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Abstract. We solve the open problem of constructing computationally function private
public-key predicate encryption schemes. Existing public-key constructions for predicate
encryption satisfy a statistical notion of function privacy, that was introduced for equality
predicates by Boneh, Raghunathan and Segev in CRYPTO’13, and was generalized for
subspace-membership predicates in ASIACRYPT’13. The secret-keys in these construc-
tions are statistically indistinguishable from random as long the underlying predicates
are sampled from sufficiently unpredictable distributions. The alternative notion of com-
putational function privacy, where the secret-keys are computationally indistinguishable
from random, has only been concretely realized in the private-key setting, to the best of
our knowledge.

In this paper, we present the first computationally function private constructions for
public-key predicate encryption. Our framework for computational function privacy re-
quires that a secret-key corresponding to a predicate sampled from a distribution with
min-entropy super logarithmic in the security parameter λ, is computationally indis-
tinguishable from another secret-key corresponding to a uniformly and independently
sampled predicate. Within this framework, we develop a novel approach, denoted as
encrypt-augment-recover, that takes an existing predicate encryption scheme and trans-
forms it into a computationally function private one while retaining its original data
privacy guarantees. Our approach leads to public-key constructions for identity-based
encryption and inner-product encryption that are fully data private and computation-
ally function private under a family of weaker variants of the DLIN assumption. Our
constructions, in fact, satisfy an enhanced notion of function privacy, requiring that an
adversary learns nothing more than the minimum necessary from a secret-key, even given
corresponding ciphertexts with attributes that allow successful decryption.
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1 Introduction

Predicate encryption systems [1–3] in the public-key setting allow a single public-key to be
associated with multiple secret-keys, where each secret-key corresponds to a boolean predicate
f : Σ −→ {0, 1} over a pre-defined set of attributes Σ. A plaintext message in a predicate
encryption system is an attribute-payload message pair (I,M) ∈ Σ ×M, with M being the
payload message space. A secret-key skf associated with a predicate f successfully decrypts a
ciphertext C corresponding to a plaintext (I,M) and recovers the payload message M if and
only if f(I) = 1. On the other hand, if f(I) = 0, attempting to decrypt C using skf returns
the failure symbol ⊥. A predicate encryption is said to be attribute hiding if the ciphertext C
leaks no information about the underlying plaintext (I,M) to an adversary possessing benign
secret-keys corresponding to predicates that do not trivially identify the attribute I.



Identity-Based Encryption. Identity-based encryption (IBE) [4–6] is the simplest sub-class
of public-key predicate encryption. IBE supports a set of equality predicates of the form fid :
Σ −→ {0, 1} defined as fid(x) = 1 if and only if x = id. The attribute space in this case is a set
of identities ID, and each identity id ∈ ID is associated with its own secret-key skid.

Inner-Product Encryption. Inner-product encryption (IPE) [2, 3, 7, 8] is the most expressive
sub-class of predicate encryption, supporting a set of predicates f−→v : Σ −→ {0, 1} over a vector
space of attributes Σ = Fnq (q being a λ-bit prime). Of particular interest is a specific form of
IPE called zero-IPE [3] where for −→v ,−→x ∈ Σ, we have f−→v (−→x ) = 1 if and only if 〈−→v ,−→x 〉 = 0
(here 〈−→v ,−→x 〉 denotes the standard inner-product of two vectors −→v and −→x ). IPE is powerful
enough to encompass IBE and many other predicate encryption systems [3].

Searchable Encryption and Function Privacy. Predicate encryption provides a generic
framework for searchable encryption supporting a wide range of query predicates including
conjunctive, disjunctive, range and comparison queries [9, 1–3]. For instance, a predicate en-
cryption system can be used to realize a mail gateway that follows some special instructions to
route encrypted mails based on their header information (e.g. if the mail is from the boss and
needs to be treated as urgent). The mail gateway is given the secret-key corresponding to the
predicate is-urgent, the mail header serves as the attribute, while the routing instructions can
be used as the payload message. Another application could be a payment gateway that flags
encrypted payments if they correspond to amounts beyond some pre-defined threshold X. The
payment gateway is given the secret-key corresponding to the predicate greater-than-X, the
payment amount itself serves as the attribute, while the flag signal is encoded as the payload
message. The attribute hiding property of the predicate encryption scheme ensures that neither
gateway learns any information about the plaintext data from the entire operation.

A natural question now arises: should the gateways in the aforementioned examples be
able to learn the underlying predicate from the secret-keys given to them? The answer in
most scenarios is no - the secret-key skf should ideally reveal nothing about the predicate f
beyond the absolute minimum. This notion of predicate hiding security is commonly referred
to as function privacy, and predicate encryption scheme satisfying this notion of security are
described as function private.

Function Privacy in the Public-Key Setting. As pointed out by Boneh, Raghunathan and
Segev in [10, 11], formalizing a realistic notion of function privacy in the context of public-key
predicate encryption is, in general, not straightforward. Consider, for example, an adversary
against an IBE scheme who is given a secret-key skid corresponding to an identity id and has
access to an encryption oracle. As long as the adversary has some apriori information that the
identity id belongs to a small set S,(e.g. id is sampled distribution with min-entropy at most
polynomial in the security parameter λ), it can fully recover id from skid : it can simply resort
to encrypting a random message M under each identity in S, and decrypting using skid to check
for a correct recovery. Consequently, [10, 11] consider a framework for function privacy under
the minimal assumption that any predicate is sampled from a distribution with min-entropy at
least super logarithmic in the security parameter λ.

Existing Function Private Constructions. Existing public-key constructions for predicate
encryption satisfy a statistical notion of function privacy, that was introduced for equality pred-
icates in [10], and was subsequently generalized for subspace-membership predicates in [11]. In
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particular, the secret-keys in these constructions are statistically indistinguishable from random,
as long the underlying predicates are sampled from sufficiently unpredictable distributions. The
alternative notion of computational function privacy, where the secret-keys are computationally
indistinguishable from random, has only been concretely realized in the private-key setting [12–
15] to the best of our knowledge. In fact, designing public-key predicate encryption schemes
whose function privacy can be based on well-known computational assumptions, was left as an
open problem in [11].

1.1 Our Contributions

In this paper, we present the first computationally function private constructions for public-
key predicate encryption. Our framework for computational function privacy, presented for-
mally in Section 3, requires that a secret-key corresponding to a predicate sampled from a
distribution with min-entropy super logarithmic in the security parameter λ, is computation-
ally indistinguishable from another secret-key corresponding to a uniformly and independently
sampled predicate. Within this framework, we develop a novel approach, denoted as encrypt-
augment-recover, that takes an existing predicate encryption scheme and transforms it into a
computationally function private one. Our approach leads to the following constructions:

• In the random-oracle model, we present a family of identity-based encryption schemes from
bilinear pairings based on the scheme of Boneh and Franklin [4]. Our schemes retain the
adaptive data privacy of the underlying scheme (based on the same complexity assump-
tion), and are computationally function private under progressively weaker variants of the
well-known DLIN assumption. The detailed construction of these schemes, along with the
proofs of data and function privacy, is presented in Section 4.

• In the standard model, we present a family of inner-product encryption schemes from bilin-
ear pairings based on the scheme of Katz, Sahai and Waters [3]. Once again, our schemes
retain the selectively attribute hiding property of the underlying scheme, and are computa-
tionally function private under progressively weaker variants of the DLIN assumption. The
detailed construction of these schemes, along with the proofs of data and function privacy,
is presented in Section 5.

• Our constructions, in fact, satisfy an enhanced notion of function privacy, requiring that an
adversary learns nothing more than the minimum necessary from a secret-key, even given
corresponding ciphertexts with attributes that allow successful decryption.

1.2 Overview of Our Approach: Encrypt-Augment-Remove

Our approach for achieving computationally function private predicate encryption schemes con-
sists of three main steps - encrypt, augment and recover. We briefly describe the main ideas
underlying each step, and exemplify them subsequently using a simple IBE scheme. Given
a public-key predicate encryption scheme Π = (Setup,KeyGen,Enc,Dec), and a CPA-secure
public-key encryption algorithm PKE = (KeyGen,Enc,Dec), we create a function private pred-
icate encryption scheme Π′ =

(
Setup′,KeyGen′,Enc′,Dec′

)
as follows:

• The modified setup algorithm Setup′ invokes PKE.KeyGen and obtains the key pair (PK,SK).
It also invokes Π.Setup and obtains the public parameters pp, along with master secret-key
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msk. It outputs the modified public parameter pp′ = (pp, g (SK)) and the modified master
secret-key msk′ = (msk, PK), where g is a suitably chosen one way function.

• On input a predicate f and the augmented master secret-key msk′ = (msk, PK), the mod-
ified key-generation algorithm KeyGen′ invokes Π.KeyGen to obtain the original secret-key
skf . It then outputs an encrypted secret-key sk′f as PKE.Enc (PK, skf ).

This step automatically guarantees computational function privacy - any adversary that can
distinguish the augmented secret-key from random must break the CPA security guarantee
of the PKE scheme. More specifically, it ensures adaptive function privacy - the inherently
random nature of the augmented key generation algorithm ensures that the function pri-
vacy guarantees hold even when the adversary is allowed to specify predicate distributions
in an adaptive manner after seeing the public parameters of the scheme. We assume that
any adversarially-chosen distribution of predicates is sufficiently unpredictable, so as to rule
out a trivial breach of function privacy as mentioned earlier. This minimal assumption is
thus sufficient to transform the original predicate encryption scheme into a computationally
function private one.

• An even greater challenge is to synchronize the encryption and decryption algorithms in
the modified scheme. This is achieved as follows. On input the public parameter pp′ =
(pp, g (SK)), and a message M corresponding to an attribute I, the modified encryption
algorithm Enc′ first obtains C = Π.Enc (pp, I,M). It then outputs the augmented cipher-
text C ′ = (C, σ (g (SK))), where σ is a randomized function sharing a source of randomness
with Π.Enc.

• Finally, Dec′ cleverly uses the additional ciphertext component σ (g (SK)) in C ′ to remove
the effect of PKE from the encrypted secret-key sk′f , and recovers the message M . Note that

removal here is not same as decryption, since Dec′ has access to only a one-way function
of SK and not SK itself. It is, in fact, impossible to provide SK to Dec′ in the clear
without trivially compromising function privacy. The challenge is thus to ensure that Dec′

can recover M without a complete decryption of sk′f .

Comparison with a deterministic public-key encryption-based approach. An alterna-
tive approach for designing computationally function private identity-based encryption schemes,
suggested in [10], is as follows: encrypt all identities using a DPKE scheme, and use any exist-
ing anonymous IBE scheme that treats the corresponding ciphertexts of the DPKE scheme as
its identities. Since the security of any deterministic public-key encryption (DPKE) algorithm
is also based on the minimal assumption that its plaintexts are sampled from a distribution
with a certain amount of min-entropy, the above approach seems quite natural. However, this
approach suffers from two inherent drawbacks:

1. In the setting of DPKE, the dependency of plaintexts on the public-key of the scheme is
essentially limited. Intuitively, the reason is as follows: in a deterministic encryption setting,
plaintext distributions can be chosen depending on the public-key such that the encryption
algorithm acts as a subliminal channel for leaking information, thus trivially violating all
security guarantees [16]. However, this is too restrictive a security notion to be adopted in
the context of IBE, where the key-generation process is allowed to be randomized. In partic-
ular, any realistic function privacy framework for IBE must allow adversaries to adaptively
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specify challenge identity distributions, after they have seen the public parameters of the
scheme.

2. The DPKE-based approach is not directly generalizable for functionally richer predicates
unless the underlying encryption scheme is somewhat function-preserving. For example,
if the above approach were to be extended in the context of IPE, it would require the
ciphertexts of the DPKE scheme to preserve the orthogonality of the underlying plaintext
vectors. This could potentially weaken the function privacy guarantees even further.

Our approach overcomes these limitations by focusing on encrypting the secret-key skf of
the original predicate encryption scheme rather than the underlying predicate f . The aug-
mented key-generation process uses a PKE instead of a DPKE, and is hence allowed to be
non-deterministic. This makes our notion of function privacy more realistic since it does not re-
strict adaptive choice of predicate distributions on part of the adversary. Finally, our approach
is generally applicable to a large class of predicate encryption schemes, including IBE and IPE,
without any additional constraints on the properties of the underlying PKE.

An Example of Our Approach. We present an example of a computationally function
private IBE scheme in the random-oracle model achieved using our encrypt-augment-decrypt
approach. A generalization of this scheme is presented in greater detail in Section 4, along with
proofs for data and function privacy. Consider a public-key encryption scheme PKE with the
key generation, encryption and decryption algorithms as described below:

• KeyGen: The key-generation algorithm samples x1, x2, x3
R←− Z∗q , where q is a λ-bit prime,

and g1, g2, g3
R←− G, where G is a cyclic group of prime order q. It outputs the secret-key

SK = (x1, x2, x3) and the public-key PK = (g1, g2, g3, (g
x1
1 · g

x3
3 ) , (gx2

2 · g
x3
3 )).

• Enc: The ciphertext C corresponding to a message M ∈ G is a tuple of the form:

C =
(
gy11 , gy22 , gy1+y2

3 , (gx1
1 · g

x3
3 )

y1 · (gx2
2 · g

x3
3 )

y2 ·M
)

where y1, y2
R←− Z∗q .

• Dec: The decryption algorithm, on input the ciphertext C = (c1, c2, c3, c4) and the secret-
key (x1, x2, x3), recovers the message M as:

M = c4

/
(cx1

1 · c
x2
2 · c

x3
3 )

The above scheme is a simple variant of the Cramer-Shoup cryptosystem [17], and is CPA-
secure under the DLIN assumption. We now present a computationally function private IBE
scheme that is obtained by applying our encrypt-augment-recover approach to the anonymous
IBE scheme based on bilinear maps proposed by Boneh and Franklin [4].

• Setup: The setup algorithm in the scheme of Boneh and Franklin samples s
R←− Z∗q , where

q is a λ-bit prime. The public parameters are g and gs, where g is the generator of a
bilinear group G of prime order q, while the master secret-key is s. Our scheme additionally
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samples x1, x2, x3
R←− Z∗q and g1, g2, g3

R←− G. The augmented public parameter pp and
master secret-key msk for our scheme are as follows:

pp = (g, gs, gx1 , gx2 , gx3)

msk = (s, g1, g2, g3, (g
x1
1 · g

x3
3 ) , (gx2

2 · g
x3
3 ))

Observe that the additional components in pp are one-way functions of x1, x2, x3 - the
secret-key SK of the PKE scheme. Additionally, the modified msk contains the public-key
PK of the PKE scheme. This is exactly in accordance with our proposed approach.

