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Abstract. We present new public-key predicate encryption schemes in the standard model that
are provably function private under standard computational assumptions. A large class of existing
function private constructions in the public-key setting impose highly stringent requirements on the
min-entropy of predicate distributions, thereby limiting their applicability in the context of real-
world predicates. Other existing constructions are either secure only in the generic group model,
or require strong assumptions such as indistinguishability obfuscation. Our constructions, on the
other hand, are function private for predicate distributions that satisfy more realistic min-entropy
requirements, and avoid the need for strong assumptions such as obfuscation.

In order to prove function privacy, we adopt the indistinguishability-based framework proposed
by Boneh, Raghunathan and Segev in Crypto’13. The framework requires a secret-key correspond-
ing to a predicate sampled from a distribution with min-entropy super logarithmic in the security
parameter λ, to be computationally indistinguishable from another secret-key corresponding to
a uniformly and independently sampled predicate. Within this framework, we develop a novel ap-
proach, denoted as encrypt-augment-recover, that takes an existing predicate encryption scheme and
transforms it into a computationally function private one while retaining its original data privacy
guarantees. Our approach leads to public-key constructions for identity-based encryption (IBE) and
inner-product encryption (IPE) that are computationally function private in the standard model
under a family of weaker variants of the DLIN assumption.

Keywords: Predicate Encryption, Public-Key, Function Privacy, Computational Indistinguishabil-
ity, Min-Entropy, Identity-Based Encryption, Inner-Product Encryption

1 Introduction

Predicate encryption schemes [1–3] in the public-key setting allow a single public-key to be associated
with multiple secret-keys, where each secret-key corresponds to a Boolean predicate f : Σ −→ {0, 1} over
a pre-defined set of attributes Σ. A plaintext message in a predicate encryption system is an attribute-
payload message pair (I,M) ∈ Σ × M, with M being the payload message space. A secret-key skf
associated with a predicate f successfully decrypts a ciphertext C corresponding to a plaintext (I,M)
and recovers the payload message M if and only if f(I) = 1. On the other hand, if f(I) = 0, attempting
to decrypt C using skf returns the failure symbol ⊥. A predicate encryption is said to be attribute hiding
if the ciphertext C leaks no information about the underlying plaintext (I,M) to an adversary possessing
benign secret-keys corresponding to predicates that do not trivially identify the attribute I.

Identity-Based Encryption. Identity-based encryption (IBE) [4–6] is the simplest sub-class of public-
key predicate encryption. IBE supports a set of equality predicates of the form fid : Σ −→ {0, 1} defined
as fid(x) = 1 if and only if x = id. The attribute space in this case is a set of identities ID, and each
identity id ∈ ID is associated with its own secret-key skid.

Inner-Product Encryption. Inner-product encryption (IPE) [2, 3, 7, 8] is the most expressive sub-class
of predicate encryption, supporting a set of predicates f−→v : Σ −→ {0, 1} over a vector space of attributes



Σ = Fnq (q being a λ-bit prime). Of particular interest is a specific form of IPE called zero-IPE [3] where
for −→v ,−→x ∈ Σ, we have f−→v (−→x ) = 1 if and only if 〈−→v ,−→x 〉 = 0, where 〈−→v ,−→x 〉 denotes the inner-product of
two vectors −→v and −→x . IPE is powerful enough to encompass IBE and many other predicate encryption
systems [3].

Searchable Encryption and Function Privacy. Predicate encryption provides a generic framework
for searchable encryption supporting a wide range of query predicates including conjunctive, disjunctive,
range and subset queries [9, 1–3]. For instance, a predicate encryption system can be used to realize
a mail gateway that follows some special instructions to route encrypted mails based on their header
information (e.g. if the mail is from the boss and needs to be treated as urgent). The mail gateway is
given the secret-key corresponding to the predicate is-urgent, the mail header serves as the attribute, while
the routing instructions can be used as the payload message. Another application could be a payment
gateway that flags encrypted payments if they correspond to amounts beyond some pre-defined threshold
X. The payment gateway is given the secret-key corresponding to the predicate greater-than-X, the
payment amount itself serves as the attribute, while the flag signal is encoded as the payload message.
The attribute hiding property of the predicate encryption scheme ensures that neither gateway learns
any information about the plaintext data from the entire operation.

A natural question now arises: should the gateways in the aforementioned examples be able to learn
the underlying predicate from the secret-keys given to them? The answer in most scenarios is no - the
secret-key skf should ideally reveal nothing about the predicate f beyond the absolute minimum. This
notion of predicate hiding security is commonly referred to as function privacy, and predicate encryption
scheme satisfying this notion of security are described as function private.

1.1 Function Private Predicate Encryption in the Public-Key Setting

As pointed out by Boneh, Raghunathan and Segev in [10, 11], formalizing a realistic notion of function
privacy in the context of public-key predicate encryption is, in general, not straightforward. Consider, for
example, an adversary against an IBE scheme who is given a secret-key skid corresponding to an identity
id and has access to an encryption oracle. As long as the adversary has some apriori information that the
identity id belongs to a small set S,(e.g. id is sampled distribution with min-entropy at most polynomial
in the security parameter λ), it can fully recover id from skid : it can simply resort to encrypting a
random message M under each identity in S, and decrypting using skid to check for a correct recovery.
Consequently, [10, 11] consider a framework for function privacy under the minimal assumption that any
predicate is sampled from a distribution with min-entropy at least super logarithmic in the security
parameter λ. In this paper, we use this bare minimum assumption while proving the computational
function privacy of our proposed predicate encryption schemes.

Statistical Function Privacy. Boneh, Raghunathan and Segev introduced a statistical notion of
function privacy for equality predicates in [10], and subsequently generalized the same for subspace-
membership predicates in [11]. Their approach may be briefly summarized as follows: instead of directly
generating a secret-key skf for a predicate f , a strong randomness extractor Ext is first applied to f using
a randomly chosen seed s, followed by the generation of the secret key skfs , where fs = Ext(f, s). The
final secret-key for the predicate f is the pair (s, skfs). Any such secret-key is thus statistically indis-
tinguishable from random, as long the underlying predicates are sampled from sufficiently unpredictable
distributions.

Ideally, the function privacy guarantees of any public-key predicate encryption scheme should hold
under the minimal assumption that the predicates are sampled from a distribution with min-entropy
k = ω(log λ), where λ is the security parameter. As already pointed out, this requirement is a bare
minimum to rule out trivial attacks in the public-key setting. However, the statistically function private
constructions proposed by Boneh, Raghunathan and Segev in [10] and [11], impose much stricter min-
entropy requirements on predicate distributions, namely k ≥ λ. This rather stringent assumption stems
from their use of the universal hash lemma for arguing the statistical indistinguishability of secret-keys
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against unbounded adversaries, and limits the applicability of their constructions in the context of real-
world predicates. In this paper, we aim to design predicate encryption schemes that are function predicate
with a minimal min-entropy requirement of k = ω(log λ) on predicate distributions. We believe that such
schemes offer a more practically realizable view of function privacy in the public-key setting.

1.2 Our Contributions

In this paper, we present a new technique for designing public-key predicate encryption schemes that
achieve a realistic notion of function privacy under standard computational assumptions, while making
only minimal assumptions on the unpredictability of the underlying predicate distributions. In order
to prove function privacy, we adopt the indistinguishability-based framework for function privacy pro-
posed by Boneh, Raghunathan and Segev in [10]. The framework requires a secret-key corresponding
to a predicate sampled from a distribution with min-entropy super logarithmic in the security param-
eter λ, to be computationally indistinguishable from another secret-key corresponding to a uniformly
and independently sampled predicate. Within this framework, we develop a novel approach, denoted as
encrypt-augment-recover, that takes an existing predicate encryption scheme and transforms it into a
computationally function private one while retaining its original data privacy guarantees. Our approach
leads to the following constructions:

• In the standard model, we present a family of computationally function private identity-based encryp-
tion (IBE) schemes from bilinear pairings based on the anonymous IBE scheme proposed by Gentry
in [4]. Our schemes retain the selective data privacy guarantees of the original scheme, and are ad-
ditionally computationally function private under progressively weaker variants of the well-known
DLIN assumption. The detailed constructions of these schemes, along with the proofs of data and
function privacy, are presented in Section 4.

• We then extend our approach to achieve a family of computationally function private inner-product
encryption (IPE) schemes based on the seminal scheme of Katz, Sahai and Waters [3]. Once again,
our schemes retain the selectively attribute hiding property of the underlying scheme, and are compu-
tationally function private under progressively weaker variants of the DLIN assumption. The detailed
constructions of these schemes, along with the proofs of data and function privacy, are presented in
Section 5.

1.3 Overview of Our Approach: Encrypt-Augment-Recover

Our approach for achieving computationally function private predicate encryption schemes consists
of three main steps - encrypt, augment and recover. We briefly describe the main ideas underlying
each step, and exemplify them subsequently using a simple IBE scheme. Given a public-key predi-
cate encryption scheme Π = (Setup,KeyGen,Enc,Dec), and a CPA-secure public-key encryption al-
gorithm PKE = (KeyGen,Enc,Dec), we create a function private predicate encryption scheme Π′ =(
Setup′,KeyGen′,Enc′,Dec′

)
as follows:

• Let pp and msk be the public parameter and master secret-key of the original scheme Π. The modi-
fied setup algorithm Setup′ invokes PKE.KeyGen and obtains the key pair (PK,SK). It outputs the
modified public parameter pp′ = (pp, g (pp, SK) , PK) and retains the original master secret-key msk,
where g is a suitably chosen function. The component g (pp, SK) essentially performs a unification
of the original predicate encryption scheme Π and the public-key encryption scheme PKE, which is
used subsequently during encryption.

• On input a predicate f , the modified public parameter pp′ = (pp, g (SK) , PK) and the master
secret-key msk, the modified key-generation algorithm KeyGen′ invokes Π.KeyGen to obtain the orig-
inal secret-key skf . It then outputs an encrypted secret-key sk′f as PKE.Enc (PK, skf ).
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This step allows us to base our function privacy arguments on the same computational assumption
that guarantees the CPA security of the PKE scheme. More specifically, it ensures adaptive function
privacy - the inherently random nature of the augmented key generation algorithm ensures that the
function privacy guarantees hold even when the adversary is allowed to specify predicate distributions
in an adaptive manner after seeing the public parameters of the scheme.

