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Abstract. In this paper, we investigate the hardness of the approximate
polynomial common divisor problem, which is regarded as a polynomial
analogy of the approximate integer common divisor problem. In order to
solve this problem, we present a simple method by using the polynomial
lattice reduction algorithm and contain complete theoretical analyses.
Further, we propose an improved lattice attack to reduce both space
and time costs. Moreover, these two attacking methods can be directly
applied to solving the noisy multipolynomial reconstruction problem in
the field of error-correcting codes. On the basis of the above situations,
our improved lattice attack performs fastest.
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1 Introduction

1.1 Background

It is well known that the common divisor of given integers can be easily solved by
using the extended Euclidean algorithm. However, this problem becomes hard
when given integers are the sums of some unknown noises and multiples of the
desired common divisor. Such a problem firstly introduced by Howgrave-Graham
[21] is called the approximate integer common divisor (Integer-ACD) problem,
which is the integer version of approximate common divisor (ACD) problem
and has been plenty of applications in the fully homomorphic encryption (FHE)
schemes [35, 10, 11, 2, 9, 3]. In fact, the strategy that transforming an easy prob-
lem into a hard one by adding the noises has been widely used in cryptography,
e.g., the celebrated learning with errors (LWE) problem [33].

There is an analogue between the ring of integers and the ring of polyno-
mials over a field. Naturally, the approximate common divisor problem exists a



polynomial version, which is called the approximate polynomial common divi-
sor (Polynomial-ACD) problem. It contains the general approximate polynomial
common divisor (Polynomial-GACD) problem and the partial approximate poly-
nomial common divisor (Polynomial-PACD) problem. To be specific, for given
nonnegative integers γ, η, ρ satisfying γ > η > ρ, a (γ, η, ρ)-Polynomial-GACD
problem is stated as follows:

Let F[x] be the polynomial ring over the field F. For a random η-degree monic
polynomial p(x) ∈ F[x], given n samples a1(x), · · · , an(x) that are polynomials
in F[x] with at most γ-degree satisfy

ai(x) = p(x)qi(x) + ri(x) for 1 ≤ i ≤ n,

where the qi(x) and ri(x) are random polynomials and the degree of ri(x) is no
more than ρ. The goal is to output the approximate common divisor p(x).

The definition of a (γ, η, ρ)-Polynomial-PACD problem is the same as that of
a (γ, η, ρ)-Polynomial-GACD problem except that an exact multiple (a γ-degree
polynomial) of p(x) is given.

There are efficient algorithms for computing a common divisor of given
polynomials. However, the presence of noises leads to that given polynomi-
als may be inexact and changes the nature of such a question, which is the
so-called Polynomial-ACD problem. Its various variants have been investigated
by many researchers such as [20, 34, 30, 22, 7, 14, 31, 25, 8, 24, 13, 19, 36, 15]. The
Polynomial-ACD problem is a key research topic in the symbolic-numeric com-
puting area.

In the coding field, codewords are often affected by noises during transmis-
sion. Therefore, one needs to design the efficient decoding algorithm in order to
recover the corrupted codewords. The Reed-Solomn code is a classical group of
error-correcting codes, which is based on univariate polynomials over finite fields
and has been many prominent applications. At STOC 1999, Naor and Pinkas
[28] first proposed the noisy polynomial reconstruction problem, which is closely
connected to the list decoding of Reed-Solomon codes. At EUROCRYPT 2000,
Bleichenbacher and Nguyen [1] distinguished the noisy polynomial reconstruc-
tion problem from the noisy polynomial interpolation problem. At ANTS 2012,
Cohn and Heninger [4] further considered the multivariate version of this prob-
lem, which is called noisy multipolynomial reconstruction problem and defined
as follows:

Let r1(x), · · · , rm(x) be m univariate polynomials with at most ρ-degree in
F[x]. For given γ distinct points x1, · · · , xγ in F, there exist the following γ
codewords:

(r1(x1), · · · , rm(x1)) , · · · , (r1(xγ), · · · , rm(xγ)).

Suppose that η codewords are not corrupted and correct in the received γ code-
words, the goal is to efficiently reconstruct each polynomial ri(x).

In fact, this problem for m = 1 corresponds to a list decoding algorith-
m of Reed-Solomon codes. In order to increase the feasible decoding radius of
these codes, Guruswami and Sudan [18] gave a list-decoding algorithm that
outputs a list of polynomially many solutions. In [5], Cohn and Heninger put
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forward a faster variant of the Guruswami-Sudan algorithm, which was inspired
by Howgrave-Graham’s approach [21] for solving the Integer-PACD problem.

