
White-Box Cryptography:
Don’t Forget About Grey Box Attacks

Joppe W. Bos1, Charles Hubain2, Wil Michiels1,3, Cristofaro Mune4,
Eloi Sanfelix Gonzalez4, and Philippe Teuwen2

1 NXP Semiconductors
2 Quarkslab

3 Technische Universiteit Eindhoven
4 Riscure

Abstract. Despite the fact that all current scientific white-box ap-
proaches of standardized cryptographic primitives have been publicly
broken, these attacks require knowledge of the internal data represen-
tation used by the implementation. In practice, the level of implemen-
tation knowledge required is only attainable through significant reverse
engineering efforts.
In this paper we describe new approaches to assess the security of white-
box implementations which require neither knowledge about the look-up
tables used nor expensive reverse engineering effort. We introduce the
differential computation analysis (DCA) attack which is the software
counterpart of the differential power analysis attack as applied by the
cryptographic hardware community. Similarly, the differential fault anal-
ysis (DFA) attack is the software counterpart of fault-injection attacks
on cryptographic hardware.
For DCA, we developed plugins to widely available dynamic binary in-
strumentation (DBI) frameworks to produce software execution traces
which contain information about the memory addresses being accessed.
For the DFA attack, we developed modified emulators and plugins for
DBI frameworks that allow injecting faults at selected moments within
the execution of the encryption or decryption process as well as a frame-
work to automate static fault injection.
To illustrate the effectiveness, we show how DCA and DFA can extract
the secret key from numerous publicly available non-commercial white-
box implementations of standardized cryptographic algorithms. These
approaches allow one to extract the secret key material from white-box
implementations significantly faster and without specific knowledge of
the white-box design in an automated or semi-automated manner.

1 Introduction

The widespread use of mobile “smart” devices enables users to access a large va-
riety of ubiquitous services. This makes such platforms a valuable target (cf. [59]

This is an extended version of the article published by Springer-Verlag available
at 10.1007/978-3-662-53140-2 11 and includes the treatment of differential fault at-
tacks.



for a survey on security for mobile devices). There are a number of techniques
to protect the cryptographic keys residing on these mobile platforms. The solu-
tions range from unprotected software implementations on the lower range of the
security spectrum, to tamper-resistant hardware implementations on the other
end. A popular approach which attempts to hide a cryptographic key inside a
software program is known as a white-box implementation.

Traditionally, people used to work with a security model where implementa-
tions of cryptographic primitives are modeled as “black boxes”. In this black box
model the internal design is trusted and only the in- and output are considered
in a security evaluation. As pointed out by Kocher, Jaffe, and Jun [39] in the late
1990s, this assumption turned out to be false in many scenarios. This black-box
may leak some meta-information: e.g., in terms of timing or power consumption.
This side-channel analysis gave rise to the gray-box attack model. Since the us-
age of (and access to) cryptographic keys changed, so did this security model. In
two seminal papers from 2002, Chow, Eisen, Johnson and van Oorschot intro-
duce the white-box model and show implementation techniques which attempt
to realize a white-box implementation of symmetric ciphers [22,21].

The idea behind the white-box attack model is that the adversary can be the
owner of the device running the software implementation. Hence, it is assumed
that the adversary has full control over the execution environment. This enables
the adversary to, among other things, perform static analysis on the software,
inspect and alter the memory used, and even alter intermediate results (similar
to hardware fault injections). This white-box attack model, where the adversary
is assumed to have such advanced abilities, is realistic on many mobile platforms
which store private cryptographic keys of third-parties. White-box implementa-
tions can be used to protect which applications can be installed on a mobile
device (from an application store). Other use-cases include the protection of
digital assets (including media, software and devices) in the setting of digital
rights management, the protection of payment credentials in Host Card Emu-
lation (HCE) environments and the protection of credentials for authentication
to the cloud. If one has access to a “perfect” white-box implementation of a
cryptographic algorithm, then this implies one should not be able to deduce any
information about the secret key material used by inspecting the internals of this
implementation. This is equivalent to a setting where one has only black-box ac-
cess to the implementation. As observed by [25] this means that such a white-box
implementation should resist all existing and future side-channel attacks.

As stated in [21], “when the attacker has internal information about a cryp-
tographic implementation, choice of implementation is the sole remaining line of
defense.” This is exactly what is being pursued in a white-box implementation:
the idea is to embed the secret key in the implementation of the cryptographic
operations such that it becomes difficult for an attacker to extract information
about this secret key even when the source code of the implementation is pro-
vided.

Note that this approach is different from anti-reverse-engineering mecha-
nisms such as code obfuscation [8,43] and control-flow obfuscation [31] although



these are typically applied to white-box implementations as an additional line
of defense.

On top of these, protocol level countermeasures can also be used to mitigate
risks in cases in which the application is network-connected. In this work we focus
exclusively on the robustness of naked white-box implementations, without any
additional countermeasures.

Although it is conjectured that no long-term defense against attacks on white-
box implementations exist [21], there are still a significant number of companies
selling white-box solutions. It should be noted that there are almost no known
published results on how to turn any of the standardized public-key algorithms
into a white-box implementation, besides a patent by Zhou and Chow proposed
in 2002 [74]. The other published white-box techniques exclusively focus on sym-
metric cryptography. However, all such published approaches have been theoret-
ically broken (see Section 2 for an overview). A disadvantage of these published
attacks is that they require detailed information on how the white-box imple-
mentation is constructed. For instance, knowledge about the exact location of
the S-boxes or the round transitions might be required together with the format
of the applied encodings to the look-up tables (see Section 2 on how white-box
implementations are generally designed). Vendors of white-box implementations
try to avoid such attacks by ignoring Kerckhoffs’s principle and keeping the
details of their design secret (and change the design once it is broken).

Our Contributions. All current cryptanalytic approaches require detailed knowl-
edge about the white-box design used: e.g. the location and order of the S-boxes
applied and how and where the encodings are used. This preprocessing effort
required for performing an attack is an important aspect of the value attributed
to commercial white-box solutions. Vendors are aware that their solutions do not
offer a long term defense, but compensate for this by, for instance, regular soft-
ware updates. Our contributions are attacks that work in an automated way, and
are therefore a major threat for the claimed security level of the offered solutions
compared to the ones that are already known. For some of the attacks, we use
dynamic binary analysis (DBA), a technique often used to improve and inspect
the quality of software implementations, to access and control the intermediate
state of the white-box implementation.

One approach to implement DBA is called dynamic binary instrumentation
(DBI). The idea is that additional analysis code is added to the original code of
the client program at run-time in order to aid memory debugging, memory leak
detection, and profiling. The most advanced DBI tools, such as Valgrind [56]
and Pin [44], allow one to monitor, modify and insert instructions in a binary
executable. These tools have already demonstrated their potential for behavioral
analysis of obfuscated code [63].

We have developed plugins for both Valgrind and Pin to obtain software
traces1: traces which record the read and write accesses made to memory. Ad-

1 The entire software toolchain ranging from the plugins, to the GUI, to the individual
scripts to target the white-box challenges, to the tool to analyze the collected traces
is released as open-source software: see https://github.com/SideChannelMarvels.

https://github.com/SideChannelMarvels


ditionally, we developed plugins and modified emulators to introduce faults into
software, as well as a framework to automate static fault injection2. We intro-
duce two new attack vectors that use these techniques in order to retrieve the
secret key from a white-box implementation:

– differential computation analysis (DCA), which can be seen as the software
counterpart of the differential power analysis (DPA) [39] techniques as ap-
plied by the cryptographic hardware community. There are, however, some
important differences between the usage of the software and hardware traces
as we outline in Section 3.2.