• KeyGen: The key-generation algorithm in the scheme of Boneh and Franklin computes
a secret-key for an identity id as skid = (H (id))

s
, where H is a random oracle mapping

identities onto the group G. In our scheme, we augment the key generation process as

follows. We sample y1, y2
R←− Z∗q , and output:

skid =
(
gy11 , gy22 , gy1+y2

3 , (gx1
1 · g

x3
3 )

y1 · (gx2
2 · g

x3
3 )

y2 · (H (id))
s)

Observe that skid = PKE.Enc (PK, (H (id))
s
), which is a direct exemplification of the en-

crypt step in our approach described above. The reader is referred to Section 4 for the
detailed proof of function privacy.

• Enc: An encryption of a message M for an identity id in the scheme of Boneh and Franklin

is a tuple of the form (gr,M · e (H (id) , gs)
r
), where r

R←− Z∗q . In our scheme, we augment
the encryption process to produce the ciphertext:

C = (gr, (gx1)
r
, (gx2)

r
, (gx3)

r
,M · e (H (id) , gs)

r
)

Note that the augmented ciphertext in our scheme retains unaltered the original ciphertext.
The main technical challenge is to prove that such an augmented ciphertext still provides
the same data privacy guarantees as the original scheme of Boneh and Franklin (the reader
is referred to Section 4 for the detailed proof).

• Dec: Our decryption algorithm, on input of a ciphertext C = (c0, c1, c2, c3, c4), and a secret-
key skid = (d0, d1, d2, d3), recovers the encrypted message M as:

M = c4 ·
e (d0, c1) · e (d1, c2) · e (d2, c3)

e (d3, c0)

Observe that at the core of the above computation is the original decryption procedure
in the scheme of Boneh and Franklin, with the additional components in the ciphertext
and the secret-key canceling out each other to recover the effect of the PKE(the reader is
referred to Section 4 for the detailed proof of correctness). It is important to note that this
removal is different from directly decrypting skid, and in particular, does not require the
knowledge of the secret-key of the PKE.

1.3 Other Related Work

Computational function privacy for predicate encryption has been studied in the private-key
setting [18]. The inherent difficulty of achieving function privacy in the public-key setting does
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not apply to the private-key setting, where the encryptor and decryptor have a shared secret-
key. In this setting, an adversary with access to a searching key cannot test the same on
ciphertexts of its choice since it does not have access to the secret-key. Function privacy in the
private-key setting is thus more natural to achieve. A general solution in this direction was
proposed by Goldreich and Ostrovsky [19] in their construction of an oblivious RAM. More
efficient constructions have been subsequently proposed for equality testing [20, 21, 12, 22, 23]
and, more recently, for inner product testing [13–15].

The first meaningful notion of predicate privacy in the public-key setting was put forth by
Boneh, Raghunathan and Segev for equality predicates [10], and subsequently for more general
subspace-membership predicates [11]. Prior to their work, achieving predicate privacy in the
public-key setting was considered impossible. Their notion of predicate privacy is based on
the statistical indistinguishability of secret-keys from random, subject to the condition that
the predicates are sampled from sufficiently unpredictable distributions. Prior to this work, no
public-key constructions satisfying computational predicate privacy have been proposed to the
best of our knowledge.

1.4 Paper Organization

The remainder of this paper is organized as follows. Section 2 presents background material on
predicate encryption, and introduces several computational assumptions in bilinear groups. In
Section 3, we formally define our framework for the computational function privacy of public-key
predicate encryption. In Section 4, we present a family of adaptively data private and compu-
tationally function private IBE schemes in the random-oracle model. In Section 5, we present a
family of selectively attribute hiding and computationally function private IPE schemes in the
standard model. Finally, Section 6 concludes the paper and enumerates several open problems.

1.5 Notations Used

We write x
R←− χ to represent that an element x is sampled uniformly at random from a set

X . The output a of a deterministic algorithm A is denoted by x ← A and the output a′ of a

randomized algorithm A′ is denoted by x′
R←− A′. We refer to λ ∈ N as the security parameter,

and denote by exp(λ), poly(λ) and negl(λ) any generic (unspecified) exponential function, poly-
nomial function and negligible function in λ respectively. Note that a function f : N → N is
said to be negligible in λ if for every positive polynomial p, f(λ) < 1/p(λ) when λ is sufficiently
large. Finally, for a, b ∈ Z such that a ≤ b, we denote by [a, b] the set of integers lying between
a and b (both inclusive).

The min-entropy of a random variable Y is denoted as H∞(Y ) = − log (maxyPr[Y = y]); a
random variable Y is said to be a k-source if H∞(Y ) ≥ k. A (T, k)-block-source is a random
variable Y = (Y1, · · · , YT ) where for each i ∈ [1, T ] and y1, · · · , yi−1, it holds that:

H∞(Yi|Y1 = y1, · · · , Yi−1 = yi−1) ≥ k

2 Preliminaries

2.1 Public-key Predicate Encryption

A public-key predicate encryption scheme for a class of predicates F over an attribute space Σ
and a payload-message space M is a quadruple Π = (Setup,KeyGen,Enc,Dec) of probabilistic
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polynomial time algorithms. The Setup algorithm takes as input the security parameter λ, and
generates the public parameter pp and the master secret-key msk for the system. The key-
generation algorithm, KeyGen takes as input the master secret-key msk and a predicate f ∈ F ,
and generates a secret-key skf corresponding to f . The Enc algorithm takes as input the public
parameter pp, an attribute I ∈ Σ and a payload-message M ∈ M, and outputs the ciphertext
C = Enc (pp, I,M). The Dec algorithm takes as input the public parameter pp, a ciphertext C
and a secret-key skf , and outputs either a payload-message M ∈M or the symbol ⊥.

Functional Correctness. A predicate encryption scheme Π = (Setup,KeyGen,Enc,Dec) is
said to be functionally correct if for any security parameter λ, for any predicate f ∈ F , for any
attribute I ∈ Σ and any payload-message M ∈M, the following hold with probability at least
1− negl(λ):

1. If f(I) = 1, we have Dec (pp,Enc (pp, I,M) ,KeyGen (msk, f)) = M .
2. If f(I) = 0, we have Dec (pp,Enc (pp, I,M) ,KeyGen (msk, f)) = ⊥.

where the probability is taken over the internal randomness of the algorithms Setup,KeyGen,
Enc, and Dec.

Data Privacy. We briefly recall the notion of data privacy for a predicate encryption scheme
under an adaptive chosen-attribute chosen-payload-message attack. Data privacy of a functional
encryption scheme guarantees that any probabilistic polynomial-time adversary can gain no in-
formation about either the attribute I nor the payload-message M associated with a ciphertext
C from the knowledge of the public parameters pp. We denote this notion of security by DP
throughout the rest of the paper.

Definition 2.1 (Adaptively Data Private Predicate Encryption). A predicate encryption scheme
Π = (Setup,KeyGen,Enc,Dec) is said to be adaptively data private if for any probabilistic
polynomial-time adversary A, the following holds:

AdvDP
Π,A(λ)

def
=

∣∣∣∣Pr
[
Expt

(0)
DP,Π,A(λ) = 1

]
− Pr

[
Expt

(1)
DP,Π,A(λ) = 1

] ∣∣∣∣ ≤ negl(λ)

where for each λ ∈ N and each b ∈ {0, 1}, the experiment Expt
(b)
DP,Π,A(λ) is defined as follows:

1. (pp,msk)
R←− Setup

(
1λ
)
.

2. ((I∗0 ,M
∗
0 ) , (I∗1 ,M

∗
1 ) , state)

R←−AKeyGen(msk,·) (state), where I∗0 , I
∗
1 ∈ Σ and M∗0 ,M

∗
1 ∈M,

subject to the restriction that for each predicate fi with whichA queries KeyGen (msk, ·),
we have fi (I∗0 ) = fi (I∗1 ).

3. C∗
R←− Enc (pp, I∗b ,M

∗
b ).

4. b′
R←− AKeyGen(msk,·) (C∗, state), once again subject to the restriction that for each pred-

icate fi with which A queries KeyGen (msk, ·), we have fi (I∗0 ) = fi (I∗1 ).
5. Output b′.

We also consider a selective variant of the above security notion that requires the adversary to
commit to the challenge pair of attributes before seeing the public parameters of the scheme.
We denote this notion of security by sDP throughout the rest of the paper.
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Definition 2.2 (Selectively Data private Predicate Encryption). A predicate encryption scheme
Π = (Setup,KeyGen,Enc,Dec) is said to be selectively data private if for any probabilistic
polynomial-time adversary A, the following holds:

AdvsDP
Π,A(λ)

def
=

∣∣∣∣Pr
[
Expt

(0)
sDP,Π,A(λ) = 1

]
− Pr

[
Expt

(1)
sDP,Π,A(λ) = 1

] ∣∣∣∣ ≤ negl(λ)

where for each λ ∈ N and each b ∈ {0, 1}, the experiment Expt
(b)
sDP,Π,A(λ) is defined as follows:

1. (I∗0 , I
∗
1 , state)

R←− A
(
1λ
)
, where I∗0 , I

∗
1 ∈ Σ.

2. (pp,msk)
R←− Setup

(
1λ
)
.

3. (M∗0 ,M
∗
1 , state)

R←− AKeyGen(msk,·) (state), where M∗0 ,M
∗
1 ∈M, subject to the restriction

that for each predicate fi with which A queries KeyGen (msk, ·), we have fi (I∗0 ) =
fi (I∗1 ).

4. C∗
R←− Enc (pp, I∗b ,M

∗
b ).

5. b′
R←− AKeyGen(msk,·) (C∗, state), once again subject to the restriction that for each pred-

icate fi with which A queries KeyGen (msk, ·), we have fi (I∗0 ) = fi (I∗1 ).

6. Output b′.

Identity-Based Encryption. An identity-based encryption scheme ΠIBE over an identity
space ID and a message space M is a public-key predicate encryption scheme supporting the
set of equality predicates fid : ID −→ {0, 1} defined as fid(id

′) = 1 if and only if id′ = id. The
secret-key associated with an identity id ∈ ID is denoted as skid. The notions of anonymity
and message indistinguishability security popularly associated with IBE are equivalent to the
notion of adaptive data privacy as described above.

Inner-Product Encryption. An inner-product encryption scheme ΠIPE over an attribute
space Σ = Fnq (q being a λ-bit prime) and a payload message spaceM is a public-key predicate
encryption scheme supporting the set of vector predicates f−→v : Σ −→ {0, 1}. The secret-key
associated with a vector −→v ∈ Σ is denoted as sk−→v . Zero-IPE is a specific sub-class of IPE where
for −→v ,−→x ∈ Σ, we have f−→v (−→x ) = 1 if and only if 〈−→v ,−→x 〉 = 0.

2.2 Computational Assumptions in Bilinear Groups

The decisional bilinear Diffie-Hellman assumption (DBDH). Let GroupGen(1λ) be a
probabilistic polynomial-time algorithm that takes as input a security parameter λ, and outputs
the tuple (G,GT , q, g, e), where G and GT are groups of order q (q being a λ-bit prime), g is
a generator for G and e : G × G −→ GT is an efficiently computable non-degenerate bilinear
map. The group G is popularly referred to as a bilinear group [4]. The decisional bilinear
Diffie-Hellman assumption is that the distribution ensembles:

{(g, ga1 , ga2 , ga3 , e(g, g)a1·a2·a3)}
a1,a2,a3

R←−Z∗q
and {(g, ga1 , ga2 , ga3 , Z)}

a1,a2,a3
R←−Z∗q ,Z

R←−GT

are computationally indistinguishable, where (G,GT , q, g, e)← GroupGen(1λ).
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The decisional linear assumption (DLIN)[24]. Let G be a group of prime order q and let
g1, g2, g3 be arbitrary generators for G. The decisional linear assumption is that the distribution
ensembles:{(

g1, g2, g3, g
a1
1 , ga22 , ga1+a2

3

)}
a1,a2

R←−Z∗q
and {(g1, g2, g3, g

a1
1 , ga22 , ga33 )}

a1,a2,a3
R←−Z∗q

are computationally indistinguishable.

The DLIN assumption was introduced by Boneh, Boyen, and Shacham [24], and was intended
to take the place of the more standard decisional Diffie Hellman (DDH) assumption in groups
where the DDH assumption does not hold. In particular, for bilinear groups as defined above,
the DLIN assumption holds even if the DDH assumption does not, at least in the generic group
model.

The generalized decisional k-linear assumption (k-DLIN) [25]. Let G be a group of
prime order q and let g1, · · · , gk, gk+1 be arbitrary generators for G. The generalized decisional
k-linear assumption is that the distribution ensembles:{(

g1, · · · , gk, gk+1, g
a1
1 , · · · , gakk , g

∑k
j=1 aj

k+1

)}
a1,··· ,ak

R←−Z∗q
and{(

g1, · · · , gk, gk+1, g
a1
1 , · · · , gakk , g

ak+1

k+1

)}
a1,··· ,ak,ak+1

R←−Z∗q

are computationally indistinguishable.

Quite evidently, this assumption is a generalization of the DLIN assumption stated above. Note
that the k-DLIN assumption implies the (k+1)-DLIN assumption for all k ≥ 1, but the reverse
is not necessarily true, implying that the k-DLIN assumption family is a family of progressively
weaker assumptions [25].

3 Computational Function Privacy of Public-Key Predicate
Encryption

We present our definitions for the computational function privacy of predicate encryption in
the public-key setting. We consider adversaries that have access to the public parameters of the
scheme, as well as a secret-key generation oracle. The adversary can also adaptively interact with
a real-or-random function-privacy oracle RoRFP. This oracle takes as input any adversarially-
chosen distribution over the class of predicates F , and outputs a secret-key either for a predicate
sampled from the given distribution, or for an independently and uniformly sampled predicate.
At the end of the interaction, the adversary should be able to distinguish between these real
and random modes of operation of RoRFP with only negligible probability.

Formal Definitions. We now formally present the computational function privacy definitions
for public-key predicate encryption.

Definition 3.1 (Real-or-Random Function Privacy Oracle for Predicate Encryption). The real-
or-random function privacy oracle for predicate encryption RoRFP takes as input triplets of the
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form (mode,msk,F), where mode ∈ {real, rand}, msk is the master secret-key, and F is a circuit
representing a distribution over the class of predicates F . If mode = real, the oracle samples

f
R←− F, while if mode = rand, it samples f

R←− F . It then computes skf
R←− KeyGen (msk, f)

and responds with skf .