Parvaresh-Vardy codes [32] are based on the noisy multipolynomial recon-
struction problem. Lately, Guruswami-Rudra codes [17] achieved the improved
rates by transmitting less symbols. Recently, Devet, Goldberg and Heninger [12]
pointed out that the connections between the noisy multipolynomial reconstruc-
tion problem and some kind of private information retrieval (PIR) and further
designed an optimally robust PIR based on this problem.

Based on the Lagrange interpolation technique, a polynomial with degree at
most ρ can be reconstructed when at least ρ + 1 points and the correspond-
ing evaluations are given. It implies that the number η of correct codewords
should be greater than or equal to ρ + 1 for solving the noisy multipolynomial
reconstruction problem in the polynomial time. By utilizing clever polynomial
constructions to decode the codewords, Parvaresh and Vardy [32] and Guruswa-
mi and Rudra [17] approach such an asymptotic limit of η ≥ ρ+ 1. Lately, Cohn
and Heninger [4] heuristically analyzed the noisy multipolynomial reconstruc-
tion problem based on the algebraic independence hypothesis and obtained the

bound η > ρ
m
m+1 γ

1
m+1 by using the idea of Coppersmith’s method [6] for finding

small solutions of multivariate polynomial equations. However, the drawback of
the Cohn-Heninger work is that the dimensions and degrees of the input lattice
basis matrices are quite large. Moreover, it is also very time consuming to solve
the obtained multivariate polynomial equations by using the Gröbner basis tech-
nique or the resultant method. In [12], Devet, Goldberg and Heninger proposed a
heuristic lattice method and presented the bound η ≥ γ− m

m+1 (γ−ρ−1) to solve
the noisy polynomial reconstruction problem. Compared with previous works,
this approach is extremely fast in practice. Unfortunately, the corresponding
theoretical analysis of this algorithm was not given.

1.2 Our work

In this paper, the reduction from the noisy multipolynomial reconstruction prob-
lem to the Polynomial-ACD problem is presented. There are the following three
contributions:

– A simple method to solve the Polynomial-ACD problem is proposed, which
is based on the polynomial lattice reduction algorithm.

– In order to further reduce both space and time attack complexities, an im-
proved lattice method is put forward.

– The fastest attack on the noisy multipolynomial reconstruction problem is
obtained by utilizing our improved lattice algorithm for solving the Polynomial-
PACD problem.

1.3 Organization

In Section 2, we present some notations and preliminary knowledge. In Section
3, we give a new attack for solving Polynomial-ACD problems and present the
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corresponding explanation. We further propose an improved attack in Section 4.
We analyze the noisy multipolynomial reconstruction problem in Section 5. We
present the experiment result in Section 6. Section 7 concludes the paper.

2 Preliminaries

2.1 Notations

Let F[x] be the polynomial ring over the field F. The components or entries of the
involved row vectors and matrices in this paper are all polynomials in F[x]. Row
vectors are denoted by lowercase bold letters and matrices by uppercase bold
letters. Let a be the vector (a1(x), · · · , an(x)) then the i-th component of a is
the polynomial ai(x). We write deg ai(x) for the degree of the polynomial ai(x)
and denote deg a = max

i
deg ai(x) by the degree of the vector a. Moreover, for

polynomials a(x), b(x) ∈ F[x], we denote ba(x)b(x) c ∈ F[x] by the quotient after a(x)

is divided by b(x). Moreover, the transpose of the vector or matrix is denoted
by the symbol T .

2.2 Polynomial lattices

Let b1, · · · ,bn in F[x]n be n linearly independent row vectors. A polynomial
lattice L is F[x]-spanned by b1, · · · ,bn as follows,

L =

{ n∑
i=1

ki(x) · bi | ki(x) ∈ F[x]

}
,

where {b1, · · · ,bn} is a basis for L and B = [bT1 , · · · ,bTn ]T is the correspond-
ing basis matrix. The rank or dimension of L is denoted as dimL = n. The
determinant of L is computed as detL = detB, which is a polynomial in F[x].

