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Abstract

In this paper we propose MIE, a Multimodal Indexable Encryption framework that for the first time allows
mobile applications to securely outsource the storage and search of their multimodal data (i.e. data containing
multiple media formats) to public clouds with privacy guarantees. MIE is designed as a distributed framework
architecture, leveraging on shared cloud repositories that can be accessed simultaneously by multiple users. At its
core MIE relies on Distance Preserving Encodings (DPE), a novel family of encoding algorithms with cryptographic
properties that we also propose. By applying DPE to multimodal data features, MIE enables high-cost clustering
and indexing operations to be handled by cloud servers in a privacy-preserving way. Experiments show that MIE
achieves better performance and scalability when compared with the state of art, with measurable impact on mobile
resources and battery life.

I. INTRODUCTION

Mobile devices currently permeate everyday life, surpassing the sales of PCs and Laptops by six times [44] and
being responsible for more than 70% of multimedia consumption on the Internet [15]. The advent of mobile devices
and tablets has changed the way users produce and manipulate data. On the one hand, users now produce larger
quantities of multimodal data (i.e. data containing various media formats such as photos, audio, and text) through
their mobile devices [22]. On the other hand, data access and sharing is expected to be ubiquitous [14].

Due to resource limitations (computational power, battery life, and storage capacity) and increasingly larger
collections of data produced and accessed by users1, mobile devices have been a key driving factor for cloud
computing solutions and the outsourcing of both data storage and processing [44]. This trend is also known as
Mobile Cloud Computing [19]. In such solutions, the cloud effectively operates as a natural extension to the
limited storage and computational resources of mobile devices. Furthermore, given such large datasets, being able
to efficiently search and retrieve relevant subsets of their data becomes of increased importance for users.

However outsourcing to the cloud inherently leads to dependability and privacy challenges, especially when data
and computations are sensitive or of critical nature. This is a natural observation as outsourcing data and computa-
tions also entails outsourcing control over them [13]. Recent news have proven that users’ privacy is not protected
when using cloud services [54]. Governments impose increasing pressure on technological companies to disclose
users’ data and build insecure backdoors [16], [26]. Malicious or simply careless cloud system administrators have
been responsible for critical data disclosures [12], [21]. Finally, one also has to consider internet hackers exploiting
software and hardware vulnerabilities in the cloud providers’ infrastructure [40].

A common approach for dealing with these dependability issues is to use end-to-end encryption schemes, where
users’ devices are responsible for encrypting all data before sending it to the cloud [4], [42]. However these schemes
restrict functionalities available to users, including efficient data sharing and searching operations through the cloud
infrastructure. While data sharing can easily be achieved through key distribution [36], searching encrypted data is
a non trivial challenge.

The research community has tried to address this challenge by proposing Searchable Symmetric Encryption
(SSE) schemes [2], [11], [17], [27], [34], [35], [49], [55]. Originally designed for exact-match searching in text
documents, SSE schemes allow querying encrypted data in sub-linear time, by having users index their data (i.e.
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1In cloud-backed multimedia storage apps like iCloud Photos: http://www.apple.com/icloud/photos; and Google Photos: https://www.
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build a compact dictionary of the data; e.g. with the unique keywords of each text document) and upload both
encrypted index and data to the cloud. However extending SSE to richer queries [2], [9], [57] and other media
domains [20], [41] has proven challenging. On one hand, indexing computations of multimodal data and rich media
types (including images, audio, and video) are too expensive, especially for mobile client devices and considering
that training tasks (i.e. clustering and machine learning algorithms) also have to be performed before data can
be efficiently indexed [18]. On the other hand, the few existing approaches [2], [9], [41], [57] are still limited to
static collections (i.e. data can’t be added, updated, or removed dynamically after deployment and initial load of a
repository).

On a side note, searching encrypted data in sub-linear time is only possible by revealing some information
patterns to adversaries with each query, including if the query has been performed before and which data objects,
although encrypted, were returned by it (search and access patterns [17], respectively). This note is important, as
it will be leveraged in the core design of our solution as explained next.

In this paper we propose a novel framework to tackle the practical challenges of supporting mobile applications
dynamically storing, sharing, and searching multimodal data in public cloud infrastructures while preserving privacy.
We call our proposal MIE - Multimodal Indexable Encryption. MIE leverages from two insights: on the one hand,
the leakage of search and access patterns has been proven unavoidable in order to search encrypted data in sub-linear
time [48]; on the other hand, in practical deployments where many queries are submitted concurrently by multiple
users, these patterns are eventually revealed for the entire index space (i.e. for all possible queries). Leveraging these
insights, we contrive MIE to reveal information patterns with each add/update operation, instead of each query. This
will allow users to dynamically update and search multimodal repositories while securely outsourcing indexing and
training computations to the cloud, which we later show to be the heaviest and more unsuitable computations for
mobile applications.

To support MIE’s operations we propose a novel family of encoding algorithms with cryptographic properties,
called DPE - Distance Preserving Encodings. DPE schemes securely encode data while preserving a controllable
distance function between plaintexts. By extracting feature-vectors from multimodal data and encoding them with
DPE, users are able to outsource training and indexing computations to the cloud in a privacy-preserving way. We
formally define DPE and present two efficient implementations: one for dense media types (e.g. images, audio, and
video) and another for sparse media (e.g. text). DPE is of particular interest on itself and can be easily integrated
in other secure protocols.

We implemented both an Android and Desktop applications on top of our MIE framework for those platforms.
These applications, designed to support the storage and search of multimodal data containing text and image
formats, are used to experimentally validate MIE’s performance, scalability, and battery consumption in mobile
devices. Since (as far as we know) MIE is the first endeavor in multimodal encrypted search, we also implemented
a recent SSE scheme from the literature [11], extended it to support multimodal searching, and experimentally
compared its performance with MIE. Our implementations are open source and publicly available at: https://github.
com/bernymac/MIE.

In summary, this paper makes the following contributions:
• We propose an alternative design to dynamically updating and searching encrypted multimodal data that allows

the secure outsourcing of training and indexing computations. We call our proposal MIE - Multimodal Indexable
Encryption (§V).
• To support MIE’s operations we propose a new family of cryptographic primitives that preserve a controllable

distance function between plaintexts. We call our proposal DPE - Distance Preserving Encodings (§IV);
• We formally prove the security properties of our proposals under the standard security model, i.e. without

resorting to heuristic models like Random Oracles, which may not have secure implementations in practice [24];
• We implement MIE, both for Desktop and Mobile (Android) devices (§VI), and a multimodal SSE scheme

based on the recent literature [11], evaluating and comparing both in terms of performance and scalability across
different operations (§VII). Real-world datasets and public commercial clouds (Amazon EC2) are used in these
experiments.



Scheme Search Update Client Revocation Query Search Update
Time Time Storage Size Type Leakage Leakage

Kamara’12 [35] O(m/n) O(m/n) O(1) – Text Match ID(w), ID(d) ID(w)
Kamara’13 [34] O(log|F |.m/n) O(log|F |.n) O(1) – Text Match ID(w), ID(d) –
Naveed’14 [49] O(m/n) O(m/n) O(1) – Text Match ID(w), ID(d) ID(w)
Hahn’14 [27] O(m/n) (amort.) O(m/n) O(n) – Text Match ID(w), ID(d) –
Cash’14 [11] O(m/n) O(m/n) O(n) O(m) Text Match ID(w), ID(d) –

Stefanov’14 [55] O(m/n + logm) O(log2N) O(m) – Text Match ID(w), ID(d) – (forward private)
Cao’14 [9] O(n2) O(n2) O(1) – Text Ranked ID(w), ID(d) ID(w), freq(w)

Ferreira’15 [20] O(m/n) O(m/n) O(1) – Image Ranked ID(w), ID(d) ID(w), freq(w)

MSSE O(m/n) O(m/n) O(n) O(m) Multimodal ID(w), ID(d), freq(w) –
Hom-MSSE O(m/n) O(m/n) O(n) O(m) Multimodal ID(w), ID(d) –

MIE O(m/n) O(m/n) O(1) – Multimodal ID(w), ID(d) ID(w), freq(w)

TABLE I: Overview of average complexities for the literature on SSE, our work (MIE), and two multimodal SSE schemes (MSSE and
Hom-MSSE) designed for baseline experimental comparison by extending the recent literature on SSE [11] (more details in the Evaluation
Section §VII). The reader should note that although MIE displays the same search and update time complexities as its two multimodal
alternatives, it resorts to more efficient cryptographic primitives, resulting in faster operation time in practice (as will be revealed in §VII).
Table Legend: n is the number of unique keywords (or similar concept in other medias, e.g. a keypoint in an image), m is the total number
of index entries (keywords or other), |F | is the number of data-objects, ID(w) is the deterministic id of a keyword being queried or added
to a data-object, ID(d) represents the ids of the data-objects returned by a query (i.e. that contain the queried keyword), and freq(w) is
the frequency of a keyword in data-objects being updated or returned by a query.

II. RELATED WORK

Searching encrypted data is currently a hot research topic, with the increasing popularity of storage and com-
putation cloud services and the security issues they bring. In the last decades, relevant advances have been
achieved in powerful cryptographic mechanisms that allow generic computations on encrypted data, including Fully
Homomorphic Encryption [23] and Oblivious RAM [56]. However such techniques still remain too expensive to
be practical: e.g. computing an AES decryption circuit through fully homomorphic encryption is at least 109 times
slower [23]; while developing an SSE scheme on top of Oblivious-RAM, protecting access patterns, increases query
data-transfer overheads by at least 128 times compared to conventional SSE, and by at least 1.75 times compared
to downloading the entire database with each query [48].

Searchable Symmetric Encryption (SSE) [17] strives for a practical balance between efficiency and security.
Originally designed for exact-match search over static collections of text documents of a single user, SSE schemes
are able to achieve sub-linear search performance by initially revealing no information regarding the encrypted data
and then gradually revealing some information patterns with each search operation [17]. These leaked information
patterns include: search patterns, i.e. has this query been issued before, which is leaked by a deterministic hash of the
query; and access patterns, i.e. which data objects are returned by each query, which is leaked by the deterministic
identifiers of the objects. Extending SSE for dynamic collections, where documents can be added, updated, and
deleted at runtime, initially lead to the further disclosure of update patterns [35], [49] (i.e. if new documents share
contents with previously stored documents, leaked by deterministic hashes of the new document’s keywords).

Recent dynamic SSE schemes were able to overcome the update leakage issue by increasing operational overhead
[34], [55] and/or requiring client storage that grows linearly with the number of unique keywords [6], [11], [27].
Recent works also introduced the concept of forward privacy [6], [55], which states that updates should leak no
information even when combined with old query tokens. However in practical scenarios with many queries being
submitted by multiple users simultaneously, such guarantees can not hold for long periods.

With the exception of [49], dynamic SSE schemes described so far depend on heuristic models, like the Random
Oracle model, which may not have secure implementations in practice and that have been highly criticized in recent
years [24]. Making them secure under standard security assumptions requires further client processing and largely
increased communication overhead [11], [55], turning these solutions unpractical.

Supporting richer query expressiveness in SSE has not been easy to achieve. The first SSE-based schemes for
ranked retrieval were either based on insecure cryptographic primitives [57], or required heavy client processing
and search time linear with the index size [9]. These SSE schemes also further revealed frequency patterns, i.e. how
many times each queried keyword appears in retrieved documents. Hiding this information has only been possible



by assuming the existence of a user-controlled cryptographic module in the cloud server, which would perform
multi-party computation with the server, besides encrypting the index with an additively-homomorphic encryption
scheme [2]. Furthermore these ranked SSE schemes have so far been restricted to static document collections, as
they depend on pre-computed and immutable ranking scores that would need to be refreshed and re-encrypted with
each document addition, update, or removal.

SSE schemes are usually designed for single writer and single reader/searcher scenarios [2], [11], [27], [55].
Some SSE schemes extend this model to support multiple searchers, however it must be a single writer to generate
searching tokens for all other users [9], [57]. Searchable encryption in the public key setting (also know as PEKS)
[5] allows the opposite: multiple writers can use a public key to write data, but only a single reader can use the
respective private key to search that data. In [53], a multi-key searchable encryption scheme supporting multiple
writers and searchers was proposed. However this approach is based on bilinear maps on elliptic curves (which are
an order of magnitude slower than conventional symmetric cryptography), has linear-time search performance, and
although it supports multiple users it does not address user access control and revocation issues.

Besides text documents, SSE-based schemes have also been designed for other media domains such as images
[20], [41]. However, the overhead imposed on client devices in text ranked searching is even more noticeable in the
context of images, as machine learning tasks (also known as training) are usually required before dense media types
(i.e. images, audio, and video) can be indexed [18]. Furthermore, both training and indexing of dense media data
are computationally intensive operations. Some of these performance issues were addressed in [20], however this
approach was limited to color features in the image domain. Hence, and to the best of our knowledge, this paper
presents the first endeavor in supporting encrypted storage and search of multiple media formats simultaneously
(i.e. multimodal data) in a practical way, while supporting resource-restricted mobile devices. Table I provides a
summary review of the recent literature on SSE and comparison with our approach across multiple distinguishing
factors.