Definition 3.2 (Computational Function Privacy for Predicate Encryption). A predicate en-
cryption scheme Π = (Setup,KeyGen,Enc,Dec) is said to be computationally function private if
for any probabilistic polynomial-time adversary A, the following holds:

AdvFP
Π,A(λ)

def
=

∣∣∣∣Pr
[
ExptrealFP,Π,A(λ) = 1

]
− Pr

[
ExptrandFP,Π,A(λ) = 1

] ∣∣∣∣ ≤ negl(λ)

where for each λ ∈ N and each mode ∈ {real, rand}, the experiment Exptmode
FP,Π,A(λ) is defined as

follows:

1. (pp,msk)
R←− Setup

(
1λ
)
.

2. b
R←− ARoRFP(mode,msk,·),KeyGen(msk,·) (1λ, pp), subject to the restriction that each Fi with

which A queries RoRFP (mode,msk, ·) represents a distribution with min-entropy k =
ω (log λ).

3. Output b.

Note that our definitions are generic, and may be suitably adopted for IBE, IPE and other
classes of predicate encryption.

Min-Entropy Requirements. In our definitions for computational function privacy, the
adversary is allowed to adaptively issue a polynomial number of queries to the RoRFP oracle, as
long as the queries correspond to distributions with min-entropy k = ω (log λ). As discussed in
Section 1.2, such a restriction is necessary for any definition of function privacy to be meaningful
in the public-key setting. In the context of IBE, for example, the adversary is allowed to
query the real-or-random oracle with ID∗ ∈ ID only if ID∗ represents a k-source such that
k = ω (log λ). In the context of IPE, on the other hand, and adversary can query the real-
or-random oracle with V∗ = (V ∗1 , · · · , V ∗n ) ∈ ZnN only of V∗ is an (n, k)-block source such
that k = ω (log λ). Additionally, each component-wise distribution V ∗i for i ∈ [1, n] should be
completely uncorrelated with each of the other distributions in V∗. This restriction is necessary
to ensure that the adversary cannot carefully craft vectorial distributions with arbitrary inter-
component correlations that trivially compromise function privacy.

Multi-Shot v/s Single-Shot Adversaries. Definition 3.1 considers multi-shot adversaries
that are allowed to query the RoRFP oracle polynomially many times. However, it is polynomially
equivalent to consider single-shot adversaries that can query the RoRFP at most once. This is
easily established by a hybrid argument, where the hybrids are constructed such that only one
query is forwarded to the RoRFP oracle, while the rest are answered by the key generation
oracle.

3.1 Computational Function Privacy of Existing Predicate Encryption Schemes

Identity-Based Encryption. To the best of our knowledge, there exist no IBE schemes in
literature that can be proven to be computationally function private under well-known cryp-
tographic assumptions. The constructions in [4] and [26] have deterministic trapdoors, and are
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hence trivially not function private under Definition 3.1. For such schemes, an adversary could
easily manufacture a circuit that uniformly samples id such that some function of the public
parameters pp and the secret-key skid is already known to the adversary, thus leading to a
straightforward attack breaking function privacy [10]. While such straightforward attacks can-
not be demonstrated on the IBE constructions proposed in [5, 27–29], we are not aware if their
function privacy can be based on standard computationally intractable problems. Finally, the
IBE constructions presented in [10] are secure under a different notion of function privacy called
statistical function privacy, that is based on the statistical closeness of adversarially-chosen and
random distributions. Once again, to the best of our knowledge, these constructions are not
computationally function private to the best of our knowledge. In Section 4, we present a family
of IBE constructions that are computationally function private under well-known cryptographic
assumptions.

Inner-Product Encryption. While computational functional privacy with respect to IPE
in the private key setting is well-studied [13–15], there exist, to the best of our knowledge,
no equivalent public-key counterparts in literature that can be proven to be function private
under well-known cryptographic assumptions. The authors of [11] present a generic technique to
achieve statistical function privacy in the context of inner-product encryption in the public-key
setting; however, they leave the construction of computationally function private IPE schemes in
the public-key setting as an open problem. It also seems that the function privacy of existing IPE
constructions, such as in [2, 3], cannot directly be based on standard computational assumptions
without suitable modifications. In Section 5, we present a family of IPE constructions that are
computationally function private under well-known cryptographic assumptions.

3.2 Enhanced Computational Function Privacy for Predicate Encryption

Boneh, Raghunathan and Segev put forth a stronger notion of function privacy in [11] with
respect to IBE, referred to as enhanced function privacy. Informally, this notion requires that
the function privacy guarantees of an IBE scheme hold even if the adversary can obtain, in
addition to the secret-key skid corresponding to an identity id, an encryption of an arbitrary
message M under id. We formally extend their notion of enhanced computational function
privacy to address a more generalized class of predicates. We assume that the adversary, in
addition to interacting with the key generation and real-or-random function privacy oracles,
also interacts with a function-privacy encryption oracle EncFP. This oracle shares a state with
the real-or-random function privacy oracle. For a multi-shot adversary, let f∗j be the predicate

sampled by the real-or-random function privacy oracle when responding to the jth query made
by the adversary to the real-or-random function privacy oracle. The EncFP oracle takes as input
a payload message M and j, uniformly samples an attribute I∗j such that f∗j

(
I∗j
)

= 1, and

responds with C∗j = Enc
(
pp,
(
I∗j ,M

))
. The equivalent definition for a single-shot adversary

follows similarly.

Definition 3.3 (Enhanced Computational Function Privacy for Predicate Encryption). A pred-
icate encryption scheme Π = (Setup,KeyGen,Enc,Dec) is said to be computationally enhanced
function private if for any probabilistic polynomial-time adversary A, the following holds:

AdvEFP
Π,A(λ)

def
=

∣∣∣∣Pr
[
ExptrealEFP,Π,A(λ) = 1

]
− Pr

[
ExptrandEFP,Π,A(λ) = 1

] ∣∣∣∣ ≤ negl(λ)
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where for each λ ∈ N and each mode ∈ {real, rand}, the experiment Exptmode
EFP,Π,A(λ) is defined

as follows:

1. (pp,msk)
R←− Setup

(
1λ
)
.

2. b
R←− ARoRFP(mode,msk,·),EncFP(·),KeyGen(msk,·) (1λ, pp), subject to the restriction that each Fi

with which A queries RoRFP (mode,msk, ·) represents a distribution with min-entropy
k = ω (log λ).

3. Output b.

4 Computationally Function private Identity-Based Encryption

In this section, we apply our encrypt-augment-recover approach to the anonymous IBE scheme
of Boneh and Franklin [4] to achieve a family of computationally function private IBE schemes
{ΠIBE

k }k≥1. At the core of ΠIBE
k is the following generalized version of the PKE scheme intro-

duced in Section 1.2, which is CPA-secure under the (k + 1)-DLIN assumption:

• KeyGen: The key-generation algorithm samples x1, · · · , xk+2
R←− Z∗q , where q is a λ-bit

prime, and g1, · · · , gk+2
R←− G, where G is a cyclic group of prime order q. It outputs the

secret-key SK and the public-key PK as:

SK = (x1, · · · , xk+2) , PK =
(
g1, · · · , gk+2, {

(
g
xj

j · g
xk+2

k+2

)
}j∈[1,k+1]

)
• Enc: The ciphertext C corresponding to a message M ∈ G is a tuple of the form:

C =

gy11 , · · · , gyk+1

k+1 , g
∑k+1

j=1 yj
k+2 ,

k+1∏
j=1

(
g
xj

j · g
xk+2

k+2

)yj ·M


where y1, · · · , yk+1
R←− Z∗q .

• Dec: The decryption algorithm, on input the ciphertext C = (c1, · · · , ck+3) and the secret-
key (x1, · · · , xk+2), recovers the message M as:

M = ck+3

/k+1∏
j=1

c
xj

j


The IBE scheme ΠIBE

k , which is built using the above scheme, is adaptively data private under
the DBDH assumption and function private under the (k + 1)-DLIN assumption. We present
the construction for the same next.

The Construction. Let GroupGen(1λ) be a probabilistic polynomial-time algorithm that takes
as input a security parameter λ, and outputs the tuple (G,GT , q, g, e), where G and GT are
groups of prime order q = O(2λ), g is a generator for G and e : G×G −→ GT is an efficiently
computable non-degenerate bilinear map. The IBE scheme Π1 = (Setup,KeyGen,Enc,Dec) is
defined over the identity space ID = {IDλ}λ∈N and the message space M = {Mλ}λ∈N. We

assume that M is a small subset of GT , namely |M| < |GT |1/2. While the reason for this
restriction will become clear eventually, we note that it is not very serious since the space

of valid messages in reality is expected to be significantly smaller than |GT |1/2. Finally, let
H : ID −→ G be a publicly available collision-resistant hash function.
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• Setup: The setup algorithm samples (G,GT , q, g, e)
R←− GroupGen(1λ) on input the security

parameter 1λ. It also samples s, x1, · · · , xk+2
R←− Z∗q and g1, · · · , gk+2

R←− G. It outputs the
public parameter pp and the master secret-key msk as:

pp = (g, gs, gx1 , · · · , gxk+2)

msk =
(
s, g1, · · · , gk+2,

(
gx1

1 · g
xk+2

k+2

)
, · · · ,

(
g
xk+1

k+1 · g
xk+2

k+2

))
• KeyGen: On input the master secret-key msk and an identity id ∈ ID, the key generation

algorithm samples y1, · · · , yk+1
R←− Z∗q and outputs the secret-key skid = (d0, · · · , dk+2) where:

dj−1 = g
yj
j for j ∈ [1, k + 1] , dk+1 = g

∑k+1
j=1 yj

k+2 , dk+2 =

k+1∏
j=1

(
g
xj

j · g
xk+2

k+2

)yj · (H (id))
s

Observe that skid = PKE.Enc (PK, (H (id))
s
).

• Enc: On input the public parameter pp, an identity id ∈ ID and a message M ∈ M, the

encryption algorithm samples r
R←− Z∗q and outputs the ciphertext C = (c0, · · · , ck+3) where:

c0 = gr , cj = (gxj )
r

for j ∈ [1, k + 2] , ck+3 = M · e (H (id) , gs)
r

• Dec: On input a ciphertext C = (c0, · · · , ck+3) and a secret-key skid = (d0, · · · , dk+2), the
decryption algorithm computes:

M ′ = ck+3 ·
∏k+2
j=1 e (dj−1, cj)

e (dk+2, c0)

If M ′ ∈M, the decryption algorithm outputs M ′, else it outputs ⊥.

Correctness. First, consider a message M ∈M, a ciphertext C = (c0, · · · , ck+3) correspond-
ing to M under an identity id ∈ ID and a secret-key skid = (d0, · · · , dk+2) corresponding to id.
Then, we have:

M ′ = M · e (H (id) , gs)
r ·

∏k+1
j=1 e

(
g
yj
j , (g

xj )
r) · e(g∑k+1

j=1 yj , (gxk+2)
r
)

e
((∏k+1

j=1

(
g
xj

j · g
xk+2

k+2

)yj) · (H (id))
s
, gr
)

= M · e (H (id) , gs)
r ·

∏k+1
j=1 e

(
g
yj
j , (g

xj )
r) · e(g∑k+1

j=1 yj , (gxk+2)
r
)

∏k+1
j=1 e

(
g
xj

j , g
r
)yj · e (gxk+2

k+2 , g
r
)∑k+1

j=1 yj · e ((H (id))
s
, gr)

= M

Therefore as long as the ciphertext and the secret-key correspond to the same identity, the
message is recovered correctly. Again, when the ciphertext and the secret-key correspond to
two different identities, say id and id′ respectively, the decryption algorithm computes:

M ′ = M · e
(
H (id) ·

(
H
(
id′
))−1

, gs
)r

Now, the restriction that M is a small subset of GT of size less than |GT |1/2 ensures that

the probability of M ′ still lying in M, for s, r
R←− Z∗q and a collision-resistant hash function

H, is negligible in the security parameter λ. This completes the proof of correctness for our
generalized IBE scheme ΠIBE

k .
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4.1 Security of Our IBE Scheme

Data Privacy. We state the following theorem for the data privacy of ΠIBE
k :

Theorem 4.1 Our IBE scheme ΠIBE
k is adaptively data private under the DBDH assumption.

Proof Overview. Due to space limitation, we only provide a brief overview of the proof idea here.
The detailed proof is presented in Appendix A. The proof considers a probabilistic polynomial-
time that has access to the public parameters of our scheme, and can determine from a chal-
lenge ciphertext whether it is associated with either of two identity-message pairs (id∗0,M

∗
0 ) or

(id∗1,M
∗
1 ) with non-negligible advantage. The adversary can request for secret-keys correspond-

ing to identities of its choice, subject to the restriction that the requested identities differ from
both id∗0 and id∗1.

In order to provide adaptive data privacy under the DBDH assumption, the proof con-
siders a simulator that receives the DBDH instance (g, ga1 , ga2 , ga3 , Z) as input and chooses

x1, · · · , xk+2
R←− Z∗q as input. The public parameters are set up as (g, ga1 , gx1 , · · · , gxk+2), where

x1, · · · , xk+2
R←− Z∗q . The simulator simulates the hash function H as a random oracle. On re-

ceiving a hash query for some identity idi, The simulator responds with either either gαi or

(ga2)
αi for αi

R←− Z∗q , and remembers the response for future queries.
The simulator also simulates the secret-key generation oracle. On receiving a secret-key

query for idi, the simulator looks up H (idi), and either aborts if H (idi) = (ga2)
αi , or chooses

y1, · · · , yk+1
R←− Z∗q and responds with:

skidi =

gy11 , · · · , gyk+1

2 , g
∑k+1

j=1 yj
k+2 ,

k+2∏
j=1

(
g
xj

j · g
xk+2

k+2

)yj · (ga1)
αi


It is easy to see when the simulator does not abort, the distribution of skidi is exactly as in the
real world.