– differential fault analysis (DFA), which is equivalent to fault-injection [15,10]
attacks as applied by the cryptographic hardware community, but uses soft-
ware means in order to inject faults, which allows for dynamic but also static
fault injection.

We demonstrate that DCA can be used to efficiently extract the secret key
from white-box implementations which apply at most a single remotely handled
external encoding. Similarly, we show that DFA can be applied to white-box
implementations that do not apply external encoding to the output of the en-
cryption or decryption process. We apply DFA and DCA techniques to the pub-
licly available white-box challenges of standardized cryptographic algorithms we
could find; concretely this means extracting the secret key from four white-box
implementations of the symmetric cryptographic algorithms AES and DES.

In contrast to the current cryptanalytic methods to attack white-box im-
plementations, these techniques do not require any knowledge about the imple-
mentation strategy used, can be mounted without much technical cryptographic
knowledge in an automated way, and extract the key significantly faster. Be-
sides this cryptanalytic framework we discuss techniques which could be used as
countermeasures against DCA (see Section 3.4) and DFA (see Section 4).

The main reason why DCA works is related to the choice of (non-) linear
encodings which are used inside the white-box implementation (cf. Section 2).
These encodings do not sufficiently hide correlations when the correct key is used
and enables one to run side-channel attacks (just as in gray-box attack model).
Sasdrich, Moradi, and Güneysu looked into this in detail [60] and used the Walsh
transform (a measure to investigate if a function is a balanced correlation im-
mune function of a certain order) of both the linear and non-linear encodings
applied in their white-box implementation of AES. Their results show extreme
unbalance where the correct key is used and this explain why first-order attacks
like DPA are successful in this scenario.

2 Overview of White-Box Cryptography Techniques

The white-box attack model allows the adversary to take full control over the
cryptographic implementation and the execution environment. It is not surpris-
ing that, given such powerful capabilities of the adversary, the authors of the

2 The static fault injection framework, the individual scripts and the tool to analyze
the collected outputs are released in the same project.



original white-box paper [21] conjectured that no long-term defense against at-
tacks on white-box implementations exists. This conjecture should be understood
in the context of code-obfuscation, since hiding the cryptographic key inside an
implementation is a form of code-obfuscation. It is known that obfuscation of
any program is impossible [5], however, it is unknown if this result applies to
a specific subset of white-box functionalities. Moreover, this should be under-
stood in the light of recent developments where techniques using multilinear
maps are used for obfuscation that may provide meaningful security guarantees
(cf. [28,16,4]). In order to guard oneself in this security model in the medium- to
long-run one has to use the advantages of a software-only solution. The idea is to
use the concept of software aging [33]: this forces, at a regular interval, updates
to the white-box implementation. It is hoped that when this interval is small
enough, this gives insufficient computational time to the adversary to extract
the secret key from the white-box implementation. This approach only makes
sense if the sensitive data is only of short-term interest, e.g. the DRM-protected
broadcast of a football match. However, the practical challenges of enforcing
these updates on devices with irregular internet access should be noted.

Protocol level mitigations to limit the impact or applicability of these attacks
could also be implemented. Additionally, risk mitigation techniques could be im-
plemented to counter fraud in connected applications with a back-end component
such as e.g. mobile payment solutions. However these mitigation techniques are
outside the scope of this paper.

External encodings. Besides its primary goal to hide the key, white-box imple-
mentations can also be used to provide additional functionality, such as putting
a fingerprint on a cryptographic key to enable traitor tracing or hardening soft-
ware against tampering [49]. There are, however, other security concerns besides
the extraction of the cryptographic secret key from the white-box implementa-
tion. If one is able to extract (or copy) the entire white-box implementation to
another device then one has copied the functionality of this white-box implemen-
tation as well, since the secret key is embedded in this program. Such an attack
is known as code lifting. A possible solution to this problem is to use external
encodings [21]. When one assumes that the cryptographic functionality Ek is
part of a larger ecosystem then one could implement E′k = G◦Ek ◦F−1 instead.
The input (F ) and output (G) encoding are randomly chosen bijections such
that the extraction of E′k does not allow the adversary to compute Ek directly.
The ecosystem which makes use of E′k must ensure that the input and output
encodings are canceled. In practice, depending on the application, input or out-
put encodings need to be performed locally by the program calling E′k. E.g. in
DRM applications, the server may take care of the input encoding remotely but
the client needs to revert the output encoding to finalize the content decryption.

In this paper, we can mount successful attacks on implementations which
apply at most a single remotely handled external encoding. When both the input
is received with an external encoding applied to it remotely and the output is
computed with another encoding applied to it (which is removed remotely) then
the implementation is not a white-box implementation of a standard algorithm



(like AES or DES) but of a modified algorithm (like G◦AES◦F−1 or G◦DES◦
F−1).

General idea. The general approach to implement a white-box program is
presented in [21]. The idea is to use look-up tables rather than individual com-
putational steps to implement an algorithm and to encode these look-up tables
with random bijections. The usage of a fixed secret key is embedded in these
tables. Due to this extensive usage of look-up tables, white-box implementations
are typically orders of magnitude larger and slower than a regular (non-white-
box) implementation of the same algorithm. It is common to write a program
that automatically generates a random white-box implementation given the algo-
rithm and the fixed secret key as input. The randomness resides in the randomly
chosen bijections to hide the secret key usage in the various look-up tables.

In the remainder of this section we first briefly recall the basics of DES
and AES, the two most commonly used choices for white-box implementations,
before summarizing the scientific literature related to white-box techniques.

Data Encryption Standard (DES). The DES is a symmetric-key algorithm
and published as a Federal Information Processing Standard (FIPS) for the
United States in 1979 [70]. For the scope of this work it is sufficient to know
that DES is an iterative cipher which consists of 16 identical rounds in a criss-
crossing scheme known as a Feistel structure. One can implement DES by only
working on 8-bit (a single byte) values and using mainly simple operations such
as rotate, bitwise exclusive-or, and table lookups. Due to concerns of brute-force
attacks on DES the usage of triple DES, which applies DES three times to each
data block, has been added to a later version of the standard [70].

Advanced Encryption Standard (AES). In order to select a successor to
DES, NIST initiated a public competition where people could submit new de-
signs. After a roughly three year period the Rijndael cipher was chosen as
AES [1,23] in 2000: an unclassified, publicly disclosed symmetric block cipher.
The operations used in AES are, as in DES, relatively simple: bitwise exclusive-
or, multiplications with elements from a finite field of 28 elements and table
lookups. Rijndael was designed to be efficient on 8-bit platforms and it is there-
fore straight-forward to create a byte-oriented implementation. AES is available
in three security levels. E.g. AES-128 is using a key-size of 128 bits and 10 rounds
to compute the encryption of the input.