Polynomial lattices have been well studied in [23]. There are several polyno-
mial lattice basis reduction algorithms such as [27, 16] in the polynomial time
that outputs a reduced basis v1, · · · ,vn for L satisfying

degv1 + · · ·+ degvn = deg detL. (1)

If the reduced basis has been ordered such that degv1 ≤ · · · ≤ degvn, then
there is

degv1 ≤
deg detL

n
,

Further, from deg det(L)− (n− (i− 1)) degvi =
n∑
j=1

degvj −
n∑
j=i

degvi ≥ 0, one

can obtain the following properties:

degvi ≤
deg detL

n− (i− 1)
for 1 ≤ i ≤ n.
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Here v1 is a minimal vector in polynomial lattice L. However, in the case of
integer lattices [29], finding a shortest vector is an NP-hard problem and ef-
ficient lattice reduction algorithms such as LLL [26] only get an exponential
approximation.

3 An Algorithm on Solving Polynomial-ACD Problem

In this section, we present a new method to solve the polynomial-ACD problem.
For n samples of a (γ, η, ρ)-polynomial-ACD problem, a1(x), · · · , an(x), we first
define a polynomial lattice L(α) parameterized by polynomial α(x), which is
spanned by the row vectors of the following n× n matrix

M(α) =


α(x) a1(x)

. . .
...

α(x) an−1(x)
an(x)


where deg an(x) = γ and 0 ≤ degα(x) < γ.

3.1 Finding polynomial equations on q1(x), · · · , qn(x)

First, we present the following lemma on the vector in lattice L(α).

Theorem 1. Given a vector v =

(
α(x)u1(x), · · · , α(x)un−1(x),

n∑
i=1

ui(x)ai(x)

)
in L(α), then

deg

n∑
i=1

ui(x)qi(x) ≤ max {degv,degv − degα(x) + ρ} − η.

Proof. From ai(x) = p(x)qi(x) + ri(x) for i = 1, · · · , n, we get the following
equation

p(x)

n∑
i=1

ui(x)qi(x) =

n∑
i=1

ui(x)ai(x)−
n∑
i=1

ui(x)ri(x).

According to deg p(x) = η, we have

η + deg

n∑
i=1

ui(x)qi(x) = deg

(
n∑
i=1

ui(x)ai(x)−
n∑
i=1

ui(x)ri(x)

)
. (2)

Next, we analyze the upper bound of deg
n∑
i=1

ui(x)qi(x). According to v =(
α(x)u1(x), · · · , α(x)un−1(x),

n∑
i=1

ui(x)ai(x)

)
and the definition of the degree

of polynomial vector, we obtain

deg

n∑
i=1

ui(x)ai(x) ≤ degv, (3)
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Algorithm 1 Solving Polynomial-ACD problem

Input: (γ, η, ρ)-Polynomial-ACD samples a1(x), · · · , an(x) where γ > η > ρ+ 1
Output: p(x) or the (γ − ρ) most significant coefficients of p(x)
1: Construct the n× n polynomial matrix

M(xρ) =


xρ a1(x)

. . .
...

xρ an−1(x)
an(x)

 ,

where deg an(x) = γ. For the case of the Polynomial-PACD problem, take an(x) =
p(x)qn(x), i.e. rn(x) = 0

2: Run a polynomial lattice basis row reduction algorithm on M(xρ)
3: Rearrange rows of the reduced matrix according to the degrees from small to large

and write it as matrix M′(xρ)
4: If the degrees of at least two rows in M′(xρ) are larger than or equal to η, abort
5: Write U such that U ·M(xρ) = M′(xρ), where U is a unimodular n × n matrix.

Write the last column of matrix U−1 as (w1n(x), · · · , wnn(x))T

6: if it is a case of Polynomial-PACD problem then
7: Calculate d−1 an(x)

wnn(x)
, where d is some constant such that d−1 an(x)

wnn(x)
is monic.

8: Set p(x) = d−1 an(x)
wnn(x)

9: return p(x)
10: else
11: Compute d−1b an(x)

wnn(x)
c, where d is some constant satisfying d−1b an(x)

wnn(x)
c is monic.

12: if γ > η + ρ then
13: Set p(x) = d−1b an(x)

wnn(x)
c

14: return p(x)
15: else
16: return the (γ − ρ) most significant coefficients of d−1b an(x)

wnn(x)
c

17: end if
18: end if

and deg ui(x) ≤ degv − degα(x) for 1 ≤ i ≤ n− 1. Note that deg ri(x) ≤ ρ, we
further have

deg

n−1∑
i=1

ui(x)ri(x) ≤ degv − degα(x) + ρ. (4)

Due to

un(x)an(x) =

(
n∑
i=1

ui(x)ai(x)

)
−

(
n−1∑
i=1

ui(x)ai(x)

)
,

from (3) and deg
n−1∑
i=1

ui(x)ai(x) ≤ degv − degα(x) + γ, we deduce

deg un(x) + deg an(x) ≤ max{degv,degv − degα(x) + γ}.
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According to 0 ≤ degα(x) ≤ γ and deg an(x) = γ, we obtain deg un(x) ≤
degv − degα(x). Further,

deg un(x)rn(x) ≤ degv − degα(x) + ρ. (5)

Based on (3), (4) and (5), there are

deg

(
n∑
i=1

ui(x)ai(x)−
n∑
i=1

ui(x)ri(x)

)
≤ max {degv,degv − degα(x) + ρ} .