Finally, in the challenge phase, the simulator chooses b
R←− {0, 1} and looks up H (id∗b). It

aborts if H (id∗b) is of the form gα
∗

for some α∗
R←− Z∗q . Otherwise, it must be the case that

H (id∗b) is of the form ga2·α
∗
. In this case, it embeds the DBDH challenge in the challenge

ciphertext C∗ as follows:

C∗ =
(

(ga3)
(α∗b )−1

, (ga3)
x1·(α∗b )−1

, · · · , (ga3)
xk+2·(α∗b )−1

,M∗b · Z
)

This ciphertext is either well-formed or uniform and independent in the adversary’s view de-
pending on the DBDH instance received by the simulator as input. This allows us to relate the
advantage of the simulator in solving the DBDH instance to the advantage of the adversary in
breaking the adaptive data privacy of our scheme. Finally, the abort condition in the secret-key
query phase and the challenge phase is mutually opposite, so that the overall probability of
abortion can be suitably minimized. This is essentially a a modification of the original proof
idea in [4] to fit our function private scheme.

Computational Function Privacy. We state the following theorem for the computational
function privacy of ΠIBE

k :

Theorem 4.2 Our IBE scheme ΠIBE
k is computationally function private under the (k + 1)-

DLIN assumption for identities sampled uniformly from k-sources with k = ω (log λ).
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Proof. We begin by stating the following claim:

Claim 4.1 For any probabilistic polynomial-time adversary A and for mode
R←− {real, rand},

the following holds:∣∣∣∣Pr
[
Exptmode

FP,ΠIBE
k ,A(λ) = 1

]
− Pr

[
ExptrandFP,ΠIBE

k ,A(λ) = 1
] ∣∣∣∣ ≤ negl(λ)

To prove this claim, we assume the contrary. Let A be a probabilistic polynomial-time adversary

such that for mode
R←− {real, rand}, we have:∣∣∣∣Pr

[
Exptmode

FP,ΠIBE
k ,A(λ) = 1

]
− Pr

[
ExptrandFP,ΠIBE

k ,A(λ) = 1
] ∣∣∣∣ = ε > negl(λ)

We assume that the adversary A issues a single query to the real-or-random oracle. As discussed
in Section 3, such a single-shot adversary is polynomially equivalent to its multi-shot variant
considered in Definition 3.1. We construct an algorithm B that solves an instance of the (k + 1)-
DLIN problem with non-negligible advantage ε′ = ε. B is given

(
g1, · · · , gk+2, g

a1
1 , · · · , gak+2

k+2

)
and interacts with A as follows:

• Setup: B samples s, x1, · · · , xk+2
R←− Z∗q and g

R←− G. It sets pp = (g, gs, gx1 , · · · , gxk+2) and
provides pp to A. Observe that the distribution of pp is exactly as in the real world.

• H −Queries: B maintains a list of tuples of the form 〈idj , H (idj)〉 such that H (idj) ∈ G.
When A issues a hash query for idi ∈ ID, B responds as follows:

1. B searches the list for a matching tuple of the form 〈idi, H (idi)〉. If such a tuple is found,
it returns H (idi) to A.

2. Otherwise, B samples H (idi)
R←− G and adds the tuple 〈idi, H (idi)〉 to its existing list. It

returns H (idi) to A.

• Secret-Key Queries: When A issues a secret-key query for idi ∈ ID, B responds as follows:

1. B runs the aforementioned procedure to look up H (idi).

2. B samples y1, · · · , yk+1
R←− Z∗q and responds with:

skidi =

gy11 , · · · , gyk+1

k+1 , g
∑k+1

j=1 yj
k+2 ,

k+1∏
j=1

(
g
xj

j · g
xk+2

k+2

)yj · (H (idi))
s


where g1, · · · , gk+2 are part of its input instance. Once again, observe that the distribution
of skidi is exactly as in the real world.

• Real-or-Random Query: Suppose A queries the real-or-random oracle with ID∗ - a circuit

representing a k-source over the identity space ID such that k = ω (log λ). B samples mode
R←−

{real, rand} and does the following:

1. If mode = real, B samples id∗
R←− ID∗, while if mode = rand, it samples id∗

R←− ID. It
then runs the aforementioned procedure to look up H (id∗).
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2. B responds with the secret-key skid∗ as:

skid∗ =

ga11 , · · · , gak+2

k+2 ,

k+2∏
j=1

(
g
aj
j

)xj

 · (H (id∗))
s


where ga11 , · · · , gak+2

k+2 are part of its input instance.

• Guess: At the end of the game, A outputs a bit b′. B outputs the same bit b′.

It is easy to see that when ak+2 =
∑k+1
j=1 aj , the secret-key skid∗ is well-formed and identically

distributed to the response of the real-or-random oracle in the experiment Exptmode
FP,ΠIBE

k ,A(λ).

On the other hand, when ak+2 is uniformly random in Z∗q , the secret-key skid∗ is uniformly
random, and hence identically distributed to the response of the real-or-random oracle in the
experiment ExptrandFP,ΠIBE

k ,A(λ). Now, the advantage ε′ of B in solving the (k + 1)-DLIN instance

(where the probability is taken over all possible choices of a1, · · · , ak+2
R←− Z∗q and all possible

choices of g1, · · · , gk+2
R←− G) may be quantified as:

ε′ =

∣∣∣∣Pr

[
B
(
g1, · · · , gk+2, g

a1
1 , · · · , g

∑k+1
j=1 aj

k+2

)
= 1

]
− Pr

[
B
(
g1, · · · , gk+2, g

a1
1 , · · · , gak+2

k+2

)
= 1
] ∣∣∣∣

=

∣∣∣∣Pr
[
Exptmode

FP,ΠIBE
k ,A(λ) = 1

]
− Pr

[
ExptrandFP,ΠIBE

k ,A(λ) = 1
] ∣∣∣∣

= ε

This completes the proof of Claim 4.1. The proof of function privacy for ΠIBE
k now follows from

the following observation:

AdvFP
ΠIBE

k ,A(λ) =

∣∣∣∣Pr
[
ExptrealFP,ΠIBE

k ,A(λ) = 1
]
− Pr

[
ExptrandFP,ΠIBE

k ,A(λ) = 1
] ∣∣∣∣

≤ 2

∣∣∣∣Pr
[
Exptmode

FP,ΠIBE
k ,A(λ) = 1

]
− Pr

[
ExptrandFP,ΠIBE

k ,A(λ) = 1
] ∣∣∣∣

= 2ε ≤ negl(λ)

Enhanced Computational Function Privacy. We state the following theorem for the
enhanced computational function privacy of ΠIBE

k :

Theorem 4.3 Our IBE scheme ΠIBE
k is computationally enhanced function private under the

(k + 1)-DLIN assumption for identities sampled uniformly from k-sources with k = ω (log λ).

Proof Overview . The proof is very similar to that of Theorem 4.2; hence we restrict to providing
a proof overview here. The detailed proof is presented in Appendix B. An important component
of the proof is to show that the challenger B can additionally simulate the function privacy
encryption oracle, and that the real and random modes of operation of the function privacy
oracle are indistinguishable even in the presence of the encryption oracle. The first part is
easy to demonstrate. Let skid∗ =

(
d∗0, · · · , d∗k+2

)
be the response of the real-or-random function

privacy oracle to the adversary A. On receiving a function-privacy encryption oracle query for
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a payload message M , B responds as follows: it samples r
R←− Z∗q and outputs the ciphertext

C∗ =
(
c∗0, · · · , c∗k+3

)
where:

c∗0 = gr , c∗j = (gxj )
r

for j ∈ [1, k + 2]

and

c∗k+3 = M ·
e
(
d∗k+2, c

∗
0

)∏k+2
j=1 e

(
d∗j−1, c

∗
j

)
For the second part, observe that when the input (k + 1)-DLIN challenge for B is valid, the
ciphertext C∗ is well-formed and identically distributed to the response of the function pri-
vacy encryption oracle in the experiment Exptmode

EFP,ΠIBE
k ,A(λ). On the other hand, when the input

(k + 1)-DLIN challenge for B is invalid, the ciphertext C∗ is uniformly random, and hence iden-
tically distributed to the response of the function privacy encryption oracle in the experiment
Exptmode

EFP,ΠIBE
k ,A(λ). In either case, decrypting C∗ using skid∗ correctly retrieves M . Hence, for

the real and random modes of operation of the function privacy oracle, the response of the
encryption oracle is also indistinguishable under the (k + 1)-DLIN assumption. This completes
the proof overview for the enhanced computational function privacy of ΠIBE

k .

5 Computationally Function private Inner-Product Encryption

In this section, we present a family of selectively data private zero-IPE schemes {ΠIPE
k }k≥1 that

are also computationally function private under the generalized family of k-DLIN assumptions
in the standard model. Our schemes are defined over the set of attributes Σ = ZnN (N being a
product of three primes q1, q2 and q3), and the class of vectorial predicates F = {f−→v | −→v ∈ ZnN},
such that for I = (I1, · · · , In) ∈ ZnN , we have f−→v (I) = 1 if and only if 〈−→v , I〉 = 0 mod N .
Once again, our constructions are obtained by applying our encrypt-augment-recover approach
to the zero-IPE scheme of Katz, Sahai and Waters [3].

Construction Overview. Let G be a bilinear group of order N = q1q2q3 (each of q1, q2 and
q3 being λ-bit primes), and let G1, G2 and G3 denote the subgroups of G of order q1, q2 and q3,
respectively. Also, let ê : G × G −→ GT be an efficiently computable non-degenerate bilinear
map, where GT is also a group of order N . Note that if g is the generator for G, then the element
g1 = gq2·q3 is a generator for G1, the element g2 = gq1·q3 is a generator for G2, and the element
g3 = gq1·q2 is a generator for G3. Furthermore, for any elements h1 ∈ G1, h2 ∈ G2 and h3 ∈ G3,
we have ê (h1, h2) = ê (h2, h3) = ê (h1, h3) = 1. Also, let GroupGen′(1λ) be a probabilistic
polynomial-time algorithm that takes as input a security parameter λ, and outputs the tuple
(G,GT , q1, q2, q3, g1, g2, g3, ê). Finally, the payload message space M is assumed to be a small

subset of GT , namely |M| < |GT |1/2. Our function private zero-IPE scheme uses the three
subgroups for three distinct roles:

• The subgroup G2 is used to encode the vectors −→v and I in the secret-key and the cipher-
texts, respectively, and to compute the inner product 〈−→v , I〉 in the exponent of a bilinear
map computation.

• The subgroup G1 serves a dual purpose in our scheme. On the one hand, it has the effect of
masking the inner product computation in G2, and preventing the adversary from improp-
erly manipulating the computation in any way to reveal information about the underlying
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attributes. In particular, it is pivotal in ensuring the non-malleability of the secret-keys and
ciphertexts generated by the scheme. On the other hand, it is in the G1 subgroup that we
incorporate our encrypt-augment-recover methodology to achieve computational function
privacy.

• The subgroup G3 serves as an additional layer of masking for the other subgroups. In
particular, random elements sampled from G3 are multiplied with various components in
both the secret-keys as well as the ciphertexts to hide possible information leakages from
the subgroups G1 and G2.

Encrypt-Augment-Recover. We apply our encrypt-augment-recover approach to the zero-
IPE scheme of Katz, Waters and Sahai to achieve computational function privacy. At the core
of our approach is a public-key encryption algorithm PKE = (KeyGen,Enc,Dec) that is CPA-
secure under the (k + 1)-DLIN assumption. The PKE essentially operates in the subgroup G1

of prime order q1, and its outputs are suitably masked before being incorporated in our scheme.
We modify the algorithms of the original scheme as follows:

• The modified setup algorithm runs (SK,PK)
R←− PKE.KeyGen. It incorporates PK in the

master secret-key of the original scheme, and modifies the public parameter to include a
one way function of SK.

• The original zero-IPE scheme of Katz, Sahai and Waters comprises of secret-keys of the
form

(
d0, {d1,i, d2,i}i∈[1,n]

)
. The modified key-generation algorithm in our scheme generates

a secret-key of the form sk−→v =
(
d0, {dj1,i, d

j
2,i}i∈[1,n],j∈[0,k+2]

)
such that

(
{dj1,i}j∈[0,k+2]

)
=

PKE.Enc (PK, d1,i) and
(
{dj2,i}j∈[0,k+2]

)
= PKE.Enc (PK, d2,i) for i ∈ [1, n] (along with

suitable masking as necessary). Observe that this naturally ensures that each component of
the modified secret-key is independent and identically distributed. In the proof of function
privacy, we argue the indistinguishability of a well-formed secret-key component from a
uniformly random one by relating it to the hardness of solving a (k + 1)-DLIN instance in
G1.

• The modified encryption algorithm generates an augmented ciphertext that retains the ci-
phertext of the original scheme unaltered as one of its components. The additional cipher-
text components are used by the modified decryption algorithm subsequently to remove
the effect of PKE and recover the payload message M . The additional components are also
in the group G1, and are suitably masked using uniformly random elements from G3. The
masking ensures that the data privacy guarantees of the original scheme are not weakened.

Construction Details. We now present the construction for ΠIPE
k in details.