2.1 White-Box Results

White-Box Data Encryption Standard (WB-DES). The first publication
attempting to construct a WB-DES implementation dates back from 2002 [22]
in which an approach to create white-box implementations of Feistel ciphers
is discussed. A first attack on this scheme, which enables one to unravel the
obfuscation mechanism, took place in the same year and used fault injections [32]
to extract the secret key by observing how the program fails under certain errors.
In 2005, an improved WB-DES design, resisting this fault attack, was presented
in [42]. However, in 2007, two differential cryptanalytic attacks [9] were presented



which can extract the secret key from this type of white-box [29,72]. This latter
approach has a time complexity of only 214.

White-Box Advanced Encryption Standard (WB-AES). The first ap-
proach to realize a WB-AES implementation was proposed in 2002 [21]. In 2004,
the authors of [12] present how information about the encodings embedded in
the look-up tables can be revealed when analyzing the lookup tables compo-
sition. This approach is known as the BGE attack and enables one to extract
the key from this WB-AES with a 230 time complexity. A subsequent WB-AES
design introduced perturbations in the cipher in an attempt to thwart the pre-
vious attack [18]. This approach was broken [55] using algebraic analysis with
a 217 time complexity in 2010. Another WB-AES approach which resisted the
previous attacks was presented in [73] in 2009 and got broken in 2012 with a
work factor of 232 [54].

Another interesting approach is based on using the different algebraic struc-
ture for the same instance of an iterative block cipher (as proposed originally
in [11]). This approach [34] uses dual ciphers to modify the state and key repre-
sentations in each round as well as two of the four classical AES operations. This
approach was shown to be equivalent to the first WB-AES implementation [21]
in [40] in 2013. Moreover, the authors of [40] built upon a 2012 result [68] which
improves the most time-consuming phase of the BGE attack. This reduces the
cost of the BGE attack to a time complexity of 222. An independent attack, of
the same time complexity, is presented in [40] as well.

Miscellaneous White-Box Results. The above mentioned scientific work
only relates to constructing and cryptanalyzing WB-DES and WB-AES. White-
box techniques have been studied and used in a broader context. In 2007, the
authors of [50] presented a white-box technique to make code tamper resistant.
In 2008, the cryptanalytic results for WB-DES and WB-AES were generalized
to any substitution linear-transformation (SLT) cipher [51]. In turn, this work
was generalized even further and a general analytic toolbox is presented in [3]
which can extract the secret for a general SLT cipher.

Formal security notions for symmetric white-box schemes are discussed and
introduced in [61,25]. In [13] it is shown how one can use the ASASA construction
with injective S-boxes (where ASA stands for the affine-substitution-affine [58]
construction) to instantiate white-box cryptography. A tutorial related to white-
box AES is given in [53].

2.2 Prerequisites of Existing Attacks

In order to put our results in perspective, it is good to keep in mind the exact
requirements needed to apply the white-box attacks from the scientific literature.
These approaches require at least a basic knowledge of the scheme which is white-
boxed. More precisely, the adversary needs to

• know the type of encodings that are applied on the intermediate results,



• know which cipher operations are implemented by which (network of) lookup
tables.

The problem with these requirements is that vendors of white-box implemen-
tations are typically reluctant in sharing any information on their white-box
scheme (the so-called “security through obscurity”). If that information is not
directly accessible but only a binary executable or library is at disposal, one has
to invest a significant amount of time in reverse-engineering the binary manu-
ally. Removing several layers of obfuscation before retrieving the required level
of knowledge about the implementations needed to mount this type of attack
successfully can be cumbersome. This additional effort, which requires a high
level of expertise and experience, is illustrated by the sophisticated methods
used as described in the write-ups of the publicly available challenges as detailed
in Section 3.3.

In contrast, the DCA and DFA approaches introduced in Sections 3 and 4
do not need to remove the obfuscation layers nor require significant reverse
engineering of the binary executable.

3 Side Channel Analysis of White-Box Cryptographic
implementations

3.1 Differential Power Analysis

Since the late 1990s it is publicly known that the (statistical) analysis of a power
trace obtained when executing a cryptographic primitive might correlate to, and
hence reveal information about, the secret key material used [39]. Typically, one
assumes access to the hardware implementation of a known cryptographic al-
gorithm. With I(pi, k) we denote a target intermediate state of the algorithm
with input pi and where only a small portion of the secret key is used in the
computation, denoted by k. One assumes that the power consumption of the
device at state I(pi, k) is the sum of a data dependent component and some
random noise, i.e. L(I(pi, k)) + δ, where the function L(s) returns the power
consumption of the device during state s, and δ denotes some leakage noise.
It is common to assume (see e.g., [46]) that the noise is random, independent
from the intermediate state and is normally distributed with zero mean. Since
the adversary has access to the implementation he can obtain triples (ti, pi, ci).
Here pi is one plaintext input chosen arbitrarily by the adversary, the ci is the
ciphertext output computed by the implementation using a fixed unknown key,
and the value ti shows the power consumption over the time of the implemen-
tation to compute the output ciphertext ci. The measured power consumption
L(I(pi, k)) + δ is just a small fraction of this entire power trace ti.

The goal of an attacker is to recover the part of the key k by comparing
the real power measurements ti of the device with an estimation of the power
consumption under all possible hypotheses for k. The idea behind a Differential
Power Analysis (DPA) attack [39] (see [38] for an introduction to this topic) is



to divide the measurement traces in two distinct sets according to some prop-
erty. For example, this property could be the value of one of the bits of the
intermediate state I(pi, k). One assumes — and this is confirmed in practice by
measurements on unprotected hardware — that the distribution of the power
consumptions for these two sets is different (i.e., they have different means and
standard deviations). In order to obtain information about part of the secret
key k, for each trace ti and input pi, one enumerates all possible values for k
(typically 28 = 256 when attacking a key-byte), computes the intermediate value
gi = I(pi, k) for this key guess and divides the traces ti into two sets according
to this property measured at gi. If the key guess k was correct then the difference
of the subsets’ averages will converge to the difference of the means of the distri-
butions. However, if the key guess is wrong then the data in the sets can be seen
as a random sampling of measurements and the difference of the means should
converge to zero. This allows one to observe correct key guesses if enough traces
are available. The number of traces required depends, among other things, on
the measurement noise and means of the distributions (and hence is platform
specific).

While having access to output ciphertexts is helpful to validate the recovered
key, it is not strictly required. Inversely, one can attack an implementation where
only the output ciphertexts are accessible, by targeting intermediate values in
the last round. The same attacks apply obviously to the decryption operation.

The same technique can be applied on other traces which contain other types
of side-channel information such as, for instance, the electromagnetic radiations
of the device. Although we focus on DPA in this paper, it should be noted
that there exist more advanced and powerful attacks. This includes, among oth-
ers, higher order attacks [48], correlation power analyses [17] and template at-
tacks [20].