III. TECHNICAL OVERVIEW

In this section we present an overview of MIE and the system and adversary models that we consider. We start with
some notations and fundamental concepts: we call multimodal data-object, or simply object, to an aggregation of
data with multiple media formats or modalities (i.e. an object containing text, image, audio, and/or video; examples
are annotated images, wikipedia pages, and personal health records [47]); a repository is a collection of multimodal
data-objects; features are characterizations of objects in some particular media type (e.g. the text modality of an
object can be characterized by its most relevant textual keywords [43], while the image modality by a set of visual
points of interest [3]); feature-vectors are vectorial representations of features, describing an object across its
multiple modalities. Feature-vectors are essential components to enable efficient search in repositories containing
large collections of multimodal objects.

Multimodal searching uses a multimodal object as query for searching in a multimodal repository. Search results
are usually obtained for each media format in separate and aggregated through a multimodal merging function [47].

Indexing takes a collection of data-objects and constructs a dictionary describing them under some features (e.g.
which keywords appear in each text document) [43]. This dictionary, called index, forms a compressed representation
of the data and allows searching in sub-linear time (e.g. searching for a keyword becomes equivalent to one dictionary
access, instead of linearly scanning all text documents).

Training tasks are machine learning operations, such as the k-means clustering algorithm [28], used to find
homogeneous groups of objects in dense, high-dimensional data [1]. These groups are used to build more compact
representations of high-dimensional data-objects. Example: an object-recognition algorithm [3] finds multiple points
of interest in an image. Training a collection of such keypoints from different images yields a group of Distinctive
Keypoints [50]. Representing all keypoints of an image in a compact way can then be achieved by finding the most
similar Distinctive Keypoint of each and building an histogram with their frequencies.

A. System Model and Architecture

In this paper we focus on the challenges inherent to building practical, secure, and searchable cloud-backed
multimodal data repositories especially tailored for mobile devices. We consider a system with multiple readers and
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Scheme Search Update Client Index Rev. Query Search Update
Time Time Storage Size Size Type Leakage Leakage

Kamara’12 [45] O(m/n) O(m/n) O(1) O(m + n) – Text Match ID(w), ID(d) ID(w)
Kamara’13 [44] O(log|F |.m/n) O(log|F |.n) O(1) O(|F |.n) – Text Match ID(w), ID(d) –
Cash’14 [15] O(m/n) O(m/n) O(n) O(m + n) O(m) Text Match ID(w), ID(d) –
Cao’14 [13] O(n2) O(n2) O(1) O(m + n) – Text Ranked ID(w), ID(d) ID(w), freq(w)

Ferreira’15 [24] O(m/n) O(m/n) O(1) O(m + n) – Image Ranked ID(w), ID(d) ID(w), freq(w)

MSSE O(m/n) O(m/n) O(n) O(m + n) – Multimodal ID(w), ID(d), freq(w) –
Hom-MSSE O(m/n) O(m/n) O(n) O(m + n) – Multimodal ID(w), ID(d) –

MIE O(m/n) O(m/n) O(1) O(m + n) – Multimodal ID(w), ID(d) ID(w), freq(w)

Table 1: Overview of average complexities for the literature on SSE, our work (MIE), and two multimodal SSE schemes (MSSE and Hom-MSSE)
designed for baseline experimental comparison by extending the recent literature on SSE [15] (more details in the Evaluation Section §7). n is
the number of unique keywords (or similar concept in other medias, e.g. a keypoint in an image), m is the total number of keywords, |F | is
the number of data-objects, ID(w) is the deterministic id of a keyword being queried or added to a data-object, ID(d) represents the ids of
the data-objects returned by a query (i.e. that contain the queried keyword), and freq(w) is the frequency of a keyword in data-objects being
updated or returned by a query. In this analysis we consider that repositories can start empty, i.e. all data-objects may be added dynamically.

document addition, update, or removal.
SSE schemes are usually designed for single writer and

single reader/searcher scenarios [3, 35, 77]. Some schemes
extend this model to support multiple searchers, however
it must be a single writer to generate searching tokens for
all other users [13, 50, 75]. In [68], the first multi-key SSE
scheme supporting multiple writers and searchers was pro-
posed. However this approach is based on bilinear maps
on elliptic curves (which are an order of magnitude slower
than conventional symmetric cryptography), has linear-time
search performance, and although it supports multiple users,
it does not address user access control and revocation issues.

Beside text documents, SSE-based schemes have also been
designed for other media domains such as images [54,76,77].
However, the overhead imposed on client devices in text
ranked searching is even more noticeable in the context of
images, as machine learning tasks (also known as training)
are usually required before dense media types (i.e. images,
audio, and video) can be indexed. Furthermore, both train-
ing and indexing of dense media data are computationally
intensive operations. We addressed some of these perfor-
mance issues in [24], however our previous work was limited
to color features in the image domain. Hence, and to the best
of our knowledge, this paper presents the first endeavor in
supporting encrypted storage and search of multiple media
formats simultaneously (i.e. multimodal data) in a practi-
cal way, while supporting resource-restricted mobile devices.
Table 1 provides a summary review of the recent literature
on SSE and comparison with our approach across multiple
distinguishing factors.

3. TECHNICAL OVERVIEW
In this section we present an overview of MIE and the sys-

tem and adversary models that we consider. We start with
some notations and fundamental concepts: we call multi-
modal data-object, or simply object, to an aggregation
of data with multiple media formats or modalities (i.e. an
object containing text, image, audio, and/or video; exam-
ples are annotated images, wikipedia pages, and personal
health records [61]); a repository is a collection of multi-
modal data-objects; features are characterizations of ob-
jects in some particular media type (e.g. the text modal-
ity of an object can be characterized by its most relevant
textual keywords [57], while the image modality by a set
of visual points of interest [4]); feature-vectors are vecto-
rial representations of features, describing an object across
its multiple modalities. Feature-vectors are essential com-
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Figure 1: System model with example interactions between users and
the cloud infrastructure, considering image and text media domains.

ponents to enable e�cient search in repositories containing
large collections of multimodal objects.

Multimodal searching consists in separately searching
data in di↵erent media formats, aggregating the multiple
results through a merging function. This search is performed
using a multimodal object as a query [61].

Indexing takes a collection of data-objects and constructs
a dictionary describing them under some features (e.g. which
keywords appear in each text document) [57]. This dictio-
nary, called index, forms a compressed representation of the
data and allows searching in sub-linear time (e.g. searching
for a keyword becomes equivalent to one dictionary access,
instead of linearly scanning all text documents).

Training tasks are machine learning operations, such as
the k-means clustering algorithm [37]) used to find homoge-
neous groups of objects in dense, high-dimensional data [1].
These groups are later used to build more compact repre-
sentations of high-dimensional data-objects (e.g. an object-
recognition algorithm [53] will find multiple points of inter-
est in an image). Training a collection of such keypoints
from di↵erent images will yield a group of distinctive key-
points [65]. Representing the di↵erent keypoints of an im-
age can then be achieved in a compact way by finding the
most similar distinctive keypoint of each and building an
histogram with their frequencies.

3.1 System Model and Architecture
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Scheme Search Update Client Index Rev. Query Search Update
Time Time Storage Size Size Type Leakage Leakage

Kamara’12 [45] O(m/n) O(m/n) O(1) O(m + n) – Text Match ID(w), ID(d) ID(w)
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MSSE O(m/n) O(m/n) O(n) O(m + n) – Multimodal ID(w), ID(d), freq(w) –
Hom-MSSE O(m/n) O(m/n) O(n) O(m + n) – Multimodal ID(w), ID(d) –

MIE O(m/n) O(m/n) O(1) O(m + n) – Multimodal ID(w), ID(d) ID(w), freq(w)

Table 1: Overview of average complexities for the literature on SSE, our work (MIE), and two multimodal SSE schemes (MSSE and Hom-MSSE)
designed for baseline experimental comparison by extending the recent literature on SSE [15] (more details in the Evaluation Section §7). n is
the number of unique keywords (or similar concept in other medias, e.g. a keypoint in an image), m is the total number of keywords, |F | is
the number of data-objects, ID(w) is the deterministic id of a keyword being queried or added to a data-object, ID(d) represents the ids of
the data-objects returned by a query (i.e. that contain the queried keyword), and freq(w) is the frequency of a keyword in data-objects being
updated or returned by a query. In this analysis we consider that repositories can start empty, i.e. all data-objects may be added dynamically.
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are usually required before dense media types (i.e. images,
audio, and video) can be indexed. Furthermore, both train-
ing and indexing of dense media data are computationally
intensive operations. We addressed some of these perfor-
mance issues in [24], however our previous work was limited
to color features in the image domain. Hence, and to the best
of our knowledge, this paper presents the first endeavor in
supporting encrypted storage and search of multiple media
formats simultaneously (i.e. multimodal data) in a practi-
cal way, while supporting resource-restricted mobile devices.
Table 1 provides a summary review of the recent literature
on SSE and comparison with our approach across multiple
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modal data-object, or simply object, to an aggregation
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health records [61]); a repository is a collection of multi-
modal data-objects; features are characterizations of ob-
jects in some particular media type (e.g. the text modal-
ity of an object can be characterized by its most relevant
textual keywords [57], while the image modality by a set
of visual points of interest [4]); feature-vectors are vecto-
rial representations of features, describing an object across
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ponents to enable e�cient search in repositories containing
large collections of multimodal objects.

Multimodal searching consists in separately searching
data in di↵erent media formats, aggregating the multiple
results through a merging function. This search is performed
using a multimodal object as a query [61].

Indexing takes a collection of data-objects and constructs
a dictionary describing them under some features (e.g. which
keywords appear in each text document) [57]. This dictio-
nary, called index, forms a compressed representation of the
data and allows searching in sub-linear time (e.g. searching
for a keyword becomes equivalent to one dictionary access,
instead of linearly scanning all text documents).

Training tasks are machine learning operations, such as
the k-means clustering algorithm [37]) used to find homoge-
neous groups of objects in dense, high-dimensional data [1].
These groups are later used to build more compact repre-
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recognition algorithm [53] will find multiple points of inter-
est in an image). Training a collection of such keypoints
from di↵erent images will yield a group of distinctive key-
points [65]. Representing the di↵erent keypoints of an im-
age can then be achieved in a compact way by finding the
most similar distinctive keypoint of each and building an
histogram with their frequencies.
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Table 1: Overview of average complexities for the literature on SSE, our work (MIE), and two multimodal SSE schemes (MSSE and Hom-MSSE)
designed for baseline experimental comparison by extending the recent literature on SSE [15] (more details in the Evaluation Section §7). n is
the number of unique keywords (or similar concept in other medias, e.g. a keypoint in an image), m is the total number of keywords, |F | is
the number of data-objects, ID(w) is the deterministic id of a keyword being queried or added to a data-object, ID(d) represents the ids of
the data-objects returned by a query (i.e. that contain the queried keyword), and freq(w) is the frequency of a keyword in data-objects being
updated or returned by a query. In this analysis we consider that repositories can start empty, i.e. all data-objects may be added dynamically.

document addition, update, or removal.
SSE schemes are usually designed for single writer and

single reader/searcher scenarios [3, 35, 77]. Some schemes
extend this model to support multiple searchers, however
it must be a single writer to generate searching tokens for
all other users [13, 50, 75]. In [68], the first multi-key SSE
scheme supporting multiple writers and searchers was pro-
posed. However this approach is based on bilinear maps
on elliptic curves (which are an order of magnitude slower
than conventional symmetric cryptography), has linear-time
search performance, and although it supports multiple users,
it does not address user access control and revocation issues.

Beside text documents, SSE-based schemes have also been
designed for other media domains such as images [54,76,77].
However, the overhead imposed on client devices in text
ranked searching is even more noticeable in the context of
images, as machine learning tasks (also known as training)
are usually required before dense media types (i.e. images,
audio, and video) can be indexed. Furthermore, both train-
ing and indexing of dense media data are computationally
intensive operations. We addressed some of these perfor-
mance issues in [24], however our previous work was limited
to color features in the image domain. Hence, and to the best
of our knowledge, this paper presents the first endeavor in
supporting encrypted storage and search of multiple media
formats simultaneously (i.e. multimodal data) in a practi-
cal way, while supporting resource-restricted mobile devices.
Table 1 provides a summary review of the recent literature
on SSE and comparison with our approach across multiple
distinguishing factors.

3. TECHNICAL OVERVIEW
In this section we present an overview of MIE and the sys-

tem and adversary models that we consider. We start with
some notations and fundamental concepts: we call multi-
modal data-object, or simply object, to an aggregation
of data with multiple media formats or modalities (i.e. an
object containing text, image, audio, and/or video; exam-
ples are annotated images, wikipedia pages, and personal
health records [61]); a repository is a collection of multi-
modal data-objects; features are characterizations of ob-
jects in some particular media type (e.g. the text modal-
ity of an object can be characterized by its most relevant
textual keywords [57], while the image modality by a set
of visual points of interest [4]); feature-vectors are vecto-
rial representations of features, describing an object across
its multiple modalities. Feature-vectors are essential com-
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Multimodal searching consists in separately searching
data in di↵erent media formats, aggregating the multiple
results through a merging function. This search is performed
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Indexing takes a collection of data-objects and constructs
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extend this model to support multiple searchers, however
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all other users [13, 50, 75]. In [68], the first multi-key SSE
scheme supporting multiple writers and searchers was pro-
posed. However this approach is based on bilinear maps
on elliptic curves (which are an order of magnitude slower
than conventional symmetric cryptography), has linear-time
search performance, and although it supports multiple users,
it does not address user access control and revocation issues.

