algorithm 3. If

|A(1)| > 2`−1, then Algorithm 3 makes at least ` calls to Algorithm 2.

Proof. Suppose that Algorithm 3 makes exactly m calls to Algorithm 2, resulting in the se-
quence {A(k)}m+1

k=1 . By Lemma 4.1 and Lemma 4.2, we can write 2`−1 < |A(1)| ≤ 2m−1|A(m)| =
2m, whence m ≥ `. �

Theorem 4.3. Let {A(k)}`+1
k=1 be a sequence of matrices generated as in Algorithm 3. If

|A(1)| ≤ 2`, then Algorithm 3 makes at most ` calls to Algorithm 2.

Proof. Suppose that Algorithm 3 makes exactly m ≥ `+ 1 calls to Algorithm 2, resulting in
the sequence {A(k)}m+1

k=1 . By Lemma 4.1 and Lemma 4.3, we can write |A(1)| ≥ 2m−1|A(m)| −
(2m−1 − 1) = 2m − 2m−1 + 1 = 2m−1 + 1 ≥ 2` + 1, contradiction Hence, m ≤ `. �

Theorem 4.4. Let a1, . . . , ad be `-bit input coefficients to Algorithm 3 such that not all ai
are equal to 2`−1. Then Algorithm 3 makes exactly ` calls to Algorithm 2.

Proof. By Theorem 4.2 and Theorem 4.3, we have that if 2`−1 < |A(1)| ≤ 2`, then Algorithm
2 is called exactly ` times. This occurs provided that the largest ai satisfies 2`−1 < ai ≤ 2`−1
because then |A(1)| ≥ ai > 2`−1 and |A(1)| ≤ ai + 1 ≤ 2`. Here, the second last inequality
follows because A(1) is a state matrix. Finally, since ai are `-bit integers and not all of them
are 2`−1 by assumption, at least one ai satisfies 2`−1 < ai ≤ 2` − 1, as desired. �

5 Analysis and comparisons

5.1 Preliminaries

As before, we consider d-point multiplication algorithm in a group G, where the cost of
addition and doubling operations are denoted by A and D, respectively. The most cryp-
tographically interesting groups G in this context are (sub)groups of (hyper)elliptic curves
defined over a finite field. In this case, the cost of multiplication and squaring operations in
a finite field are denoted by M and S, respectively. Motivated by these cryptographically in-
teresting (hyper)elliptic curve groups, we assume that the cost of point negation (P → −P )
is negligible. Moreover, the cost of differential addition and doubling operations are denoted
by A∆ and D∆, respectively. For concreteness, we provide below two examples of groups G
and the cost of underlying group operations to which we refer throughout this section. In
these two examples, G occurs as a subgroup of an elliptic curve group defined over a finite
field of characteristic greater than two.
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Montgomery curves: A Montgomery curve is given by the equation by2 = x3 + ax2 + x.
Differential addition and doubling costs are A∆ = 4M + 2S and D∆ = 2M + 2S; see [5, 22].
A straightforward modification of the affine coordinate addition formula in [5, 22] yields a
projective addition formula with a cost of A = 15M + 2S. Our motivation for choosing
Montgomery curves is that they seem to offer the most efficient differential addition and
doubling operations compared to other curve models over non-binary fields.

Twisted Edwards curves: A Twisted Edwards curve is given by the equation ax2 +y2 =
1 + dx2y2. Addition and doubling costs (with extended coordinates) are A = 8M and
D = 3M + 4S; see [5, 16]. Our motivation for choosing Twisted Edwards curves is that they
seem to offer the most efficient regular addition and doubling operations compared to other
curve models over non-binary fields.

Assumptions: When we consider a d-point multiplication algorithm for computing
∑d

i=1 aiPi,
we assume that there exists a pair ai, aj such that ai 6= aj. This is not a restrictive assump-

tion because if all ai are equal, say ai = a, then one can write
∑d

i=1 aiPi = a(
∑d

i=1 Pi), which

is simply a 1-point multiplication algorithm after precomputing
∑d

i=1 Pi. We also make the
simplifying assumption that all ai satisfy 1 ≤ ai ≤ 2` − 1 (ai are positive and at most `-bit
integers) because the dimension d drops by 1 for each zero scalar ai and that scalars ai
are bounded above by a function of the group order and the dimension d. In most of the
applications ` = n or ` = bn/dc, where |G| is an n-bit number; see also Section 2.