3.2 Software Execution Traces

To assess the security of a binary executable implementing a cryptographic prim-
itive, which is designed to be secure in the white-box attack model, one can
execute the binary on a CPU of the corresponding architecture and observe
its power consumption to mount a differential power analysis attack (see Sec-
tion 3.1). However, in the white-box model, one can do much better as the model
implies that we can observe everything without any measurement noise. In prac-
tice such level of observation can be achieved by instrumenting the binary or in-
strumenting an emulator being in charge of the execution of the binary. We chose
the first approach by using some of the available Dynamic Binary Instrumenta-
tion (DBI) frameworks. In short, DBI usually considers the binary executable to
analyze as the bytecode of a virtual machine using a technique known as just-
in-time compilation. This recompilation of the machine code allows performing
transformations on the code while preserving the original computational effects.
These transformations are performed at the basic block 3 level and are stored

3 A basic block is a portion of code with only one entry point and only one exit
point. However, due to practical technicalities, the definition of a basic block Pin



in cache to speed up the execution. For example this mechanism is used by the
Quick Emulator (QEMU, an open hypervisor that performs hardware virtualiza-
tion) to execute machine code from one architecture on a different architecture,
in this case the transformation is the architecture translation [7]. DBI frame-
works, like Pin [44] and Valgrind [56], perform another kind of transformation:
they allow to add custom callbacks in between the machine code instructions
by writing plugins or tools which hook into the recompilation process. These
callbacks can be used to monitor the execution of the program and track specific
events. The main difference between Pin and Valgrind is that Valgrind uses an
architecture independent Intermediate Representation (IR) called VEX which
allows to write tools compatible with any architecture supported by the IR. We
developed (and released) such plugins for both frameworks to trace execution
of binary executables on x86, x86-64, ARM and ARM64 platforms and record
the desired information: namely, the memory addresses being accessed (for read,
write or execution) and their content. It is also possible to record the content
of CPU registers but this would slow down acquisition and increase the size of
traces significantly; we succeeded to extract the secret key from the white-box
implementations without this additional information. This is not surprising as
table-based white-box implementations are mostly made of memory look-ups
and make almost no use of arithmetic instructions (see Section 2 for the design
rationale behind many white-box implementations). In some more complex con-
figurations e.g. where the actual white-box is buried into a larger executable it
might be desired to change the initial behavior of the executable to call directly
the block cipher function or to inject a chosen plaintext in an internal applica-
tion programming interface (API). This is trivial to achieve with DBI, but for
the implementations presented in Section 3.3, we simply did not need to resort
to such methods.

The following steps outline the process how to obtain software traces and
mount a DPA attack on these software traces.

First step. Trace a single execution of the white-box binary with an arbitrary
plaintext and record all accessed addresses and data over time. Although the
tracer is able to follow execution everywhere, including external and system
libraries, we reduce the scope to the main executable or to a companion library
if the cryptographic operations happen to be handled there. A common computer
security technique often deployed by default on modern operating systems is the
Address Space Layout Randomization (ASLR) which randomly arranges the
address space positions of the executable, its data, its heap, its stack and other
elements such as libraries. In order to make acquisitions completely reproducible
we simply disable the ASLR, as the white-box model puts us in control over the
execution environment. In case ASLR cannot be disabled, it would just be a
mere annoyance to realign the obtained traces.

Second step. Next, we visualize the trace to understand where the block cipher
is being used and, by counting the number of repetitive patterns, determine

and Valgrind use is slightly different and may include several entry points or exit
points.



Fig. 1. Visualization of a software execution trace of a white-box DES implementation.

which (standardized) cryptographic primitive is implemented: e.g., a 10-round
AES-128, a 14-round AES-256, or a 16-round DES. To visualize a trace, we
decided to represent it graphically similarly to the approach presented in [52].
Fig. 1 illustrates this approach: the virtual address space is represented on the
x-axis, where typically, on many modern platforms, one encounters the text
segment (containing the instructions), the data segment, the uninitialized data
(BSS) segment, the heap, and finally the stack, respectively. The virtual address
space is extremely sparse so we display only bands of memory where there is
something to show. The y-axis is a temporal axis going from top to bottom. Black
represents addresses of instructions being executed, green represents addresses of
memory locations being read and red when being written. In Fig. 1 one deduces
that the code (in black) has been unrolled in one huge basic block, a lot of
memory is accessed in reads from different tables (in green) and the stack is
comparatively so small that the read and write accesses (in green and red) are
barely noticeable on the far right without zooming in.

Third step. Once we have determined which algorithm we target we keep the
ASLR disabled and record multiple traces with random plaintexts, optionally
using some criteria e.g. in which instructions address range to record activity.
This is especially useful for large binaries doing other types of operations we
are not interested in (e.g., when the white-box implementation is embedded in a
larger framework). If the white-box operations themselves take a lot of time then
we can limit the scope of the acquisition to recording the activity around just the
first or last round, depending if we mount an attack from the input or output of
the cipher. Focusing on the first or last round is typical in DPA-like attacks since
it limits the portion of key being attacked to one single byte at once, as explained
in Section 3.1. In the example given in Fig. 1, the read accesses pattern makes it
trivial to identify the DES rounds and looking at the corresponding instructions
(in black) helps defining a suitable instructions address range. While recording
all memory-related information in the initial trace (first step), we only record a



single type of information (optionally for a limited address range) in this step.
Typical examples include recordings of bytes being read from memory, or bytes
written to the stack, or the least significant byte of memory addresses being
accessed.

This generic approach gives us the best trade-off to mount the attack as fast
as possible and minimize the storage of the software traces. If storage is not a
concern, one can directly jump to the third step and record traces of the full
execution, which is perfectly acceptable for executables without much overhead,
as it will become apparent in several examples in Section 3.3. This naive approach
can even lead to the creation of a fully automated acquisition and key recovery
setup.

Fourth step. In step 3 we have obtained a set of software traces consisting of
lists of (partial) addresses or actual data which have been recorded whenever an
instruction was accessing them. To move to a representation suitable for usual
DPA tools expecting power traces, we serialize those values (usually bytes) into
vectors of ones and zeros. This step is essential to exploit all the information we
have recorded. To understand it, we compare to a classical hardware DPA setup
targeting the same type of information: memory transfers.

When using DPA, a typical hardware target is a CPU with one 8-bit bus to
the memory and all eight lines of that bus will be switching between low and
high voltage to transmit data. If a leakage can be observed in the variations of
the power consumption, it will be an analog value proportional to the sum of
bits equal to one in the byte being transferred on that memory bus. Therefore,
in such scenarios, the most elementary leakage model is the Hamming weight of
the bytes being transferred between CPU and memory. However, in our software
setup, we know the exact 8-bit value and to exploit it at best, we want to attack
each bit individually, and not their sum (as in the Hamming weight model).
Therefore, the serialization step we perform (converting the observed values into
vectors of ones and zeros) is as if in the hardware model each corresponding bus
line was leaking individually one after the other.

When performing a DPA attack, a power trace typically consists of sampled
analog measures. In our software setting we are working with perfect leakages
(i.e., no measurement noise) of the individual bits that can take only two possible
values: 0 or 1. Hence, our software tracing can be seen from a hardware perspec-
tive as if we were probing each individual line with a needle, something requiring
heavy sample preparation such as chip decapping and Focused Ion Beam (FIB)
milling and patching operations to dig through the metal layers in order to reach
the bus lines without affecting the chip functionality. Something which is much
more powerful and invasive than external side-channel acquisition.