• An even greater challenge is to synchronize the encryption and decryption algorithms in the modified
scheme. This is achieved as follows. On input the public parameter pp′ = (pp, g (pp, SK) , PK), and a
payload message M corresponding to an attribute I, the modified encryption algorithm Enc′ outputs
the augmented ciphertext C ′ = (C, σ), where C is the ciphertext of the original scheme Π for the
plaintext (I,M) and σ is an additional random component computed using C and g (pp, SK).

• Finally, Dec′ cleverly uses the additional ciphertext component σ in C ′ to remove the effect of PKE
from the encrypted secret-key sk′f , and recovers the message M . Note that removal here is not same

as decryption, since Dec′ does not have direct access to SK. It is, in fact, impossible to provide SK
to Dec′ in the clear without trivially compromising function privacy. The challenge is thus to ensure
that Dec′ can recover M without a complete decryption of sk′f .

An Example of Our Approach. We present an example of a computationally function private IBE
scheme in the standard model achieved using our encrypt-augment-decrypt approach. A generalization
of this scheme is presented in greater detail in Section 4, along with proofs for data and function pri-
vacy. Consider a public-key encryption scheme PKE with the key generation, encryption and decryption
algorithms as described below:

• PKE.KeyGen: The key-generation algorithm samples x1, x2, x3
R←− Z∗q , where q is a λ-bit prime, and

g1, g2, g3
R←− G, where G is a cyclic group of prime order q. It outputs the secret-key SK and the

public key PK as:

SK = (x1, x2, x3) , PK = (g1, g2, g3, (g
x1
1 · g

x3
3 ) , (gx2

2 · g
x3
3 ))

• PKE.Enc: The ciphertext C corresponding to a message M ∈ G is a tuple of the form:

C =
(
gy11 , gy22 , gy1+y2

3 , (gx1
1 · g

x3
3 )

y1 · (gx2
2 · g

x3
3 )

y2 ·M
)

where y1, y2
R←− Z∗q .

• PKE.Dec: The decryption algorithm, on input the ciphertext C = (c0, c1, c2, c3) and the secret-key
(x1, x2, x3), recovers the message M as:

M = c3

/
(cx1

0 · c
x2
1 · c

x3
2 )

The above scheme is a simplified version of a variant of the Cramer-Shoup cryptosystem [12] introduced
by Shacham in [13], and is CPA-secure under the DLIN assumption. We now present a computationally
function private IBE scheme ΠIBE

1 that is obtained by applying our encrypt-augment-recover approach to
the anonymous IBE scheme proposed by Gentry [4], which is selectively data private under the decisional
bilinear Diffie-Hellman exponent (BDHE) assumption in the standard model.

• ΠIBE
1 .Setup: The setup algorithm in Gentry’s scheme samples s

R←− Z∗q , where q is a λ-bit prime. The
public parameters are (g, gs, h), where g and h are randomly sampled generators of a bilinear group

G of prime order q, while the master secret-key is s. Our scheme additionally samples x1, x2, x3
R←− Z∗q

and g1, g2, g3
R←− G. The augmented public parameter pp and master secret-key msk for our scheme

are as follows:

pp =
(
g, gs, h, gx1 , gx2 , gx3 , gs·x1 , gs·x2 , gs·x3 , g1, g2, g3, (g

x1
1 · g

x3
3 ) , (gx2

2 · g
x3
3 )

)
msk = s
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• ΠIBE
1 .KeyGen: The key-generation algorithm in the Gentry’s scheme computes a secret-key for an

identity id as skid =
(
y, (h · g−y)

1/(s−id)
)

, where y
R←− Z∗q . In our scheme, we augment the key

generation process as follows. We additionally sample y1, y2
R←− Z∗q , and output:

skid =

(
y, gy11 , gy22 , gy1+y2

3 , (gx1
1 · g

x3
3 )

y1 · (gx2
2 · g

x3
3 )

y2 ·
(
h · g−y

)1/(s−id)
)

This is an exemplification of the encrypt step of our approach described above.

• ΠIBE
1 .Enc: An encryption of a message M for an identity id in the Gentry’s scheme is a tuple of the

form
(
gr·(s−id), g (g, g)

r
,M · e (g, h)

−r
)

, where r
R←− Z∗q . In our scheme, we augment the encryption

process to produce the ciphertext:

C =

(
gr·(s−id), gr·x1·(s−id), gr·x2·(s−id), gr·x3·(s−id) , e (g, g)

r
,M · e (g, h)

−r
)

Note that the augmented ciphertext in our scheme retains unaltered the ciphertext of the original
scheme, with which the remaining components share a common source of randomness r. This also
justifies the inclusion of the additional elements gx1 , gx2 , gx3 and gs·x1 , gs·x2 , gs·x3 in pp.

• ΠIBE
1 .Dec: Our decryption algorithm, on input of a ciphertext C = (c0, c1, c2, c3, c4, c5), and a secret-

key skid = (d0, d1, d2, d3, d4), recovers the encrypted message M as:

M =
c5 · cd04 · e (d4, c0)

e (d1, c1) · e (d2, c2) · e (d3, c3)

Observe that at the core of the above computation is the original decryption procedure in the Gentry’s
scheme, with the additional components in the ciphertext and the secret-key canceling out each other
to remove the effect of PKE (the reader is referred to Section 4 for the detailed proof of correctness).
It is important to note that this removal is different from directly decrypting skid, and in particular,
does not require explicit knowledge of the secret-key of PKE.

Finally, we point out that the function privacy of our construction holds under the minimal assumption
that any identity id is uniformly sampled from a distribution with min-entropy ω(log λ), which rules out
the possibility of a brute force attack by a polynomial-time adversary. In particular, the indistinguisha-
bility of secret keys in our construction is based on the DLIN assumption, which by itself does not impose
any stringent restrictions on the min-entropy of the identity distribution.

Comparison with a Deterministic Public-Key Encryption-based Approach. An alternative
approach for designing computationally function private identity-based encryption schemes, suggested in
[10], is as follows: encrypt all identities using a deterministic public-key encryption (DPKE) scheme, and
use any existing anonymous IBE scheme that treats the corresponding ciphertexts of the DPKE scheme
as its identities. Since the security of any DPKE algorithm is also based on the minimal assumption
that its plaintexts are sampled from a distribution with a certain amount of min-entropy, the above
approach seems quite natural. However, any practically realizable notion of DPKE security is inherently
non-adaptive. Intuitively, the reason for this is as follows: in a deterministic encryption setting, plaintext
distributions can be chosen depending on the public-key such that the encryption algorithm acts as a
subliminal channel for leaking information, thus trivially violating all security guarantees (see [14] for
more details). Unfortunately, this is too restrictive a security notion to be adopted in the context of IBE,
where the key-generation process is allowed to be randomized. In particular, any realistic function privacy
framework for IBE must allow adversaries to adaptively specify challenge identity distributions, after they
have seen the public parameters of the scheme. Our approach, on the other hand, encrypts the secret-key

5



skid as a whole instead of just the identity id using a PKE. This allows our augmented key-generation
process to be non-deterministic, and does not restrict adaptive choice of predicate distributions on part
of the adversary. Finally, as demonstrated in this paper, our approach is generalizable for richer predicate
classes beyond IBE.

1.4 Other Related Work

Simulation-based Definitions for Wishful Function Privacy. Agrawal et al. have recently proposed
a new universal composability-style simulation based definition of security in [15] that captures both data
and function privacy in the public and symmetric-key settings. While such a definition indeed represents a
dream version of security for predicate encryption (and even subsumes obfuscation), known impossibility
results [16] rule out the possibility of achieving constructions satisfying this definition of security in the
standard model. With respect to data privacy alone, Boneh, Sahai and Waters [16] demonstrated an equiv-
alence for public-key predicate encryption schemes between the simulation and indistinguishability-based
definitions, albeit in the random oracle model. Their technique, although perfectly suitable for equality
predicates in IBE, offer structural challenges when generalizing to functionally richer predicates such as
in IPE. As for combined data and function privacy, now such equivalence results between the simulation
and indistinguishability-based definitions is known till date. The only known public-key construction till
date secure under this wishful notion security is an IPE scheme proposed by Agrawal et al. themselves
in [15]. This construction is, however, secure in the generic group model; indeed achieving any public-key
predicate encryption scheme satisfying this definition under standard computational assumptions, even
in the random oracle model, seems extremely challenging. In this paper, we are interested in function
privacy guarantees that can be realistically achieved under standard computational assumptions, and
that are generally applicable for a broad class of real-world predicates. This motivates us to choose the
indistinguishability-based definition for proving the function privacy of our proposed schemes.

Function Privacy from Quasi-siO. A generic approach to achieving function privacy, proposed by
Iovino et al. in [17], is to a use a quasi-strong indistinguishability obfuscation (Quasi-siO) scheme Q-siO
over the class of predicates F in the key-generation step of the predicate encryption scheme. In particular,
given a predicate encryption system Π = (Setup,KeyGen,Enc,Dec), one can construct a function-private
Π′ =

(
Setup,KeyGen′,Enc,Dec

)
, such that KeyGen′ (msk, f) = KeyGen (msk,Q-siO(f)). While the above

approach is generic and applies to a wide class of predicates (more specifically, to the class of all NC1)
circuits), it relies on the use of a Quasi-siO, the existence of which cannot be provably based on any
standard computational assumption to the best of our knowledge.

Function Privacy in the Private-Key Setting. Computational function privacy for predicate en-
cryption has been widely studied in the private-key setting [18, 19]. The inherent difficulty of achieving
function privacy in the public-key setting does not apply to the private-key setting, where the encryp-
tor and decryptor have a shared secret-key. In this setting, an adversary with access to a searching key
cannot test the same on ciphertexts of its choice since it does not have access to the secret-key. Function
privacy in the private-key setting is thus more natural to achieve. A general solution in this direction
was proposed by Goldreich and Ostrovsky [20] in their construction of an oblivious RAM. More efficient
constructions have been subsequently proposed for equality testing [21–25] and, more recently, for inner
product testing [18, 26, 27]. In particular, the private-key IPE scheme proposed by Agrawal et al. in [28]
achieves the strongest possible notion of combined data and function privacy from the DLIN assumption
in their wishful simulation based framework.