Plugging this relation into (2), we have

deg

n∑
i=1

ui(x)qi(x) ≤ max {degv,degv − degα(x) + ρ} − η.

In order to find polynomial equations on q1(x), · · · , qn(x), we run the lattice
basis row reduction algorithm on M(α). For the sake of discussion, we rearrange
the reduced matrix according to the degrees of row vectors from small to large
and let the obtained matrix be M′(α). Then, we can directly get the following
corollary based on Lemma 1.

Corollary 1. Let vi =

(
α(x)ui1(x), · · · , α(x)ui,n−1(x),

n∑
j=1

uij(x)aj(x)

)
be the

i-th row vector of M′(α) for 1 ≤ i ≤ n. Then

deg

n∑
j=1

uij(x)qj(x) ≤ max {degvi,degvi − degα(x) + ρ} − η.

Further, under the condition

max {degvi,degvi − degα(x) + ρ} ≤ η − 1, (6)

we have
n∑
j=1

uij(x)qj(x) = 0.

3.2 Recovering q1(x), · · · , qn(x)

Suppose that the condition (6) holds for the first n − 1 row vectors of M′(α),
we can obtain n− 1 linearly independent homogeneous equations

n∑
j=1

uij(x)qj(x) = 0 for i = 1, · · · , n− 1.
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Let dn(x) =
n∑
j=1

unj(x)qj(x) and denote U as matrix (uij(x))n×n. We have

U ·M(α) = M′(α) and

U (q1(x), · · · , qn(x))
T

= (0, · · · , 0, dn(x))
T
.

Note that M(α) and M′(α) are lattice basis matrices of L(α), hence U and U−1

are both unimodular matrices. Left multiply U−1 by both sides of the above
equation and get

(q1(x), · · · , qn(x))
T

= U−1(0, · · · , 0, dn(x))T .

Let (w1n(x), · · · , wnn(x))T be the last column of matrix U−1, which can be
publicly computed. According to the above equation, we get

(q1(x), · · · , qn(x)) = dn(x) · (w1n(x), · · · , wnn(x)). (7)

It implies that dn(x) is a common divisor of q1(x), · · · , qn(x). With an over-
whelming probability, polynomials q1(x), · · · , qn(x) are coprime, that is, dn(x)
is a unit in field F. We denote the nonzero constant d as dn(x) for the sake of
discussion.

Next, we obtain such a d. From ai(x) = p(x)qi(x)+ri(x), deg ri(x) < deg p(x)
and p(x) is monic, we get that the leading coefficient of qi(x) is equal to that of
the corresponding ai(x). Therefore, we can determine d by comparing the leading
coefficients of both sides in (7). Furthermore, q1(x), · · · , qn(x) are acquired.

3.3 Recovering p(x)

The case of Polynomial-PACD. Without loss of generality, let rn(x) = 0,

i.e., an(x) = p(x)qn(x). From (7), we deduce p(x) = d−1 an(x)
wnn(x)

. Moreover, we

recover ri(x) (1 ≤ i ≤ n) according to ri(x) = ai(x) mod p(x).

The case of Polynomial-GACD. According to an(x) = p(x)qn(x) + rn(x)
and (7), we obtain

d−1b an(x)

wnn(x)
c = p(x) + d−1b rn(x)

wnn(x)
c. (8)

Note that deg an(x) = γ and deg p(x) = η, we have deg qn(x) = degwnn(x) =
γ − η. From deg rn(x) ≤ ρ, we derive

degb rn(x)

wnn(x)
c ≤ ρ− (γ − η) = η − (γ − ρ).

If γ > η + ρ, we have degb rn(x)wnn(x)
c < 0, i.e., b rn(x)wnn(x)

c = 0. Plugging it into

(8), we get p(x) = d−1b an(x)wnn(x)
c. Furthermore, the ri(x) (1 ≤ i ≤ n) are obtained

due to ri(x) = ai(x) mod p(x).