When using software traces there is another important difference with tradi-
tional power traces along the time axis. In a physical side-channel trace, analog
values are sampled at a fixed rate, often unrelated to the internal clock of the
device under attack, and the time axis represents time linearly. With software
execution traces we record information only when it is relevant, e.g. every time
a byte is written on the stack if that is the property we are recording, and more-



(a)

(b)

Fig. 2. Figure (a) is a typical example of a (hardware) power trace of an unprotected
AES-128 implementation (one can observe the ten rounds).
Figure (b) is a typical example of a portion of a serialized software trace of stack writes
in an AES-128 white-box, with only two possible values: zero or one.

over bits are serialized as if they were written sequentially. One may observe
that given this serialization and sampling on demand, our time axis does not
represent an actual time scale. However, a DPA attack does not require a proper
time axis. It only requires that when two traces are compared, corresponding
events that occurred at the same point in the program execution are compared
against each other. Figures 2a and 2b illustrate those differences between traces
obtained for usage with DPA and DCA, respectively.

Fifth step. Once the software execution traces have been acquired and shaped,
we can use regular DPA tools to extract the key. We show in the next section
what the outcome of DPA tools look like, besides the recovery of the key.

Optional step. If required, one can identify the exact points in the execution
where useful information leaks. With the help of known-key correlation analysis
one can locate the exact “faulty” instruction and the corresponding source code
line, if available. This can be useful as support for the white-box designer.

To conclude this section, here is a summary of the prerequisites of our dif-
ferential computation analysis, in opposition to the previous white-box attacks’
prerequisites which were detailed in Section 2.2:

• Be able to run several times (a few dozens to a few thousands) the binary
in a controlled environment.

• Having knowledge of the plaintexts (before their encoding, if any), or of the
ciphertexts (after their decoding, if any).



(a) (b)

Fig. 3. (a) Visualization of a software execution trace of the binary Wyseur white-box
challenge showing the entire accessed address range. (b) A zoom on the stack address
space from the software trace shown in (a). The 16 rounds of the DES algorithm are
clearly visible.

3.3 Analyzing Publicly Available White-Box Implementations

The Wyseur Challenge As far as we are aware, the first public white-box
challenge was created by Brecht Wyseur in 2007. On his website4 one can find
a binary executable containing a white-box DES encryption operation with a
fixed embedded secret key. According to the author, this WB-DES approach
implements the ideas from [22,42] (see Section 2.1) plus “some personal im-
provements”. The interaction with the program is straight-forward: it takes a
plaintext as input and returns a ciphertext as output to the console. The chal-
lenge was solved after five years (in 2012) independently by James Muir and
“SysK”. The latter provided a detailed description [65] and used differential
cryptanalysis (similar to [29,72]) to extract the embedded secret key.

Figure 3a shows a full software trace of an execution of this WB-DES chal-
lenge. On the left one can see the loading of the instructions (in black), since
the instructions are loaded repeatedly from the same addresses this implies that
loops are used which execute the same sequence of instructions over and over
again. Different data is accessed fairly linearly but with some local disturbances
as indicated by the large diagonal read access pattern (in green). Even to the
trained eye, the trace displayed in Figure 3a does not immediately look familiar
to DES. However, if one takes a closer look to the address space which rep-
resents the stack (on the far right) then the 16 rounds of DES can be clearly
distinguished. This zoomed view is outlined in Figure 3b where the y-axis is un-
altered (from Figure 3a) but the address-range (the x-axis) is rescaled to show
only the read and write accesses to the stack.

Due to the loops in the program flow, we cannot just limit the tracer to a
specific memory range of instructions and target a specific round. As a trace
over the full execution takes a fraction of a second, we traced the entire program
without applying any filter. The traces are easily exploited with DCA: e.g., if

4 See http://whiteboxcrypto.com/challenges.php.

http://whiteboxcrypto.com/challenges.php


Fig. 4. Visualization of the stack reads and writes in a software execution trace of the
Hack.lu 2009 challenge.

we trace the bytes written to the stack over the full execution and we compute
a DPA over this entire trace without trying to limit the scope to the first round,
the key is completely recovered with as few as 65 traces when using the output
of the first round as intermediate value.

The execution of the entire attack, from the download of the binary challenge
to full key recovery, including obtaining and analyzing the traces, took less than
an hour as its simple textual interface makes it very easy to hook it to an attack
framework. Extracting keys from different white-box implementations based on
this design now only takes a matter of seconds when automating the entire
process as outlined in Section 3.2.

The Hack.lu 2009 Challenge As part of the Hack.lu 2009 conference, which
aims to bridge ethics and security in computer science, Jean-Baptiste Bédrune
released a challenge [6] which consisted of a crackme.exe file: an executable for
the Microsoft Windows platform. When launched, it opens a GUI prompting
for an input, redirects it to a white-box and compares the output with an in-
ternal reference. It was solved independently by Eloi Vanderbéken [71], who
reverted the functionality of the white-box implementation from encryption to
decryption, and by “SysK” [65] who managed to extract the secret key from the
implementation.

Our plugins for the DBI tools have not been ported to the Windows operating
system and currently only run on GNU/Linux and Android. In order to use our
tools directly we decided to trace the binary with our Valgrind variant and



Fig. 5. Visualization of the instructions in a software execution trace of the Karroumi
WB-AES implementation by Klinec, with a zoom on the core of the white-box.

Wine [2], 5, an open source compatibility layer to run Windows applications
under GNU/Linux. We automated the GUI, keyboard and mouse interactions
using xdotool6. Due to the configuration of this challenge we had full control on
the input to the white-box. Hence, there was no need to record the output of
the white-box and no binary reverse-engineering was required at all.

Fig. 4 shows the read and write accesses to the stack during a single execution
of the binary. One can observe ten repetitive patterns on the left interleaved
with nine others on the right. This indicates (with high probability) an AES
encryption or decryption with a 128-bit key. The last round being shorter as it
omits the MixColumns operation as per the AES specification. We captured a
few dozen traces of the entire execution, without trying to limit ourselves to the
first round. Due to the overhead caused by running the GUI inside Wine the
acquisition ran slower than usual: obtaining a single trace took three seconds.
Again, we applied our DCA technique on traces which recorded bytes written to
the stack. The secret key could be completely recovered with only 16 traces when
using the output of the first round SubBytes as intermediate value of an AES-
128 encryption. As “SysK” pointed out in [65], this challenge was designed to
be solvable in a couple of days and consequently did not implement any internal
encoding, which means that the intermediate states can be observed directly.
Therefore in our DCA the correlation between the internal states and the traced
values get the highest possible value, which explains the low number of traces
required to mount a successful attack.

The SSTIC 2012 Challenge Every year for the SSTIC, Symposium sur la
sécurité des technologies de l’information et des communications (Information
technology and communication security symposium), a challenge is published
which consists of solving several steps like a Matryoshka doll. In 2012, one step
of the challenge [47] was to validate a key with a Python bytecode “check.pyc”:

5 https://www.winehq.org/
6 http://www.semicomplete.com/projects/xdotool/

https://www.winehq.org/
http://www.semicomplete.com/projects/xdotool/


Fig. 6. Visualization of the stack reads and writes in the software execution trace
portion limited to the core of the Karroumi WB-AES.

i.e. a marshalled object7. Internally this bytecode generates a random plaintext,
forwards this to a white-box (created by Axel Tillequin) and to a regular DES
encryption using the key provided by the user and then compares both cipher-
texts. Five participants managed to find the correct secret key corresponding to
this challenge and their write-ups are available at [47]. A number of solutions
identified the implementation as a WB-DES without encodings (naked variant)
as described in [22]. Some extracted the key following the approach from the
literature while some performed their own algebraic attack.