1.5 Paper Organization

The remainder of this paper is organized as follows. Section 2 presents background material on predicate
encryption, and introduces several computational assumptions in bilinear groups. In Section 3, we for-
mally define our framework for the computational function privacy of public-key predicate encryption.
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In Section 4, we present a family of adaptively data private and computationally function private IBE
schemes in the random-oracle model. In Section 5, we present a family of selectively attribute hiding and
computationally function private IPE schemes in the standard model. Finally, Section 6 concludes the
paper and enumerates several extensions and open problems.

1.6 Notations Used

We write x
R←− χ to represent that an element x is sampled uniformly at random from a set X . The output

a of a deterministic algorithm A is denoted by x ← A and the output a′ of a randomized algorithm A′

is denoted by x′
R←− A′. We refer to λ ∈ N as the security parameter, and denote by exp(λ), poly(λ) and

negl(λ) any generic (unspecified) exponential function, polynomial function and negligible function in λ
respectively. Note that a function f : N→ N is said to be negligible in λ if for every positive polynomial
p, f(λ) < 1/p(λ) when λ is sufficiently large. Finally, for a, b ∈ Z such that a ≤ b, we denote by [a, b] the
set of integers lying between a and b (both inclusive).

The min-entropy of a random variable Y is denoted as H∞(Y ) = − log (maxyPr[Y = y]); a random
variable Y is said to be a k-source if H∞(Y ) ≥ k. A (T, k)-block-source is a random variable Y =
(Y1, · · · , YT ) where for each i ∈ [1, T ] and y1, · · · , yi−1, it holds that:

H∞(Yi|Y1 = y1, · · · , Yi−1 = yi−1) ≥ k

2 Preliminaries

2.1 Public-key Predicate Encryption

A public-key predicate encryption scheme for a class of predicates F over an attribute space Σ and
a payload-message space M is a quadruple Π = (Setup,KeyGen,Enc,Dec) of probabilistic polynomial
time algorithms. The Setup algorithm takes as input the security parameter λ, and generates the public
parameter pp and the master secret-key msk for the system. The key-generation algorithm, KeyGen takes
as input the public parameter pp, the master secret-key msk and a predicate f ∈ F , and generates
a secret-key skf corresponding to f . The Enc algorithm takes as input the public parameter pp, an
attribute I ∈ Σ and a payload-message M ∈ M, and outputs the ciphertext C = Enc (pp, I,M). The
Dec algorithm takes as input the public parameter pp, a ciphertext C and a secret-key skf , and outputs
either a payload-message M ∈M or the symbol ⊥.

Functional Correctness. A predicate encryption scheme Π = (Setup,KeyGen,Enc,Dec) is said to be
functionally correct if for any security parameter λ, for any predicate f ∈ F , for any attribute I ∈ Σ and
any payload-message M ∈M, the following hold with probability at least 1− negl(λ):

1. If f(I) = 1, we have Dec (pp,Enc (pp, I,M) ,KeyGen (msk, f)) = M .
2. If f(I) = 0, we have Dec (pp,Enc (pp, I,M) ,KeyGen (msk, f)) = ⊥.

where the probability is taken over the internal randomness of the algorithms Setup,KeyGen, Enc, and
Dec.

Data Privacy. We briefly recall the notion of indistinguishability-based data privacy for a predicate
encryption scheme under an adaptive chosen-attribute chosen-payload-message attack. Data privacy of
a functional encryption scheme guarantees that any probabilistic polynomial-time adversary can gain no
information about either the attribute I nor the payload-message M associated with a ciphertext C from
the knowledge of the public parameters pp. We denote this notion of security by DP throughout the rest
of the paper.
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Definition 2.1 (Adaptively Data Private Predicate Encryption). A predicate encryption scheme Π =
(Setup,KeyGen,Enc,Dec) is said to be adaptively data private if for any probabilistic polynomial-time
adversary A, the following holds:

AdvDP
Π,A(λ)

def
=

∣∣∣∣Pr
[
Expt

(0)
DP,Π,A(λ) = 1

]
− Pr

[
Expt

(1)
DP,Π,A(λ) = 1

] ∣∣∣∣ ≤ negl(λ)

where for each λ ∈ N and each b ∈ {0, 1}, the experiment Expt
(b)
DP,Π,A(λ) is defined as follows:

1. (pp,msk)
R←− Setup

(
1λ
)
.

2. ((I∗0 ,M
∗
0 ) , (I∗1 ,M

∗
1 ) , state)

R←− AKeyGen(msk,·) (state), where I∗0 , I
∗
1 ∈ Σ and M∗0 ,M

∗
1 ∈ M, subject

to the restriction that for each predicate fi with whichA queries KeyGen (msk, ·), we have fi (I∗0 ) =
fi (I∗1 ).

3. C∗
R←− Enc (pp, I∗b ,M

∗
b ).

4. b′
R←− AKeyGen(msk,·) (C∗, state), once again subject to the restriction that for each predicate fi with

which A queries KeyGen (msk, ·), we have fi (I∗0 ) = fi (I∗1 ).
5. Output b′.

Observe that this notion encapsulates both attribute hiding security and payload message hiding security.
We also consider a selective variant of the above security notion that requires the adversary to commit to
the challenge pair of attributes before seeing the public parameters of the scheme. We denote this notion
of security by sDP throughout the rest of the paper.

Definition 2.2 (Selectively Data Private Predicate Encryption). A predicate encryption scheme Π =
(Setup,KeyGen,Enc,Dec) is said to be selectively data private if for any probabilistic polynomial-time
adversary A, the following holds:

AdvsDP
Π,A(λ)

def
=

∣∣∣∣Pr
[
Expt

(0)
sDP,Π,A(λ) = 1

]
− Pr

[
Expt

(1)
sDP,Π,A(λ) = 1

] ∣∣∣∣ ≤ negl(λ)

where for each λ ∈ N and each b ∈ {0, 1}, the experiment Expt
(b)
sDP,Π,A(λ) is defined as follows:

1. (I∗0 , I
∗
1 , state)

R←− A
(
1λ
)
, where I∗0 , I

∗
1 ∈ Σ.

2. (pp,msk)
R←− Setup

(
1λ
)
.

3. (M∗0 ,M
∗
1 , state)

R←− AKeyGen(msk,·) (state), where M∗0 ,M
∗
1 ∈ M, subject to the restriction that for

each predicate fi with which A queries KeyGen (msk, ·), we have fi (I∗0 ) = fi (I∗1 ).

4. C∗
R←− Enc (pp, I∗b ,M

∗
b ).

5. b′
R←− AKeyGen(msk,·) (C∗, state), once again subject to the restriction that for each predicate fi with

which A queries KeyGen (msk, ·), we have fi (I∗0 ) = fi (I∗1 ).
6. Output b′.

Identity-Based Encryption. An identity-based encryption scheme ΠIBE over an identity space ID and
a message spaceM is a public-key predicate encryption scheme supporting the set of equality predicates
fid : ID −→ {0, 1} defined as fid(id

′) = 1 if and only if id′ = id. The secret-key associated with an identity
id ∈ ID is denoted as skid. The notions of anonymity and message indistinguishability security popularly
associated with IBE are equivalent to the notion of adaptive data privacy as described above.

Inner-Product Encryption. An inner-product encryption scheme ΠIPE over an attribute space Σ = Fnq
(q being a λ-bit prime) and a payload message space M is a public-key predicate encryption scheme
supporting the set of vector predicates f−→v : Σ −→ {0, 1}. The secret-key associated with a vector −→v ∈ Σ
is denoted as sk−→v . Zero-IPE is a specific sub-class of IPE where for −→v ,−→x ∈ Σ, we have f−→v (−→x ) = 1 if
and only if 〈−→v ,−→x 〉 = 0.
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2.2 Computational Assumptions in Bilinear Groups

The Augmented Decisional Bilinear Diffie-Hellman Exponent Assumption (ADBDHE)[4].
Let GroupGen(1λ) be a probabilistic polynomial-time algorithm that takes as input a security parameter
λ, and outputs the tuple (G,GT , q, g, e), where G and GT are groups of order q (q being a λ-bit prime),
g is a generator for G and e : G × G −→ GT is an efficiently computable non-degenerate bilinear map.
The group G is popularly referred to as a bilinear group [29]. The augmented decisional l-bilinear Diffie-
Hellman exponent assumption, introduced by Gentry in [4], is that the distribution ensembles:{(

g, ga, · · · , ga
l

, ga
l+2

, · · · , ga
2l

, gb, gb·a
l+2

, e (g, g)
b·al+1

)}
a,b

R←−Z∗q
and{(

g, ga, · · · , ga
l

, ga
l+2

, · · · , ga
2l

, gb, gb·a
l+2

,W
)}

a,b
R←−Z∗q ,W

R←−GT

are computationally indistinguishable, where (G,GT , q, g, e)← GroupGen(1λ).

The Decisional Linear Assumption (DLIN)[30]. Let G be a group of prime order q and let g1, g2, g3

be arbitrary generators for G. The decisional linear assumption is that the distribution ensembles:{(
g1, g2, g3, g

a1
1 , ga22 , ga1+a2

3

)}
a1,a2

R←−Z∗q
and {(g1, g2, g3, g

a1
1 , ga22 , ga33 )}

a1,a2,a3
R←−Z∗q

are computationally indistinguishable, where g1, g2, g3
R←− G.

The DLIN assumption was introduced by Boneh, Boyen and Shacham [30], and was intended to take
the place of the more standard decisional Diffie Hellman (DDH) assumption in groups where the DDH
assumption does not hold. In particular, for bilinear groups as defined above, the DLIN assumption holds
even if the DDH assumption does not, at least in the generic group model.