Beside text documents, SSE-based schemes have also been
designed for other media domains such as images [54,76,77].
However, the overhead imposed on client devices in text
ranked searching is even more noticeable in the context of
images, as machine learning tasks (also known as training)
are usually required before dense media types (i.e. images,
audio, and video) can be indexed. Furthermore, both train-
ing and indexing of dense media data are computationally
intensive operations. We addressed some of these perfor-
mance issues in [24], however our previous work was limited
to color features in the image domain. Hence, and to the best
of our knowledge, this paper presents the first endeavor in
supporting encrypted storage and search of multiple media
formats simultaneously (i.e. multimodal data) in a practi-
cal way, while supporting resource-restricted mobile devices.
Table 1 provides a summary review of the recent literature
on SSE and comparison with our approach across multiple
distinguishing factors.
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In this section we present an overview of MIE and the sys-

tem and adversary models that we consider. We start with
some notations and fundamental concepts: we call multi-
modal data-object, or simply object, to an aggregation
of data with multiple media formats or modalities (i.e. an
object containing text, image, audio, and/or video; exam-
ples are annotated images, wikipedia pages, and personal
health records [61]); a repository is a collection of multi-
modal data-objects; features are characterizations of ob-
jects in some particular media type (e.g. the text modal-
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of visual points of interest [4]); feature-vectors are vecto-
rial representations of features, describing an object across
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ponents to enable e�cient search in repositories containing
large collections of multimodal objects.

Multimodal searching consists in separately searching
data in di↵erent media formats, aggregating the multiple
results through a merging function. This search is performed
using a multimodal object as a query [61].

Indexing takes a collection of data-objects and constructs
a dictionary describing them under some features (e.g. which
keywords appear in each text document) [57]. This dictio-
nary, called index, forms a compressed representation of the
data and allows searching in sub-linear time (e.g. searching
for a keyword becomes equivalent to one dictionary access,
instead of linearly scanning all text documents).

Training tasks are machine learning operations, such as
the k-means clustering algorithm [37]) used to find homoge-
neous groups of objects in dense, high-dimensional data [1].
These groups are later used to build more compact repre-
sentations of high-dimensional data-objects (e.g. an object-
recognition algorithm [53] will find multiple points of inter-
est in an image). Training a collection of such keypoints
from di↵erent images will yield a group of distinctive key-
points [65]. Representing the di↵erent keypoints of an im-
age can then be achieved in a compact way by finding the
most similar distinctive keypoint of each and building an
histogram with their frequencies.
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the number of data-objects, ID(w) is the deterministic id of a keyword being queried or added to a data-object, ID(d) represents the ids of
the data-objects returned by a query (i.e. that contain the queried keyword), and freq(w) is the frequency of a keyword in data-objects being
updated or returned by a query. In this analysis we consider that repositories can start empty, i.e. all data-objects may be added dynamically.
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extend this model to support multiple searchers, however
it must be a single writer to generate searching tokens for
all other users [13, 50, 75]. In [68], the first multi-key SSE
scheme supporting multiple writers and searchers was pro-
posed. However this approach is based on bilinear maps
on elliptic curves (which are an order of magnitude slower
than conventional symmetric cryptography), has linear-time
search performance, and although it supports multiple users,
it does not address user access control and revocation issues.
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designed for other media domains such as images [54,76,77].
However, the overhead imposed on client devices in text
ranked searching is even more noticeable in the context of
images, as machine learning tasks (also known as training)
are usually required before dense media types (i.e. images,
audio, and video) can be indexed. Furthermore, both train-
ing and indexing of dense media data are computationally
intensive operations. We addressed some of these perfor-
mance issues in [24], however our previous work was limited
to color features in the image domain. Hence, and to the best
of our knowledge, this paper presents the first endeavor in
supporting encrypted storage and search of multiple media
formats simultaneously (i.e. multimodal data) in a practi-
cal way, while supporting resource-restricted mobile devices.
Table 1 provides a summary review of the recent literature
on SSE and comparison with our approach across multiple
distinguishing factors.

3. TECHNICAL OVERVIEW
In this section we present an overview of MIE and the sys-

tem and adversary models that we consider. We start with
some notations and fundamental concepts: we call multi-
modal data-object, or simply object, to an aggregation
of data with multiple media formats or modalities (i.e. an
object containing text, image, audio, and/or video; exam-
ples are annotated images, wikipedia pages, and personal
health records [61]); a repository is a collection of multi-
modal data-objects; features are characterizations of ob-
jects in some particular media type (e.g. the text modal-
ity of an object can be characterized by its most relevant
textual keywords [57], while the image modality by a set
of visual points of interest [4]); feature-vectors are vecto-
rial representations of features, describing an object across
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ponents to enable e�cient search in repositories containing
large collections of multimodal objects.

Multimodal searching consists in separately searching
data in di↵erent media formats, aggregating the multiple
results through a merging function. This search is performed
using a multimodal object as a query [61].

Indexing takes a collection of data-objects and constructs
a dictionary describing them under some features (e.g. which
keywords appear in each text document) [57]. This dictio-
nary, called index, forms a compressed representation of the
data and allows searching in sub-linear time (e.g. searching
for a keyword becomes equivalent to one dictionary access,
instead of linearly scanning all text documents).

Training tasks are machine learning operations, such as
the k-means clustering algorithm [37]) used to find homoge-
neous groups of objects in dense, high-dimensional data [1].
These groups are later used to build more compact repre-
sentations of high-dimensional data-objects (e.g. an object-
recognition algorithm [53] will find multiple points of inter-
est in an image). Training a collection of such keypoints
from di↵erent images will yield a group of distinctive key-
points [65]. Representing the di↵erent keypoints of an im-
age can then be achieved in a compact way by finding the
most similar distinctive keypoint of each and building an
histogram with their frequencies.
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on elliptic curves (which are an order of magnitude slower
than conventional symmetric cryptography), has linear-time
search performance, and although it supports multiple users,
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designed for other media domains such as images [54,76,77].
However, the overhead imposed on client devices in text
ranked searching is even more noticeable in the context of
images, as machine learning tasks (also known as training)
are usually required before dense media types (i.e. images,
audio, and video) can be indexed. Furthermore, both train-
ing and indexing of dense media data are computationally
intensive operations. We addressed some of these perfor-
mance issues in [24], however our previous work was limited
to color features in the image domain. Hence, and to the best
of our knowledge, this paper presents the first endeavor in
supporting encrypted storage and search of multiple media
formats simultaneously (i.e. multimodal data) in a practi-
cal way, while supporting resource-restricted mobile devices.
Table 1 provides a summary review of the recent literature
on SSE and comparison with our approach across multiple
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3. TECHNICAL OVERVIEW
In this section we present an overview of MIE and the sys-

tem and adversary models that we consider. We start with
some notations and fundamental concepts: we call multi-
modal data-object, or simply object, to an aggregation
of data with multiple media formats or modalities (i.e. an
object containing text, image, audio, and/or video; exam-
ples are annotated images, wikipedia pages, and personal
health records [61]); a repository is a collection of multi-
modal data-objects; features are characterizations of ob-
jects in some particular media type (e.g. the text modal-
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ponents to enable e�cient search in repositories containing
large collections of multimodal objects.

Multimodal searching consists in separately searching
data in di↵erent media formats, aggregating the multiple
results through a merging function. This search is performed
using a multimodal object as a query [61].

Indexing takes a collection of data-objects and constructs
a dictionary describing them under some features (e.g. which
keywords appear in each text document) [57]. This dictio-
nary, called index, forms a compressed representation of the
data and allows searching in sub-linear time (e.g. searching
for a keyword becomes equivalent to one dictionary access,
instead of linearly scanning all text documents).

Training tasks are machine learning operations, such as
the k-means clustering algorithm [37]) used to find homoge-
neous groups of objects in dense, high-dimensional data [1].
These groups are later used to build more compact repre-
sentations of high-dimensional data-objects (e.g. an object-
recognition algorithm [53] will find multiple points of inter-
est in an image). Training a collection of such keypoints
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age can then be achieved in a compact way by finding the
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intensive operations. We addressed some of these perfor-
mance issues in [24], however our previous work was limited
to color features in the image domain. Hence, and to the best
of our knowledge, this paper presents the first endeavor in
supporting encrypted storage and search of multiple media
formats simultaneously (i.e. multimodal data) in a practi-
cal way, while supporting resource-restricted mobile devices.
Table 1 provides a summary review of the recent literature
on SSE and comparison with our approach across multiple
distinguishing factors.

3. TECHNICAL OVERVIEW
In this section we present an overview of MIE and the sys-

tem and adversary models that we consider. We start with
some notations and fundamental concepts: we call multi-
modal data-object, or simply object, to an aggregation
of data with multiple media formats or modalities (i.e. an
object containing text, image, audio, and/or video; exam-
ples are annotated images, wikipedia pages, and personal
health records [61]); a repository is a collection of multi-
modal data-objects; features are characterizations of ob-
jects in some particular media type (e.g. the text modal-
ity of an object can be characterized by its most relevant
textual keywords [57], while the image modality by a set
of visual points of interest [4]); feature-vectors are vecto-
rial representations of features, describing an object across
its multiple modalities. Feature-vectors are essential com-
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ponents to enable e�cient search in repositories containing
large collections of multimodal objects.

Multimodal searching consists in separately searching
data in di↵erent media formats, aggregating the multiple
results through a merging function. This search is performed
using a multimodal object as a query [61].

Indexing takes a collection of data-objects and constructs
a dictionary describing them under some features (e.g. which
keywords appear in each text document) [57]. This dictio-
nary, called index, forms a compressed representation of the
data and allows searching in sub-linear time (e.g. searching
for a keyword becomes equivalent to one dictionary access,
instead of linearly scanning all text documents).

Training tasks are machine learning operations, such as
the k-means clustering algorithm [37]) used to find homoge-
neous groups of objects in dense, high-dimensional data [1].
These groups are later used to build more compact repre-
sentations of high-dimensional data-objects (e.g. an object-
recognition algorithm [53] will find multiple points of inter-
est in an image). Training a collection of such keypoints
from di↵erent images will yield a group of distinctive key-
points [65]. Representing the di↵erent keypoints of an im-
age can then be achieved in a compact way by finding the
most similar distinctive keypoint of each and building an
histogram with their frequencies.
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designed for baseline experimental comparison by extending the recent literature on SSE [15] (more details in the Evaluation Section §7). n is
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the number of data-objects, ID(w) is the deterministic id of a keyword being queried or added to a data-object, ID(d) represents the ids of
the data-objects returned by a query (i.e. that contain the queried keyword), and freq(w) is the frequency of a keyword in data-objects being
updated or returned by a query. In this analysis we consider that repositories can start empty, i.e. all data-objects may be added dynamically.
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nary, called index, forms a compressed representation of the
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ponents to enable e�cient search in repositories containing
large collections of multimodal objects.

Multimodal searching consists in separately searching
data in di↵erent media formats, aggregating the multiple
results through a merging function. This search is performed
using a multimodal object as a query [61].

Indexing takes a collection of data-objects and constructs
a dictionary describing them under some features (e.g. which
keywords appear in each text document) [57]. This dictio-
nary, called index, forms a compressed representation of the
data and allows searching in sub-linear time (e.g. searching
for a keyword becomes equivalent to one dictionary access,
instead of linearly scanning all text documents).

Training tasks are machine learning operations, such as
the k-means clustering algorithm [37]) used to find homoge-
neous groups of objects in dense, high-dimensional data [1].
These groups are later used to build more compact repre-
sentations of high-dimensional data-objects (e.g. an object-
recognition algorithm [53] will find multiple points of inter-
est in an image). Training a collection of such keypoints
from di↵erent images will yield a group of distinctive key-
points [65]. Representing the di↵erent keypoints of an im-
age can then be achieved in a compact way by finding the
most similar distinctive keypoint of each and building an
histogram with their frequencies.
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data in di↵erent media formats, aggregating the multiple
results through a merging function. This search is performed
using a multimodal object as a query [61].

Indexing takes a collection of data-objects and constructs
a dictionary describing them under some features (e.g. which
keywords appear in each text document) [57]. This dictio-
nary, called index, forms a compressed representation of the
data and allows searching in sub-linear time (e.g. searching
for a keyword becomes equivalent to one dictionary access,
instead of linearly scanning all text documents).
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Fig. 1: System model with example interactions between users and the cloud infrastructure, considering image and text media domains.

writers (the Users) who store, share, and search data through multiple independent repositories hosted by a Cloud
Server (or simply Server). We assume all data is outsourced to these repositories in the form of data-objects that
may contain multiple media formats. A repository is created by one user, and can be used by multiple (authorized)
users besides herself. Authorized users can upload their own multimodal data-objects, search through the use of
multimodal queries, and retrieve/read objects stored in a repository. Figure 1 provides a high level overview of the
described system model.