Tracing the entire Python interpreter with our tool, based on either PIN or
Valgrind, to obtain a software trace of the Python binary results in a significant
overhead. Instead, we instrumented the Python environment directly. Actually,
Python bytecode can be decompiled with little effort as shown by the write-
up of Jean Sigwald. This contains a decompiled version of the “check.pyc” file
where the white-box part is still left serialized as a pickled object8. The white-
box makes use of a separate Bits class to handle its variables so we added some
hooks to record all new instances of that particular class. This was sufficient.
Again, as for the Hack.lu 2009 WB-AES challenge (see Section 3.3), 16 traces
were enough to recover the key of this WB-DES when using the output of the
first round as intermediate value. This approach works with such a low number
of traces since the intermediate states are not encoded.

7 https://docs.python.org/2/library/marshal.html
8 https://docs.python.org/2/library/pickle.html

https://docs.python.org/2/library/marshal.html
https://docs.python.org/2/library/pickle.html


Table 1. DCA ranking for a Karroumi white-box implementation when targeting the
output of the SubBytes step in the first round based on the least significant address
byte on memory reads.

key byte

ta
rg

e
t
b
it

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 256 255 256 255 256 253 1 256 256 239 256 1 1 1 255
1 1 256 256 256 1 255 256 1 1 5 1 256 1 1 1 1
2 256 1 255 256 1 256 226 256 256 256 1 256 22 1 256 256
3 256 255 251 1 1 1 254 1 1 256 256 253 254 256 255 256
4 256 256 74 256 256 256 255 256 254 256 256 256 1 1 256 1
5 1 1 1 1 1 1 50 256 253 1 251 256 253 1 256 256
6 254 1 1 256 254 256 248 256 252 256 1 14 255 256 250 1
7 1 256 1 1 252 256 253 256 256 255 256 1 251 1 254 1

All 3 3 3 3 3 3 7 3 3 3 3 3 3 3 3 3

A White-Box Implementation of the Karroumi Approach A white-
box implementation of both the original AES approach [21] and the approach
based on dual ciphers by Karroumi [34] is part of the Master thesis by Dušan
Klinec [37]9. As explained in Section 2.1, this is the latest academic variant
of [21]. Since there is no challenge available, we used Klinec’s implementation
to create two challenges: one with and one without external encodings. This
implementation is written in C++ with extensive use of the Boost10 libraries to
dynamically load and deserialize the white-box tables from a file. The left part
of Figure 5 shows a software trace when running this white-box AES binary
executable. The white-box code itself constitutes only a fraction of the total
instructions; the right part of Figure 5 shows an enlarged view of the white-
box core. Here, one can recognize the nine MixColumns operating on the four
columns. This structure can be observed even better from the stack trace of
Figure 6. Therefore we used instruction address filtering to focus on the white-
box core and skip all the Boost C++ operations.

The best results were obtained when tracing the lowest byte of the memory
addresses used in read accesses (excluding stack). Initially we followed the same
approach as before: we targeted the output of the SubBytes in the first round.
But, in contrast to the other challenges considered in this work, it was not
enough to immediately recover the entire key. For some of the tracked bits of
the intermediate value we observed a significant correlation peak: this is an
indication that the first key candidate is very probably the correct one. Table 1
shows the ranking of the right key byte value amongst the guesses after 2000
traces, when sorted according to the difference of means (see Section 3.1). If the
key byte is ranked at position 1 this means it was properly recovered by the
attack. In total, for the first challenge we constructed, 15 out of 16 key bytes
were ranked at position 1 for at least one of the target bits and one key byte

9 The code be found at https://github.com/ph4r05/Whitebox-crypto-AES.
10 http://www.boost.org/

https://github.com/ph4r05/Whitebox-crypto-AES
http://www.boost.org/


Table 2. DCA ranking for a Karroumi white-box implementation when targeting the
output of the multiplicative inversion inside the SubBytes step in the first round based
on the least significant address byte on memory reads.

key byte

ta
rg

e
t
b
it

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 256 256 1 1 1 256 256 256 254 1 1 1 255 256 256 1
1 1 1 253 1 1 256 249 256 256 256 226 1 254 256 256 256
2 256 256 1 1 255 256 256 256 251 1 255 256 1 1 254 256
3 254 1 69 1 1 1 1 1 252 256 1 256 1 256 256 256
4 254 1 255 256 256 1 255 256 1 1 256 256 238 256 253 256
5 254 256 250 1 241 256 255 3 1 1 256 256 231 256 208 254
6 256 256 256 256 233 256 1 256 1 1 256 256 1 1 241 1
7 63 256 1 256 1 255 231 256 255 1 255 256 255 1 1 1

All 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

(key byte 6 in the table) did not show any strong candidate. However, recovering
this single missing key-byte is trivial using brute-force.

Since the dual ciphers approach [34] uses affine self-equivalences of the orig-
inal S-box, it might also be interesting to base the guesses on another target:
the multiplicative inverse in the finite field of 28 elements (inside the SubBytes
step) of the first round, before any affine transformation. This second attack
shows results in Table 2 similar to the first one but distributed differently. With
this sole attack the 16 bytes were successfully recovered — and the number of
required traces can even be reduced to about 500 — but it may vary for other
generations of the white-box as the distribution of leakages in those two attacks
and amongst the target bits depends on the random source used in the white-box
generator. However, when combining both attacks, we could always recover the
full key.

It is interesting to observe in Table 1 and 2 that when a target bit of a
given key byte does not leak (i.e. is not ranked first) it is very often the worst
candidate (ranked at the 256th position) rather than being at a random position.
This observation, that still holds for larger numbers of traces, can also be used
to recover the key.

In order to give an idea of what can be achieved with an automated attack
against new instantiations of this white-box implementation with other keys, we
provide some figures: The acquisition of 500 traces takes about 200s on a regular
laptop (dual-core i7-4600U CPU at 2.10GHz). This results in 832 kbits (104 kB)
of traces when limited to the execution of the first round. Running both attacks
as described in this section requires less than 30s. Attacking the second challenge
with external encodings gave similar results. This was expected as there is no
difference, from our adversary perspective, when applying external encodings or
omitting them since in both cases we have knowledge of the original plaintexts
before any encoding is applied.



The NoSuchCon 2013 Challenge In April 2013, a challenge designed by
Eloi Vanderbéken was published for the occasion of the NoSuchCon 2013 con-
ference11. The challenge consisted of a Windows binary embedding a white-box
AES implementation. It was of “keygen-me” type, which means one has to pro-
vide a name and the corresponding serial to succeed. Internally the serial is
encrypted by a white-box and compared to the MD5 hash of the provided name.

The challenge was completed by a number of participants (cf. [64,45]) but
without ever recovering the key. It illustrates one more issue designers of white-
box implementations have to deal with in practice: one can convert an encryption
routine into a decryption routine without actually extracting the key.