The Generalized Decisional k-Linear Assumption (k-DLIN) [13]. Let G be a group of prime order
q and let g1, · · · , gk, gk+1 be arbitrary generators for G. The generalized decisional k-linear assumption
is that the distribution ensembles:{(

g1, · · · , gk, gk+1, g
a1
1 , · · · , gakk , g

∑k
j=1 aj

k+1

)}
a1,··· ,ak

R←−Z∗q
and{(

g1, · · · , gk, gk+1, g
a1
1 , · · · , gakk , g

ak+1

k+1

)}
a1,··· ,ak,ak+1

R←−Z∗q

are computationally indistinguishable, where g1, · · · , gk+1
R←− G.

Quite evidently, this assumption is a generalization of the DLIN assumption stated above. Note that the
k-DLIN assumption implies the (k+ 1)-DLIN assumption for all k ≥ 1, but the reverse is not necessarily
true, implying that the k-DLIN assumption family is a family of progressively weaker assumptions [13].

3 Computational Function Privacy of Public-Key Predicate Encryption

We recall the indistinguishability-based framework for computational function privacy of predicate en-
cryption in the public-key setting. We consider adversaries that have access to the public parameters of
the scheme, as well as a secret-key generation oracle. The adversary can also adaptively interact with a
real-or-random function-privacy oracle RoRFP. This oracle takes as input any adversarially-chosen distri-
bution over the class of predicates F , and outputs a secret-key either for a predicate sampled from the
given distribution, or for an independently and uniformly sampled predicate. At the end of the interac-
tion, the adversary should be able to distinguish between these real and random modes of operation of
RoRFP with only negligible probability.
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Formal Definitions. We now formally present the computational function privacy definitions for public-
key predicate encryption.

Definition 3.1 (Real-or-Random Function Privacy Oracle). The real-or-random function privacy oracle
RoRFP takes as input triplets of the form (mode,msk,F), where mode ∈ {real, rand}, msk is the master
secret-key, and F is a circuit representing a distribution over the class of predicates F . If mode = real, the

oracle samples f
R←− F, while if mode = rand, it samples f

R←− F . It then computes skf
R←− KeyGen (msk, f)

and responds with skf .

Definition 3.2 (Computational Function Privacy). A predicate encryption scheme Π = (Setup,KeyGen,Enc,Dec)
is said to be computationally function private if for any probabilistic polynomial-time adversary A, the
following holds:

AdvFP
Π,A(λ)

def
=

∣∣∣∣Pr
[
ExptrealFP,Π,A(λ) = 1

]
− Pr

[
ExptrandFP,Π,A(λ) = 1

] ∣∣∣∣ ≤ negl(λ)

where for each λ ∈ N and each mode ∈ {real, rand}, the experiment Exptmode
FP,Π,A(λ) is defined as follows:

1. (pp,msk)
R←− Setup

(
1λ
)
.

2. b
R←− ARoRFP(mode,msk,·),KeyGen(msk,·) (1λ, pp), subject to the restriction that each Fi with which A

queries RoRFP (mode,msk, ·) represents a distribution with min-entropy k = ω (log λ).
3. Output b.

Note that our definitions are generic, and may be suitably adopted for IBE, IPE and other classes of
predicate encryption.

Min-Entropy Requirements. In our definitions for computational function privacy, the adversary is
allowed to adaptively issue a polynomial number of queries to the RoRFP oracle, as long as the queries
correspond to distributions with min-entropy k = ω (log λ). As discussed in Section 1.3, such a restriction
is necessary for any definition of function privacy to be meaningful in the public-key setting. In the
context of IBE, for example, the adversary is allowed to query the real-or-random oracle with ID∗ ∈ ID
only if ID∗ represents a k-source such that k = ω (log λ). In the context of IPE, on the other hand,
and adversary can query the real-or-random oracle with V∗ = (V ∗1 , · · · , V ∗n ) ∈ ZnN only of V∗ is an
(n, k)-block source such that k = ω (log λ). Additionally, each component-wise distribution V ∗i for i ∈
[1, n] should be completely uncorrelated with each of the other distributions in V∗. This restriction is
necessary to ensure that the adversary cannot carefully craft vectorial distributions with arbitrary inter-
component correlations to trivially compromise function privacy (see [11] for a detailed explanation).
Finally, note that within the purview of all predicate encryption schemes subsumed by IPE, our definitions
are essentially equivalent to the left-or-right oracle based function privacy definitions proposed by Iovino
et al. in [17].

Multi-Shot v/s Single-Shot Adversaries. Definition 3.1 considers multi-shot adversaries that are
allowed to query the RoRFP oracle polynomially many times. However, it is polynomially equivalent to
consider single-shot adversaries that can query the RoRFP at most once. This is easily established by a
hybrid argument, where the hybrids are constructed such that only one query is forwarded to the RoRFP

oracle, while the rest are answered by the key generation oracle.

4 Computationally Function Private Identity-Based Encryption

In this section, we apply our encrypt-augment-recover approach to the anonymous IBE scheme of Gentry
[4] to achieve a family of computationally function private IBE schemes {ΠIBE

k }k≥1. The concrete scheme
for k = 1, has already been introduced in Section 1.3. We present the generalized construction here, along
with detailed proofs for data and function privacy.
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A Generalized PKE Scheme. In keeping with our encrypt-augment-recover approach, at the core of
ΠIBE
k is the following generalized version of the PKE scheme introduced in Section 1.3, which is CPA-secure

under the (k + 1)-DLIN assumption and is referred to as PKEk:

• PKEk.KeyGen: The key-generation algorithm samples x1, · · · , xk+2
R←− Z∗q , where q is a λ-bit prime,

and g1, · · · , gk+2
R←− G, where G is a cyclic group of prime order q. It outputs the secret-key SK and

the public-key PK as:

SK = (x1, · · · , xk+2) , PK =
(
g1, · · · , gk+2, {

(
g
xj

j · g
xk+2

k+2

)
}j∈[1,k+1]

)
• PKEk.Enc: The ciphertext C corresponding to a message M ∈ G is a tuple of the form:

C =

gy11 , · · · , gyk+1

k+1 , g
∑k+1

j=1 yj
k+2 ,

k+1∏
j=1

(
g
xj

j · g
xk+2

k+2

)yj ·M


where y1, · · · , yk+1
R←− Z∗q .

• PKEk.Dec: The decryption algorithm, on input the ciphertext C = (c0, · · · , ck+2) and the secret-key
(x1, · · · , xk+2), recovers the message M as:

M = ck+2

/k+2∏
j=1

c
xj

j−1


Gentry’s IBE Scheme. We also briefly recall the original IBE scheme of Gentry [4] for clarity of
presentation. Let GroupGen(1λ) be a probabilistic polynomial-time algorithm that takes as input a security
parameter λ, and outputs the tuple (G,GT , q, g, e), where G and GT are groups of of order q (q being a
λ-bit prime), g is a generator for G and e : G × G −→ GT is an efficiently computable non-degenerate
bilinear map. Gentry’s IBE scheme ΠIBE

G = (Setup,KeyGen,Enc,Dec) is defined over the identity space
ID = Z∗q and the message space M = {Mλ}λ∈N as follows:

• ΠIBE
G .Setup: The setup algorithm samples (G,GT , q, g, e)

R←− GroupGen(1λ) on input the security pa-

rameter 1λ. It also samples s
R←− Z∗q and h

R←− G, and outputs the public parameter pp and the master
secret-key msk as:

pp = (g, gs, h) , msk = s

• ΠIBE
G .KeyGen: On input the public parameter pp, the master secret-key msk and an identity id ∈ ID,

the key generation algorithm samples y
R←− Z∗q and outputs the secret-key skid = (d0, d1) where:

d0 = y , d1 =
(
h · g−y

)1/(s−id)

• ΠIBE
G .Enc: On input the public parameter pp, an identity id ∈ ID and a message M ∈ M, the

encryption algorithm samples r
R←− Z∗q and outputs the ciphertext C = (c0, c1, c2) where:

c0 = gr·(s−id) , c1 = e (g, g)
r

, c2 = M · e (g, h)
−r

• ΠIBE
G .Dec: On input a ciphertext C = (c0, c1, c2) and a secret-key skid = (d0, d1), the decryption

algorithm computes:
M ′ = cd01 · c2 · e (d1, c0)

If M ′ ∈M, the decryption algorithm outputs M ′, else it outputs ⊥.

The above scheme is selectively data private under the augmented decisional bilinear Diffie-Hellman
exponent (ADBDHE) assumption presented in Section 2 (see [4] for the detailed proof).
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4.1 Our Function Private IBE Scheme ΠIBE
k

We now present the construction for our function private IBE scheme ΠIBE
k , which is obtained via a

combination of {ΠIBE
k }k≥1 described above with Gentry’s IBE scheme ΠIBE

G using our encrypt-augment-
recover approach. For ease of understanding, we highlight the alterations made to the original scheme.

• ΠIBE
k .Setup: The setup algorithm samples (G,GT , q, g, e)

R←− GroupGen(1λ) on input the security pa-

rameter 1λ. It also samples s, x1, x2, · · · , xk+2
R←− Z∗q as well as g1, g2, · · · , gk+2, h

R←− G. It outputs the
public parameter pp and the master secret-key msk as:

pp =

(
g, gs, h, {gxj , gs·xj}j∈[1,k+1] , g1, · · · , gk+2, {g

xj

j · g
xk+2

k+2 }j∈[1,k+1]

)
msk = s

• ΠIBE
k .KeyGen: On input the public parameter pp, the master secret-key msk and an identity id ∈
ID, the key generation algorithm samples y, y1, y2 · · · , yk+1

R←− Z∗q and outputs the secret-key skid =
(d0, d1, · · · , dk+3) where:

d0 = y , dj = g
yj
j for j ∈ [1, k + 1]

dk+2 = g
∑k+1

j=1 yj
k+2 , dk+3 =

k+1∏
j=1

(
g
xj

j · g
xk+2

k+2

)yj · (h · g−y)1/(s−id)

Observe that (d1, d2, · · · , dk+3) = PKE.Enc
(
PK, (h · g−y)

1/(s−id)
)

.