If γ ≤ η + ρ, according to (8), degb rn(x)wnn(x)
c ≤ η − (γ − ρ) and deg p(x) = η,

we obtain that the (γ − ρ) most significant coefficients of p(x) are respectively

equal to those of d−1b an(x)wnn(x)
c.
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3.4 Optimizing α(x)

Note that the key point that our strategy can work is to get the following poly-
nomial equations

n∑
j=1

uij(x)qj(x) = 0 for i = 1, · · · , n− 1 and

n∑
j=1

unj(x)qj(x) = d

where d is some nonzero constant. According to Corollary 1, we obtain that the
above equations hold under the condition

max {degv1,degv1 − degα(x) + ρ} ≤ η − 1
...

max {degvn−1,degvn−1 − degα(x) + ρ} ≤ η − 1

max {degvn,degvn − degα(x) + ρ} = η

(9)

When 0 ≤ degα(x) ≤ ρ, the condition (9) becomes

degvi ≤ η−ρ+degα(x)−1 for 1 ≤ i ≤ n−1 and degvn = η−ρ+degα(x). (10)

When degα(x) ≥ ρ, (9) becomes

degvi ≤ η − 1 for 1 ≤ i ≤ n− 1 and degvn = η. (11)

Since deg detL(α) = (n− 1) degα(x) + γ, from (1) we get

degv1 + · · ·+ degvn = (n− 1) degα(x) + γ. (12)

Plugging (10) and (11) into (12) respectively, we deduce that

n ≥


γ+ρ−η−degα(x)

η−ρ−1 + 1, 0 ≤ degα(x) ≤ ρ,
γ−η

η−degα(x)−1 + 1, degα(x) ≥ ρ.

It is easy to see that the above condition is optimal when degα(x) = ρ. For the
sake of simplicity, we take α(x) = xρ. In this situation, the above condition is

n ≥ γ − η
η − ρ− 1

+ 1. (13)

4 Improved Lattice for Polynomial-ACD Problem

In this section, we propose an improved lattice to obtain more optimal space
and time complexities. Let L̂(β) be the polynomial lattice spanned by the row
vectors of the following n× n matrix

M̂(β) =


1 ba1(x)β(x) c

. . .
...

1 ban−1(x)
β(x) c
ban(x)β(x) c


9



Algorithm 2 Further solving Polynomial-ACD problem

Input: (γ, η, ρ)-Polynomial-ACD samples a1(x), · · · , an(x) where γ > η > ρ+ 1
Output: p(x) or the (γ − ρ) most significant coefficients of p(x)
1: Construct the n× n polynomial matrix

M̂(xρ) =


1 ba1(x)

xρ
c

. . .
...

1 ban−1(x)

xρ
c

ban(x)
xρ
c


where deg an(x) = γ. For the case of the Polynomial-PACD problem, take an(x) =
p(x)qn(x), i.e. rn(x) = 0

2: Run a polynomial lattice basis row reduction algorithm on M̂(xρ)
3: Rearrange rows of the reduced matrix according to the degrees from small to large

and write it as matrix M̂′(xρ)
4: If the degrees of at least two rows in M̂′(xρ) are larger than or equal to η−ρ, abort
5: Write U such that U · M̂(xρ) = M̂′(xρ), where U is a unimodular n × n matrix.

Write the last column of matrix U−1 as (w1n(x), · · · , wnn(x))T

6: if it is a case of Polynomial-PACD problem then
7: Calculate d−1 an(x)

wnn(x)
, where d is some constant such that d−1 an(x)

wnn(x)
is monic.

8: Set p(x) = d−1 an(x)
wnn(x)

9: return p(x)
10: else
11: Compute d−1b an(x)

wnn(x)
c, where d is some constant satisfying d−1b an(x)

wnn(x)
c is monic.

12: if γ > η + ρ then
13: Set p(x) = d−1b an(x)

wnn(x)
c

14: return p(x)
15: else
16: return the (γ − ρ) most significant coefficients of d−1b an(x)

wnn(x)
c

17: end if
18: end if

where deg an(x) = γ and 0 ≤ deg β(x) < γ. Then, we present the Algorithm 2
for further solving Polynomial-ACD problem.

4.1 Main results

In this subsection, we provide the corresponding explanations on Algorithm 2.
First, we give the following theorem, the analysis of which is similar to that in
Section 3. The difference is that the rounding operation is involved in L̂(β). We
give the detailed analysis in Appendix A.