Upon the creation of a repository, we delegate on the user that created it the task of generating and sharing
a Repository Key with his trusted users. This cryptographic key allows users to search and add/update objects
in that particular repository. More concretely, it is used in the indexing of new/updated objects, as well as in the
generation of searching trapdoors. In addition to repository keys we also employ Data Keys, used to encrypt the
data-objects themselves (using a semantically secure block-cipher, such as AES in CTR mode [36]). Data keys
offer users a fine-grained access control over who accesses the full contents of their data-objects; nonetheless they
should be seen as an optional functionality, and they can be discarded from the system design in use cases where
fine-grained access-control is not required (for instance, by encrypting all data-objects with a shared master key).

When adding (or updating) data-objects in a repository, a user will first process them and extract their feature-
vectors in their different modalities. These feature vectors are then encrypted with a Distance Preserving Encoding
(DPE, detailed in §IV) and uploaded to the cloud server for training and indexing, alongside the encrypted data-
object.

Authorized users with a repository key can also issue multimodal queries, using data-objects with any number of
(supported) modalities as queries. To this end they process their query objects the same way as for new data-objects,
extracting and encrypting their feature-vectors with DPE and sending them to the cloud server. After receiving an
encrypted multimodal query, the cloud server returns the ranked top k matches for it, where k is a configurable
parameter. Each of these k matches contains a pair of encrypted data-object and metadata, the later containing
deterministic identifiers for the object and its owner (unless data keys have been removed from the system’s design,
to fully access its contents the querying user will still need to ask the object’s owner for its data key).

All remote communications between users and the server should be encrypted and authenticated through secure
communication protocols (TLS/SSL [36]). Key sharing interactions can be done asynchronously and out-of-band



by resorting to broadcast encryption [17] or a key-sharing protocol based on public-key authentication [36]. User
authentication and access control can be achieved through different mechanisms found in the literature, such as
sharing authorization tokens between trusted users [17]. This discussion, however, is orthogonal to the main focus
of the paper as these mechanisms can easily be integrated into our solution.

B. Adversary Model

In this work we aim at protecting the privacy of users’ data and queries. Similar to previous approaches from
the literature [2], [11], [17], [27], [55], we consider as main adversary the cloud administrator. This adversary acts
in a honest-but-curious way, operating the cloud’s infrastructure and possibly eavesdropping on users’ data, but
nonetheless is expected to fulfill its contract agreements and correctly perform operations when asked. We assume
that the cloud administrator has access to all data stored on disk or in RAM on any device physically connected
to the server, and passing through the network from or to the cloud. Throughout this paper we prove the security
of our proposals against such an adversary. We also assume the cloud provider to protect its infrastructure from
Internet hackers, as it is in its best interest to protect its infrastructure, its clients, and its reputation.

A stronger adversary that should also be considered is a malicious user, i.e. a user of the system who deviates from
his expected behavior. Malicious users are an open problem for any multi-user application, as they may be given
access to multiple repository and data keys before being discovered, and can more easily eavesdrop on other users’
data. In this work we can mitigate the effect of this adversary by providing user access control enforcement and
revocation mechanisms, complemented with public-key authentication and periodic key refreshment. Furthermore,
we do not consider integrity or availability threats, as they can be handled by different mechanisms orthogonal to
the contributions of this paper [38]. Finally, we assume that the higher-level applications using our work can control
the amount of background information they reveal, as this may be sensitive and can be leveraged by adversaries
for breaking security [10]. In §V-A we discuss possible attack vectors on our work and how to mitigate them.

C. Application Use Case

To provide examples of applications that could benefit from our work, we now briefly discuss a use case and
explain the mapping of concrete entities between it and the previously introduced system model.

Personal Health Records. The number of mobile applications leveraging sensorial data for personal health tracking
is growing by a large faction [37]. Moreover, major cloud operators are now offering centralized storage and
computation services for such critical health data, under the form of Personal Health Records (PHR) [45]. PHR
may contain information regarding users’ health conditions under multiple media formats, extracted from their
mobile devices’ sensors, as well as from medical consultations and healthcare exams performed by healthcare
professionals at different medical centers. The availability of this information not only ensures a better healthcare
service for patients, but also offers a high potential for the exchange of medical information among different
healthcare practitioners and institutes, for medical research purposes and to assist in the treatment of patients with
similar conditions.

In this scenario, patients or medical doctors on their behalf (i.e. the Users), outsource their PHR directly from
their mobile devices or IoT healthcare devices to a cloud-based backend (i.e. the Cloud Server). Because PHRs
belong to the patients, these records can be protected by Data Keys only known to them (and possibly shared
with trusted doctors with the patients explicit permission). On the other hand, Repository Keys can be shared
between medical doctors and centers, organized in alliance based or medical-specialty based repositories between
cooperating professionals. Doctors can then search on these repositories, requesting data keys to PHRs that might
be of their interest directly to the respective patients.

IV. DISTANCE-PRESERVING ENCODING

In this section we propose a new family of encoding algorithms, called Distance Preserving Encodings (DPE).
Our proposal of DPE comes from the generalization and formal analysis of the main principles behind different
existing mechanisms for privacy-preserving nearest-neighbor and similarity computations [7], [20], [33], [41]. DPE
is the basis of this work and our new approach to searching multimodal encrypted data. Nonetheless its abstract



Algorithm 1 The “ideal” FDPE functionality: all information leaked to the server is specified here.
FDPE is specified as a trusted third-party, which mediates inputs and outputs between the client and the server,
modeling the information leaked to the later. FDPE accepts one command, FDPE.Distance which is identical to
DPE.Distance, the only algorithm in DPE where interaction between the server and the client occurs.
• On receiving command FDPE.Distance(e1, e2) from the client:
◦ FDPE returns De2

e1 = de(e1, e2) = dp(p1, p2), i f dp(p1, p2) < t. Otherwise, it returns De2
e1 = de(e1, e2) = t.

◦ Distance Leakage: FDPE also leaks to the server: IDe1 , IDe2 (deterministic identifiers of e1 and e2), and
De2

e1 .

concept may have interesting applications in other contexts, and as such we present it as an independent building
block that doesn’t explicitly depend on external aspects of the system using it. We start this section by formally
defining DPE. Then we present two efficient implementations of DPE, one applied to dense media types (e.g.
images), and another for sparse media (e.g. text). Both implementations are used in §VI to implement an efficient
Multimodal Indexable Encryption prototype.

A. DPE Definition

Informally, Distance Preserving Encodings (DPE) are a family of encoding schemes that preserve a controllable
distance function between plaintexts, by means of their respective encodings. We say the distance function is
controllable, meaning that on instantiation of a DPE scheme a security threshold parameter should be defined,
which will allow controlling the amount of information leaked by encodings. More specifically, DPE encodings
should only preserve distances between plaintexts up to the value of the threshold. For greater distances, nothing
should be leaked by DPE encodings. This threshold allows defining an upper bound on information leakage and
security, as it will limit the adversarial ability to perform statistical attacks and establish a distance relation between
different plaintexts in the application domain. More formally:

Definition 1 (Distance Preserving Encoding). A Distance Preserving Encoding (DPE) scheme is a collection of
three polynomial-time algorithms (KEYGEN, ENCODE, DISTANCE) run by a client and a server, such that:
• K, t← KEYGEN(1k): is a probabilistic key generation algorithm run by the client to setup the scheme. It takes

the security parameter k and returns a secret key K and a distance threshold t, both function of and polynomially
bounded by k.
• e ← ENCODE(K, p): is a deterministic algorithm run by the client to encode plaintext p with key K, with p

polynomially bounded by k. It outputs an encoding e.
• D ← DISTANCE(e1, e2): is a deterministic algorithm run by the server that takes as input two encodings e1

and e2. For plaintext distance function [0, 1] ← dp(·, ·) and encoded distance function [0, 1] ← de(·, ·) (possibly
dp = de) with inputs polynomially bounded by k, it outputs D = de(e1, e2) = dp(p1, p2), if dp(p1, p2) < t.
Otherwise it outputs D = t.

Given the definition of DPE, we formalize in Algorithm 1 an ideal functionality FDPE, which represents the
protocol interactions between the client and the server and that captures all information leaked by these. In FDPE

we consider as adversary the honest-but-curious cloud provider (as defined in §III-B), which can only attack
the server passively. We remark that the information leaked is limited (due to threshold t) and easy to specify.
Nonetheless, an adversary can still leverage this leakage to learn some statistics about the data being encoded, and
it’s up to the applications using DPE to ensure those statistics are not sensitive. In the following we present two
implementations of DPE and formally prove that they are secure realizations of FDPE.

B. A DPE Implementation for Dense Data

Rich media types, including images, audio, and video are characterized by their high-dimensionality and high-
density [1]. High dimensionality means that multiple coordinates (the dimensions) are required to describe a point
(i.e. a feature-vector) in these media types. As an example, consider the SURF [3] feature extraction algorithm for
images, which computes feature-vectors of 64 dimensions. High density means that in all dimensions necessary



Algorithm 2 Dense-DPE Implementation
1: function KEYGEN(N,M,∆)
2: A← G(M ×N) . Generate A
3: w ← G[0,∆](M) . Generate w, limited by 0 and ∆
4: t← Func(∆) . t is controlled by ∆
5: return K = {A,w}, t

6: function ENCODE(p,K = {A,w})
7: e← Q(∆−1.(A.p + w)) . Q(.) is fixed
8: return e
9: function DISTANCE(e1, e2)

10: D ← NormHamm(e1, e2) . Equal to Eucl(p1, p2) if D < t
11: return D

to describe a feature-vector, most will have a rational value different from zero (even if close, e.g. 0.01). This is
defined in clear contrast to sparse media types such as text, where a document only has a finite subset of keywords
from the whole english vocabulary [43] (or any other language) and non-existing keywords can simply be omitted
from a feature-vector characterization of the document (e.g. a keyword-frequency histogram).

A DPE implementation for dense data should be able to efficiently encode high-dimensional feature-vectors,
while preserving some parametrizable distance function between them. To achieve this goal we extend the encoding
proposed by Boufounos et al. [7] for privacy-preserving nearest neighbors. This encoding cryptographically protects
feature vectors by transforming them through universal scalar quantization [7]. Moreover, it preserves Euclidean [43]
distances between plaintext feature-vectors, through the normalized Hamming [43] distances between encodings,
but only up to a tunable threshold t. For plaintext distances greater than t, the distance between encodings conveys
no information and will tend to a constant value. More concretely, feature vectors are transformed through the
following function:

e(x) = Q(∆−1(Ax + w)) (1)

where x ∈ RN is a N -dimensional feature vector given as input, A ∈ RM×N is a random matrix with independent
and identically distributed elements (M is a tunable parameter representing the output size and basically controls
the noise introduced by the encoding), ∆ is a tunable scaling factor operating element-wise which controls the
distance threshold t, w ∈ RM is an additive dither uniformly distributed in [0,∆], and Q(.) is a scalar quantizer
with non-contiguous intervals such that scalar values in [2v, 2v + 1) quantize to 1 and values in [2v + 1, 2v + 2)
quantize to 0, for any v. Finally, {A,w} compose the secret key of this scheme.

The previous scheme suffers from a main applicability limitation: secret key {A,w} has size proportional to
the input and output sizes (N and M respectively). This approach leads to large key sizes and limits flexibility
of deployment, as a change on input/output length (e.g. user changes the type of features used for indexing and
searching) forces the generation and sharing of a new secret key with the appropriate size. To solve this issue,
we introduce a Pseudo-Random Generator (PRG) G [36] in the key generation algorithm of the previous scheme,
instantiated with some random bits of entropy as cryptographic seed. The random values in A and w will be generated
through G, and for a Probabilistic Polynomial-Time (PPT) bounded adversary these values are indistinguishable
from true random values [36].

Algorithm 2 describes our implementation in detail, which we call Dense-DPE. Consistent with our definition
for DPE, Dense-DPE only reveals a distance function between the feature-vectors of data-objects, and this function
is limited by threshold t. Furthermore we can prove that:

Theorem 1. Dense-DPE securely realizes functionality FDPE against honest-but-curious PPT adversaries.