• ΠIBE
k .Enc: On input the public parameter pp, an identity id ∈ ID and a message M ∈ M, the

encryption algorithm samples r
R←− Z∗q and outputs the ciphertext C = (c0, c1, · · · , ck+4) where:

c0 = gr·(s−id) , cj = gr·xj ·(s−id) for j ∈ [1, k + 2] , ck+3 = e (g, g)
r

, ck+4 = M · e (g, h)
−r

• ΠIBE
k .Dec: On input a ciphertext C = (c0, · · · , ck+4) and a secret-key skid = (d0, · · · , dk+3), the de-

cryption algorithm computes:

M =
ck+4 · cd0k+3 · e (dk+3, c0)∏k+2

j=1 e (dj , cj)

If M ′ ∈M, the decryption algorithm outputs M ′, else it outputs ⊥.

Correctness. First, consider a message M ∈ M, a ciphertext C = (c0, · · · , ck+4) corresponding to M
under an identity id ∈ ID and a secret-key skid = (d0, · · · , dk+3) corresponding to id. Then, we have:

M ′ = M ·
e (g, h)

−r · e (g, g)
r·y · e

(
(h · g−y)

1/(s−id)
, gr·(s−id)

)
· e
((∏k+1

j=1

(
g
xj

j · g
xk+2

k+2

)yj)
, gr·(s−id)

)
∏k+1
j=1 e

(
g
yj
j , (g

xj )
r·(s−id)

)
· e
(
g
∑k+1

j=1 yj , (gxk+2)
r·(s−id)

)
= M ·

∏k+1
j=1 e

(
g
yj
j , (g

xj )
r·(s−id)

)
· e
(
g
∑k+1

j=1 yj , (gxk+2)
r·(s−id)

)
∏k+1
j=1 e

(
g
xj

j , g
r·(s−id)

)yj · e (gxk+2

k+2 , g
r·(s−id)

)∑k+1
j=1 yj

= M
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Therefore as long as the ciphertext and the secret-key correspond to the same identity, the message is
recovered correctly. Again, when the ciphertext and the secret-key correspond to two different identities,
say id and id′ respectively, the decryption algorithm computes:

M ′ = M · e (g, h)
−r · e (g, g)

r·y · e
((
h · g−y

)1/(s−id′)
, gr·(s−id)

)
We may assume here that M is a small subset of GT , namely |M| < |GT |1/2. This is not very serious

since the space of valid messages in reality is expected to be significantly smaller than |GT |1/2. This

restriction ensures that the probability of M ′ still lying inM, for y, r
R←− Z∗q , is negligible in the security

parameter λ. This completes the proof of correctness for our generalized IBE scheme ΠIBE
k .

4.2 Security of Our IBE Scheme

Selective Data Privacy. We state the following theorem for the selective data privacy of ΠIBE
k :

Theorem 4.1 Our IBE scheme ΠIBE
k is selectively data private in the standard model if Gentry’s scheme

ΠIBE
G is selectively data private in the standard model.

Proof. Let A be any probabilistic polynomial-time adversary such that:

AdvDP
ΠIBE

k ,A(λ) =

∣∣∣∣Pr
[
Expt

(0)

DP,ΠIBE
k ,A(λ) = 1

]
− Pr

[
Expt

(1)

DP,ΠIBE
k ,A(λ) = 1

] ∣∣∣∣ = ε > negl(λ)

We construct a polynomial-time algorithm B such that:

AdvDP
ΠIBE

G ,B(λ) =

∣∣∣∣Pr
[
Expt

(0)

DP,ΠIBE
G ,B(λ) = 1

]
− Pr

[
Expt

(1)

DP,ΠIBE
G ,B(λ) = 1

] ∣∣∣∣ = ε

B interacts with A in the selective data privacy experiment as follows:

• Init: A commits to the challenge identity pair (id∗0, id
∗
1). B also commits to the same identity pair.

• Setup: B begins by obtaining the public parameter pp = (g, gs, h) for ΠIBE
G . It then samples

x1, · · · , xk+2
R←− Z∗q and g1, g2, · · · , gk+2

R←− G and provides A with the modified public parame-
ter:

pp′ =
(
g, gs, h, {gxj , gs·xj}j∈[1,k+1], g1, · · · , gk+2, {g

xj

j · g
xk+2

k+2 }j∈[1,k+1]

)
• Secret-Key Queries: When A issues a secret-key query for idi ∈ ID, B forwards the query to the

key-generation oracle for ΠIBE
G , and receives skidi = (d0, d1). It then samples y1, y2, · · · , yk+1

R←− Z∗q
and responds to A with the secret-key:

sk′idi =

d0, g
y1
1 , gy22 , · · · , gyk+1

k+1 , g
∑k+1

j=1 yj
k+2 ,

k+1∏
j=1

(
g
xj

j · g
xk+2

k+2

)yj · d1


• Challenge: A outputs the challenge message pair (M∗0 ,M

∗
1 ). B outputs the same challenge message

pair and receives the challenge ciphertext C∗ = (c∗0, c
∗
1, c
∗
2) for ΠIBE

G . It then computes the challenge
ciphertext for A as:

C ′
∗

= (c∗0, (c
∗
0)
x1 , (c∗0)

x2 · · · , (c∗0)
xk+2 , c∗1, c

∗
2)

• Output: At the end of the experiment, A outputs a bit b′. B outputs the same bit b′.

It is easy to see that B’s simulation is perfect and hence, it has the same advantage ε as A. This completes
the proof of Theorem 4.1.
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Extension to Adaptive Data Privacy. Our IBE scheme ΠIBE
k can be extended to achieve fully

adaptive data privacy using the concept of hybrid encryption, introduced by Ananth et al. in [31]. Their
technique embeds a hidden execution thread in the decryption keys of the underlying selectively data
private scheme, to be activated within the proof of adaptive data privacy for the resulting scheme. This
approach also does not require any additional assumptions such as obfuscation.

Computational Function Privacy. We state the following theorem for the computational function
privacy of ΠIBE

k :

Theorem 4.2 Our IBE scheme ΠIBE
k is computationally function private under the (k + 1)-DLIN as-

sumption for identities sampled uniformly from k-sources with k = ω (log λ).

Proof. We intend to prove the following claim:

Claim 4.1 For any probabilistic polynomial-time adversary A, the following holds:∣∣∣∣Pr
[
ExptrealFP,ΠIBE

k ,A(λ) = 1
]
− Pr

[
ExptrandFP,ΠIBE

k ,A(λ) = 1
] ∣∣∣∣ ≤ negl(λ)

To prove this claim, we assume the contrary. Let A be a probabilistic polynomial-time adversary such
that: ∣∣∣∣Pr

[
ExptrealFP,ΠIBE

k ,A(λ) = 1
]
− Pr

[
ExptrandFP,ΠIBE

k ,A(λ) = 1
] ∣∣∣∣ = ε > negl(λ)

We assume that the adversary A issues a single query to the real-or-random oracle. As discussed in
Section 3, such a single-shot adversary is polynomially equivalent to its multi-shot variant considered in
Definition 3.1. We construct an algorithm B that solves an instance of the (k + 1)-DLIN problem with
non-negligible advantage ε′ = ε. B is given

(
g1, · · · , gk+2, g

a1
1 , · · · , gak+2

k+2

)
and interacts with A as follows:

• Setup: B samples s, x1, · · · , xk+2
R←− Z∗q and g1, · · · , gk+2, h

R←− G. It outputs the public parameter pp
and the master secret-key msk as:

pp =
(
g, gs, h, {gxj , gs·xj}j∈[1,k+1], g1, · · · , gk+2, {g

xj

j · g
xk+2

k+2 }j∈[1,k+1]

)
msk = s

• Secret-Key Queries: When A issues a secret-key query for some identity idi, B responds with
skidi = ΠIBE

k .KeyGen (pp,msk, idi).

• Real-or-Random Query: Suppose A queries the real-or-random oracle with ID∗ - a circuit repre-
senting a k-source over the identity space ID such that k = ω (log λ). B uniformly samples an identity

id∗
R←− ID∗ and responds with the secret-key skid∗ as:

skid∗ =

y, ga11 , · · · , gak+2

k+2 ,

k+2∏
j=1

(
g
aj
j

)xj

 · (h · g−y)1/(s−id)


where ga11 , · · · , gak+2

k+2 are part of its input instance and y
R←− Z∗q .

• Output: At the end of the experiment, A outputs a bit b′. B outputs the same bit b′.

It is easy to see that when ak+2 =
∑k+1
j=1 aj , the secret-key skid∗ is well-formed and identically distributed

to the response of the real-or-random oracle in the experiment ExptrealFP,ΠIBE
k ,A(λ). On the other hand,

when ak+2 is uniformly random in Z∗q , the secret-key skid∗ is uniformly random, and hence identically

distributed to the response of the real-or-random oracle in the experiment ExptrandFP,ΠIBE
k ,A(λ). Hence, the
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advantage ε′ of B in solving the (k + 1)-DLIN instance (where the probability is taken over all possible

choices of a1, · · · , ak+2
R←− Z∗q and all possible choices of g1, · · · , gk+2

R←− G) may be quantified as:

ε′ =

∣∣∣∣Pr
[
ExptrealFP,ΠIBE

k ,A(λ) = 1
]
− Pr

[
ExptrandFP,ΠIBE

k ,A(λ) = 1
] ∣∣∣∣ = ε

This completes the proof of Theorem 4.2.

5 Computationally Function Private Inner-Product Encryption

In this section, we present a family of selectively data private zero-IPE schemes {ΠIPE
k }k≥1 that are also

computationally function private under the generalized family of k-DLIN assumptions in the standard
model. Our schemes are defined over the set of attributes Σ = ZnN (N being a product of three primes q1,
q2 and q3), and the class of vectorial predicates F = {f−→v | −→v ∈ ZnN}, such that for I = (I1, · · · , In) ∈ ZnN ,
we have f−→v (I) = 1 if and only if 〈−→v , I〉 = 0 mod N . Our constructions are obtained by applying our
encrypt-augment-recover approach to the zero-IPE scheme of Katz, Sahai and Waters [3].