• Setup: The setup algorithm samples (G,GT , q1, q2, q3, g1, g2, g3, ê)
R←− GroupGen′(1λ). It also

samples {x1,j , x2,j
R←− Z∗q1}j∈[1,k+2], {g1,j , g2,j

R←− G1}j∈[1,k+2], {h1,i, h2,i
R←− G1}i∈[1,n] and

{Rj1,i, R
j
2,i

R←− G3}i∈[1,n],j∈[0,k+2]. It additionally samples h
R←− G1, γ

R←− Z∗q1 and R3
R←− G3,
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and sets:

Q = g2 ·R3

S0
1,i = h1,i ·R0

1,i , S0
2,i = h2,i ·R0

2,i for i ∈ [1, n]

Sj1,i = h
x1,j

1,i ·R
j
1,i , Sj2,i = h

x2,j

2,i ·R
j
2,i for i ∈ [1, n], j ∈ [1, k + 2]

It outputs the public parameter pp and the master secret-key msk as:

pp =
(
g1, g3, Q, {Sj1,i, S

j
2,i}i∈[1,n],j∈[0,k+2], ê (g1, h)

γ
)

msk =
(
q1, q2, q3, g2, {g1,j , g2,j}j∈[1,k+2], {g

x1,j

1,j · g
x1,k+2

1,k+2 , g
x2,j

2,j · g
x2,k+2

2,k+2 }j∈[1,k+1], {h1,i, h2,i}i∈[1,n], h
γ
)

• KeyGen: On input the master secret-key msk and a vector −→v = (v1, · · · , vn), the key genera-

tion algorithm samples {z1,i, z2,i
R←− Z∗q1}i∈[1,n], {yj1,i, y

j
2,i

R←− Z∗q1}i∈[1,n],j∈[1,k+1], Q4
R←− G2,

R5
R←− G3 and f1, f2

R←− Z∗q2 . It then sets d0 = Q4 ·R5

/(
hγ ·

∏n
i=1 h

z1,i
1,i · h

z2,i
2,i

)
. It also sets:

d0
1,i = g

z1,i
1 · gf1·vi2

/k+1∏
j=1

(
g
x1,j

1,j · g
x1,k+2

1,k+2

)yj1,i for i ∈ [1, n]

d0
2,i = g

z2,i
1 · gf2·vi2

/k+1∏
j=1

(
g
x2,j

2,j · g
x2,k+2

2,k+2

)yj2,i for i ∈ [1, n]

Finally, it sets the following additional components:

dj1,i = g
yj1,i
1,j , dj2,i = g

yj2,i
2,j for i ∈ [1, n], j ∈ [1, k + 1]

dk+2
1,i = g

∑k+1
j=1 y

j
1,i

1,k+2 , dk+2
2,i = g

∑k+1
j=1 y

j
2,i

2,k+2 for i ∈ [1, n]

and outputs the secret-key sk−→v as:

sk−→v =
(
d0, {dj1,i, d

j
2,i}i∈[1,n],j∈[0,k+2]

)
• Enc: On input the public parameter pp, an attribute I = (I1, · · · , In) ∈ Σ and a pay-

load message M ∈ M, the encryption algorithm samples r, α, β
R←− Z∗N and {Rj6,i, R

j
7,i

R←−
G3}i∈[1,n],j∈[0,k+2]. It then sets c0 = gr1. It also sets :

c01,i =
(
S0

1,i

)r ·Qα·Ii ·R0
6,i , c02,i =

(
S0

2,i

)r ·Qβ·Ii ·R0
7,i for i ∈ [1, n]

cj1,i =
(
Sj1,i

)r
·Rj6,i , cj2,i =

(
Sj2,i

)r
·Rj7,i for i ∈ [1, n], j ∈ [1, k + 2]

Finally, it sets c3 = M · (ê (g1, h)
γ
)
r

and outputs the ciphertext C as:

C =
(
c0, {cj1,i, c

j
2,i}i∈[1,n],j∈[0,k+2], c3

)
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• Dec: On input a ciphertext C =
(
c0, {cj1,i, c

j
2,i}i∈[1,n],j∈[0,k+2]

)
and a secret-key sk−→v =(

d0, {dj1,i, d
j
2,i}i∈[1,n],j∈[0,k+2]

)
, the decryption algorithm computes:

M ′ = c3 · ê (d0, c0) ·

 n∏
i=1

k+2∏
j=0

ê
(
dj1,i, c

j
1,i

)
· ê
(
dj2,i, c

j
2,i

)
If M ′ ∈M, the decryption algorithm outputs M ′, else it outputs ⊥.

Correctness. To see that correctness holds for our zero-IPE scheme, let C and sk−→v be as
described in Section 5. Then we have:

M ′ = c3 · ê (d0, c0) ·

 n∏
i=1

k+2∏
j=0

ê
(
dj1,i, c

j
1,i

)
· ê
(
dj2,i, c

j
2,i

)
= M · (ê (g1, h)

γ
)
r ·

( ∏n
i=1 ê

(
g
z1,i
1 , hr1,i

)
· ê
(
g
z2,i
1 , hr2,i

)
ê (hγ , gr1) · ê

(∏n
i=1 h

z1,i
1,i · h

z2,i
2,i , g

r
1

)) ·( n∏
i=1

ê
(
gf1·vi2 , gα·Ii2

)
· ê
(
gf2·vi2 , gβ·Ii2

))

·
n∏
i=1


∏k+1
j=1

(
ê

(
g
yj1,i
1,j ,

(
h
x1,j

1,i

)r) · ê(gyj2,i2,j ,
(
h
x2,j

2,i

)r)) · ê(g∑k+1
j=1 y

j
1,i

1,k+2 ,
(
h
x1,k+2

1,i

)r) · ê(g∑k+1
j=1 y

j
2,i

2,k+2 ,
(
h
x2,k+2

2,i

)r)
ê

(∏k+1
j=1

(
g
x1,j

1,j · g
x1,k+2

1,k+2

)yj1,i
, hr1,i

)
· ê
(∏k+1

j=1

(
g
x2,j

2,j · g
x2,k+2

2,k+2

)yj2,i
, hr2,i

)


= M ·
n∏
i=1

ê (g2, g2)
(αf1+βf2)·xi·vi

= M · ê (g2, g2)
(αf1+βf2 mod q2)·〈−→v ,I〉

where α, β are uniformly random in Z∗N and f1, f2 are uniformly random in Z∗q2 . If 〈−→v , I〉 = 0
mod N , then we have M ′ = M . If 〈−→v , I〉 6= 0 mod N , there are two cases: if 〈−→v , I〉 6= 0 mod
q2, then with all but negligible probability (over random choice of α, β, f1, f2), M ′ does not
lie in GT (since M is a small subset of GT ). Otherwise, we have 〈−→v , I〉 = 0 mod q2, in which
case M ′ will always be equal to M ; however, this would reveal a non-trivial factor of N , and so
this too occurs with negligible probability. In fact, the data privacy property of this zero-IPE
construction relies on a set of assumptions in bilinear groups that imply the hardness of finding
a non-trivial factor of N .

The Need for Two Sub-Systems. Note that our zero-IPE scheme uses two parallel sub-
systems (in the key generation and encryption algorithms) that are apparently redundant since
they perform the same functions. Indeed, our scheme inherits this feature from the original
zero-IPE scheme of Katz, Sahai and Waters [3]. Eliminating one of the sub-systems from our
scheme would retain functional correctness as well as computational function privacy, while also
improving performance and efficiency. However, the proof methodology in [3] for data privacy
relies on the existence of the parallel sub-systems in an essential way. Since our aim is to retain
the same data privacy guarantees as in the original scheme, we stick to the use of two parallel
sub-systems in our augmented zero-IPE scheme.
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5.1 Security of Our IPE Scheme

Data Privacy. We state the following theorem for the data privacy of ΠIPE
k :

Theorem 5.1 Our zero-IPE scheme ΠIPE
k retains the selective data privacy guarantees of the

original zero-IPE scheme of Katz, Sahai and Waters [3].

Proof Overview. We provide a brief overview of the proof technique for our scheme, which
essentially follows the proof technique presented in [3]. We consider a probabilistic polynomial-
time adversary that tries to determine whether the challenge ciphertext is associated with either
of the two attributes I0 or I1. The proof proceeds via a sequence of hybrid games in which an
entire attribute used in the challenge ciphertext is changed in one step, instead of changing them
component by component for reasons mentioned in the proof of the original scheme in [3]. This
is facilitated by the presence of the two parallel sub-systems, which allows the hybrid games to
use ill-formed ciphertexts that are encrypted with respect to two different attributes I and I ′

and in the two sub-systems. Let such a ciphertext be denoted informally as (I, I ′). The proof
establishes indistinguishability between the well-formed ciphertexts (I0, I0) and (I1, I1) via a

sequence of intermediate hybrid games using the ill-formed ciphertexts
(
I0,
−→
0
)

, (I0, I1) and(−→
0 , I1

)
. The zero vector is used since it orthogonal to any other vector. The simulator in our

proof works in one sub-system independent of what happens in the other one. In each hybrid
game, the simulator embeds a subgroup-decision like assumption in the challenge ciphertext,
and the structure of the challenge determines whether a sub-system embeds a given vector or
a zero vector. This is essentially an adoption of the proof technique originally presented in [3]
to our function private scheme.

An additional requirement in our proof is that the simulator should be able to embed the
(k + 1)-DLIN instances when responding to the key generation queries from the adversary. As
demonstrated in the proof of Theorem 4.1, this is straightforward to achieve: since the simulator
in the data privacy game is allowed to set up the (k + 1)-DLIN instances entirely on its own,
it can easily augment the secret-key generation process in the proof of the original scheme by
appropriately embedding these instances where necessary. Moreover, since the (k + 1)-DLIN
instances are sampled uniformly at random, the resulting distribution of secret-keys is exactly
as in the real world from the point of view of the adversary. Similarly, in the challenge phase,
the simulator generates the additional components in the augmented ciphertext uniformly at
random, without altering the nature of the ciphertext distribution from the adversary’s point
of view.

Computational Function Privacy. We state the following theorem for the computational
function privacy of Πk:

Theorem 5.2 Our zero-IPE scheme ΠIPE
k is computationally function private under the (k + 1)-

DLIN assumption for predicate vectors sampled uniformly from (n, k)-block sources with k =
ω (log λ).

Proof. The proof aims to show that any probabilistic poly-time adversary A cannot distinguish
between the real and random modes of operation of the function privacy oracle, provided that
the oracle is queried with circuits that sample sufficiently unpredictable distributions over the
space of predicates. In particular, such distributions should be (n, k)-block sources over ZnN ,
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such that each component of a vector −→v sampled from an adversarially chosen distribution has
a min-entropy of k = ω (log λ), and is uncorrelated with all other components. We define a

series of hybrid experiments Exptmode,m
FP,ΠIPE

k ,A(λ) for mode ∈ {real, rand} and m ∈ [0, n] as follows:

• Exptmode,0
FP,ΠIPE

k ,A(λ) is exactly identical to Exptmode
FP,ΠIPE

k ,A(λ).

• Exptmode,m
FP,ΠIPE

k ,A(λ) for m ∈ [1, n] is identical to Exptmode
FP,ΠIPE

k ,A(λ) except that the secret-key

sk−→
v∗

=
(
d∗0, {d∗

j
1,i, d

∗j
2,i}i∈[1,n],j∈[0,k+2]

)
generated by the real-or-random oracle is such that

the set of components {d∗j1,i, d∗
j
2,i}i∈[1,m],j∈[0,k+2] are uniformly random and independent

of the underlying vector
−→
v∗.

Quite evidently, the following holds:∣∣∣∣Pr
[
Exptreal,n

FP,ΠIPE
k ,A(λ) = 1

]
− Pr

[
Exptrand,n

FP,ΠIPE
k ,A(λ) = 1

] ∣∣∣∣ = 0 (1)

We now state and prove the following claim:

Claim 5.1 For any probabilistic polynomial-time adversary A, for mode ∈ {real, rand} and for
m ∈ [0, n− 1], the following holds:∣∣∣∣Pr

[
Exptmode,m

FP,ΠIPE
k ,A(λ) = 1

]
− Pr

[
Exptmode,m+1

FP,ΠIPE
k ,A(λ) = 1

] ∣∣∣∣ ≤ negl(λ)

To prove this claim, we assume the contrary. Let A be a probabilistic polynomial-time adversary
such that: ∣∣∣∣Pr

[
Exptmode,m

FP,ΠIPE
k ,A(λ) = 1

]
− Pr

[
Exptmode,m+1

FP,ΠIPE
k ,A(λ) = 1

] ∣∣∣∣ = ε > negl(λ)

for some m ∈ [0, n− 1]. We construct an algorithm B such that:∣∣∣∣Pr

[
B
((

g1,1, · · · , g1,k+2, g
a1
1,1, · · · , g

∑k+1
j=1 aj

1,k+2

)
,

(
g2,1, · · · , g2,k+2, g

a′1
2,1, · · · , g

∑k+1
j=1 a

′
j

2,k+2

))
= 1

]
−

Pr
[
B
((
g1,1, · · · , g1,k+2, g

a1
1,1, · · · , g

ak+2

1,k+2

)
,
(
g2,1, · · · , g2,k+2, g

a′1
2,1, · · · , g

a′k+2

2,k+2

))
= 1
] ∣∣∣∣ = ε

where the probability is over random choice of {aj , a′j
R←− Z∗q1}j∈[1,k+2], and over random choice

of {g1,j , g2,j
R←− G1}j∈[1,k+2] (G1 being a group of prime order q1). Observe that B can in turn

be trivially used to construct another algorithm that has advantage at least ε in solving a given
instance of the (k + 1)-DLIN problem. B interacts with A as follows:

• Setup: B uniformly samples two other λ-bit primes q2, q3 apart from q1 which is the order
of the group G1 in its input instance. It also sets N = q1q2q3, and then sets up the groups G,
G2 and G3 of order N , q2 and q3 respectively, along with ê : G×G −→ GT . It then samples

{x1,j , x2,j
R←− Z∗q1}j∈[1,k+2], {h1,i, h2,i

R←− G1}i∈[1,n] and {Rj1,i, R
j
2,i

R←− G3}i∈[1,n],j∈[0,k+2]. It

additionally samples h
R←− G1, γ

R←− Z∗q1 and R3
R←− G3, and sets:

Q = g2 ·R3

S0
1,i = h1,i ·R0

1,i , S0
2,i = h2,i ·R0

2,i for i ∈ [1, n]

Sj1,i = h
x1,j

1,i ·R
j
1,i , Sj2,i = h

x2,j

2,i ·R
j
2,i for i ∈ [1, n], j ∈ [1, k + 2]
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Finally, it sets the public parameter pp as:

pp =
(
g1, g3, Q, {Sj1,i, S

j
2,i}i∈[1,n],j∈[0,k+2], ê (g1, h)

γ
)

and provides the same to A. Observe that pp is distributed exactly as in the real world.

• Secret-Key Queries: WhenA issues a secret-key query for−→v ∈ ZnN , B samples {z1,i, z2,i
R←−

Z∗q1}i∈[1,n], {yj1,i, y
j
2,i

R←− Z∗q1}i∈[1,n],j∈[1,k+1], Q4
R←− G2, R5

R←− G3 and f1, f2
R←− Z∗q2 . It then

sets:

d0 = Q4 ·R5

/(
n∏
i=1

h
z1,i
1,i · h

z2,i
2,i

)

d0
1,i = g

z1,i
1 · gf1·vi2

/k+1∏
j=1

(
g
x1,j

1,j · g
x1,k+2

1,k+2

)yj1,i for i ∈ [1, n]

d0
2,i = g

z2,i
1 · gf2·vi2

/k+1∏
j=1

(
g
x2,j

2,j · g
x2,k+2

2,k+2

)yj2,i for i ∈ [1, n]

Finally, it sets the following additional components:

dj1,i = g
yj1,i
1,j , dj2,i = g

yj2,i
2,j for i ∈ [1, n], j ∈ [1, k + 1]

dk+2
1,i = g

∑k+1
j=1 y

j
1,i

1,k+2 , dk+2
2,i = g

∑k+1
j=1 y

j
2,i

2,k+2 for i ∈ [1, n]

and outputs the secret-key sk−→v as:

sk−→v =
(
d0, {dj1,i, d

j
2,i}i∈[1,n],j∈[0,k+2]

)
• Real-or-Random Query: SupposeA queries the real-or-random oracle with an (n, k)-block

source V∗ = (V ∗1 , · · · , V ∗n ) over ZnN such that k = ω (log λ). B samples mode
R←− {real, rand}

and does the following:

1. For each i ∈ [1, n], B samples v∗i
R←− V ∗i if mode = real, or v∗i

R←− ZN if mode = rand. The

vector
−→
v∗ = (v∗1 , · · · , v∗n) is the challenge vector that B uses to respond to the query from

A.