5.2 An analysis of d-MUL

We investigate the complexity of our d-point multiplication algorithm d-MUL (Algorithm
3). We estimate the complexity of d-MUL in terms of the number of point additions and
doublings performed during the execution of the algorithm. We point out the uniform pattern
of operations in d-MUL as well as remark on the exact number of iterations in the main loop
of d-MUL.

Complexity and uniformity: The only steps where point addition and doubling are per-
formed in Algorithm 3 are A3(7) and A3(10). Each iteration of A3(9) performs 1 doubling
and d additions in a uniform pattern of 1 doubling, d additions, 1 doubling, d additions, ..., 1
doubling, d additions. As commented in Algorithm 3, all of these additions can be performed
using differential addition formulas since the difference of every sum is either the identity
element of the group, or it is determined by the last row in D. Therefore, we consider two
variants of d-MUL: d-MUL-DIFF and d-MUL-REG, which utilize differential addition for-
mulas and regular addition formulas, respectively. In d-MUL-DIFF, span{0,1,−1}(P1, . . . , Pd)

should be precomputed and stored. There are 3d − 1 such points in total (discarding the
identity element), and it requires 3d − 2d − 1 point additions. Moreover, when the cost of
point negation is negligible, the precomputation cost can be deduced to that of computing
(3d−1)/2 points, which requires (3d−2d−1)/2 point additions. Note that the cost of A3(7)
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has already been taken care of because these points belong to the set span{0,1,−1}(P1, . . . , Pd).
In d-MUL-REG, the differences of the points are not needed and so the exponentially many
number of additions can be avoided in the precomputation step but one would still need to
precompute the points in A3(7). This requires (d− 1) point additions because entries of the
last state matrix of the sequence {A(k)}k are 0 or 1.

It follows from Theorem 4.3 that the main while loop of d-MUL has at most ` iterations
under our assumptions as stated in Section 5.1. In fact, if one further insists that all ai
have exactly `-bits in their binary representation, then d-MUL has exactly ` iterations; see
Theorem 4.4. Moreover, the number of such tuples ai, i = 1, ..., d, that lead to exactly `
iterations in d-MUL is at least 2(`−1)d − 2(`−1) among at most 2`d of its inputs.

Our discussion can be summarized as in Remark 5.1. Remark 5.1 justifies that d-MUL
has some level of built-in protection against side-channel attacks due to its uniform pattern
and the fixed number of iterations for a large portion of its input.

Remark 5.1. Let ai, i = 1, ..., d, be input to d-MUL (Algorithm 3) such that 1 ≤ ai ≤ 2`−1.

1. d-MUL (after precomputation) performs at most ` iterations of loop A3(3).

2. If all ai have exactly `-bits in their binary representation, and ai 6= aj for some i 6= j,
then d-MUL (after precomputation) performs exactly ` iterations.

3. d-MUL (after precomputation) performs exactly ` iterations for about 1/2d of its in-
puts.

4. d-MUL performs (per iteration) 1 doubling and d addition operations in a uniform
pattern of 1 doubling, d additions, ..., 1 doubling, d additions.

Our analysis yields Table 1 in comparison with two other algorithms JT and d-GLV-SAC.

Table 1: A comparison of d-point multiplication algorithms: d-MUL-DIFF, d-MUL-REG,
JT [17], and d-GLV-SAC [9]. Refer to Section 2 for more details on the JT and d-GLV-SAC
algorithms. A∆ and D∆ denote differential addition and doubling costs. A and D denote
regular addition and doubling costs. The second row of the table gives the number of points
in the lookup table.

d-MUL-DIFF d-MUL-REG JT [17] d-GLV-SAC [9]

Precomp

(
3d − 2d− 1

2

)
A (d− 1)A

d((m− 2)A + 2D)

2
(2d−1 − 1)A

Lookup table
3d − 1

2
0

d ·m
2

2d−1

Main loop `(dA∆ + D∆) `(dA + D)

⌈
`

k

⌉
(dA + kD) `(A + D)
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Based on our estimates in Table 1, we compare our algorithm d-MUL (d = 3) with a
3-point multiplication algorithm 3-ML as recently proposed in [26]. Table 2 shows that 3-
MUL-DIFF saves at least one A∆ per iteration in the main loop. When implemented over a
Montgomery curve, where A∆ = 4M + 2S and D∆ = 2M + 2S, 3-MUL-DIFF is expected to
yield about 21% speed-up over 3-ML (with respect to the total number of field multiplications
and squarings, assuming M = S or 0.8M = S). Another advantage of 3-MUL over 3-ML is
that 3-MUL is uniform (see Remark 5.1) whereas 3-ML is not because the cost per iteration
varies between (4A∆ + D∆) and 5A∆; see [26].