Theorem 2. Given a vector v̂ =

(
u1(x), · · · , un−1(x),

n∑
i=1

ui(x)bai(x)β(x) c
)

in L̂(β),

then

deg

n∑
i=1

ui(x)qi(x) ≤ max {deg v̂ + deg β(x),deg v̂ + ρ} − η.
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For finding polynomial equations on q1(x), · · · , qn(x), we implement the lat-
tice basis row reduction algorithm on M̂(β). Then we rearrange the row vectors
of reduced matrix according to the degrees from small to large and let the corre-
sponding matrix be M̂′(β). Based on Theorem 2, we directly have the following
result.

Corollary 2. Let v̂i =

(
ui1(x), · · · , ui,n−1(x),

n∑
j=1

uij(x)baj(x)β(x) c

)
be the i-th

row vector of M̂′(β). Then

deg

n∑
j=1

uij(x)qj(x) ≤ max {deg v̂i + deg β(x),deg v̂i + ρ} − η.

Furthermore, under the condition

max {deg v̂i + deg β(x),deg v̂i + ρ} ≤ η − 1, (14)

we get
n∑
j=1

uij(x)qj(x) = 0.

Note that dim L̂(β) = n and deg det L̂(β) = γ − deg β(x). Similar to the
analysis in Section 3.4, we can get the optimal deg β(x) = ρ. For the sake of
simplicity, we choose β(x) = xρ. Correspondingly, the condition (14) becomes

deg v̂i ≤ η − ρ− 1. (15)

Therefore, we can deduce that the optimal n satisfies (13), that is, n ≥ γ−η
η−ρ−1 +1.

After the desired n−1 polynomial equations
n∑
j=1

uij(x)qj(x) = 0 are acquired, we

can recover p(x) and r1(x), · · · , rn(x) by using the similar methods in Sections
3.2 and 3.3.

4.2 Analysis of the attack complexity

The dominant calculation of our algorithms is the polynomial lattice reduction
for finding equations on q1(x), · · · , qn(x). Mulders and Storjohann [27] presented
a simple algorithm in time O(n3δ2). Lately, Giorgi et al. [16] proposed another
algorithm which runs in time O(nω+o(1)δ), where δ is the maximum degree of
the input basis matrix, n is the dimension, and ω is a valid exponent for matrix
multiplication.

Corresponding to lattice L̂(xρ) in Algorithm 2, the smallest number of sam-
ples d γ−η

η−ρ−1e+1 satisfying (13) is taken as the dimension n, the maximum degree

of the input basis matrix M̂(β) is γ− ρ. Therefore, the involved running time of

the lattice reduction algorithm is O
(

(d γ−η
η−ρ−1e+ 1)ω+o(1)(γ − ρ)

)
for Giorgi et

al.’s algorithm.
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Remark 1. Compared to lattice L(xρ) in Algorithm 1, lattice L̂(xρ) adopts the
smaller degree, especially when (γ−ρ) is small. Note that the involved dimensions
are same in these two lattices, hence Algorithm 2 only amounts to a constant
improvement of the overall attack complexity. However, such an improvement
can be quite significant in practice.

5 Application to Noisy Multipolynomial Reconstruction

In this section, we reduce the noisy multipolynomial reconstruction to Polynomial-
PACD problem and then solve the noisy polynomial reconstruction by using our
methods.

In the noisy multipolynomial reconstruction problem, there exist η codewords
incorrupted and correct in the received γ codewords. First, we let the received
γ codewords be

(y11, · · · , ym1), · · · , (y1γ , · · · , ymγ)

which are respectively corresponding to γ points x1, · · · , xγ . Without loss of gen-
erality, suppose that the first η codewords (y11, · · · , ym1), · · · , (y1η, · · · , ymη) are
correct, i.e., the function values ri(xj) of η points x1, · · · , xη are not corrupted
where i = 1, · · · ,m. Hence, there are the following relations

yij = ri(xj) for i = 1, · · · ,m and j = 1, · · · , η.

Then, we use Lagrange interpolation to construct m polynomial ai(x) with de-
gree γ − 1 such that

ai(xk) = yik where i = 1, · · · ,m and j = 1, · · · , γ.

Moreover, let am+1(x) = (x − x1) · · · (x − xγ) and p(x) = (x − x1) · · · (x − xη).
Note that

ai(xj) = yij = ri(xj) with i = 1, · · · ,m and j = 1, · · · , η,

we have 

a1(x) ≡ r1(x) mod p(x),

· · ·

am(x) ≡ rm(x) mod p(x),

am+1(x) ≡ 0 mod p(x).