For a change, the design is not derived from Chow [21]. However, the white-
box was designed with external encodings which were not part of the binary.
Hence, the user input was considered as encoded with an unknown scheme and
the encoded output is directly compared to a reference. These conditions, with-
out any knowledge of the relationship between the real AES plaintexts or cipher-
texts and the effective inputs and outputs of the white-box, make it infeasible to
apply a meaningful DPA attack, since, for a DPA attack, we need to construct
the guesses for the intermediate values. Note that, as discussed in Section 2, this
white-box implementation is not compliant with AES anymore but computes
some variant E′k = G ◦Ek ◦F−1. Nevertheless we did manage to recover the key
and the encodings from this white-box implementation with a new algebraic at-
tack, as described in [67]. This was achieved after a painful de-obfuscation of the
binary (almost completely performed by previous write-ups [64] and [45]), a step
needed to fulfill the prerequisites for such attacks as described in Section 2.2.

The same white-box is found among the CHES 2015 challenges 12 in a Game-
Boy ROM and the same algebraic attack is used successfully as explained in [66]
once the tables got extracted.

3.4 Countermeasures against DCA

In hardware, counter-measures against DPA typically rely on a random source.
The output can be used to mask intermediate results, to re-order instructions,
or to add delays (see e.g. [19,30,62]). For white-box implementations, we cannot
rely on a random source since in the white-box attack model such a source can
simply be disabled or fixed to a constant value. Despite this lack of dynamic
entropy, one can assume that the implementation which generates the white-
box implementation has access to sufficient random data to incorporate in the
generated source code and look-up tables. How to use this static random data
embedded in the white-box implementation?

Adding (random) delays in an attempt to misalign traces is trivially defeated
by using an address instruction trace beside the memory trace to realign traces
automatically. In [24] it is proposed to use variable encodings when accessing the
look-up tables based on the affine equivalences for bijective S-boxes (cf. [14] for

11 See http://www.nosuchcon.org/2013/
12 https://ches15challenge.com/static/CHES15Challenge.zip

http://www.nosuchcon.org/2013/
https://ches15challenge.com/static/CHES15Challenge.zip


algorithms to solve the affine equivalence problem for arbitrary permutations).
As a potential countermeasure against DCA, the embedded (and possibly merged
with other functionality) static random data is used to select which affine equiv-
alence is used for the encoding when accessing a particular look-up table. This
results in a variable encoding (at run-time) instead of using a fixed encoding.
Such an approach can be seen as a form of masking as used to thwart classical
first-order DPA.

One can also use some ideas from threshold implementations [57]. A thresh-
old implementation is a masking scheme based on secret sharing and multi-party
computation. One could also split the input in multiple shares such that not all
shares belong to the same affine equivalence class. If this splitting of the shares
and assignment to these (different) affine equivalence classes is done pseudo-
randomly, where the randomness comes from the static embedded entropy and
the input message, then this might offer some resistance against DCA-like at-
tacks.

Another potential countermeasure against DCA is the use of external encod-
ings. This was the primary reason why we were not able to extract the secret
key from the challenge described in Section 3.3. However, typically the adversary
can obtain knowledge related to the external encoding applied when he observes
the behavior of the white-box implementation in the entire software-framework
where it is used (especially when the adversary has control over the input pa-
rameters used or can observe the final decoded output). We stress that more
research is needed to verify the strength of such approaches and improve the
ideas presented here.

In practice, one might resort to methods to make the job of the adver-
sary more difficult. Typical software counter-measures include obfuscation, anti-
debug and integrity checks. It should be noted, however, that in order to mount
a successful DCA attack one does not need to reverse engineer the binary exe-
cutable. The DBI frameworks are very good at coping with those techniques and
even if there are efforts to specifically detect DBI [27,41], DBI becomes stealthier
too [36].

4 Differential Fault Analysis on White-box Cryptographic
implementations

4.1 Differential Fault Analysis

Differential Fault Analysis was first introduced in [10], which presented the at-
tack we describe in this section. The mechanics behind this type of attacks are
as follows.

First step. The attacker repeats the target cryptographic algorithm with the
same input multiple times and records correct and faulty outputs. In order to
generate faulty outputs, the attacker introduces faults during the computation
of the cryptographic algorithm, typically towards the end of its execution (e.g.
before the final round). In the case of hardware solutions, this is typically done



F (R14,K15)

F (R15,K16)

L15 = R14 R15

L16 = R15 R16

FP

Output

Fig. 7. The final rounds of the DES cipher.

by altering the environmental conditions of the device. For example, voltage
glitching or laser fault injection could be used to introduce faults.

Second step. The attacker builds a model of the introduced faults, and performs
an analysis of the collected outputs (correct and faulty) in order to determine
the secret key used.

The location within the cryptographic algorithm in which faults are injected
in step 1 and the analysis performed in step 2 above are closely related. These
depend on the cryptographic algorithm under attack. Attacks for a number of
algorithms can be found in the literature, including but not limited to DES, AES,
RSA and several ECC algorithms. We recall the differential fault attacks on triple
DES and AES and show how to apply them to white-box implementations.

DES DFA Fig. 7 describes the final rounds of execution of a triple DES en-
cryption or decryption, where the F function is defined as shown in Fig. 8. Each
round of execution uses a 48-bit round key. The attack works by recovering one
round key at a time, until the complete key can be computed.

In order to recover the last round key (K16) using a DFA attack, the attacker
can injects faults during the execution of round 15 i.e. the computation of R15.



E

32 to 48 bits

Ki (48-bits)

S1

S2

S3

S4

S5

S6

S7

S8

6 to 4 bit S-boxes

P OutputInput

32 bits 32 bits

Fig. 8. The Feistel function (F ) within the DES cipher.

Using the correct and faulty outputs, we have the following

L16 = R15

R16 = F (R15,K16)⊕ L15

Output = FP (L16‖R16)

L′16 = R′15

R′16 = F (R′15,K16)⊕ L15

Output′ = FP (L′16‖R′16)

In these expressions, the values of K16 and L15 are unknown. Combining these
equations, we obtain the following equation in which the only unknown is the
round key K16:

R16 ⊕R′16 = F (R15,K16)⊕ F (R′15,K16)

From the F function one can see that DES uses 6 round key bits to compute 4
output bits in each round, making it possible to solve this equation in chunks
of 6 bits of the round key. In particular, for each individual S-Box the following
equation needs to be solved:

(P−1(R16 ⊕R′16)))i = Si(E(R15)⊕K16i)⊕ Si(E(R′15)⊕K16i)



Where E and P represent the expansion and permutation steps of the F function,
respectively. This equation can be solved by exhaustive search.

Typically this results in a number of candidates for each affected sub-key
per fault. Therefore, an attacker needs to iterate this process until only one
candidate remains for each sub-key. However, in some cases, when the faults are
not injected in the exact way as expected by the attack it may happen that
a correct key gets discarded. Therefore, a counting strategy is used instead of
discarding key candidates: for each fault, we compute the set of solutions to the
equation above and increase the count for the respective candidates. Once all
faults are analyzed, the candidate with the highest count for each sub-key is
selected as the correct candidate. Once the last round key is known, the attack
can be iterated to the previous round key. For this, the attacker injects faults one
round earlier and computes the output of the one but last round by using the
recovered last round key. If a triple DES cipher is being used, the same attack
can be applied to the middle DES once the final DES key is known. Finally, if
a triple DES cipher with three keys is used, the attack can be iterated to the
initial DES.