Table 2: A comparison of two 3-point multiplication algorithms. Each of the ` steps in 3-ML
requires (4A∆ + D∆) or 5A∆

3-MUL-DIFF 3-MUL-REG 3-ML [26]

Precomp 10A 2A 8A

Lookup table 13 0 8

Main loop `(3A∆ + D∆) `(3A + D) ≥ `(4A∆ + D∆)

Uniform 3 3 7

Expected speed up over 3-ML 0.21

Parallelization: All point addition and doubling operations performed at each iteration in
the main loop of d-MUL can be fully parallelized. The JT algorithm also allows paralleliza-
tion of the addition operations (but not of the doubling operations) during its execution. On
the other hand, it does not seem to be possible to have the d-GLV-SAC algorithm perform
the addition and doubling operations in parallel.

In Table 3, we provide a comparison of the d-MUL and JT algorithms assuming that
addition and doubling operations can be performed in parallel using c computing units.

Based on our estimates in Table 3, we provide a more concrete comparison between d-
MUL-DIFF and JT in a cryptographically interesting setting in Table 4. We aim for 128-bit
security level, and consider G to be a n = 256-bit subgroup of an elliptic curve group. We
choose d = 4 and consider ai to be n/d = 256/4 = 64-bit integers in the 4-point multiplication
algorithm for computing

∑d
i=1 aiPi (see the notation and assumptions in Section 2). In this

setting, we assume that 4-MUL-DIFF and JT adapts Montgomery and Twisted Edwards
curves, respectively (see Section 5.1 for a justification of the curve selections). We conclude
that 4-MUL-DIFF is expected to outperform JT when c = 5, but not for c ≤ 4.

Finally, we compare the relative complexity of d-MUL-DIFF for the values of d =
1, 2, 3, 4. Based on our estimates in Table 1, d-MUL-DIFF is expected to introduce about
(1 − 1/d)D∆/(A∆ + D∆)% speed up (discarding the precomputation) over 1-MUL-DIFF
(which is equivalent to deploying the one dimensional Montgomery ladder). In Table 5, we
consider G as a n ≈ 256-bit subgroup of an elliptic curve group, and set ai to be ` = bn/dc-bit
integers in the d-point multiplication algorithm for computing

∑d
i=1 aiPi (see the notation
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Table 3: A comparison of parallelized d-point multiplication algorithms. A∆ and D∆ denote
differential addition and doubling costs. A and D denote regular addition and doubling
costs. It is assumed that addition and doubling operations can be performed in parallel
using c computing units; e1 = bd/cc, f1 = d (mod c); H(x) = 0 if x = 0 and H(x) = 1
otherwise. The variable m = 2k is a parameter in the JT algorithm (see Section 2)

d-MUL-DIFF d-MUL-REG JT [17]

Precomp

⌈
3d − 2d− 1

2c

⌉
A

⌈
d− 1

c

⌉
A

⌈
d

c

⌉(
(m− 2)A + 2D

2

)

Lookup table
3d − 1

2
0

d ·m
2

Main loop `((e1 + H(f1))A∆ + (1−H(f1))D∆) `((e1 + H(f1))A + (1−H(f1))D)

⌈
`

k

⌉
((e1 + H(f1))A + kD)

and assumptions in Section 2). We further assume that d-MUL-DIFF adapts Montgomery
curves which seem to provide the most efficient differential point addition formulas. In par-
ticular, A∆ = 4M + 2S and D∆ = 2M + 2S. In this setting, d-MUL-DIFF is expected
to improve 1-DIFF-MUL by up to 30%. In our prototype implementation, we work with
a n = 252-bit prime order subgroup G of a Montgomery curve y2 = x3 + 486662x2 + x
defined over the prime field of size 2255 − 19, and compute

∑d
i=1 aiPi for d = 1, 2, 3, 4 and

scalars ai each of which is ` = bn/dc-bit. Our implementation uses the NTL-library [27],
runs on a personal computer, and verifies the theoretical expectations. The gap between our
theoretical estimates and experimental results may be due to several reasons including the
overheads of using lookup tables and the fact that theoretical estimates ignore the cost of
field additions.