Then, we let q1(x), · · · , qm(x), qm+1(x) be polynomials in F[x] such that

ai(x) = p(x)qi(x) + ri(x) for i = 1, · · · ,m and am+1(x) = p(x)qm+1(x). (16)

Obviously, finding p(x) from (16) can be regarded as solving a (γ, η, ρ)-Polynomial-
PACD problem. Once the approximate common divisor p(x) is found out, the

12



desired r1(x), · · · , rm(x) are easily obtained. In other words, the noisy multi-
polynomial reconstruction problem is settled.

Finally, we utilize Algorithms 1 and 2 to solve (16). According to the required
condition (13), we get that the noisy multipolynomial reconstruction problem
can be solved under the condition m+ 1 ≥ γ−η

η−ρ−1 + 1, i.e.,

η ≥ γ +m(ρ+ 1)

m+ 1
. (17)

Remark 2. The condition (17) is close to the theoretical limit η ≥ ρ+ 1 when m
is sufficiently large.

Remark 3. In [12], the authors proposed an algorithm for solving the noisy mul-
tipolynomial reconstruction and presented the experimental results. Compared
with previous attack methods, this algorithm is the fastest in practice. Mean-

while, the authors conjectured the fail probability is
(

1
|F|

)m(η−ρ−1)−(γ−η−1)
but

did not give a proof, where |F| is the size of the underlying field F. Hence, in
order to make this algorithm work with a high possibility, the authors need the
condition η ≥ γ− m

m+1 (γ−ρ−1), which is the same as (17) in fact. However, we
firstly find out that this algorithm exists a slight error (please see [12, Algorithm
1]). Concretely speaking, one should replace “larger than” in Step 5 with “larger
than or equal to” and “b” in Step 7 with “−b”. Furthermore, we can give the
condition (17) theoretically rather than heuristically. Moreover, Algorithm 2 in
this paper is faster than Algorithm 1 in [12], which is because that the degrees
of polynomials of the involved input matrix are reduced.

6 Experimental Verification

In this section, we respectively utilize Algorithms 1 and 2 to analyze concrete
securities of the Polynomial-ACD problem and present the corresponding exper-
imental results in Tables 1 and 2. The experiments are done in Sage 7.4 on Linux
Ubuntu 16.04 on a laptop with Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz, 3
GB RAM and 3 MB Cache. We respectively take GF(2), GF(p) and the rational
field Q as the underlying field F respectively, where p is a random 128-bit prime.
The runtime in Tables 1 and 2 refers to the consuming time in second on the
polynomial lattice reduction algorithm. The obtained reduced basis matrix by
using the polynomial lattice reduction algorithm is the weak Popov form [27].
Moreover, the degrees of the reduced row vectors are almost average for the lat-
tices L(xρ) and L̂(xρ). In the experiments, random instances of Polynomial-ACD
problem are always solved when n is equal to d γ−η

η−ρ−1e+2, which is slightly larg-

er than the theoretical lower bound d γ−η
η−ρ−1e + 1. From the experiment results,

we can see that Algorithm 2 is significantly faster than Algorithm 1 for larger
parameters γ, η, ρ over the 128-bit prime field GF(p) and the rational field Q.
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Table 1. Analysis of the Polynomial-ACD problem instances over finite fields GF(2)
and GF(p) by utilizing Algorithms 1 and 2.

n η γ ρ Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2
GF(2) GF(2) GF(p) GF(p)

(exp.) time time time time

4 12 20 7 0.004 0.001 0.016 0.016

5 11 20 7 0.004 0.001 0.028 0.028

7 10 20 7 0.004 0.004 0.080 0.068

13 9 20 7 0.016 0.016 0.336 0.328

25 86 200 80 0.544 0.532 63.752 23.400

31 85 200 80 0.998 1.040 117.360 40.436

41 84 200 80 2.104 2.092 264.072 82.580

61 83 200 80 5.584 5.576 813.452 239.360

120 82 200 80 32.488 32.472 5630.788 1504.964

Table 2. Analysis of the Polynomial-ACD problem instances over the rational field Q
by utilizing Algorithms 1 and 2.

n η γ ρ Algorithm 1 Algorithm 2
Q Q

(exp.) time time

4 12 20 7 0.012 0.004

5 11 20 7 0.016 0.012

7 10 20 7 0.052 0.040

13 9 20 7 0.236 0.168

25 86 200 80 63498.372 23393.656

31 85 200 80 110532.316 30974.632

7 Conclusion

In this paper, the Polynomial-ACD problem was analyzed and two novel lat-
tice attacks were proposed. Further, these two attacks were used for solving
the noisy multipolynomial reconstruction problem. In our improved attack, the
polynomials for the involved lattice are reduced so that it is the fastest till now.