2. As in the response to the secret-key queries, B samples {z1,i, z2,i
R←− Z∗q1}i∈[1,n], {yj1,i, y

j
2,i

R←−
Z∗q1}i∈[1,n]\{m+1},j∈[1,k+1], Q4

R←− G2, R5
R←− G3 and f1, f2

R←− Z∗q2 . It also samples

{yk+2
1,i , y

k+2
2,i

R←− Z∗q1}i∈[1,m]. Observe that B does not sample yj1,m+1 or yj2,m+1 for j ∈
[1, k + 2]. This is because B embeds the its input pair of (k + 1)-DLIN instances in its
response by formally setting yj1,m+1 = aj and yj2,m+1 = a′j for each j ∈ [1, k + 2] as
described next.
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3. B now sets the various components of the secret-key as follows:

d∗0 = Q4 ·R5

/(
n∏
i=1

h
z1,i
1,i · h

z2,i
2,i

)

d∗01,i = g
z1,i
1 · gf1·vi2

/k+1∏
j=1

(
g
x1,j

1,j · g
x1,k+2

1,k+2

)yj1,i for i ∈ [1, n] \ {m+ 1}

d∗02,i = g
z2,i
1 · gf2·vi2

/k+1∏
j=1

(
g
x2,j

2,j · g
x2,k+2

2,k+2

)yj2,i for i ∈ [1, n] \ {m+ 1}

It also sets the following additional components:

d∗j1,i = g
yj1,i
1,j , d∗j2,i = g

yj2,i
2,j for i ∈ [1, n] \ {m+ 1}, j ∈ [1, k + 1]

d∗k+2
1,i = g

yk+2
1,i

1,k+2 , d∗k+2
2,i = g

yk+2
2,i

2,k+2 for i ∈ [1,m]

d∗k+2
1,i = g

∑k+1
j=1 y

j
1,i

1,k+2 , d∗k+2
2,i = g

∑k+1
j=1 y

j
2,i

2,k+2 for i ∈ [m+ 2, n]

Observe that the first m components of the secret-key are crafted to be uniformly ran-
dom, while the last (n−m− 1) components are well-formed.

4. Finally, B embeds its input pair of (k + 1)-DLIN instances in the (m+ 1)
th

component
of the secret-key by setting:

d∗01,m+1 = g
z1,m+1

1 · gf1·vm+1

1

/k+2∏
j=1

(
g
a′j
1,j

)x1,j


d∗02,m+1 = g

z2,m+1

1 · gf2·vm+1

2

/k+2∏
j=1

(
g
a′j
2,j

)x2,j


d∗j1,m+1 = g

aj
1,j , d∗j2,m+1 = g

a′j
2,j for j ∈ [1, k + 2]

B responds to A with the secret-key sk−→
v∗

as:

sk−→
v∗

=
(
d∗0, {d∗

j
1,i, d

∗j
2,i}i∈[1,n],j∈[0,k+2]

)
• Guess: At the end of the game, A outputs a bit b′. B outputs the same bit b′.

It is easy to see that when ak+2 =
∑k+1
j=1 aj and a′k+2 =

∑k+1
j=1 a

′
j , the secret-key sk−→

v∗
is identi-

cally distributed to the response of the real-or-random oracle in the experiment Exptmode,m
FP,ΠIPE

k ,A(λ).

On the other hand, when either or both of ak+2 and a′k+2 are uniformly random in Z∗q , the
secret-key sk−→

v∗
is identically distributed to the response of the real-or-random oracle in the

experiment Exptmode,m+1

FP,ΠIPE
k ,A(λ). It follows readily that B has the same advantage ε as A in solving
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its input instance pair. This completes the proof of Claim 5.1.

We now make the following observation:

|Pr
[
Exptmode

FP,ΠIPE
k ,A(λ) = 1

]
− Pr

[
Exptmode,n

FP,ΠIPE
k ,A(λ) = 1

] ∣∣∣∣
≤

n−1∑
m=0

∣∣∣∣Pr
[
Exptmode,m

FP,ΠIPE
k ,A(λ) = 1

]
− Pr

[
Exptmode,m+1

FP,ΠIPE
k ,A(λ) = 1

] ∣∣∣∣
≤ negl(λ) (from Claim 5.1) for n = poly(λ)

Consequently, for mode
R←− {real, rand}, we have:

AdvFP
ΠIPE

k ,A(λ) =

∣∣∣∣Pr
[
ExptrealFP,ΠIPE

k ,A(λ) = 1
]
− Pr

[
ExptrandFP,ΠIPE

k ,A(λ) = 1
] ∣∣∣∣

≤
∣∣∣∣Pr
[
ExptrealFP,ΠIPE

k ,A(λ) = 1
]
− Pr

[
Exptreal,n

FP,ΠIPE
k ,A(λ) = 1

] ∣∣∣∣
+

∣∣∣∣Pr
[
ExptrandFP,ΠIPE

k ,A(λ) = 1
]
− Pr

[
Exptrand,n

FP,ΠIPE
k ,A(λ) = 1

] ∣∣∣∣
+

∣∣∣∣Pr
[
Exptreal,n

FP,ΠIPE
k ,A(λ) = 1

]
− Pr

[
Exptrand,n

FP,ΠIPE
k ,A(λ) = 1

] ∣∣∣∣
≤ 2

∣∣∣∣Pr
[
Exptmode

FP,ΠIPE
k ,A(λ) = 1

]
− Pr

[
Exptmode,n

FP,ΠIPE
k ,A(λ) = 1

] ∣∣∣∣ (from Equation 1)

= 2ε′ ≤ negl(λ)

This completes the proof of function privacy for ΠIPE
k . Note that the proof does not essentially

rely on the presence of two parallel sub-systems in our scheme. In fact, eliminating one of the
subsystems gives a simpler proof. However, the two sub-system version allows us to adopt the
proof of data privacy in [3] for our scheme.

Enhanced Computational Function Privacy. We state the following theorem for the
enhanced computational function privacy of Πk:

Theorem 5.3 Our zero-IPE scheme ΠIPE
k is computationally enhanced function private under

the (k + 1)-DLIN assumption for predicate vectors sampled uniformly from (n, k)-block sources
with k = ω (log λ).

Proof Overview . Once again, the proof is very similar to that of Theorem 5.2; hence we restrict
to providing a proof overview here. The detailed proof is presented in Appendix C. The proof
basically shows that the simulator B can additionally simulate the function privacy encryption
oracle, and that the real and random modes of operation of the function privacy oracle are
indistinguishable even in the presence of the encryption oracle. We again consider a series
of hybrid experiments that gradually randomize the secret-key sk−→

v∗
generated by the real-or-

random function privacy oracle component by component. The challenge is to simulate the
function privacy encryption oracle such that its behavior does not provide the adversary with
any additional distinguisher between two consecutive experiments.
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Let sk−→
v∗

=
(
d∗0, {d∗

j
1,i, d

∗j
2,i}i∈[1,n],j∈[0,k+2]

)
be the response of the real-or-random function

privacy oracle to the adversary A. On receiving a function-privacy encryption oracle query for a

payload message M , B responds as follows: it samples I∗ = (I∗1 , · · · , I∗n) such that
〈−→
v∗, I∗

〉
= 0.

It then samples r, α, β
R←− Z∗N and {Rj6,i, R

j
7,i

R←− G3}i∈[1,n],j∈[0,k+2] and sets c∗0 = gr1. It also
sets:

c∗01,i =
(
S0

1,i

)r ·Qα·I∗i ·R0
6,i , c∗02,i =

(
S0

2,i

)r ·Qβ·I∗i ·R0
7,i for i ∈ [1, n]

c∗j1,i =
(
Sj1,i

)r
·Rj6,i , c∗j2,i =

(
Sj2,i

)r
·Rj7,i for i ∈ [1, n], j ∈ [1, k + 2]

Finally, it sets:

c∗3 = M

/
ê (d∗0, c

∗
0) ·

 n∏
i=1

k+2∏
j=0

ê
(
d∗j1,i, c

∗j
1,i

)
· ê
(
d∗j2,i, c

∗j
2,i

)
and outputs the ciphertext C∗ =

(
c∗0, {c∗

j
1,i, c

∗j
2,i}i∈[1,n],j∈[0,k+2], c

∗
3

)
.

Clearly, the ciphertext C∗ is dependent solely on sk−→
v∗

and the input message M , and is

hence independent of the vector
−→
v∗. In addition, it produces M upon decryption using sk−→

v∗

irrespective of B’s input challenge. Consequently, the distribution of C∗ in the two experiments
is indistinguishable from A’s point of view. This in turn implies that the adversary’s advantage
in distinguishing between two hybrid experiments is the same as B’s advantage in solving its
input (k + 1)-DLIN challenge pair.

6 Extensions and Open Problems

Our work solves the open problem of constructing computationally function private predicate
encryption systems in the private key setting. Our approach, denoted as encrypt-augment-
recover, offers a methodology for converting an existing public-key predicate encryption scheme
into a computationally function private one, without compromising the data privacy guarantees
of the original scheme. Our approach yields the first fully data private and computationally
function private constructions for IBE and public-key IPE, and, in general, for searchable
encryption schemes supporting a wide range of predicates. In this section, we discuss some
interesting extensions and open problems that arise from our work.

Extension to Private-Key Predicate Encryption. Our encrypt-augment-recover method-
ology is equally applicable for achieving computationally function private predicate encryption
schemes in the private-key setting, even when the underlying predicates are not necessarily
sampled from distributions with at least super-logarithmic min-entropy. In particular, the core
function privacy arguments for our constructions presented in this paper do not essentially rely
on the unpredictability of the predicate distributions; this assumption is additionally made to
rule out trivial attacks in the public-key setting. In the private-key setting, where the adver-
sary does not have access to an encryption oracle, our approach anticipates an expansion to
the existing body of work in designing function private predicate encryption schemes.
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Extension to Multi-Input Predicate Encryption. In this work, we have focused on design-
ing function private predicate encryption systems in the single-input setting. Multi-input pred-
icate encryption (MIPE) introduced by Goldwasser et al. [30] is a generalization of functional
encryption to the setting of multi-input predicates. An MIPE scheme has several encryption
slots and each decryption key skf for a multi-input predicate f jointly decrypts the ciphertexts
Enc(I1), ...,Enc(In) for all slots to obtain f (I1, ..., In) without revealing anything more about
the encrypted attributes. In particular, this provides a framework to evaluate bounded-norm
multi-input IPE: each predicate is specified by a collection of vectors −→v 1, · · · ,−→v n, and takes as
input a collection of vectors −→x 1, · · · ,−→x n to output f−→v 1,··· ,−→v n

(−→x 1, · · · ,−→x n) =
∑n
i=1 {

−→v i,−→x i}.
We point out that our technique can be easily generalized to obtain function private IPE

schemes in the multi-input setting as follows: we first use our technique to obtain a function
private IPE construction in the single-input setting, and then run n independent copies of
this construction. The ith copy is used to encrypt −→x i in the ith slot, while the new secret-key
is the ensemble of the n secret-keys corresponding to −→v 1, · · · ,−→v n. The decryption algorithm
computes each inner product individually, and returns their sum. Although this means that
the adversary also learns each individual inner product, this is an inherent leakage in the
public-key setting and does not weaken the security guarantees. The data privacy guarantees
of the underlying scheme ensure no further leakage, while the function privacy guarantees of
the underlying scheme continue to hold as long as each −→v i is sampled from block sources with
sufficient min-entropy, and is independent of the other n− 1 vectors.

Generalization of Our Approach. In this work, we have demonstrated concrete construc-
tions for function private IBE and IPE in the public-key setting based on existing constructions
in the literature. An interesting open problem is to explore whether our approach can be gener-
alized so as to be applicable to any public-key predicate encryption scheme, particularly those
based on lattices [2], without compromising on their data privacy guarantees. It would also
be interesting to identify the properties (if any) of existing predicate encryption schemes that
make them amenable to modification using our approach.

Hidden Vector Encryption and Polynomial Evaluation. Boneh and Waters [1] proposed
hidden vector encryption (HVE), a pre-cursor to IPE, that supports search using conjunctive,
range and comparison-based query predicates. In HVE, attributes correspond to vectors over
an alphabet Σ, while secret-keys correspond to predicate vectors over the augmented alphabet
Σ? = Σ∪{?} containing the wild card character ?. Decryption succeeds if the attribute matches
the predicate vector in every coordinate that is not ?. We note that although IPE can be used
to realize HVE [3], our computational function privacy definitions do not naturally extend to
HVE. In particular, the presence of the wild card character ? in the predicate vectors of HVE
trivially violates our min-entropy requirements, making it difficult to hide their presence in the
secret-key.