6 Concluding remarks

We described new algorithms for constructing d-dimensional differential addition chains and
for performing d-dimensional scalar point multiplication based on differential addition chains.
Our d-point multiplication algorithm d-MUL has some attractive efficiency and security fea-
tures. In particular, d-MUL is uniform, it has high potential for constant time implementa-
tion, and it can be parallelized. d-MUL also allows trading speed for precomputation cost
and storage requirements. We find this as an interesting feature especially for competing
with some existing d-point multiplication algorithms that require exponentially large lookup
tables during their execution. Overall, our theoretical estimates indicate that d-MUL may
offer significant performance advantages over the existing point multiplication algorithms in
practice. We also reported some experimental results based on our prototype implementation
and verified some of our theoretical findings. It would be interesting to have an optimized
implementation of d-MUL and compare its performance to some state-of-the-art algorithms
in software and hardware.
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Table 4: A comparison of parallel d-MUL-DIFF and JT for d = 4, ` = 64. It is assumed
that the parameter m = 2k in JT is set to be 16 (i.e. k=4). Refer to Section 2 for more
details on the JT algorithm and its parameters. It is assumed that addition and doubling
operations are performed in parallel using 1 ≤ c ≤ 5 computation units.

4-MUL-DIFF JT [17]

c Precomp Lookup table Main loop Precomp Lookup table Main loop
1 36A 40 256A∆ + 64D∆ 28A 32 64A + 64D
2 18A 40 128A∆ + 64D∆ 14A + 2D 32 32A + 64D
3 12A 40 128A∆ 14A + 2D 32 32A + 64D
4 9A 40 64A∆ + 64D∆ 7A + 1D 32 32A + 64D
5 8A 40 64A∆ 7A + 1D 32 16A + 64D

A = 15M + 2S,A∆ = 4M + 2S,D∆ = 2M + 2S A = 8M,D = 3M + 4S

c Precomp Main loop Total Precomp Main loop Total
4 135M + 18S 384M + 256S 519M + 274S 59M + 4S 320M + 256S 379M + 260S
4 S = M S = 0.8M S = M S = 0.8M
4 793M 738M 639M 587M
5 120M + 16S 256M + 128S 376M + 144S 59M + 4S 320M + 256S 379M + 260S
5 S = M S = 0.8M S = M S = 0.8M
5 520M 491M 639M 587M
5 Expected speed up over JT 0.18 0.16

Table 5: Relative complexity of d-MUL-DIFF for the values of d = 1, 2, 3, 4, and some
experimental results. d-MUL-DIFF adapts Montgomery curves with A∆ = 4M + 2S and
D∆ = 2M + 2S.

d = 1 d = 2 d = 3 d = 4

1536M + 1024S 1280M + 768S 1194M + 682S 1152M + 640S

Main loop M = S M = 0.8S M = S M = 0.8S M = S M = 0.8S M = S M = 0.8S

2560M 2355M 2048M 1894M 1876M 1739M 1792M 1664M

Expected speed up over d = 1 0.20 0.19 0.26 0.26 0.30 0.29

Experimental speed up over d = 1 0.14 0.21 0.23
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A A toy example

Suppose we wish to compute the point 10P1 + 14P2 + 9P3 + 11P4 using Algorithm 3.

We are first to run Algorithm 1. There are two odd coefficients, and soA3 =
[
10 14 9 11

]
.

Now we add or subtract 1 to the coefficients one at a time, ensuring that we end up with
all evens in A1 and all odds in A5. Making random choices for whether to add or subtract,
suppose we arrive at the matrix

A(1) =



10 14 10 12

10 14 10 11

10 14 9 11

10 15 9 11

11 15 9 11


as the output of A1.

For A3(2), we have k = 1 and h = 2.
Now we arrive at the loop, A3(3). We run A2 with the matrix A(1) above as input. To

compute σ, we look at consecutive rows of A(1). The change between rows A
(1)
1 and A

(1)
2

occurs at column 4, and so σ(2) = 4. The change from A
(1)
2 to A

(1)
3 occurs at column 3, and

so σ(3) = 3. Continuing in this fashion, we have σ(4) = 2 and σ(5) = 1. To define the ci’s,

just subtract the first row of A(1) from the final row to get
[
1 1 −1 −1

]
, which tells us

c1 = 1, c2 = 1, c3 = −1, c4 = −1.
To begin building B, halve the top row of A(1) to get the numbers 5, 7, 5, 6. There are

three odds here, and so B4 =
[
5 7 5 6

]
. In A2(6), we initialize D as

D =

1
4
4[

0, 0, 0, 0
]

We construct the remaining rows of B iteratively in A2(7) by inspecting the successive rows
of A(1).