Proof. The proof involves showing that a simulator S, interacting with the client only through FDPE (the ideal
experiment), can simulate the view of the server in a real interaction with the client through an instance of Dense-



Algorithm 3 Sparse-DPE Implementation

1: function KEYGEN(k)
2: K ← G(k)
3: t← 0
4: return K, t

5: function ENCODE(p,K)
6: e← PK(p)
7: return e
8: function DISTANCE(e1, e2)
9: if e1 == e2 then

10: D ← 0
11: else
12: D ← 1
13: return D

DPE (the real experiment), and that the two experiments are indistinguishable even when combined with the
adaptively influenced inputs to the client (apart from a negligible probability [36]).
S starts by initializing a simulated data-objects collection L′ = {IDei , p

′
i}∗i=0 and a simulated distance map

M ′ = {IDei , {IDej , D′pj

pi
}∗j=0}∗i=0, whose entries represent distinct data-objects and a list containing their closest

objects and a simulated distance between them, respectively. Then, when S receives the Distance command from
FDPE with its Distance Leakage={IDe1 , IDe2 , D

e2
e1}, it creates simulated data-objects p′1 and p′2 with simulated

length N ′, fills them with uniformly random bits and stores them in L′[IDe1 ] and L′[IDe2 ]. Then S checks if
De2

e1 < t. If that is the case, S knows that the distance between the plaintexts has been preserved and adds
{IDe2 , D

e2
e1} to M ′[IDe1 ] and {IDe1 , D

e2
e1} to M ′[IDe2 ]. Otherwise, S randomly chooses a simulated distance

value D′ such that 1 > D′ ≥ t, and adds {IDe2 , D
′} to M ′[IDe1 ] and {IDe1 , D

′} to M ′[IDe2 ] instead.
Due to the properties of the encoding function used [7] and of the Pseudo-Random Generator G [36], p1 and p2

will be indistinguishable from their simulated counterparts p′1 and p′2 for PPT adversaries. The correctness of the
implementation, in particular that only Euclidean distances between plaintexts up to threshold t will be preserved,
is inherited from the the correctness of the encoding function, which is proven in [7]. Moreover, if De2

e1 ≥ t, it will
also be indistinguishable from the simulated distance D′, hence concluding the proof.

C. A DPE Implementation for Sparse Data

Since in sparse media types, such as text data, feature-vectors are much smaller compared with dense media
types, more efficient algorithms can be used to index and search sparse media. More concretely, to index and search
in sparse data, we only need to compare the different non-null values in its feature-vectors for equality2 (e.g. the
keywords of each text document). Translating this to the DPE definition, our DPE implementation for Sparse Data
will have a similarity distance threshold of t = 0, meaning that it will only reveal if two keywords are equal, and
nothing will be revealed even if they are only one character apart.

To achieve the above goals, we base our DPE implementation for Sparse Data on a Pseudo-Random Function
(PRF) [36]. More concretely, given a feature-vector from a sparse data-object (i.e. a text document), we apply:

f(x) = PK(x) (2)

where x is a single keyword and P is a PRF, instantiated with secret key K. In practice, P can be implemented
as a keyed hash function. Algorithm 3 provides the full details of our implementation, which we call Sparse-DPE.
Furthermore, we can prove that:

2Edit distance and cryptographic schemes such as [33] could be used to construct an alternative Sparse-DPE implementation with threshold
distances greater than zero. However, exact string matching complemented with light client-side techniques such as stemming and spell-
checking wields similar search precision in ranked text retrieval [43].



Scheme P-FV E-FV1 E-FV2 E-FV3 E-FV4
dp = 0 dp = 0.3 dp = 0.7 dp = 1

Dense-DPE 0.5557 0.0 0.3085 0.59375 0.5585
(t = 0.5)

Sparse-DPE 1.0 0.0 1.0 1.0 1.0
(t = 0)

TABLE II: Encoded (i.e. normalized Hamming) distances between DPE encodings and: their original plaintext feature-vector P-FV; and
encoded feature-vectors E-FV1 through E-FV4, with varied plaintext (i.e. Euclidean) distances dp between their plaintexts and the original
P-FV. In Sparse-DPE, since t = 0, distances above t have a different yet constant value, in this case 1.

Theorem 2. Sparse-DPE securely realizes functionality FDPE against honest-but-curious PPT adversaries.

Proof. The proof is similar to the one of Theorem 1. Simulator S starts by initializing a simulated data-objects
collection L′ = {IDei , p

′
i}∗i=0 and a simulated distance map M ′ = {IDei , {IDej , D′pj

pi
}∗j=0}∗i=0. When it receives

the Distance command with leakage {IDe1 , IDe2 , D
e2
e1}, it checks if De2

e1 = 0. If that is the case, it creates a
simulated data-object p′ with uniformly random bit strings of simulated length N ′, and sets L′[IDe1 ] and L′[IDe2 ]
to p′. Otherwise, it creates two distinct simulated data-objects p′1 and p′2 and a simulated distance D′ such that
1 ≥ D′ > 0, sets L′[IDe1 ] = p′1, L′[IDe2 ] = p′2, and adds {IDe2 , D

′} to M ′[IDe1 ] (and vice-versa). From the
properties of Pseudo-Random Functions (PRFs) [36], p1 will be indistinguishable from p′ and p′1, and p2 will be
indistinguishable from p′ and p′2. Moreover, PRFs also guarantee that De2

e1 will only be zero if and only if p1 == p2,
thus proving the security and correctness of the implementation.

Table II presents a summary evaluation of the entropy generated by DPE encodings, by analyzing distance
functions between both encoded and plaintext feature-vectors.

V. MULTIMODAL INDEXABLE ENCRYPTION

In this section we describe in detail our Multimodal Indexable Encryption (MIE) proposal. The main insight
behind MIE is that in practical scenarios where many queries are submitted by multiple users concurrently, the
semantic security guarantees initially offered by SSE schemes will not hold for long, as the information patterns
leaked with each query will eventually be revealed for the entire index space. However those initial guarantees are
only possible by having users train and index their data before uploading it to the cloud, which are heavy operations
especially for mobile devices. Leveraging this insight, in MIE we outsource training and indexing computations
from user’s devices to cloud servers. This is done in a privacy-preserving way by having users extract feature-
vectors from the different media formats, encode them with DPE, and upload the encodings to the cloud for
computation. The practical result of our approach, on one hand, is that instead of revealing information patterns
when queries are performed, as in previous SSE schemes, we reveal them at data creation/update time (namely
search, access, and frequency patterns). On the other hand, this approach allows us to effectively support mobile
devices dynamically updating and searching multimodal repositories, with increased performance and scalability
(see §VII for experimental results).

From a systems perspective, MIE is defined as a distributed framework with two main components: one running in
the client device(s), which processes data-objects, extracts feature-vectors in their different modalities, and encrypts
them; and another (untrusted) running in the cloud servers, which performs training tasks and indexes data-objects
through their encoded features. More formally:

Definition 2 (Multimodal Indexable Encryption). A Multimodal Indexable Encryption framework is a collection of
five polynomial time algorithms (CREATEREPOSITORY, TRAIN, UPDATE, REMOVE, SEARCH) executed collabora-
tively between a user and a server, such that:
• rkR ← CreateRepository(IDR,1

spR , {IDmi
}ni=0): is an operation started by the user to initialize a new

repository identified by IDR. It also takes as input a security parameter spR and the n modalities to be supported
by R ({IDmi

}ni=0). It creates a repository representation on the server side and outputs a repository key rkR.



Algorithm 4 The ideal functionality FMIE: all information leaked to the server is specified here.
• On receiving command FMIE.CreateRepository(IDR) from the client:
◦ FMIE creates a new repository R and initializes the required data-structures.
◦ Setup Leakage: FMIE sends to the server the deterministic identifier IDR.
• On receiving command FMIE.train(IDR, {IDmi

, ipmi
}ni=0):

◦ FMIE internally initializes R’s indexing structures in its n modalities, and trains them (i.e. performs
machine learning tasks) with the objects stored in R, if needed (as defined by the indexing parameters
{IDmi

, ipmi
}ni=0). Then FMIE indexes R’s data-objects, storing the results in its indexing structures.

◦ Train Leakage: FMIE sends IDR and {IDmi
, ipmi

}ni=0 to the cloud server.
• On receiving command FMIE.Update(IDR, IDp, p, {IDmi

, fvspmi}ni=0):
◦ If p already exists in repository R, it is first removed through the FMIE.remove operation.
◦ FMIE internally stores p and {fvspmi}ni=0 in R.
◦ If the TRAIN command has already been invoked, FMIE indexes p through its feature vectors

({IDmi
, fvpmi}ni=0).

◦ Update Leakage: FMIE sends to the server IDR, IDp, {IDfv
mi
j

,freq
fv

mi
j

p }|p|j=0}ni=0 (the ids of p’s feature-

vectors and their frequencies), and {{{fvmi

j , fvmi

k , d(fvmi

j , fvmi

k )}|p|j=0}
|fvmi |
k=0 }

n
i=0 (distances between the

feature-vectors in p and all other feature-vectors already stored in the repository).
• On receiving command FMIE.remove(IDR,IDp):
◦ FMIE internally removes p from R, as well as its feature-vectors {fvspmi}ni=0 and any references to p in R’s

indexing structures.
◦ Removal Leakage: FMIE sends IDR and IDp to the server.
• On receiving command FMIE.search(IDR, {IDmi

, fvsqmi}ni=0, k):
◦ If the FMIE.TRAIN command hasn’t been invoked yet for repository R, FMIE performs a linear search through

R’s data-objects, comparing their feature-vectors with q’s feature-vectors and returning the k most similar
results according to all modalities.

◦ Otherwise, FMIE accesses R’s indexing structures in the n modalities present in q, and returns to the user
the k closest data-objects in the repository in sub-linear time.

◦ Search Leakage: FMIE sends to the server IDR, k, IDQ (a deterministic id of q generated by
FMIE), {IDfv

mi
j

,freq
fv

mi
j

q }|qmi
|

j=0 }ni=0 (the ids of the feature-vectors in q and their frequencies), and

{{{fvmi

j , fvmi

k , d(fvmi

j , fvmi

k )}|q|j=0}
|fvmi |
k=0 }

n
i=0 (distances between the feature-vectors in q and all other

feature-vectors stored in R).

• Train(IDR, rkR, {IDmi
, ipmi

}ni=0): operation invoked by the user to initialize repository R’s indexing struc-
tures, by performing machine learning tasks (i.e. automatic training procedures), and index its data-objects, if
any. The user also inputs the repository key and the indexing algorithms to be used as indexing parameters
({IDmi

, ipmi
}ni=0, one for each modality; examples of indexing parameters are Inverted List Index and Single Pass

In Memory Indexing [43], more details in §VI). This algorithm can be invoked multiple times with different indexing
parameters. Note however, that training procedures are only required in dense media types (e.g. images, audio,
and video). In a repository containing only sparse media types (e.g. text), this operation will only index existing
objects, if any.
• Update(IDR, IDp,p,dkp, rkR, {IDmi

}ni=0): is the operation used to dynamically add or update a data-
object p in repository R. In addition to p, it also takes as input IDR and IDp (deterministic identifiers of R and
p, respectively), dkp (data key to be used in the encryption of p), rkR (repository key of R) and {IDmi

}ni=0 (the
modalities represented in p). If the TRAIN algorithm has already been invoked in R, p is indexed in its modalities.
Otherwise p’s indexing is performed when the TRAIN algorithm is invoked for the first time.
• Remove(IDR, IDp): is an operation that allows a user to fully remove a data-object p from repository R



and its indexing structures.
• {IDpi

,pi, score
q
pi
}ki=0 ← Search(IDR, q, rkR, {IDmi

}ni=0, k): is issued by a user to search in repository
R with object q as query, returning the k most relevant data-objects in the repository. Also takes as input the
repository key rkR and the modalities represented in q ({IDmi

}ni=0). If the TRAIN algorithm has been invoked
previously for R, the server replies to the query in sub-linear time by accessing R’s indexing structures. Otherwise
it performs a linear search through R’s objects.

Given MIE’s definition, Algorithm 4 presents an idealized functionality for MIE (FMIE) and Algorithms 5
through 9 detail our MIE’s implementation based on DPE (respectively, operations CreateRepository, Train, Update,
Remove, and Search). The main difference between our MIE implementation and functionality FMIE is the use
of DPE. Hence, the main argument in proving security lies in showing that by using DPE’s algorithms, our MIE
implementation doesn’t leak anything further to the server beyond what is specified in FMIE. Furthermore, we can
prove that:

Theorem 3. The DPE-based MIE implementation presented in Algorithms 5-9 securely realizes functionality FMIE

against honest-but-curious PPT adversaries.

Proof. This security proof is straightforward, since DPE is used as a blackbox component and our MIE implemen-
tation involves no other cryptographic protocol. All information leaked to the cloud server by DPE (i.e. distance
leakage) is easily derived from the information leaked by FMIE. As such, simulator S can simulate all the interactions
in the protocol using the information it obtains from FMIE. The details are straightforward and hence omitted.

A. Additional Security Considerations

Applications using MIE have provable security guarantees, equivalent to the ones of previous SSE schemes in
practical deployments frequently queried [11], of the information leaked by each operation. However, the impact of
this information leakage and to what extent it can be leveraged by adversaries in inference attacks is not yet fully
understood. Recent advances have been achieved in this field, with passive [10], [30] and active [58] attacks being
proposed, in the text domain, for both query and plaintext recovery. However the efficiency of these attacks depends
on very strong assumptions. Passive attacks require almost complete document set knowledge, i.e. adversaries must
know the contents of a large subset of all encrypted data. For instance, the best known attack [10] requires 95%
document knowledge to achieve 58% query recovery rate. with 75% document knowledge, query recovery drops to
values close to 0%. Active attacks can have very strong consequences, but require the adversarial ability of injecting
maliciously crafted documents, which must still be encrypted by the client. This means that when deploying a SSE
scheme (including MIE), users should control the source of their documents and protect their devices from external
hacking.