References

1. Bleichenbacher, D., Nguyen, P.Q.: Noisy polynomial interpolation and noisy chi-
nese remaindering. In: Advances in Cryptology - EUROCRYPT 2000, International
Conference on the Theory and Application of Cryptographic Techniques, Bruges,
Belgium, May 14-18, 2000, Proceeding. (2000) 53–69

2. Cheon, J., Coron, J.S., Kim, J., Lee, M., Lepoint, T., Tibouchi, M., Yun, A.: Batch
fully homomorphic encryption over the integers. In Johansson, T., Nguyen, P., eds.:
Advances in Cryptology – EUROCRYPT 2013. Volume 7881 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg (2013) 315–335
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A Proof on Theorem 2

Proof. According to ai(x) = p(x)qi(x) + ri(x) for i = 1, · · · , n, we get the fol-
lowing equation

p(x)

n∑
i=1

ui(x)qi(x) =

n∑
i=1

ui(x)ai(x)−
n∑
i=1

ui(x)ri(x).

Note that deg p(x) = η, we have

η + deg

n∑
i=1

ui(x)qi(x) = deg

(
n∑
i=1

ui(x)ai(x)−
n∑
i=1

ui(x)ri(x)

)
. (18)
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Let us analyze the upper bound of deg
n∑
i=1

ui(x)qi(x) as follows. First, since v̂ =(
u1(x), · · · , un−1(x),

n∑
i=1

ui(x)bai(x)β(x) c
)

, we easily acquire

deg

n∑
i=1

ui(x)bai(x)

β(x)
c ≤ deg v̂. (19)

Note that deg ai(x) = deg β(x)bai(x)β(x) c, we have

deg

n∑
i=1

ui(x)ai(x) = deg

(
β(x)

n∑
i=1

ui(x)bai(x)

β(x)
c

)
.

Furthermore,

deg

n∑
i=1

ui(x)ai(x) ≤ v̂ + deg β(x). (20)

Second, due to that deg ui(x) ≤ deg v̂ and deg ri(x) ≤ ρ for 1 ≤ i ≤ n − 1, we
easily get

deg

n−1∑
i=1

ui(x)ri(x) ≤ deg v̂ + ρ. (21)

Third, according to

un(x)ban(x)

β(x)
c =

(
n∑
i=1

ui(x)bai(x)

β(x)
c

)
−

(
n−1∑
i=1

ui(x)bai(x)

β(x)
c

)
,

we deduce

deg un(x)ban(x)

β(x)
c ≤ max

{
deg

n∑
i=1

ui(x)bai(x)

β(x)
c,deg

n−1∑
i=1

ui(x)bai(x)

β(x)
c

}
.

Since degbai(x)β(x) c ≤ γ − deg β(x) and deg ui(x) ≤ deg v̂ for 1 ≤ i ≤ n − 1, we

obtain

deg

n−1∑
i=1

ui(x)bai(x)

β(x)
c < deg v̂ − deg β(x) + γ.

We have obtained (19), i.e., deg
n∑
i=1

ui(x)bai(x)β(x) c ≤ deg v̂, therefore we have

deg un(x)ban(x)

β(x)
c ≤ max {deg v̂,deg v̂ − deg β(x) + γ} .

According to 0 ≤ deg β(x) ≤ γ, we get deg un(x)ban(x)β(x) c ≤ deg v̂− deg β(x) + γ.

Note that degban(x)β(x) c = γ−deg β(x), we get deg un(x) ≤ deg v̂. From deg rn(x) ≤
ρ, we further have

deg un(x)rn(x) ≤ deg v̂ + ρ. (22)
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According to (20), (21) and (22), we get

deg

(
n∑
i=1

ui(x)ai(x)−
n∑
i=1

ui(x)ri(x)

)
≤ max {deg v̂ + deg β(x),deg v̂ + ρ} .

Plugging this inequality into (18), we obtain

deg

n∑
i=1

ui(x)qi(x) ≤ max {deg v̂ + deg β(x),deg v̂ + ρ} − η.
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