Construction Overview. Let G be a bilinear group of order N = q1q2q3 (each of q1, q2 and q3 being
λ-bit primes), and let G1, G2 and G3 denote the subgroups of G of order q1, q2 and q3, respectively. Also,
let ê : G×G −→ GT be an efficiently computable non-degenerate bilinear map, where GT is also a group
of order N . Note that if g is the generator for G, then the element g1 = gq2·q3 is a generator for G1, the
element g2 = gq1·q3 is a generator for G2, and the element g3 = gq1·q2 is a generator for G3. Furthermore,
for any elements h1 ∈ G1, h2 ∈ G2 and h3 ∈ G3, we have ê (h1, h2) = ê (h2, h3) = ê (h1, h3) = 1. Also,
let GroupGen′(1λ) be a probabilistic polynomial-time algorithm that takes as input a security parameter
λ, and outputs the tuple (G,GT , q1, q2, q3, g1, g2, g3, ê). Finally, the payload message spaceM is assumed

to be a small subset of GT , namely |M| < |GT |1/2. Our function private zero-IPE scheme uses the three
subgroups for three distinct roles:

• The subgroup G2 is used to encode the vectors −→v and I in the secret-key and the ciphertexts, re-
spectively, and to compute the inner product 〈−→v , I〉 in the exponent of a bilinear map computation.

• The subgroup G1 serves a dual purpose in our scheme. On the one hand, it has the effect of masking
the inner product computation in G2, and preventing the adversary from improperly manipulating
the computation in any way to reveal information about the underlying attributes. In particular, it is
pivotal in ensuring the non-malleability of the secret-keys and ciphertexts generated by the scheme.
On the other hand, it is in the G1 subgroup that we incorporate our encrypt-augment-recover method-
ology to achieve computational function privacy.

• The subgroup G3 serves as an additional layer of masking for the other subgroups. In particular,
random elements sampled from G3 are multiplied with various components in both the secret-keys
as well as the ciphertexts to hide possible information leakages from the subgroups G1 and G2.

Encrypt-Augment-Recover. We apply our encrypt-augment-recover approach to the zero-IPE scheme
of Katz, Waters and Sahai to achieve computational function privacy. At the core of our approach is the
public-key encryption algorithm PKEk = (KeyGen,Enc,Dec) that is CPA-secure under the (k + 1)-DLIN
assumption (the reader is referred to Section 4 for recalling the PKE scheme). The PKE essentially oper-
ates in the subgroup G1 of prime order q1, and its outputs are suitably masked before being incorporated
in our scheme. We modify the algorithms of the original scheme as follows:

• The modified setup algorithm runs (SK,PK)
R←− PKEk.KeyGen. It retains the master secret-key of

the original scheme, and modifies the public parameter to include PK, as well as a one way function
of SK.
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• The original zero-IPE scheme of Katz, Sahai and Waters comprises of secret-keys of the form sk−→v =(
d0, {d1,i, d2,i}i∈[1,n]

)
. The modified key-generation algorithm in our scheme generates a secret-key of

the form sk′−→v =
(
d0, {dj1,i, d

j
2,i}i∈[1,n],j∈[0,k+2]

)
such that for i ∈ [1, n], we have:(

{dj1,i}j∈[0,k+2]

)
= PKEk.Enc (PK, d1,i)(

{dj2,i}j∈[0,k+2]

)
= PKEk.Enc (PK, d2,i)

with the effects of masking using random elements from G3 suitable adjusted as necessary. In the
proof of function privacy, we argue the indistinguishability of a well-formed secret-key component
from a uniformly random one by relating it to the hardness of solving a (k + 1)-DLIN instance in G1.

• The modified encryption algorithm generates an augmented ciphertext that retains the ciphertext of
the original scheme unaltered as one of its components. The additional ciphertext components are
used by the modified decryption algorithm subsequently to remove the effect of PKE and recover the
payload message M . The additional components are also in the group G1, and are suitably masked
using uniformly random elements from G3. The masking ensures that the data privacy guarantees of
the original scheme are not weakened.

5.1 Construction Details for Our Zero-IPE Scheme ΠIPE
k

We now present the construction for ΠIPE
k in details. Due to space constraints, we avoid presenting the

original IPE scheme of Katz, Sahai and Waters (the reader is referred to [3] for details of the original
construction). However, we highlight the alterations made to the original scheme for ease of understanding.

• ΠIPE
k .Setup: The setup algorithm samples the following:

• (G,GT , q1, q2, q3, g1, g2, g3, ê)
R←− GroupGen′(1λ)

• {x1,j , x2,j
R←− Z∗q1}j∈[1,k+2] and {g1,j , g2,j

R←− G1}j∈[1,k+2]

• {h1,i, h2,i
R←− G1}i∈[1,n] and {Rj1,i, R

j
2,i

R←− G3}i∈[1,n],j∈[0,k+2]

• h R←− G1, γ
R←− Z∗q1 and R3

R←− G3

Next, it sets:

Q = g2 ·R3

S0
1,i = h1,i ·R0

1,i , S0
2,i = h2,i ·R0

2,i for i ∈ [1, n]

Sj1,i = h
x1,j

1,i ·R
j
1,i , Sj2,i = h

x2,j

2,i ·R
j
2,i for i ∈ [1, n], j ∈ [1, k + 2]

and outputs the public parameter pp and the master secret-key msk as:

pp =

(
g1, g3, Q, {Sj1,i, S

j
2,i}i∈[1,n],j∈[0,k+2] , ê (g1, h)

γ
,

{g1,j , g2,j}j∈[1,k+2], {g
x1,j

1,j · g
x1,k+2

1,k+2 , g
x2,j

2,j · g
x2,k+2

2,k+2 }j∈[1,k+1]

)
msk =

(
q1, q2, q3, g2, {h1,i, h2,i}i∈[1,n], h

γ
)

• ΠIPE
k .KeyGen: On input the public parameter pp, the master secret-key msk and a vector −→v =

(v1, · · · , vn), the key generation algorithm samples {z1,i, z2,i
R←− Z∗q1}i∈[1,n], {yj1,i, y

j
2,i

R←− Z∗q1}i∈[1,n],j∈[1,k+1],

Q4
R←− G2, R5

R←− G3 and f1, f2
R←− Z∗q2 . As in the original scheme, it first sets:

d0 = Q4 ·R5

/(
hγ ·

n∏
i=1

h
z1,i
1,i · h

z2,i
2,i

)
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Next, it sets:

d0
1,i = g

z1,i
1 · gf1·vi2

/ k+1∏
j=1

(
g
x1,j

1,j · g
x1,k+2

1,k+2

)yj1,i for i ∈ [1, n]

d0
2,i = g

z2,i
1 · gf2·vi2

/ k+1∏
j=1

(
g
x2,j

2,j · g
x2,k+2

2,k+2

)yj2,i for i ∈ [1, n]

Finally, it sets the following additional components:

dj1,i = g
yj1,i
1,j , dj2,i = g

yj2,i
2,j for i ∈ [1, n], j ∈ [1, k + 1]

dk+2
1,i = g

∑k+1
j=1 y

j
1,i

1,k+2 , dk+2
2,i = g

∑k+1
j=1 y

j
2,i

2,k+2 for i ∈ [1, n]

and outputs the secret-key sk−→v as:

sk−→v =
(
d0, {dj1,i, d

j
2,i}i∈[1,n],j∈[0,k+2]

)
This is yet another exemplification of the encrypt step of our approach.

• ΠIPE
k .Enc: On input the public parameter pp, an attribute I = (I1, · · · , In) ∈ ZnN and a payload message

M ∈M, the encryption algorithm samples r, α, β
R←− Z∗N and {Rj6,i, R

j
7,i

R←− G3}i∈[1,n],j∈[0,k+2]. It then
sets c0 = gr1. It also sets :

c01,i =
(
S0

1,i

)r ·Qα·Ii ·R0
6,i , c02,i =

(
S0

2,i

)r ·Qβ·Ii ·R0
7,i for i ∈ [1, n]

cj1,i =
(
Sj1,i

)r
·Rj6,i , cj2,i =

(
Sj2,i

)r
·Rj7,i for i ∈ [1, n], j ∈ [1, k + 2]

Finally, it sets c3 = M · (ê (g1, h)
γ
)
r

and outputs the ciphertext C as:

C =
(
c0, {cj1,i, c

j
2,i}i∈[1,n],j∈[0,k+2], c3

)
Once again observe that the augmented ciphertext retains unaltered the ciphertext components of the
original scheme.

• ΠIPE
k .Dec: On input a ciphertext C =

(
c0, {cj1,i, c

j
2,i}i∈[1,n],j∈[0,k+2]

)
and a secret-key sk−→v =

(
d0, {dj1,i, d

j
2,i}i∈[1,n],j∈[0,k+2]

)
,

the decryption algorithm computes:

M ′ = c3 · ê (d0, c0) ·

 n∏
i=1

k+2∏
j=0

ê
(
dj1,i, c

j
1,i

)
· ê
(
dj2,i, c

j
2,i

)
If M ′ ∈M, the decryption algorithm outputs M ′, else it outputs ⊥.
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Correctness. To see that correctness holds for our zero-IPE scheme, let C and sk−→v be as described in
Section 5. Then we have:

M ′ = c3 · ê (d0, c0) ·

 n∏
i=1

k+2∏
j=0

ê
(
dj1,i, c

j
1,i

)
· ê
(
dj2,i, c

j
2,i

)
= M · (ê (g1, h)

γ
)
r ·

( ∏n
i=1 ê

(
g
z1,i
1 , hr1,i

)
· ê
(
g
z2,i
1 , hr2,i

)
ê (hγ , gr1) · ê

(∏n
i=1 h

z1,i
1,i · h

z2,i
2,i , g

r
1

)) ·( n∏
i=1

ê
(
gf1·vi2 , gα·Ii2

)
· ê
(
gf2·vi2 , gβ·Ii2

))

·
n∏
i=1


∏k+1
j=1

(
ê

(
g
yj1,i
1,j ,

(
h
x1,j

1,i

)r) · ê(gyj2,i2,j ,
(
h
x2,j

2,i

)r)) · ê(g∑k+1
j=1 y

j
1,i

1,k+2 ,
(
h
x1,k+2

1,i

)r) · ê(g∑k+1
j=1 y

j
2,i

2,k+2 ,
(
h
x2,k+2

2,i

)r)
ê

(∏k+1
j=1

(
g
x1,j

1,j · g
x1,k+2

1,k+2

)yj1,i
, hr1,i

)
· ê
(∏k+1

j=1

(
g
x2,j

2,j · g
x2,k+2

2,k+2

)yj2,i
, hr2,i

)


= M ·
n∏
i=1

ê (g2, g2)
(αf1+βf2)·vi·Ii

= M · ê (g2, g2)
(αf1+βf2 mod q2)·〈−→v ,I〉

where α, β are uniformly random in Z∗N and f1, f2 are uniformly random in Z∗q2 . Once again, observe

that ΠIPE
k .Dec uses the additional components in the augmented ciphertext to remove the effect of PKEk

from the secret key sk−→v , and recovers the message M .