Regarding other media domains and multimodal data, while keywords in the text domain have a straight semantical
meaning, the same may not hold for similar concepts in richer media (including audio, images, and video). Attacks
over these domains and their impact are still an open area of research and an interesting future research direction,
nonetheless we argue that further background information (controllable by users) may be required for adversaries
to achieve acceptable recovery rates in these medias.

VI. IMPLEMENTATION

One of the advantages of our approach lies in its flexibility of deployment and its capacity to integrate different
algorithms for feature extraction (client side) and both training and indexing computations (server side). MIE is
agnostic to the information retrieval techniques used on either side, and they can be used in the encrypted domain
without any major modifications from their original plaintext algorithms. With this in mind, we implemented a
prototype version of MIE to experimentally validate its design and compare it with the most relevant approaches
from the literature. These experimental results are detailed in §VII, while for now we focus on our prototype
description. The user-side component of MIE was developed as an Android Service, using a mixture of Java with
Android’s SDK and C++ with Android’s Native Development Kit. The cloud server component was fully developed
in C++.



Algorithm 5 Create New Repository
1: function USER(U ).CREATEREPOSITORY(IDR, spR)
2: rk1R ← DENSE-DPE.Keygen(spmi

)
3: rk2R ← SPARSE-DPE.Keygen(spmi

)
4: CLOUD.CreateRepository(IDR)
5: RepUsers.ShareKey({rk1R, rk2R})
6: return {rk1R, rk2R}
7: procedure CLOUD.CREATEREPOSITORY(IDR)
8: Rep[IDR]← InitializeRepository()
9: Fvs[IDR]← InitializeFeatureVectorsList()

Algorithm 6 Train Repository

1: procedure USER(U ).TRAIN(IDR, {rk1R, rk2R}, IDmi
, ipmi

}ni=0 )
2: CLOUD.Train(IDR, {IDmi

, ipmi
}ni=0)

3: procedure CLOUD.TRAIN(IDR, {IDmi
, ipmi

}ni=0)
4: for all {IDmi

, ipmi
}ni=0 do

5: Idx[IDR][IDmi
]← InitializeIndex(IDmi

, ipmi
)

6: if DenseMediaType(IDmi
) then

7: CBmi

R ← TrainIndex(Idx[IDR][IDmi
], ipmi

, Fvs[IDR])

8: IndexData(Idx[IDR][IDmi
], Fvs[IDR])

In order to showcase its multimodality, we implemented our prototype supporting text and image data. Text
feature extraction on the user’s side is performed through standard keyword stemming, stop-words removal, and
histogram extraction [43], followed by Sparse-DPE encoding. Regarding image feature extraction, since our Dense-
DPE implementation currently preserves Euclidean distances between plaintext feature-vectors, it is more suitable
for floating-point image descriptors. As such, we use the SURF descriptor extraction algorithm [3] and Dense
Pyramid feature detection [39] for our prototype implementation. Dense-DPE was instantiated with threshold t = 0.5
and output size equal to the input size (64 dimensions for SURF feature-vectors). As cryptographic algorithms’
implementations, we use HMAC-SHA1 as implementation of Pseudo-Random Functions (PRFs), AES in CTR mode
for data-objects encryption, and an AES-based Pseudo-Random Number Generator (PRNG) for random number
generation. OpenSSL 1.0.2 [51] and OpenCV 2.4.10 [31] were compiled for Android integration and support MIE’s
user-side cryptographic and image retrieval computations, respectively (all remaining computations, including text
feature-extraction, were implemented by us).

On the server side we use an index per modality, for each repository (as previously discussed in MIE’s design).
Both for text and image data, the inverted index [43] approach is used, where each index key represents a distinct
keyword and index values compose a list of all object identifiers containing the keyword. Since this type of index
was originally designed for text data, we use the Bag-Of-Visual-Words (BOVW) model as an intermediary step to
represent image features as visual words [50]. In this model, feature-vectors extracted from a repository’s images
are clustered in a machine-learning step (MIE’s training operation), through a clustering algorithm such as k-means
[50]. This training step selects a number of representative feature-vectors (1.000 in our experiments) which are
called visual words. After this step, when adding/updating or searching, the different feature-vectors of the input
image can be matched with the selected visual words, and the most similar ones are used henceforth to represent
each feature-vector. This way, the frequency of visual words in an image become similar to the frequency of
keywords in text documents. Each visual word is given an index key, and a tree-like structure is built over all
visual words, through hierarchical k-means [50], in order to improve visual word comparison performance (we use
a visual-words tree of height 3 and width 10).

To further improve scalability, if an index (of any modality) grows too large to fit in the cloud server’s main



Algorithm 7 Add/Update Object in Repository

1: procedure USER(U ).UPDATE(IDR, IDp, p, dkp, {rk1R, rk2R}, {IDmi
}ni=0)

2: for all {IDmi
}ni=0 do

3: fvspmi ← ExtractFeatureVectors(p, IDmi
)

4: if Dense-Media(IDmi
) then

5: efvspmi ← DENSE-DPE.Encode(fvspmi , rk1R)
6: else
7: efvspmi ← SPARSE-DPE.Encode(fvspmi , rk2R)
8: e← Enc(dkp , p)
9: CLOUD.Update(IDR, IDp, e, {IDmi

, efvspmi}ni=0)

10: procedure CLOUD.UPDATE(IDR, IDp, e, {IDmi
, efvspmi}ni=0)

11: CLOUD.Remove(IDR, IDp)
12: Rep[IDR][IDp ]← e
13: Fvs[IDR][IDp ]← {efvspmi}ni=0

14: if IsTrained(IDR) then
15: for all {IDmi

}ni=0 do
16: for all fv ∈ efvspmi do
17: if Idx[IDR][IDmi

][fv][IDp] == {} then Idx[IDR][IDmi
][fv][IDp]← 0

18: Idx[IDR][IDmi
][fv][IDp] + +

Algorithm 8 Remove Object from Repository
1: procedure USER(U ).REMOVE(IDR, IDp)
2: CLOUD.Remove(IDR, IDp)

3: procedure CLOUD.REMOVE(IDR, IDp)
4: if Rep[IDR][IDp]! = {} then
5: Rep[IDR][IDp]← {}; Fvs[IDR][IDp]← {}
6: if IsTrained(IDR) then
7: for all {IDmi

}ni=0 do
8: for all fv ∈ Idx[IDR][IDmi

] do
9: Idx[IDR][IDmi

][fv].Remove(IDp)

memory, champion posting lists [43] are used to ensure that only the top ranked data-objects for each index entry
are kept in memory, while the full index is stored in disk and periodically merged with updated/newly added index
entries. This technique improves scalability without impacting retrieval precision. Again we remark that due to the
properties of MIE and DPE, only small modifications are required for these techniques to work in the encrypted
domain (such as applying k-means over normalized Hamming distances due to Dense-DPE properties, instead of
Euclidean distances as in its original design).

To rank search results, the TF-IDF [43] weighting function is used both for images and text. Nonetheless more
complex functions could be used without loss of generality (e.g. BM25 [43]). Finally, to enable multimodal querying
(simultaneous search with multiple media query formats) we use the logarithmic inverse square rank fusion approach
[46]. This approach allows us to separately search in the different modalities and then merge all obtained results
into the final set of multimodal results, according to the rankings in each modality.

Training and k-means computations in the cloud side are done using OpenCV 2.4.10, and all other computations
(including indexing and searching) were implemented by us. Once again we remark that the prototype described is
one of many information retrieval combinations made possible by MIE’s design, and should be seen as a reference
implementation. To showcase the potential of our framework, we also implemented a simple Android and desktop
applications which exercise all operations provided by MIE.



Algorithm 9 Search Repository with Object as Query

1: function USER(U ).SEARCH(IDR, q , {rk1R, rk2R}, {IDmi
}ni=0 , k )

2: for all {IDmi
}ni=0 do

3: fvsqmi ← ExtractFeatureVectors(q, IDmi
)

4: if Dense-Media(IDmi
) then

5: efvsqmi ← DENSE-DPE.Encode(fvsqmi , rk1R)
6: else
7: efvsqmi ← SPARSE-DPE.Encode(fvsqmi , rk2R)
8: {IDpi

, pi, score
q
pi}ki=0 ← CLOUD.Search(IDR, {IDmi

, efvsqmi}ni=0, k)
9: return {IDpi

, pi, score
q
pi}ki=0

10: function CLOUD.SEARCH(IDR, {IDmi
, efvsqmi}ni=0, k)

11: for all {IDmi
, efvsqmi}ni=0 do

12: if IsTrained(IDR) then
13: histqmi ← ClusterizeAndSort(CBmi

R , fvsqmi)
14: Resmi

← Idx[IDR][IDmi
].IndexSearch(histqmi)

15: else
16: Resmi

← LinearRankedSearch(efvsqmi , Fvs[IDR])
17: Resmi

← Sort(Resmi
)

18: Res← FusionRank({IDmi
, Resmi

}ni=0, k)
19: return {IDpi

, Rep[IDpi
], Res[IDpi

]}ki=0

VII. EXPERIMENTAL EVALUATION

In this section we experimentally evaluate MIE, through the prototype implementation described in the previous
section. For experimental baseline comparison, we also extended a recent SSE scheme from the literature [11] to
support ranked multimodal querying and implemented two variants: one that is a simple extension of its mechanisms
and hence leaks search, access, and frequency patterns; and another where the user encrypts the index with an
additively-homomorphic encryption scheme [52], protecting frequency patterns when performing queries. We refer
to these schemes as MSSE and Hom-MSSE, respectively, and their full implementation details can be found in
Appendix sections A and A, respectively.
Experimental Test-Bench In the following we will present perfomance results for the MIE, MSSE, and Hom-
MSSE alternatives, comparing results both from Desktop and Mobile clients and analyzing them to the grain of
each sub-operation. As Mobile client device we used a 2013 Nexus 7 Android Tablet, equipped with a Qualcomm
Snapdragon S4 Pro quad-core 1.5Ghz CPU, 2 GB RAM running Android Lolipop 5.1.0. As Desktop client we used
a Macbook Pro with Mac OS X 10.11, 4GB of RAM, and 2.3Ghz quad-core Core i7 CPU. For the Cloud server,
we used an Amazon EC2 m3.large instance, where the average round-trip time for client-server communications
is 52.160 ms. In these experiments, the mobile client is connected to the Internet through WIFI 802.11g and the
Desktop Client through an ethernet cable (100 mb/s). As dataset we used the MIR-Flickr dataset [29], which
contains one million images and their user defined textual tags extracted from the Flickr social network.
Experimental Evaluation Roadmap The goal of our experimental work is to answer the following questions: i)
what are the implications on user perceived performance (i.e, time consumed by user devices) to process and upload
multimodal data to a cloud infrastructure, considering different devices (mobile and desktop) and how performance
evolves as we scale the size of the data set in a scenario where a single user is accessing the repository (§VII-A)?
ii) As MIE was designed to support multiple users and facilitate concurrent accesses to repositories, what are the
implication on user perceived latency when two clients concurrently add objects to the same repository (§VII-B)?
iii) What is the user perceived performance associated with searching a repository using MIE and the concurrent
schemes (§VII-C)? iv) What is the retrieval precision obtained by MIE, in comparison with the concurrent schemes
and with plaintext retrieval (§VII-D)? And finally, v) what are the implications of the different schemes on the
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Fig. 3: Performance of the update operation in a desktop device

battery life of mobile devices when users upload new multimodal content to a repository, and how this varies as
dataset sizes grow (§VII-E)?

A. Single User Scenario

Figures 2 and 3 report the results for the time consumed by respectively, a client executing in a mobile device
and in a desktop computer, when initializing a repository and uploading a variable number of multimodal data
objects (varying from 1, 000 to 3, 000). Notice that the y-axis in these figures is presented in a logarithmic scale for
improved readability. Results are divided between sub-operations: Encrypt represents the performance of encryption
operations in the three schemes; Network represents the time spent with communications and uploading data to the
cloud server; Index is the time spent by the client extracting multimodal feature-vectors and indexing them; Train
is the performance of the training operation, where machine learning tasks are performed; Total represents the sum
of all sub-operations.
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We start by noting that when compared with MSSE and Hom-MSSE, the client that leverages MIE (both in
desktop and mobile devices) does not consume any time on the training operation. This is due to MIE’s ability to
offload this heavy computational step to the cloud in a secure way.

Furthermore the time spent on indexing by MIE clients is lower when compared with MSSE and Hom-MSSE. In
this step MIE clients only have to extract feature-vectors from the plaintext data-objects in the different modalities.
By encrypting those feature-vectors with our Distance-Preserving schemes (DPE), all other indexing computations
are securely offload to the cloud server. In contrast, MSSE and Hom-MSSE clients have to perform those operations
in their devices, which include: clustering feature-vectors against the training data-structures obtained during the
training step (for dense media types); and indexing those feature-vectors (or their clustered versions), storing the
results in encrypted indexing structures which are then uploaded to the cloud.