The change in row A
(1)
2 occurs in column 4 (already noted by σ(2) = 4) in which the 12

in row 1 decreased to 11. In order to make 11, we need a 5 to go with the 6 already placed
in B4. Since 6 is even we define the new row of B to be placed below the current rows,
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consisting of the same numbers as B4 but changing the 6 to a 5:

B =

5 7 5 6

5 7 5 5


A(1) =



10 14 10 12

10 14 10 11

10 14 9 11

10 15 9 11

11 15 9 11


These are our results after executing A2(11) in the first iteration (k = 2). This definition

of the newly constructed row of B allows us to satisfy A
(1)
2 = B4 + B5. The difference

B4 − B5 =
[
0 0 0 1

]
becomes the new R, and we append the column on to D with this

information in A2(15):

D =

1 2
4 4
4 5[

0, 0, 0, 0
] [

0, 0, 0, 1
]

We look at row 3 of A(1). The change occurs at column 3 when 10 decreased to 9 (given
by σ(3) = 3 and c3 = −1). In order to make 9, we need a 4 to go with the 5 in column 3 of
B. Since 5 is odd we define the new row of B to be placed above the current rows, consisting
of the same numbers as B4 but changing the 5 to a 4:

B =


5 7 4 6

5 7 5 6

5 7 5 5


A(1) =



10 14 10 12

10 14 10 11

10 14 9 11

10 15 9 11

11 15 9 11


The above is matrix B after the second iteration of A2(7) (k = 3). Again the definition of

this new row ensures that B3 + B5 = A
(1)
3 . The row numbers and the difference B3 − B5 =[

0 0 −1 1
]

are stored into D:

D =

1 2 3
4 4 3
4 5 5[

0, 0, 0, 0
] [

0, 0, 0, 1
] [

0, 0,−1, 1
]
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We continue in this way, going down the rows of A(1). The change in A
(1)
4 occurs in

column 2, where we need an 8 to go with our 7 in B. 7 is odd, so we append a row at the
top of B (and a column onto D, shown further below):

B =


5 8 4 6

5 7 4 6

5 7 5 6

5 7 5 5


A(1) =



10 14 10 12

10 14 10 11

10 14 9 11

10 15 9 11

11 15 9 11


Finally, the last change occurs in column 1. We need a 6 with our current 5 in B in order
to make 11, and since 5 is odd, we append at the top once more. This will finish the loop,
and we will rename the matrix B to be A(2):

A(2) = B =



6 8 4 6

5 8 4 6

5 7 4 6

5 7 5 6

5 7 5 5


A(1) =



10 14 10 12

10 14 10 11

10 14 9 11

10 15 9 11

11 15 9 11



D(1) =

1 2 3 4 5
4 4 3 2 1
4 5 5 5 5[

0, 0, 0, 0
] [

0, 0, 0, 1
] [

0, 0,−1, 1
] [

0, 1,−1, 1
] [

1, 1,−1, 1
]

Assigning k = 2, this finishes the first iteration of the loop in A3(3). We continue iterat-
ing through this loop, constructing a sequence of matrices and arrays just as we did above.
We construct the final matrix when k = 4 (however, the loop increments once more before
exiting to leave us with k = 5). In total, we now have:
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A(1) D(1)
10 14 10 12

10 14 10 11

10 14 9 11

10 15 9 11

11 15 9 11


1 2 3 4 5
4 4 3 2 1
4 5 5 5 5[

0, 0, 0, 0
] [

0, 0, 0, 1
] [

0, 0,−1, 1
] [

0, 1,−1, 1
] [

1, 1,−1, 1
]

A(2) D(2)
6 8 4 6

5 8 4 6

5 7 4 6

5 7 5 6

5 7 5 5


1 2 3 4 5
3 2 2 2 1
3 3 4 5 5[

0, 0, 0, 0
] [
−1, 0, 0, 0

] [
−1, 1, 0, 0

] [
−1, 1,−1, 0

] [
−1, 1,−1,−1

]