The Need for Two Sub-Systems. Note that our zero-IPE scheme uses two parallel sub-systems (in
the key generation and encryption algorithms) that are apparently redundant since they perform the
same functions. Indeed, our scheme inherits this feature from the original zero-IPE scheme of Katz, Sahai
and Waters [3]. Eliminating one of the sub-systems from our scheme would retain functional correctness
as well as computational function privacy, while also improving performance and efficiency. However, the
proof methodology in [3] for data privacy relies on the existence of the parallel sub-systems in an essential
way. Since our aim is to retain the same data privacy guarantees as in the original scheme, we stick to
the use of two parallel sub-systems in our augmented zero-IPE scheme.

5.2 Security of Our IPE Scheme

Data Privacy. We state the following theorem for the data privacy of ΠIPE
k :

Theorem 5.1 Our zero-IPE scheme ΠIPE
k retains the selective data privacy guarantees of the original

zero-IPE scheme of Katz, Sahai and Waters [3].

Proof Overview. The proof of selective data privacy for our scheme essentially follows the proof technique
presented in [3]; so we provide a brief overview of their proof technique here. The proof considers a prob-
abilistic polynomial-time adversary that tries to determine whether the challenge ciphertext is associated
with either of the two attributes I0 or I1. The proof proceeds via a sequence of hybrid experiments in
which an entire attribute used in the challenge ciphertext is changed in one step, instead of changing
them component by component for reasons mentioned in the proof of the original scheme in [3]. This
is facilitated by the presence of the two parallel sub-systems, which allows the hybrid experiments to
use ill-formed ciphertexts that are created with respect to two different attributes I and I ′ and in the
two sub-systems. Let such a ciphertext be denoted informally as (I, I ′). The proof establishes indistin-
guishability between the well-formed ciphertexts (I0, I0) and (I1, I1) via a sequence of intermediate hybrid

experiments using the ill-formed ciphertexts
(
I0,
−→
0
)

, (I0, I1) and
(−→

0 , I1

)
. The zero vector is used since

it orthogonal to any other vector. The simulator in our proof works in one sub-system independent of
what happens in the other one. In each hybrid experiment, the simulator embeds a subgroup-decision
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like assumption in the challenge ciphertext, and the structure of the challenge determines whether a
sub-system embeds a given vector or a zero vector.

The only additional requirement in our proof is that the simulator should be able to embed the (k+1)-
DLIN instances when responding to the key generation queries from the adversary. As demonstrated in
the proof of Theorem 4.1, this is straightforward to achieve: since the simulator in the data privacy
experiment is allowed to set up the (k + 1)-DLIN instances entirely on its own, it can easily augment
the secret-key generation process in the proof of the original scheme by appropriately embedding these
instances where necessary. Moreover, since the (k+ 1)-DLIN instances are sampled uniformly at random,
the resulting distribution of secret-keys is exactly as in the real world from the point of view of the
adversary. Similarly, in the challenge phase, the simulator generates the additional components in the
augmented ciphertext uniformly at random, without altering the nature of the ciphertext distribution
from the adversary’s point of view.

Extension to Adaptive Data Privacy. Once again, our zero-IPE scheme ΠIPE
k can also be extended

to achieve fully adaptive data privacy using the concept of hybrid encryption, introduced by Ananth et
al. in [31].

Computational Function Privacy. We state the following theorem for the computational function
privacy of ΠIPE

k :

Theorem 5.2 Our zero-IPE scheme ΠIPE
k is computationally function private under the (k + 1)-DLIN

assumption for predicate vectors sampled uniformly from (n, k)-block sources with k = ω (log λ).

Proof . We present a proof for the above theorem. Our aim is to show that any probabilistic poly-
time adversary A cannot distinguish between the real and random modes of operation of the function
privacy oracle, provided that the oracle is queried with circuits that sample sufficiently unpredictable
distributions over the space of predicates. In particular, such distributions should be (n, k)-block sources
over ZnN , such that each component of a vector −→v sampled from an adversarially chosen distribution has
a min-entropy of k = ω (log λ), and is uncorrelated with all other components. Additionally, the proof
shows that the simulator B can additionally simulate the function privacy encryption oracle, and that
the real and random modes of operation of the function privacy oracle are indistinguishable even in the
presence of the encryption oracle.

We define a series of hybrid experiments Exptmode,m
FP,ΠIPE

k ,A(λ) for mode ∈ {real, rand} and m ∈ [0, n] as

follows:

• Exptmode,0
FP,ΠIPE

k ,A(λ) is exactly identical to Exptmode
FP,ΠIPE

k ,A(λ).

• Exptmode,m
FP,ΠIPE

k ,A(λ) for m ∈ [1, n] is identical to Exptmode
FP,ΠIPE

k ,A(λ) except that the secret-key sk−→
v∗

=(
d∗0, {d∗

j
1,i, d

∗j
2,i}i∈[1,n],j∈[0,k+2]

)
generated by the real-or-random oracle is such that the set of com-

ponents {d∗j1,i, d∗
j
2,i}i∈[1,m],j∈[0,k+2] are uniformly random and independent of the underlying vector

−→
v∗. In addition, the ciphertext C∗ for a message M generated by the function privacy encryption

oracle is uniformly random and independent of
−→
v∗; it, however, produces M upon decryption using

the sk−→
v∗

generated by the real-or-random oracle.

Quite evidently, the following holds:∣∣∣∣Pr
[
Exptreal,n

FP,ΠIPE
k ,A(λ) = 1

]
− Pr

[
Exptrand,n

FP,ΠIPE
k ,A(λ) = 1

] ∣∣∣∣ = 0

We now state and prove the following claim:
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Claim 5.1 For any probabilistic polynomial-time adversary A, for mode ∈ {real, rand} and for m ∈
[0, n− 1], the following holds:∣∣∣∣Pr

[
Exptmode,m

FP,ΠIPE
k ,A(λ) = 1

]
− Pr

[
Exptmode,m+1

FP,ΠIPE
k ,A(λ) = 1

] ∣∣∣∣ ≤ negl(λ)

To prove this claim, we assume the contrary. Let A be a probabilistic polynomial-time adversary such
that: ∣∣∣∣Pr

[
Exptmode,m

FP,ΠIPE
k ,A(λ) = 1

]
− Pr

[
Exptmode,m+1

FP,ΠIPE
k ,A(λ) = 1

] ∣∣∣∣ = ε > negl(λ)

for some m ∈ [0, n− 1]. Also, let G be a bilinear group of order N = q1q2q3 (each of q1, q2 and q3 being
λ-bit primes), and let G1, G2 and G3 denote the subgroups of G of order q1, q2 and q3, respectively. Also,
let ê : G×G −→ GT be an efficiently computable non-degenerate bilinear map, where GT is also a group
of order N . We construct an algorithm B such that:∣∣∣∣Pr

[
B
((
{g1,j}j∈[1,k+2], {g

aj
1,j}j∈[1,k+1], g

∑k+1
j=1 aj

1,k+2

)
,

(
{g2,j}j∈[1,k+2], {g

a′j
2,j}j∈[1,k+1], g

∑k+1
j=1 a

′
j

2,k+2

))
= 1

]
−

Pr
[
B
((
{g1,j}j∈[1,k+2], {g

aj
1,j}j∈[1,k+2]

)
,
(
{g2,j}j∈[1,k+2], {g

a′j
2,j}j∈[1,k+2]

))
= 1
] ∣∣∣∣ = ε

where the probability is over random choice of {aj , a′j
R←− Z∗q1}j∈[1,k+2], and over random choice of

{g1,j , g2,j
R←− G1}j∈[1,k+2]. Observe that B can in turn be trivially used to construct another algorithm

that has advantage at least ε in solving a given instance of the (k + 1)-DLIN problem in the group G1.

• Setup: B uniformly samples {x1,j , x2,j
R←− Z∗q1}j∈[1,k+2], {h1,i, h2,i

R←− G1}i∈[1,n] and {Rj1,i, R
j
2,i

R←−
G3}i∈[1,n],j∈[0,k+2]. It additionally samples h

R←− G1, γ
R←− Z∗q1 and R3

R←− G3, and sets:

Q = g2 ·R3

S0
1,i = h1,i ·R0

1,i , S0
2,i = h2,i ·R0

2,i for i ∈ [1, n]

Sj1,i = h
x1,j

1,i ·R
j
1,i , Sj2,i = h

x2,j

2,i ·R
j
2,i for i ∈ [1, n], j ∈ [1, k + 2]

Finally, it sets the public parameter pp and the master secret-key msk as:

pp =

(
g1, g3, Q, {Sj1,i, S

j
2,i}i∈[1,n],j∈[0,k+2], ê (g1, h)

γ
,

{g1,j , g2,j}j∈[1,k+2], {g
x1,j

1,j · g
x1,k+2

1,k+2 , g
x2,j

2,j · g
x2,k+2

2,k+2 }j∈[1,k+1]

)
msk =

(
q1, q2, q3, g2, {h1,i, h2,i}i∈[1,n], h

γ
)

B provides pp to A. Observe that pp is distributed exactly as in the real world.

• Secret-Key Queries: When A issues a secret-key query for −→v ∈ ZnN , B responds with sk−→v =
ΠIPE
k .KeyGen (pp,msk,−→v ).