In the Encryption sub-operation, Hom-MSSE clients exhibit the worst performance due to the use of additively-
homomorphic encryption. MIE clients waste more time than MSSE in this sub-operation, as DPE is more expensive
than the standard cryptographic primitives used in MSSE, and in the Networking sub-operation MIE clients also
show worse performance than the competing schemes, as MIE clients have to upload encoded feature-vectors to the
cloud while MSSE and Hom-MSSE only have to upload the already processed and encrypted indexing structures.
However, and even if we dismiss the cost of the training operation, MIE clients still show lower total execution time
than MSEE and Hom-MSSE clients. The average performance cost increase from MIE to MSEE and Hom-MSSE,
considering the three datasets and dismissing training costs, is around 9% and 203% respectively.

Concerning the observed performance across different devices (mobile vs desktop), the relative time spent on each
operation for each of the evaluated schemes remains mostly unchanged. However, and as expected, CPU intensive
operations such as encryption, indexing, and training perform faster on the desktop computer (approximately 1
order of magnitude). This is explained by the difference in CPU power available in each device. Nonetheless, in
both devices and across all data set sizes, MIE allows more efficient processing and storage of multimodal data
than the competing alternatives. Consequently, MIE also allows users to initialize and load a secure cloud-backed
repository with searchable capabilities in much less time than the competing alternatives (by one order of magnitude
approximately). This shows the effectiveness of our alternative, which is able to outsource heavy computational
steps to the cloud by exposing at create/update time the same information patterns that the remaining alternatives
leak when executing search operations.
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B. Multiple Users Scenario

We next conducted an experiment where two clients, one executing in a desktop computer and the other on
a mobile device, process and upload 1, 000 multimodal data objects each to a single cloud-backed repository. In
this experiment we only evaluated the MIE approach, since MSSE and Hom-MSSE (as well as previous SSE
schemes [11]) are not easily extendable to multiple users, as they require client-storage that must be consistently
synchronized between all users of a repository3. Our MIE approach requires no client storage and was designed to
enable concurrent write access to data repositories, hence both clients in the experiment can progress at the same
time.

Figure 4 summarizes the results for both clients. The figure shows that when compared with the results of the
previous sub-sections, both clients are able to make independent progress and both consume the same amount of
time when storing a dataset composed of 1, 000 multimodal objects.

C. Query Performance

Figure 5 reports the total time required by a client (either on a desktop computer or a mobile device) to perform
a query on a repository with 1, 000 multimodal objects and obtain an answer from the cloud infrastructure. In this
experiment, since searching is a synchronous operation (contrary to the previous operations that were asynchronous),
the Network sub-operation contemplates the time spent on communications with the cloud servers and the time the
cloud servers take to respond to the query. The results show that in both devices MIE out-performs significantly the
competing solutions MSSE and Hom-MSSE. The reasons that explain this are two-fold. First, MIE was designed
to only extract feature-vectors from the multimodal object used as query, while the other approaches also have
to cluster these feature-vectors with the output of the training task, in order to determine the index positions that
should be accessed by the cloud servers. The effect of this is shown in the Index sub-operation. Second, MIE
requires less computational effort in the cloud servers than the MSSE and Hom-MSSE approaches, which is shown
in the Network sub-operation. As expected, on mobile devices all solutions take more time than in the desktop
computer to process and fetch relevant information for a query, however the increase is proportional across the
different schemes.

3SSE schemes could use some form of strongly consistent distributed storage in order to keep client state synchronized between users,
however such an approach, especially on mobile devices, would increase performance and bandwidth overheads even further.



Plaintext MSSE Hom-MSSE MIE
mAP (%) 57.938 57.965 57.881 57.562

TABLE III: Mean Average Precision (mAP) for the Holidays dataset [32]
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These results clearly show that not only MIE is more performant than MSSE and Hom-MSSE, but it is also
well suited for mobile devices when storing multimodal data on a public cloud infrastructure and when performing
queries to retrieve data objects.

D. Query Precision

Dense-DPE, used in the encryption of dense feature-vectors (e.g. those extracted from images), is the only MIE
component that may possibly introduce entropy for retrieval operations, affecting query results. As such, we assessed
the retrieval precision obtained by MIE and the competing alternatives when querying an image-only repository.
This evaluation was performed using the Inria Holidays dataset and its evaluation package [32], measuring the
mean average precision (mAP) of 500 queries over a repository of 1491 photos. Table III shows an average of
10 independent executions for MIE, the competing alternatives MSSE and Hom-MSSE, and a plaintext retrieval
system based on the same image retrieval techniques.

All assessed systems obtained similar retrieval precision results. Dense-DPE (in MIE) does not meaningfully
affect retrieval precision as long as encoded features are at least as large their plaintext versions. Homomorphic
encryption (in Hom-MSSE) also seems to preserve the precision of the retrieval algorithms. Finally, we believe
that the result of the training operation may have a more meaningful impact on retrieval precision than any other
component in the framework system, as clustering is a NP-Hard problem and only an approximated solution can
be found [28].

E. Mobile Energy Consumption

As one of our goals is to provide adequate support to mobile devices, it is relevant to measure the draining of
energy from a mobile device battery when creating a cloud-based repository and loading it with 1, 000, 2, 000,
or 3, 000 multimodal objects. We also report the energy required to train the repository using machine learning
techniques, which is required by the MSSE and Hom-MSSE solutions. For improved readability, the results for
training and adding the three datasets are shown in separate. The measured energy capacity of the battery in
the mobile device used in these experiments was 3, 448mAh. Figure 6 reports the obtained results, which were



measured through Android’s Operating System Power Profiles Framework [25]. This framework allows users to
verify in a precise and hardware-backed way how much energy is consumed in a given period of time by the
different applications running in the system.

Results show that MIE significantly outperforms the remaining schemes. This is a reflection of the results shown
in the previous sub-sections, and further proves that MIE is more lightweight and better suited for mobile adoption
than the state of the art alternatives. For the 2, 000 and 3, 000 dataset sizes, the Hom-MSSE scheme surpassed the
available energy capacity, causing the mobile device to shutdown before completion of the test. Furthermore, as
shown in Figure 6, MIE is also able to avoid the train operation which almost depletes the energy of the mobile
device on its own. These results show that MIE is effectively the solution which is best tailored for operation on
mobile devices with limited energy life.

VIII. CONCLUSION

In this paper we have tackled the practical challenges of efficient and dynamic storage and search of encrypted
multimodal data on public clouds, while supporting resource constrained mobile devices. Our main contribution,
named Multmimodal Indexable Encryption (MIE), is the first approach to address this problem, and is particularly
suited for practical contexts and mobile devices. At the core of MIE lies a novel family of encoding algorithms,
called Distance Preserving Encoding (DPE), which preserve a controllable distance function between plaintexts
after encoding. By leveraging DPE, MIE is able to outsource indexing and training computations (shown to be the
core of heaviest computations) from the mobile devices to the cloud servers in a secure way. We have implemented
a prototype of MIE, operating both on desktop computers and Android mobile devices. Our prototype supports both
textual and image modalities. We have experimentally shown that MIE is more adequate than other approaches
for storing and searching encrypted multimodal data, especially when client applications are executed in resource
constrained mobile devices.
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APPENDIX

A MULTIMODAL SSE SCHEME

In this section we detail how we implemented and extended a recent SSE scheme from the literature [11] to
support multimodal querying. This scheme, which we call MSSE, was used in §VII as a baseline comparison for
the experimental evaluation of our work.

An Exact-Match Text Searching Scheme. From the recent literature on SSE schemes [11], [27], [34], [35], [49],
[53], [55], whose authors have been focusing on single keyword exact-match search on text documents, we found
the approach by Cash et al. [11] to be the most promising for supporting multimodal queries. The scheme originally



requires users to store, in their devices, a counter for each unique keyword found in the repository of documents.
These counters are incremented each time a new document with that keyword is added. Counter values are used
to determine where to store keyword/document occurrences in the index of the repository. Index positions (i.e. the
counters) are encrypted with a Pseudo-Random Function (PRF) and a key derived from its respective keyword,
while index values (i.e. document identifiers) are encrypted with a IND-CPA block-cipher encryption scheme (such
as AES in CTR mode [36]) and a second key derived from the keyword. To search with a query keyword (in the
Random Oracle Model [8]) the user derives its two keys and sends them to the server, which finds index positions
by applying the PRF to an incrementing value starting at zero and stopping when an empty index position is found.

From Exact-Match to Ranked Searching. Due to its simplicity, it’s straightforward to extend the previous
methodology to support richer query expressiveness and multimodal searching. For ease of exposition we start
by discussing how to perform ranked text searching. In this case we need to store frequency information along
with keyword-document occurrence. This will be the basis for all scoring functions, including the popular TF-IDF
[43]. Since both informations are closely related, we can concatenate frequencies to document ids and store their
IND-CPA encryption in the index. For calculating ranking functions other repository wide metrics may still be
required, however these are usually easy to infer from general information that the server already has access to.
In the case of TF-IDF these include the total number of stored documents, which is general information usually
leaked to the server, and document frequency, i.e. number of documents that the keyword appears in, which the
server already has access to when searching.

Supporting Multimodality. Extending this methodology to search over other modalities is also straightforward,
given some index representation of the features in each modality. For example, image features (of any kind, from
facial recognition to colored key-point detection) can be represented as visual words and indexed the same way as
text (i.e. through an inverted index) [50]. Similar approaches can be used for indexing audio and video features.
Searching in multiple modalities simultaneously can be achieved by merging search results of each separate modality.
We achieve this by using an unsupervised late rank fusion approach such as the one proposed in [46].

Updates and Removals. One of the main limitations of the approach by Cash et al. [11] is that it requires server
storage for supporting the removal of data-objects. This server storage grows linearly with the number of removed
keywords. This is a consequence of hiding the full document structure through the use of counters. When documents
are removed neither the user nor the server have enough information to assert which index entries can be removed.
In multimodal ranked retrieval this is further aggravated as an update dictionary will be required instead, keeping
track of all updates to keyword frequencies (removals can be seen as a frequency update to zero). Furthermore in
the original scheme [11] the revocation list can fluctuate in size, if removed keywords are later re-added to their
documents however, in our case the updated dictionary would only grow in size (up to a maximum bound of the
main index size) since future updates could have any frequency value.

We remark that the only benefit of this approach is in being able to hide document lengths. However document
lengths were actually being implicitly revealed when adding new documents, as users need to store not only index
positions but also the documents themselves, hence when adding a single document the server could link its id to
the index positions added (adding multiple documents in batch would still give lower and higher bounds on their
sizes to the server).

In MSSE we remove revocation and update storage, keeping only one index at the server which stores document
ids in plaintext. To remove a document the server either goes through the index and deletes all of its occurrences or
alternatively, in background the server builds a structure mapping document ids to their positions in the index, which
speads up removals. Updates are performed by first removing the document and then adding its new version. Index
positions are still encrypted counter values and frequency values are still IND-CPA encrypted, both only being
revealed at search time. The consequence of this approach is that document lengths (i.e. the number of unique
keywords per document) will be revealed, as the server can count how many times each document id appears.
Nonetheless this can still be hidden through index padding as previously proposed in [10].



Multiple Clients and Client Storage. The methodology proposed by Cash et al. [11] requires clients to be stateful,
i.e. they must store in their devices (or in the server and retrieve them with each operation) the counters for each
unique keyword. In fact, all of the most recent SSE schemes with smallest information leakage and practical
performance require client-storage [11], [27]. In settings with multiple clients the negative aspects of such design
becomes further exacerbated, as now clients using the same repository must share the same client storage and make
sure their replicas are consistent. To solve this issue we propose a centralized consistency preservation mechanism. In
this mechanism, counters are stored encrypted in the server and are requested for each update and search operation.
Since updates need to increment counter values and the server can not perform this operation without learning
their value, it must be the users that retrieve and decrypt all counters, increment the relevant ones, and upload
all back to the server after encryption. To make sure users do not override counter increments, and consequently
index positions, the server locks write accesses to this counter dictionary (searching can proceed as normal as such
operations can use a (eventual not update) snapshot view of the index that was valid when the operation is first
received by the cloud infrastructure).

Figure 7 presents a formalization of scheme MSSE.

MSSE WITHOUT FREQUENCY PATTERNS

One issue with MSSE is that besides revealing search and access information patterns as in previous SSE schemes,
it further reveals frequency patterns with each query. We now propose a second multimodal SSE scheme, which we
call Hom-MSSE, that is able to hide frequency information patterns at the cost of increased cryptographic overhead.
Hom-MSSE was also used in §VII as a baseline comparison for the experimental evaluation of our work.

Our proposal is based on partially homomorphic cryptography. In MSSE if we encrypt index keyword frequencies
with an Additively Homomorphic IND-CPA scheme, such as Paillier [52], the server can calculate search scores
without knowing their values, through encrypted frequency additions and multiplications with public parameters.
For instance, in the TF-IDF function frequencies will be homomorphically encrypted and added, while inverse
document frequencies are public parameters (that were already revealed as discussed in the previous section) that
will be multiplied. One limitation of this approach however is that now it must be the user to sort search results in
each modality and merge them to obtain the final search scores. In [2] an approach for privacy-preserving sorting
by the cloud server is proposed, however a cryptographic co-processor is also required in the cloud infrastructure,
which is not available in most of nowadays publicly available clouds and as thus we don’t consider it a practical
assumption.