A(3) D(3)
2 4 2 2

2 4 2 3

3 4 2 3

3 3 2 3

3 3 3 3


1 2 3 4 5
4 3 2 2 1
4 4 4 5 5[

0, 0, 0, 0
] [

0, 0, 0, 1
] [

1, 0, 0, 1
] [

1, 1, 0, 1
] [

1, 1, 1, 1
]

A(4) D(4)
2 2 2 2

2 2 1 2

1 2 1 2

1 2 1 1

1 1 1 1


1 2 3 4 5
5 4 3 2 1
5 5 5 5 5[

0, 0, 0, 0
] [

0, 0,−1, 0
] [
−1, 0,−1, 0

] [
−1, 0,−1,−1

] [
−1,−1,−1,−1

]

A(5)
0 0 0 0

0 1 0 0

0 1 0 1

1 1 0 1

1 1 1 1


The arrays D(i) give us a road map for how to compute our desired A

(1)
3 in terms of the
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rows of A(5), which are particularly simple. We compute Q
(5)
i := A

(5)
i ·

[
P1 P2 P3 P4

]T
for 1 ≤ i ≤ 5, as stated in A3(7):

Q
(5)
1 = 0

Q
(5)
2 = P2

Q
(5)
3 = P2 + P4

Q
(5)
4 = P1 + P2 + P4

Q
(5)
5 = P1 + P2 + P3 + P4

Proceeding into the loop in A3(9), we then compute the rows of A(4) listed in the first row
of D(4) in terms of the above 5 points:

Q
(4)
1 = 2Q

(5)
5 = 2P1 + 2P2 + 2P3 + 2P4

Q
(4)
2 = Q

(5)
4 +Q

(5)
5 = 2P1 + 2P2 + P3 + 2P4

Q
(4)
3 = Q

(5)
3 +Q

(5)
5 = P1 + 2P2 + P3 + 2P4

Q
(4)
4 = Q

(5)
2 +Q

(5)
5 = P1 + 2P2 + P3 + P4

Q
(4)
5 = Q

(5)
1 +Q

(5)
5 = P1 + P1 + P3 + P4

Next, compute the rows of A(3) listed in the first row of D(3) using the above points:

Q
(3)
1 = 2Q

(4)
4 = 2P1 + 4P2 + 2P3 + 2P4

Q
(3)
2 = Q

(4)
3 +Q

(4)
4 = 2P1 + 4P2 + 2P3 + 3P4

Q
(3)
3 = Q

(4)
2 +Q

(4)
4 = 3P1 + 4P2 + 2P3 + 3P4

Q
(3)
4 = Q

(4)
2 +Q

(4)
5 = 3P1 + 3P2 + 2P3 + 3P4

Q
(3)
5 = Q

(4)
1 +Q

(4)
5 = 3P1 + 3P2 + 3P3 + 3P4

Compute the rows of A(2) using D(2) and the above points:

Q
(2)
1 = 2Q

(3)
3 = 6P1 + 8P2 + 4P3 + 6P4

Q
(2)
2 = Q

(3)
2 +Q

(3)
3 = 5P1 + 8P2 + 4P3 + 6P4

Q
(2)
3 = Q

(3)
2 +Q

(3)
4 = 5P1 + 7P2 + 4P3 + 6P4

Q
(2)
4 = Q

(3)
2 +Q

(3)
5 = 5P1 + 7P2 + 5P3 + 6P4

Q
(2)
5 = Q

(3)
1 +Q

(3)
5 = 5P1 + 7P2 + 5P3 + 5P4

And finally, compute the rows of A(1) using D(1) and the above points:

Q
(1)
1 = 2Q

(2)
4 = 10P1 + 14P2 + 10P3 + 12P4
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Q
(1)
2 = Q

(2)
4 +Q

(2)
5 = 10P1 + 14P2 + 10P3 + 11P4

Q
(1)
3 = Q

(2)
3 +Q

(2)
5 = 10P1 + 14P2 + 9P3 + 11P4

Q
(1)
4 = Q

(2)
2 +Q

(2)
5 = 10P1 + 15P2 + 9P3 + 11P4

Q
(1)
5 = Q

(2)
1 +Q

(2)
5 = 11P1 + 15P2 + 9P3 + 11P4

As we wanted to compute row 3 of A(1), we output Q
(1)
3 .
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