• Real-or-Random Query: The crux of the proof lies in how B embeds its input (k+1)-DLIN instance
in its response to the real-or-random query issued by A. Suppose A queries the real-or-random oracle

with an (n, k)-block source V∗ = (V ∗1 , · · · , V ∗n ) over ZnN such that k = ω (log λ). B samples mode
R←−

{real, rand}. For each i ∈ [1, n], B samples v∗i
R←− V ∗i if mode = real, or v∗i

R←− ZN if mode = rand. The

vector
−→
v∗ = (v∗1 , · · · , v∗n) is the challenge vector that B uses to respond to the query from A. B now

sets the various components of the secret-key sk−→
v∗

as follows:
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1. The secret-key elements corresponding to the first m components of
−→
v∗ are crafted by B to be

uniformly random, while the elements corresponding to the last n − m − 1 components of
−→
v∗

are crafted to be well-formed. We present the details of how this may be achieved. B samples

{z1,i, z2,i
R←− Z∗q1}i∈[1,m], {yj1,i, y

j
2,i

R←− Z∗q1}i∈[1,m],j∈[1,k+1], Q4
R←− G2, R5

R←− G3 and f1, f2
R←− Z∗q2 .

It then sets the following:

d∗0 = Q4 ·R5

/(
n∏
i=1

h
z1,i
1,i · h

z2,i
2,i

)

d∗01,i = g
z1,i
1 · gf1·vi2

/k+1∏
j=1

(
g
x1,j

1,j · g
x1,k+2

1,k+2

)yj1,i for i ∈ [1, n] \ {m+ 1}

d∗02,i = g
z2,i
1 · gf2·vi2

/k+1∏
j=1

(
g
x2,j

2,j · g
x2,k+2

2,k+2

)yj2,i for i ∈ [1, n] \ {m+ 1}

Now, B additionally samples {yk+2
1,i , y

k+2
2,i

R←− Z∗q1}i∈[1,m], and sets:

d∗j1,i = g
yj1,i
1,j , d∗j2,i = g

yj2,i
2,j for i ∈ [1, n] \ {m+ 1}, j ∈ [1, k + 1]

d∗k+2
1,i = g

yk+2
1,i

1,k+2 , d∗k+2
2,i = g

yk+2
2,i

2,k+2 for i ∈ [1,m]

d∗k+2
1,i = g

∑k+1
j=1 y

j
1,i

1,k+2 , d∗k+2
2,i = g

∑k+1
j=1 y

j
2,i

2,k+2 for i ∈ [m+ 2, n]

Observe that B uses a randomly sampled yk+2
1,i instead of

∑k+1
j=1 y

j
1,i, and a randomly sampled yk+2

2,i

instead of
∑k+1
j=1 y

j
2,i, for i ∈ [1,m]. This step ensures that secret-key elements corresponding to the

first m components of
−→
v∗ are indeed uniformly random, as desired. Also, it is straightforward to

observe that the secret-key elements corresponding to the last (n−m− 1) components are well-
formed.

2. B now embeds its input (k + 1)-DLIN-instance pair in the secret key elements corresponding to

the (m+ 1)
th

component of
−→
v∗. In particular, it sets:

d∗01,m+1 = g
z1,m+1

1 · gf1·vm+1

1

/k+2∏
j=1

(
g
aj
1,j

)x1,j


d∗02,m+1 = g

z2,m+1

1 · gf2·vm+1

2

/k+2∏
j=1

(
g
a′j
2,j

)x2,j


d∗j1,m+1 = g

aj
1,j , d∗j2,m+1 = g

a′j
2,j for j ∈ [1, k + 2]

where {gaj1,j}j∈{1,k+2} and {ga
′
j

2,j}j∈{1,k+2} are parts of its input instances.

B finally responds to A with the secret-key sk−→
v∗

as:

sk−→
v∗

=
(
d∗0, {d∗

j
1,i, d

∗j
2,i}i∈[1,n],j∈[0,k+2]

)
• Output: At the end of the experiment, A outputs a bit b′. B outputs the same bit b′.

It is easy to see that when ak+2 =
∑k+1
j=1 aj and a′k+2 =

∑k+1
j=1 a

′
j , the secret-key sk−→

v∗
is identically dis-

tributed to the response of the real-or-random oracle in the experiment Exptmode,m
FP,ΠIPE

k ,A(λ). On the other
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hand, when either or both of ak+2 and a′k+2 are uniformly random in Z∗q , the secret-key sk−→
v∗

is identically

distributed to the response of the real-or-random oracle in the experiment Exptmode,m+1

FP,ΠIPE
k ,A(λ). It follows

readily that B has the same advantage ε as A in solving its input instance pair. This completes the proof
of Claim 5.1.

We now make the following observation:∣∣∣∣Pr
[
Exptmode

FP,ΠIPE
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]
− Pr

[
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]
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≤ negl(λ) (from Claim 5.1) for n = poly(λ)

Consequently, for mode
R←− {real, rand}, we have:

AdvFP
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= 2ε′ ≤ negl(λ)

This hybrid argument completes the proof of Theorem 5.2.

6 Extensions and Open Problems

We present new public-key predicate encryption schemes in the standard model that are provably function
private under standard computational assumptions. A large class of existing function private construc-
tions in the public-key setting impose highly stringent requirements on the min-entropy of predicate
distributions, thereby limiting their applicability in the context of real-world predicates. Other existing
constructions are either secure only in the generic group model, or require strong assumptions such as
indistinguishability obfuscation. Our constructions, on the other hand, are function private for predicate
distributions that satisfy more realistic min-entropy requirements, and avoid the need for strong assump-
tions such as obfuscation. We develop a novel approach, denoted as encrypt-augment-recover, that takes
an existing predicate encryption scheme and transforms it into a computationally function private one
while retaining its original data privacy guarantees. Our approach yields constructions for IBE in the ran-
dom oracle model that are function private under weaker variants of the DLIN assumption. Our approach
also yields public-key IPE constructions in the standard model that are also function private under the
same family of assumptions. In this section, we present some feasible extensions and applications of our
techniques, as well some interesting open problems that arise from our work.

Function Privacy for Private-Key Predicate Encryption. Our methodology is equally applica-
ble for achieving computationally function private predicate encryption schemes in the private-key set-
ting, even when the underlying predicates are not necessarily sampled from distributions with at least
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super-logarithmic min-entropy. In particular, the core function privacy arguments for our constructions
presented in this paper do not essentially rely on the unpredictability of the predicate distributions; this
assumption is additionally made to rule out trivial attacks in the public-key setting. Consequently, our
approach anticipates an expansion to the existing body of work in designing function private predicate
encryption schemes in the private-key setting.

Function Privacy for Multi-Input Predicate Encryption. Multi-input predicate encryption (MIPE)
introduced by Goldwasser et al. [32] is a generalization of functional encryption to the setting of multi-
input predicates. An MIPE scheme has several encryption slots and each decryption key skf for a multi-
input predicate f jointly decrypts the ciphertexts Enc(I1), ...,Enc(In) for all slots to obtain f (I1, ..., In)
without revealing anything more about the encrypted attributes. In particular, this provides a frame-
work to evaluate bounded-norm multi-input IPE: each predicate is specified by a collection of vectors
−→v 1, · · · ,−→v n, and takes as input a collection of vectors −→x 1, · · · ,−→x n to output f−→v 1,··· ,−→v n

(−→x 1, · · · ,−→x n) =∑n
i=1 〈
−→v i,−→x i〉.

We point out that our technique can be easily generalized to obtain function private IPE schemes in
the multi-input setting as follows: we first use our technique to obtain a function private IPE construction
in the single-input setting, and then run n independent copies of this construction. The ith copy is used
to encrypt −→x i in the ith slot, while the new secret-key is the ensemble of the n secret-keys corresponding
to −→v 1, · · · ,−→v n. The decryption algorithm computes each inner product individually, and returns their
sum. Although this means that the adversary also learns each individual inner product, this is an inherent
leakage in the public-key setting and does not weaken the security guarantees. The data privacy guarantees
of the underlying scheme ensure no further leakage, while the function privacy guarantees of the underlying
scheme continue to hold as long as each −→v i is sampled from block sources with sufficient min-entropy,
and is independent of the other n− 1 vectors.

Hidden Vector Encryption and Polynomial Evaluation. Boneh and Waters [1] proposed hid-
den vector encryption (HVE), a pre-cursor to IPE, that supports search using conjunctive, range and
comparison-based query predicates. In HVE, attributes correspond to vectors over an alphabet Σ, while
secret-keys correspond to predicate vectors over the augmented alphabet Σ? = Σ∪{?} containing the wild
card character ?. Decryption succeeds if the attribute matches the predicate vector in every coordinate
that is not ?. We note that although IPE can be used to realize HVE [3], our computational function
privacy definitions do not naturally extend to HVE. In particular, the presence of the wild card character
? in the predicate vectors of HVE trivially violates our min-entropy requirements, making it difficult to
hide their presence in the secret-key. It is still an open problem, however, to formalize a stronger func-
tion privacy definition for HVE, and to realize function private constructions satisfying this definition.
This would also provide insight into the limits of function privacy for searchable encryption schemes
supporting comparison and range queries. Finally, it is also open to formalize security definitions and re-
alize constructions for function private encryption schemes that support arbitrary polynomial evaluation
predicates [3].

Generalization of Our Approach. In this work, we have applied our encrypt-augment-recover ap-
proach to transform certain existing public-key predicate encryption schemes that are not function private,
into computationally function private ones. An interesting open problem is to explore whether our ap-
proach can be generalized for any public-key predicate encryption scheme, or if there are any specific
properties of existing predicate encryption schemes that make them amenable to transformation using
our approach. A starting point in this direction could be to explore the applicability of our approach to
public-key predicate encryption schemes based on lattices, such as the IPE scheme in [2]. It would also
be interesting to explore if our approach can be used to design public-key encryption schemes support-
ing a set of predicates beyond inner-products. Iovino et al. [17] have demonstrated that computational
function privacy from standard assumptions seems unattainable for a very generalized class of predicates,
such as the class of all NC1) circuits. This motivates exploring the limits of our techniques in terms of
the range of predicates for which they are applicable. It also remains open to construct function private
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predicate encryption schemes in the public-key setting satisfying the wishful notion of simulation security
introduced by Agrawal et al. in [15] from standard computational assumptions.
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