A weaker notion of function privacy for HVE, that our framework can realistically incor-
porate, is to ask that the secret-key reveals nothing more about the the predicate vector than
the locations of the wild card character ?. We believe that HVE schemes satisfying this weaker
notion of computational function privacy can be achieved using our encrypt-augment-recover
approach. It is still an open problem, however, to formalize a stronger function privacy def-
inition for HVE, and to realize function private constructions satisfying this definition. This
would also provide insight into the limits of function privacy for searchable encryption schemes
supporting comparison and range queries. Finally, it is also open to formalize security defini-
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tions and realize constructions for function private encryption schemes that support arbitrary
polynomial evaluation predicates [3].
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A Detailed Proof of Theorem 4.1

We now present the detailed proof. Let A be any probabilistic polynomial-time adversary. The
proof aims to show the following:

AdvDP
ΠIBE

k ,A(λ) =

∣∣∣∣Pr
[
Expt

(0)

DP,ΠIBE
k ,A(λ) = 1

]
− Pr

[
Expt

(1)

DP,ΠIBE
k ,A(λ) = 1

] ∣∣∣∣ ≤ negl(λ)

We define a second experiment Expt
(b)

rand,DP,ΠIBE
k ,A(λ) that is identical to Expt

(b)

DP,ΠIBE
k ,A(λ) except

in Step 3, where the challenge ciphertext C∗ is generated uniformly and independent of the
challenge pair (id∗b ,M

∗
b ). Then, the following is obvious to see:∣∣∣∣Pr

[
Expt

(0)

rand,DP,ΠIBE
k ,A(λ) = 1

]
− Pr

[
Expt

(1)

rand,DP,ΠIBE
k ,A(λ) = 1

] ∣∣∣∣ = 0

We now state and prove the following claim:

Claim A.1 For any probabilistic polynomial-time adversary A and for b ∈ {0, 1}, the following
holds: ∣∣∣∣Pr

[
Expt

(b)

DP,ΠIBE
k ,A(λ) = 1

]
− Pr

[
Expt

(b)

rand,DP,ΠIBE
k ,A(λ) = 1

] ∣∣∣∣ ≤ negl(λ)

To prove this claim, we assume the contrary. Let A be a probabilistic polynomial-time adversary
such that:∣∣∣∣Pr

[
Expt

(b)

DP,ΠIBE
k ,A(λ) = 1

]
− Pr

[
Expt

(b)

rand,DP,ΠIBE
k ,A(λ) = 1

] ∣∣∣∣ = ε > negl(λ)

Also, let QK = poly(λ) be the maximum number of secret-key queries made by A in ei-

ther of the experiments Expt
(b)

DP,ΠIBE
k ,A(λ) and Expt

(b)

rand,DP,ΠIBE
k ,A(λ). We construct an algo-

rithm B that solves an instance of the DBDH problem with non-negligible advantage ε′ ≥
ε/ (exp(1) · (QK + 1)). B is given (g, ga1 , ga2 , ga3 , Z) and interacts with A as follows:

• Setup: B samples x1, · · · , xk
R←− Z∗q and g1, · · · , gk+2

R←− G. It sets pp = (g, ga1 , gx1 , · · · , gxk+2)
and provides pp to A. Observe that the distribution of pp is exactly as in the real world.

• H−Queries: B maintains a list of tuples of the form 〈idj , H (idj) , αj , βj〉 such that H (idj) ∈
G, αj ∈ Z∗q and βj ∈ {0, 1}. When A issues a hash query for idi ∈ ID, B responds as follows:

1. B searches the list for a matching tuple of the form 〈idi, H (idi) , αi, βi〉. If such a tuple is
found, it returns H (idi) to A.

2. Otherwise, B samples αi
R←− Z∗q and βi ← {0, 1} such that Pr [βi = 0] = 1− 1/ (QK + 1).

• If βi = 0, it sets H (idi) = gαi

• If βi = 1, it sets H (idi) = (ga2)
αi , where ga2 is a part of its input instance.

3. B now adds the tuple 〈idi, H (idi)〉 to its existing list, and returns H (idi) to A.

• Secret-Key Queries: When A issues a secret-key query for idi ∈ ID, B responds as follows:
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1. B runs the aforementioned procedure to look upH (idi) and obtains the tuple 〈idi, H (idi) , αi, βi〉.
2. If βi = 1, B aborts by outputting a uniformly sampled bit.

3. If βi = 0, we must have H (idi) = gαi ; hence, B chooses y1, · · · , yk+1
R←− Z∗q and responds

with:

skidi =

gy11 , · · · , gyk+1

2 , g
∑k+1

j=1 yj
k+2 ,

k+2∏
j=1

(
g
xj

j · g
xk+2

k+2

)yj · (ga1)
αi


Once again, observe that the distribution of skidi is exactly as in the real world.

• Challenge: A outputs the challenge pair ((id∗0,M
∗
0 ) , (id∗1,M

∗
1 )). B samples b

R←− {0, 1} and
does the following:

1. B runs the aforementioned procedure to look upH (id∗b) and obtains the tuple 〈id∗b , H (id∗b) , α
∗
b , β
∗
b 〉.

2. If β∗b = 0, B aborts by outputting a uniformly sampled bit.

3. If β∗b = 1, we must have H (id∗b) = (ga2)
α∗b . B accordingly responds with the challenge

ciphertext C∗ as:

C∗ =
(

(ga3)
(α∗b )−1

, (ga3)
x1·(α∗b )−1

, · · · , (ga3)
xk+2·(α∗b )−1

,M∗b · Z
)

where ga3 and Z are part of its input instance.

• Guess: At the end of the game, A outputs a bit b′. B outputs the same bit b′.

It is easy to see that when Z = e (g, g)
a1·a2·a3 , the ciphertext C∗ is well-formed and identically

distributed to the challenge in the experiment Expt
(b)

DP,ΠIBE
k ,A(λ) . To see this, set s = a1 and

r = a3 · (α∗b)
−1

and observe that:

(ga3)
(α∗b )−1

= gr , (ga3)
xj ·(α∗b )−1

= (gxj )
r

for j ∈ [1, k + 2]

Z = e (g, g)
a1·a2·a3 = e

(
(ga2)

α∗b , ga1
)a3·(α∗b )−1

= e (H (id∗b) , g
s)
r

On the other hand, if Z is uniform random in GT , then C∗ is independent of b and hence

identically distributed to the challenge in the experiment Expt
(b)

rand,DP,ΠIBE
k ,A(λ).

It remains to bound the probability that B aborts either during a secret-key query or during
the challenge phase, denoted as Pr [Abort]. It is easy to see that the probability that B aborts
during a given secret-key query is 1/ (QK + 1). Assuming that B makes at most QK secret-key
queries, the probability that t never aborts for any of these queries is thus lower bounded as
(1− 1/ (QK + 1))

QK . The probability that B does not abort during the challenge phase is lower
bounded as 1/ (QK + 1). Thus the overall probability that B does not abort during the entire

game (equivalently Pr
[
Abort

]
) is lower bounded as (1− 1/ (QK + 1))

QK / (QK + 1).

Finally, the advantage ε′ of B in solving the DBDH instance (where the probability is taken

over all possible choices of a1, a2, a3
R←− Z∗q) and all possible choice of Z

R←− GT ) may be
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quantified as:

ε′ =

∣∣∣∣Pr
[
B
(
g, ga1 , ga2 , ga3 , e (g, g)

a1·a2·a3) = 1
]
− Pr [B (g, ga1 , ga2 , ga3 , Z) = 1]

∣∣∣∣
= |Pr

[
B
(
g, ga1 , ga2 , ga3 , e (g, g)

a1·a2·a3) = 1|Abort
]
· Pr

[
Abort

]
−

Pr
[
B (g, ga1 , ga2 , ga3 , Z) = 1|Abort

]
· Pr

[
Abort

]
|

=

∣∣∣∣Pr
[
Expt

(b)

DP,ΠIBE
k ,A(λ) = 1

]
· Pr

[
Abort

]
− Pr

[
Expt

(b)

rand,DP,ΠIBE
k ,A(λ) = 1

]
· Pr

[
Abort

] ∣∣∣∣
≥ ε · (1− 1/ (QK + 1))

QK / (QK + 1)

≥ ε/ (exp(1) · (QK + 1))

The above derivation uses the fact that the abort condition for B is independent of the view of
the adversary A. This completes the proof of Claim A.1. The proof of data privacy for ΠIBE

k

now follows from the following observation:

AdvDP
ΠIBE

k ,A(λ) =

∣∣∣∣Pr
[
Expt

(0)

DP,ΠIBE
k ,A(λ) = 1

]
− Pr

[
Expt

(1)

DP,ΠIBE
k ,A(λ) = 1

] ∣∣∣∣
≤
∣∣∣∣Pr
[
Expt

(0)

DP,ΠIBE
k ,A(λ) = 1

]
− Pr

[
Expt

(0)

rand,DP,ΠIBE
k ,A(λ) = 1

] ∣∣∣∣+∣∣∣∣Pr
[
Expt

(1)

DP,ΠIBE
k ,A(λ) = 1

]
− Pr

[
Expt

(1)

rand,DP,ΠIBE
k ,A(λ) = 1

] ∣∣∣∣+∣∣∣∣Pr
[
Expt

(0)

rand,DP,ΠIBE
k ,A(λ) = 1

]
− Pr

[
Expt

(1)

rand,DP,ΠIBE
k ,A(λ) = 1

] ∣∣∣∣
≤ 2

∣∣∣∣Pr
[
Expt

(b)

DP,ΠIBE
k ,A(λ) = 1

]
− Pr

[
Expt

(b)

rand,DP,ΠIBE
k ,A(λ) = 1

] ∣∣∣∣ (from Equation 1)

= 2ε ≤ negl(λ)

The above proof reinforces the fact that applying our encrypt-augment-cancel approach does
not affect the adaptive data privacy of the original IBE scheme of Boneh and Franklin.

B Detailed Proof of Theorem 4.3

We begin by stating the following claim:

Claim B.1 For any probabilistic polynomial-time adversary A and for mode
R←− {real, rand},

the following holds:∣∣∣∣Pr
[
Exptmode

EFP,ΠIBE
k ,A(λ) = 1

]
− Pr

[
ExptrandEFP,ΠIBE

k ,A(λ) = 1
] ∣∣∣∣ ≤ negl(λ)

To prove this claim, we assume the contrary. Let A be a probabilistic polynomial-time adversary

such that for mode
R←− {real, rand}, we have:∣∣∣∣Pr

[
Exptmode

EFP,ΠIBE
k ,A(λ) = 1

]
− Pr

[
ExptrandEFP,ΠIBE

k ,A(λ) = 1
] ∣∣∣∣ = ε > negl(λ)
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We assume that the adversary A issues a single query to the real-or-random oracle. As discussed
in Section 3, such a single-shot adversary is polynomially equivalent to its multi-shot variant
considered in Definition 3.1. We construct an algorithm B that solves an instance of the (k + 1)-
DLIN problem with non-negligible advantage ε′ = ε. B is given

(
g1, · · · , gk+2, g

a1
1 , · · · , gak+2

k+2

)
and interacts with A as follows:

• Setup: B samples s, x1, · · · , xk+2
R←− Z∗q and a generator g

R←− G. It sets pp = (g, gs, gx1 , · · · , gxk+2)
and provides pp to A. Observe that the distribution of pp is exactly as in the real world.

• H −Queries: B maintains a list of tuples of the form 〈idj , H (idj)〉 such that H (idj) ∈ G.
When A issues a hash query for idi ∈ ID, B responds as follows:

1. B searches the list for a matching tuple of the form 〈idi, H (idi)〉. If such a tuple is found,
it returns H (idi) to A.

2. Otherwise, B samples H (idi)
R←− G and adds the tuple 〈idi, H (idi)〉 to its existing list. It

returns H (idi) to A.

• Secret-Key Queries: When A issues a secret-key query for idi ∈ ID, B responds as follows:
1. B runs the aforementioned procedure to look up H (idi).

2. B samples y1, · · · , yk+1
R←− Z∗q and responds with:

skidi =

gy11 , · · · , gyk+1

k+1 , g
∑k+1

j=1 yj
k+2 ,

k+1∏
j=1

(
g
xj

j · g
xk+2

k+2

)yj · (H (idi))
s


where g1, · · · , gk+2 are part of its input instance. Once again, observe that the distribution
of skidi is exactly as in the real world.

• Real-or-Random Query: Suppose A queries the real-or-random oracle with ID∗ - a circuit

representing a k-source over the identity space ID such that k = ω (log λ). B samples mode
R←−

{real, rand} and does the following:

1. If mode = real, B samples id∗
R←− ID∗, while if mode = rand, it samples id∗

R←− ID. It
then runs the aforementioned procedure to look up H (id∗).

2. B responds with the secret-key skid∗ as:

skid∗ =

ga11 , · · · , gak+2

k+2 ,

k+2∏
j=1

(
g
aj
j

)xj

 · (H (id∗))
s


where ga11 , · · · , gak+2

k+2 are part of its input instance.

• Function Privacy Encryption Oracle Query: Suppose A queries the function privacy
encryption oracle with a message M . Let skid∗ =

(
d∗0, · · · , d∗k+2

)
be the response of the

real-or-random function privacy oracle to the adversary A. On receiving a function-privacy

encryption oracle query for a payload message M , B responds as follows: it samples r
R←− Z∗q

and outputs the ciphertext C∗ =
(
c∗0, · · · , c∗k+3

)
where:

c∗0 = gr , c∗j = (gxj )
r

for j ∈ [1, k + 2]
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and

c∗k+3 = M ·
e
(
d∗k+2, c

∗
0

)∏k+2
j=1 e

(
d∗j−1, c

∗
j

)
• Guess: At the end of the game, A outputs a bit b′. B outputs the same bit b′.

It is now easy to see the following:

• When ak+2 =
∑k+1
j=1 aj , the secret-key skid∗ is well-formed and identically distributed to the

response of the real-or-random oracle in the experiment Exptmode
EFP,ΠIBE

k ,A(λ). Additionally, the

ciphertext C∗ is also well-formed and identically distributed to the response of the function
privacy encryption oracle in the experiment Exptmode

EFP,ΠIBE
k ,A(λ).

• On the other hand, when ak+2 is uniformly random in Z∗q , the secret-key skid∗ is uniformly
random, and hence identically distributed to the response of the real-or-random oracle
in the experiment ExptrandEFP,ΠIBE

k ,A(λ). Correspondingly, the ciphertext C∗ is also uniformly

random, and hence identically distributed to the response of the function privacy encryption
oracle in the experiment Exptmode

EFP,ΠIBE
k ,A(λ).

• In either case, decrypting C∗ using skid∗ correctly retrieves M . This essentially implies that
they correspond to the same underlying identity, which is either id∗ sampled by B when
ak+2 =

∑k+1
j=1 aj , or some other uniformly random identity in ID when ak+2 is uniformly

random in Z∗q .