We can further extend the use of partially homomorphic cryptography to solve another main issue of MSSE,
which is the need for coordination between users when updating repositories. More concretely, if we encrypt counter
values with Paillier we can have the server update them without knowing nor learning their values. This way when
a user is adding/updating a document, he will request for the required counters current values and at the same
time tell the server to increment each by a given encrypted amount. Since adding a single document at a time
means that counter increments will always be by one value (and the server can track this), the user can either make
updates in batch or pad his requests by requiring additional counters and telling the server to increment them by
zero (according to [10], padding by 1.6x of the request size would be enough to stop keyword-retrieval attacks).
Figure 8 formalizes the Hom-MSSE scheme, as a modification of MSSE.



Create Repository Operation
1: procedure USER(U ).CREATEREPOSITORY(IDR, spR)
2: rk1R ← PRG(spR)
3: rk2R ← PRG(spR)
4: CLOUD.CreateRepository(IDR)
5: RepUsers.ShareKey({rk1R, rk2R})
6: return rkR = {rk1R, rk2R}
7: procedure CLOUD.CREATEREPOSITORY(IDR)
8: Rep[IDR]← InitializeRepository()
9: Fvs[IDR]← InitializeFeatureVectorsList()

Update Operation
1: procedure USER(U ).UPDATE(IDR , IDp , p, dkp, {rk1R, rk2R},
{IDmi }ni=0 )

2: e← Enc(dkp , p)
3: for all {IDmi}ni=0 do
4: fvspmi

← ExtractFeatureVectors(p, IDmi )
5: efvspmi

← ENC(rk1R, fvspmi
)

6: if !IsTrained(IDR) then
7: CLOUD.UntrainedUpdate(IDR , IDp , e, {efvspmi

}ni=0)
8: else
9: {ectrsmi}ni=0 ← CLOUD.GetCtrs(IDR, {IDmi }ni=0 )

10: for all {IDmi}ni=0 do
11: ctrsmi ← DEC (rk1R, ectrsmi )
12: histpmi

← ClusterizeAndSort(fvspmi
)

13: Lmi ← InitializeList(|histpmi
|)

14: for all {fvj , freqfvj }
|histpmi

|
j=0 do

15: if ctrsmi [fvj ] == {} then
16: ctrsmi [fvj ]← 0

17: k1← PRF (rk2R, fvj ||1 )
18: k2← PRF (rk2R, fvj ||2 )
19: l← PRF (k1, ctrsmi [fvj ])
20: ctrsmi [fvj ] + +
21: d← IDp||ENC(k2, freqfvj )
22: Lmi .Add({l, d})
23: ectrsmi ← ENC (rk1R, ctrsmi )

24: CLOUD.TrainedUpdate(IDR , IDp , e, {IDmi , Lmi , efvspmi
,

ectrsmi}ni=0)
25: procedure CLOUD.GETCTRS(IDR, {IDmi }ni=0 )
26: for all {IDmi}ni=0 do
27: ectrsmi ← Ctrs[IDR][IDmi ]
28: LockCounterAccess(Ctrs[[IDR][IDmi ])
29: return {ectrsmi}ni=0

30: procedure CLOUD.UNTRAINEDUPDATE(IDR , IDp , e, {efvspmi
}ni=0)

31: Rep[IDR][IDp]← e
32: Fvs[IDR][IDp]← {efvspmi

}ni=0

33: procedure CLOUD.TRAINEDUPDATE(IDR , IDp , e, {IDmi , Lmi ,
efvspmi

, ectrsmi}ni=0)
34: for all {IDmi , ectrsmi }ni=0 do
35: Ctrs[IDmi ]← ectrsmi

36: UnLockCounterAccess(Ctrs[IDmi ])
37: CLOUD.Remove(IDR, IDp )
38: Rep[IDR][IDp ]← e; Fvs[IDR][IDp ]← {efvspmi }ni=0
39: for all {IDmi ,Lmi }ni=0 do
40: for all {l , d} ∈ Lmi do
41: Idx[IDR][IDmi ][l]← d

Remove Operation
1: procedure USER(U ).REMOVE(IDR, IDp )
2: CLOUD.Remove(IDR, IDp )
3: procedure CLOUD.REMOVE(IDR, IDp )
4: if Rep[IDR][IDp]! = {} then
5: Rep[IDR][IDp]← {}; Fvs[IDR][IDp]← {}
6: if IsTrained(IDR) then
7: for all {Idx[IDR][IDmi ]}ni=0 do
8: for all {Idx[IDR][IDmi ][lj ]}|Idx[IDR][IDmi

]|
j=0 do

9: if Idx[IDR][IDmi ][lj ].ID == IDp then
10: Idx[IDR][IDmi ][lj ]← {}

Train Operation
1: procedure USER(U ).TRAIN(IDR, {rk1R, rk2R}, IDmi , ipmi }ni=0 )
2: efvs← CLOUD.GetFeatures(IDR)
3: fvs← DEC(rk1R, efvs)
4: for all {IDmi , ipmi}ni=0 do
5: D[IDmi ]← InitializeIndex(ipmi )
6: if DenseMediaType(IDmi ) then
7: CB

mi
R ← TrainIndex(D[IDmi ], ipmi , fvsmi )

8: RepUsers.ShareCodebook(CBR)
9: IndexData(D[IDmi ], fvsmi )

10: CLOUD.StoreIndex(IDR, {IDmi ,D [IDmi ]}ni=0 )
11: procedure CLOUD.GETFEATURES(IDR)
12: return Fvs[IDR]

13: procedure CLOUD.STOREINDEX(IDR, {IDmi ,D [IDmi ]}ni=0 )
14: for all {D [IDmi ]}ni=0 do
15: Idx [IDR][IDmi ]← D [IDmi ]

Search Operation
1: procedure USER(U ).SEARCH(IDR, q, {rk1R, rk2R}, {IDmi }ni=0 , k )
2: for all {IDmi}ni=0 do
3: fvsqmi

← ExtractFeatureVectors(q, IDmi )
4: if !IsTrained(IDR) then
5: {efvs,Rep} ← CLOUD.GetFeaturesAndObjects(IDR)
6: fvs← DEC(rk1R, efvs)
7: for all {IDmi}ni=0 do
8: Resmi ← LinearRankedSearch(fvsqmi

, fvsmi )
9: Res← FusionRank({IDmi , Resmi}ni=0, k)

10: return {IDpi , Rep[IDpi ], Res[IDpi ]}ki=0
11: else
12: {ectrsmi}ni=0 ← CLOUD.GetCounters(IDR, {IDmi }ni=0 )
13: for all {IDmi}ni=0 do
14: ctrsmi ← DEC (rk1R, ectrsmi )
15: histqmi

← ClusterizeAndSort(CB
mi
R , fvsqmi

)
16: Lmi ← InitializeList(|histqmi

|)
17: for all {fv, freqfv} ∈ histqmi

do
18: ll← InitializeList(ctrsmi [fv] + 1)
19: k1← PRF (rk2R, fv ||1 )
20: k2← PRF (rk2R, fv ||2 )
21: for ctr ← 0 . . . ctrsmi [fv] do
22: l← PRF (k1, ctr)
23: ll.Add(l)
24: Lmi .Add({ll, k2, freqfv})
25: {IDpi , pi, score

q
pi}ki=0 ← CLOUD.Search(IDR, {Lmi }ni=0 , k )

26: return {IDpi , pi, score
q
pi}ki=0

27: procedure CLOUD.GETFEATURESANDOBJECTS(IDR)
28: return {Fvs[IDR], Rep[IDR]}
29: procedure CLOUD.SEARCH(IDR, {IDmi ,Lmi }ni=0 , k )
30: for all {IDmi}ni=0 do
31: Resmi ← InitializeList(k)
32: for all {ll, k2, freqq} ∈ Lmi do
33: tfs← InitializeList(|ll|)
34: for all l ∈ ll do
35: if Idx[IDR][IDmi ][l]! = {} then
36: {IDp, efreq} ← Idx[IDR][IDmi ][l]
37: freq ← DEC(k2, efreq)
38: tfs.Add({IDp, freq})
39: for all {IDp, freq} ∈ tfs do
40: idf ← log(|Rep[IDR]|/|tfs|)
41: tfidf ← freqq × freq × idf
42: if Resmi [IDp] == {} then
43: Resmi [IDp]← tfidf
44: else
45: Resmi [IDp]← Res[IDp] + tfidf

46: Resmi ← Sort(Resmi )
47: Res← FusionRank({IDmi , Resmi}ni=0, k)
48: return {IDpi , Rep[IDR][IDpi ], Res[IDpi ]}ki=0

Fig. 7: Scheme MSSE, without Random Oracles. ENC and DEC are the encryption and decryption algorithms of a IND-CPA block-cipher
scheme, PRF is a Pseudo-Random Function, and PRG is Pseudo-Random Number Generator



Update Operation
1: procedure USER(U ).UPDATE(IDR, IDp , p, dkp, {rk1R, rk2R},
{IDmi }ni=0 )
. . .

9: for all {IDmi}ni=0 do
10: for all fvj ∈ fvspmi

do
11: incfvj ← Hom.ENC(rk2.HomPub, 1)

12: for all fvj ∈ Padding(fvspmi
) do

13: incfvj ← Hom.ENC(rk2.HomPub, 0)

14: CLOUD.GetAndIncCtrs(IDR, {IDmi , rk2R.HomPub,
{IDfv

mi
j

, incfvmi
j
}lj=0}ni=0)

. . .
11: ctrsmi ← Hom.DEC(rk2R.HomPriv, ectrsmi)

. . .
15: Removed Line
16: Removed Line

. . .
18: Removed Line

. . .
21: d← IDp||Hom.ENC(rk2R.HomPub, freqfvj )

. . .
23: Removed Line
24: CLOUD.TrainedUpdate(IDR, IDp , e, {IDmi , Lmi ,

efvspmi
}ni=0)

. . .
25: procedure CLOUD.GETANDINCCTRS(IDR, {IDmi ,

rk2R.HomPub, {IDfv
mi
j

, incfvmi
j
}lj=0}ni=0)

26: for all {IDmi}ni=0 do
27: for all {IDfvj}

l
i=0 do

28: ectrs[IDmi ][IDfvj ]← Ctrs[IDR][IDmi ][IDfvj ]
29: if Ctrs[IDR][IDmi ][IDfvj ] == {} then
30: Ctrs[IDR][IDmi ][IDfvj ] ←

Hom.ENC(rk2R.HomPub, 0)

31: Ctrs[IDR][IDmi ][IDfvj ] ←
HomAdd(ectr[IDmi ][IDfvj ], incfvmi

j
, rk2R.HomPub)

32: return ectrs
. . .

33: procedure CLOUD.TRAINEDUPDATE(IDR, IDp , e, {IDmi , Lmi ,
efvspmi

}ni=0)
34: Removed Line
35: Removed Line
36: Removed Line

Create Repository Operation
1: procedure USER(U ).CREATEREPOSITORY(IDR, spR)

. . .
3: rk2R ← {HomPub,HomPriv} ← PRG(spR)

. . .

Search Operation
1: procedure USER(U ).SEARCH(IDR, q , {rk1R, rk2R}, {IDmi }ni=0 , k )

. . .
14: ctrsmi ← Hom.DEC(rk2R.HomPriv, ectrsmi)

. . .
20: Removed Line

. . .
24: Lmi .Add(ll, freqfv)
25: {{IDpj ,Rep[IDR][IDpj ],Resmi [IDpj ]}

|Rep[IDR]|
j=0 }ni=0 ←

CLOUD.Search(IDR,{IDmi , Lmi}ni=0,rk2R.HomPub)
26: for all {IDmi}ni=0 do
27: Resmi ← Hom.DEC(rk2R.HomPriv,Resmi)
28: Resmi ← Sort(Resmi )
29: Res← FusionRank({IDmi , Resmi}ni=0, k)
30: return {IDpi , Rep[IDR][IDpi ], Res[IDpi ]}ki=0

. . .
29: procedure CLOUD.SEARCH(IDR, {IDmi ,Lmi }ni=0 , rk2R.HomPub)

. . .
32: for all {ll, freqq} ∈ Lmi do

. . .
37: Removed Line
38: tfs.Add({IDp, efreq})

. . .
41: tfidf ← HomMult(efreq, freqq × idf , rk2R.HomPub)

. . .
46: Removed Line
47: Removed Line
48: return {{IDpj ,Rep[IDR][IDpj ],Resmi [IDpj ]}

|Rep[IDR]|
j=0 }ni=0

Fig. 8: Scheme Hom-MSSE, without Random Oracles. The scheme is presented as an iteration over scheme MSSE from Figure 7. Ellipsis
represent skipped lines from Figure 7, and each line after an ellipsis represents a re-written line from Figure 7 with the same line number.
Lines marked with Removed Line are lines from Figure 7 that should be removed in Hom-MSSE.