Now, the advantage ε′ of B in solving the (k + 1)-DLIN instance (where the probability is taken

over all possible choices of a1, · · · , ak+2
R←− Z∗q and all possible choices of g1, · · · , gk+2

R←− G)
may be quantified as:

ε′ =

∣∣∣∣Pr

[
B
(
g1, · · · , gk+2, g

a1
1 , · · · , g

∑k+1
j=1 aj

k+2

)
= 1

]
− Pr

[
B
(
g1, · · · , gk+2, g

a1
1 , · · · , gak+2

k+2

)
= 1
] ∣∣∣∣

=

∣∣∣∣Pr
[
Exptmode

EFP,ΠIBE
k ,A(λ) = 1

]
− Pr

[
ExptrandEFP,ΠIBE

k ,A(λ) = 1
] ∣∣∣∣

= ε

This completes the proof of Claim B.1. The proof of enhanced function privacy for ΠIBE
k now

follows from the following observation:

AdvEFP
ΠIBE

k ,A(λ) =

∣∣∣∣Pr
[
ExptrealEFP,ΠIBE

k ,A(λ) = 1
]
− Pr

[
ExptrandEFP,ΠIBE

k ,A(λ) = 1
] ∣∣∣∣

≤ 2

∣∣∣∣Pr
[
Exptmode

EFP,ΠIBE
k ,A(λ) = 1

]
− Pr

[
ExptrandEFP,ΠIBE

k ,A(λ) = 1
] ∣∣∣∣

= 2ε ≤ negl(λ)

C Detailed Proof of Theorem 5.3

We present the detailed proof here. The proof aims to show that any probabilistic poly-time
adversary A cannot distinguish between the real and random modes of operation of the function
privacy oracle, provided that the oracle is queried with circuits that sample sufficiently unpre-
dictable distributions over the space of predicates. In particular, such distributions should be
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(n, k)-block sources over ZnN , such that each component of a vector −→v sampled from an adver-
sarially chosen distribution has a min-entropy of k = ω (log λ), and is uncorrelated with all other

components. We define a series of hybrid experiments Exptmode,m
EFP,ΠIPE

k ,A(λ) for mode ∈ {real, rand}
and m ∈ [0, n] as follows:

• Exptmode,0
EFP,ΠIPE

k ,A(λ) is exactly identical to Exptmode
EFP,ΠIPE

k ,A(λ).

• Exptmode,m
EFP,ΠIPE

k ,A(λ) for m ∈ [1, n] is identical to Exptmode
EFP,ΠIPE

k ,A(λ) except that the secret-key

sk−→
v∗

=
(
d∗0, {d∗

j
1,i, d

∗j
2,i}i∈[1,n],j∈[0,k+2]

)
generated by the real-or-random oracle is such that

the set of components {d∗j1,i, d∗
j
2,i}i∈[1,m],j∈[0,k+2] are uniformly random and independent of

the underlying vector
−→
v∗. In addition, the ciphertext C∗ for a message M generated by the

function privacy encryption oracle is uniformly random and independent of
−→
v∗; it, however,

produces M upon decryption using the sk−→
v∗

generated by the real-or-random oracle.

Quite evidently, the following holds:∣∣∣∣Pr
[
Exptreal,n

EFP,ΠIPE
k ,A(λ) = 1

]
− Pr

[
Exptrand,n

EFP,ΠIPE
k ,A(λ) = 1

] ∣∣∣∣ = 0 (2)

We now state and prove the following claim:

Claim C.1 For any probabilistic polynomial-time adversary A, for mode ∈ {real, rand} and
for m ∈ [0, n− 1], the following holds:∣∣∣∣Pr

[
Exptmode,m

EFP,ΠIPE
k ,A(λ) = 1

]
− Pr

[
Exptmode,m+1

EFP,ΠIPE
k ,A(λ) = 1

] ∣∣∣∣ ≤ negl(λ)

To prove this claim, we assume the contrary. Let A be a probabilistic polynomial-time adversary
such that: ∣∣∣∣Pr

[
Exptmode,m

EFP,ΠIPE
k ,A(λ) = 1

]
− Pr

[
Exptmode,m+1

EFP,ΠIPE
k ,A(λ) = 1

] ∣∣∣∣ = ε > negl(λ)

for some m ∈ [0, n− 1]. We construct an algorithm B such that:∣∣∣∣Pr

[
B
((

g1,1, · · · , g1,k+2, g
a1
1,1, · · · , g

∑k+1
j=1 aj

1,k+2

)
,

(
g2,1, · · · , g2,k+2, g

a′1
2,1, · · · , g

∑k+1
j=1 a

′
j

2,k+2

))
= 1

]
−

Pr
[
B
((
g1,1, · · · , g1,k+2, g

a1
1,1, · · · , g

ak+2

1,k+2

)
,
(
g2,1, · · · , g2,k+2, g

a′1
2,1, · · · , g

a′k+2

2,k+2

))
= 1
] ∣∣∣∣ = ε

where the probability is over random choice of {aj , a′j
R←− Z∗q1}j∈[1,k+2], and over random choice

of {g1,j , g2,j
R←− G1}j∈[1,k+2] (G1 being a group of prime order q1). Observe that B can in turn

be trivially used to construct another algorithm that has advantage at least ε in solving a given
instance of the (k + 1)-DLIN problem. B interacts with A as follows:

• Setup: B uniformly samples two other λ-bit primes q2, q3 apart from q1 which is the order
of the group G1 in its input instance. It also sets N = q1q2q3, and then sets up the groups
G, G2 and G3 of order N , q2 and q3 respectively, along with the bilinear map ê : G×G −→
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GT . It then samples {x1,j , x2,j
R←− Z∗q1}j∈[1,k+2], {h1,i, h2,i

R←− G1}i∈[1,n] and {Rj1,i, R
j
2,i

R←−
G3}i∈[1,n],j∈[0,k+2]. It additionally samples h

R←− G1, γ
R←− Z∗q1 and R3

R←− G3, and sets:

Q = g2 ·R3

S0
1,i = h1,i ·R0

1,i , S0
2,i = h2,i ·R0

2,i for i ∈ [1, n]

Sj1,i = h
x1,j

1,i ·R
j
1,i , Sj2,i = h

x2,j

2,i ·R
j
2,i for i ∈ [1, n], j ∈ [1, k + 2]

Finally, it sets the public parameter pp as:

pp =
(
g1, g3, Q, {Sj1,i, S

j
2,i}i∈[1,n],j∈[0,k+2], ê (g1, h)

γ
)

and provides the same to A. Observe that pp is distributed exactly as in the real world.

• Secret-Key Queries: WhenA issues a secret-key query for−→v ∈ ZnN , B samples {z1,i, z2,i
R←−

Z∗q1}i∈[1,n], {yj1,i, y
j
2,i

R←− Z∗q1}i∈[1,n],j∈[1,k+1], Q4
R←− G2, R5

R←− G3 and f1, f2
R←− Z∗q2 . It then

sets:

d0 = Q4 ·R5

/(
n∏
i=1

h
z1,i
1,i · h

z2,i
2,i

)

d0
1,i = g

z1,i
1 · gf1·vi2

/k+1∏
j=1

(
g
x1,j

1,j · g
x1,k+2

1,k+2

)yj1,i for i ∈ [1, n]

d0
2,i = g

z2,i
1 · gf2·vi2

/k+1∏
j=1

(
g
x2,j

2,j · g
x2,k+2

2,k+2

)yj2,i for i ∈ [1, n]

Finally, it sets the following additional components:

dj1,i = g
yj1,i
1,j , dj2,i = g

yj2,i
2,j for i ∈ [1, n], j ∈ [1, k + 1]

dk+2
1,i = g

∑k+1
j=1 y

j
1,i

1,k+2 , dk+2
2,i = g

∑k+1
j=1 y

j
2,i

2,k+2 for i ∈ [1, n]

and outputs the secret-key sk−→v as:

sk−→v =
(
d0, {dj1,i, d

j
2,i}i∈[1,n],j∈[0,k+2]

)
• Real-or-Random Query: SupposeA queries the real-or-random oracle with an (n, k)-block

source V∗ = (V ∗1 , · · · , V ∗n ) over ZnN such that k = ω (log λ). B samples mode
R←− {real, rand}

and does the following:

1. For each i ∈ [1, n], B samples v∗i
R←− V ∗i if mode = real, or v∗i

R←− ZN if mode = rand. The

vector
−→
v∗ = (v∗1 , · · · , v∗n) is the challenge vector that B uses to respond to the query from

A.

2. As in the response to the secret-key queries, B samples {z1,i, z2,i
R←− Z∗q1}i∈[1,n], {yj1,i, y

j
2,i

R←−
Z∗q1}i∈[1,n]\{m+1},j∈[1,k+1], Q4

R←− G2, R5
R←− G3 and f1, f2

R←− Z∗q2 . It also samples
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{yk+2
1,i , y

k+2
2,i

R←− Z∗q1}i∈[1,m]. Observe that B does not sample yj1,m+1 or yj2,m+1 for j ∈
[1, k + 2]. This is because B embeds the its input pair of (k + 1)-DLIN instances in its
response by formally setting yj1,m+1 = aj and yj2,m+1 = a′j for each j ∈ [1, k + 2] as
described next.

3. B now sets the various components of the secret-key as follows:

d∗0 = Q4 ·R5

/(
n∏
i=1

h
z1,i
1,i · h

z2,i
2,i

)

d∗01,i = g
z1,i
1 · gf1·vi2

/k+1∏
j=1

(
g
x1,j

1,j · g
x1,k+2

1,k+2

)yj1,i for i ∈ [1, n] \ {m+ 1}

d∗02,i = g
z2,i
1 · gf2·vi2

/k+1∏
j=1

(
g
x2,j

2,j · g
x2,k+2

2,k+2

)yj2,i for i ∈ [1, n] \ {m+ 1}

It also sets the following additional components:

d∗j1,i = g
yj1,i
1,j , d∗j2,i = g

yj2,i
2,j for i ∈ [1, n] \ {m+ 1}, j ∈ [1, k + 1]

d∗k+2
1,i = g

yk+2
1,i

1,k+2 , d∗k+2
2,i = g

yk+2
2,i

2,k+2 for i ∈ [1,m]

d∗k+2
1,i = g

∑k+1
j=1 y

j
1,i

1,k+2 , d∗k+2
2,i = g

∑k+1
j=1 y

j
2,i

2,k+2 for i ∈ [m+ 2, n]

Observe that the first m components of the secret-key are crafted to be uniformly ran-
dom, while the last (n−m− 1) components are well-formed.

4. Finally, B embeds its input pair of (k + 1)-DLIN instances in the (m+ 1)
th

component
of the secret-key by setting:

d∗01,m+1 = g
z1,m+1

1 · gf1·vm+1

1

/k+2∏
j=1

(
g
a′j
1,j

)x1,j


d∗02,m+1 = g

z2,m+1

1 · gf2·vm+1

2

/k+2∏
j=1

(
g
a′j
2,j

)x2,j


d∗j1,m+1 = g

aj
1,j , d∗j2,m+1 = g

a′j
2,j for j ∈ [1, k + 2]

B responds to A with the secret-key sk−→
v∗

as:

sk−→
v∗

=
(
d∗0, {d∗

j
1,i, d

∗j
2,i}i∈[1,n],j∈[0,k+2]

)
• Function Privacy Encryption Oracle Query: Let sk−→

v∗
=
(
d∗0, {d∗

j
1,i, d

∗j
2,i}i∈[1,n],j∈[0,k+2]

)
be the response of the real-or-random function privacy oracle to the adversary A. Suppose
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A queries the function privacy encryption oracle with a message M . B responds as follows:

it samples I∗ = (I∗1 , · · · , I∗n) such that
〈−→
v∗, I∗

〉
= 0. It then samples r, α, β

R←− Z∗N and

{Rj6,i, R
j
7,i

R←− G3}i∈[1,n],j∈[0,k+2] and sets c∗0 = gr1. It also sets:

c∗01,i =
(
S0

1,i

)r ·Qα·I∗i ·R0
6,i , c∗02,i =

(
S0

2,i

)r ·Qβ·I∗i ·R0
7,i for i ∈ [1, n]

c∗j1,i =
(
Sj1,i

)r
·Rj6,i , c∗j2,i =

(
Sj2,i

)r
·Rj7,i for i ∈ [1, n], j ∈ [1, k + 2]

Finally, it sets:

c∗3 = M

/
ê (d∗0, c

∗
0) ·

 n∏
i=1

k+2∏
j=0

ê
(
d∗j1,i, c

∗j
1,i

)
· ê
(
d∗j2,i, c

∗j
2,i

)

and outputs the ciphertext C∗ =
(
c∗0, {c∗

j
1,i, c

∗j
2,i}i∈[1,n],j∈[0,k+2], c

∗
3

)
. Clearly, for m = 0, the

ciphertext C∗ is well-formed, while for m ∈ [1, n] independent of
−→
v∗ and is crafted by B solely

based on sk−→
v∗

to produce the correct output M upon decryption.

• Guess: At the end of the game, A outputs a bit b′. B outputs the same bit b′.

It is easy to see that when ak+2 =
∑k+1
j=1 aj and a′k+2 =

∑k+1
j=1 a

′
j , the secret-key sk−→

v∗
is identi-

cally distributed to the response of the real-or-random oracle in the experiment Exptmode,m
EFP,ΠIPE

k ,A(λ).

On the other hand, when either or both of ak+2 and a′k+2 are uniformly random in Z∗q , the
secret-key sk−→

v∗
is identically distributed to the response of the real-or-random oracle in the

experiment Exptmode,m+1

EFP,ΠIPE
k ,A(λ). In either case, the ciphertext C∗ is dependent solely on sk−→

v∗
and

the input message M , and is hence independent of the vector
−→
v∗. In addition, it produces M

upon decryption using sk−→
v∗

irrespective of whether ak+2 =
∑k+1
j=1 aj and a′k+2 =

∑k+1
j=1 a

′
j . Con-

sequently, the distribution of C∗ in the two experiments is indistinguishable from A’s point of
view. It follows readily that B has the same advantage ε as A in solving its input instance pair.
This completes the proof of Claim C.1.

We now make the following observation:

|Pr
[
Exptmode
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]
− Pr

[
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≤
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[
Exptmode,m
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k ,A(λ) = 1

]
− Pr

[
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k ,A(λ) = 1

] ∣∣∣∣
≤ negl(λ) (from Claim C.1)for n = poly(λ)
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Consequently, for mode
R←− {real, rand}, we have:
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− Pr
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− Pr
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]
− Pr
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≤ 2

∣∣∣∣Pr
[
Exptmode

EFP,ΠIPE
k ,A(λ) = 1

]
− Pr

[
Exptmode,n

EFP,ΠIPE
k ,A(λ) = 1

] ∣∣∣∣ (from Equation 2)

= 2ε′ ≤ negl(λ)

This completes the proof of function privacy for ΠIPE
k . Note that the proof does not essentially

rely on the presence of two parallel sub-systems in our scheme. In fact, eliminating one of the
subsystems gives a simpler proof. However, the two sub-system version allows us to adopt the
proof of data privacy in [3] for our scheme.
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