AES DFA. Several DFA attacks have been published for the AES cipher.
Faulting a recent smartcard is difficult, with a high risk to cause the chip to
self-destruct if it detects an attack; that’s why recent DFA research try to min-
imize the requirements on the number of faults [35,69]. But in the white-box
attack model, faults are very easy and cheap to perform. Therefore applying the
DFA attack which was introduced in [26] in 2002 is probably one of the best
strategies in our white-box context.

We first describe the attack on AES128 encryption, and later discuss how
to extend it to AES192 and AES256. For AES128, the final two rounds of the
encryption process consist of the following operations: SubBytes, ShiftRows,
MixColumns, AddRoundKey (K9), SubBytes, ShiftRows, and AddRound-
Key (K10). Where these operations are defined as follows:

– SubBytes: Each byte in the AES state is transformed by applying the AES
S-Box.

– ShiftRows: The rows in the AES state are shifted to the left by 0, 1, 2 or
3 cells (row 1 to 4).

– MixColumns: A matrix multiplication is applied, which results in applying
a 32-bit transformation to each column of the state.

We recall how an one-byte fault introduced before the MixColumns in round 9
propagates to the output of the cipher. If the first byte of the state is altered
from A to X, the fault will propagate to the complete first column after the
MixColumns operation.

A E I M
B F J N
C G K O
D H L P

 and


X E I M
B F J N
C G K O
D H L P






2A+ 3B + C +D · · · · · · · · ·
A+ 2B + 3C +D · · · · · · · · ·
A+B + 2C + 3D · · · · · · · · ·
3A+B + C + 2D · · · · · · · · ·

 and


2X + 3B + C +D · · · · · · · · ·
X + 2B + 3C +D · · · · · · · · ·
X +B + 2C + 3D · · · · · · · · ·
3X +B + C + 2D · · · · · · · · ·


The next steps are performed byte-wise, hence, one faulty byte before the last
MixColumns propagates into 4 faulty bytes at the output.

S(2X + 3B + C +D +K9,0) +K10,0 · · · · · · · · ·
· · · · · · · · · S(X + 2B + 3C +D +K9,1) +K10,13

· · · · · · S(X +B + 2C + 3D +K9,2) +K10,10 · · ·
· · · S(3X +B + C + 2D +K9,3) +K10,7 · · · · · ·


For the first faulty byte, we can write the following expressions:

S(2A+ 3B + C +D +K9,0) +K10,0 = O0

S(2X + 3B + C +D +K9,0) +K10,0 = O′0

And after xor-ing we obtain

S(2A+ 3B + C +D +K9,0)⊕ S(2X + 3B + C +D +K9,0) = O0 ⊕O′0

Similar expressions can be written for each of the faulty bytes, obtaining a set of
4 related equations. Just like in the attack for DES described above, the attack
on AES involves solving these equations to obtain a sub-set of candidates for
parts of the round key. In this case, each fault provides potential candidates for 4
bytes of the key. Repeating this process with different faults allows finding unique
values for each sub-key. Repeating this process for the other columns of the AES
state allows recovering candidates for all the sub-keys, and therefore leads to the
last round key. For AES128, the last round key is enough to perform a reverse
key schedule operation and retrieve the original AES key. As mentioned earlier,
the detailed description of this attack can be found in [26]. A variant exists for
AES decryption. For AES192 and AES256, two round keys need to be recovered
in order to compute the full AES key. Attacking the one before last key requires
a small trick to revert the last round in a way to get a succession of operations
identical to the original final round: one must permute the MixColumns and
AddRoundKey(Kn−1) steps into AddRoundKey(InvMixColumns(Kn−1)) and
MixColumns.

4.2 Injecting faults into White-box Cryptography

In order to apply DFA attacks to a white-box cryptographic implementation, one
fundamental requirement needs to be satisfied: the output needs to be available
in a non-encoded form. Once this requirement is satisfied, the attack requires
the ability to inject faults into the cryptographic process at the right locations
within the algorithm.



In order to locate the appropriate location in which faults need to be injected
we typically combine static and dynamic code analysis. For example, recording
execution and memory access traces and visualizing them can highlight the loca-
tion of the target cryptographic algorithm and its rounds, as shown in Fig. 1. We
can clearly see the execution of 16 rounds, and therefore we are able to determine
at which time and in which memory region faults need to be introduced.

This reverse-engineering step can even be skipped by following another strat-
egy: randomly injecting faults during the computation and observing the output
of the cryptographic algorithm can be used to determine the correct location.
For example, injecting bit faults in early rounds of a DES execution will result
in a fully randomized output. Injecting bit faults during the computation of the
last round (i.e. too late for the attack described in Section 4.1) will result in
changes to the left half, but not the right half. Similarly, for the AES cipher at-
tack described in Section 4.1, injecting one-byte faults anywhere between the last
two MixColumns steps will result in 4 corrupted bytes. The location of the 4
corrupted bytes must follow a specific pattern, as indicated by the MixColumns
and ShiftRows combination. Finally, injecting faults can be as simple as flip-
ping bits of the DES or AES intermediate results during the execution of the
algorithms. To this end, we can use several techniques:

– If the code can be easily lifted to a high level language (e.g. C/C++), we
can introduce code to inject random faults during the target computation.
However, in some situations (i.e. with highly obfuscated code) this is a very
labour-intensive and error-prone task.

– If the code can be run under a DBI framework (PIN, Valgrind, etc.) we can
instrument the code to the inject faults and collect the output data.

– A scriptable debugger (e.g. vtrace, gdb) can also be used. To this end, we
can write debugger scripts to automate the execution of the cipher, injection
of faults and collect the output data.

– Alternatively, emulator-based setups can be used. This allows an attacker to
monitor the complete execution and alter the code or data at any desired
time. For example, the WBC code can be extracted at runtime and loaded
into a standalone emulator such as Unicorn Engine, or a full system emulator
such as the PANDA framework could be used.

– In case there is no or only weak self-integrity checks, the tables or even the
binary itself could be corrupted to introduce faults statically. A divide an
conquer approach can be used by faulting initially large parts of the tables
to detect which parts are effectively used when processing a specific input.

Once a way to inject faults is implemented, performing the attack is just a
matter of collecting enough faulty output, filter out the non-exploitable ones and
plugging the ones with a good fault pattern into the appropriate DFA algorithm.

4.3 Analyzing Publicly Available White-Box Implementations

The Wyseur Challenge. For the Wyseur challenge, we simply load the ELF
binary into a custom emulator script based on the Unicorn Engine. Our custom



emulator records every read and write to memory, and allows to inject faults at
selected moments. This approach is fairly trivial for this challenge because the
provided binary offers very little functionality and does not interface with many
system libraries. The only call to external libraries performed by the binary is
used to print the plaintext and ciphertext, which we can simply patch out. We
use the execution graph shown in Figure 3a to select the desired interval for the
fault injection. We then implement the following process in our emulator:

1. We select a random number within the target interval. We call this the target
index.

2. At each memory access, we increment a counter. We then flip a random bit
of the first memory read that occurs after the selected target index.

3. At the end of the execution, we record the faulty plaintext.

4. After enough faults are collected, we run the DFA algorithm described in 4.1
to recover the DES key.

We are able to retrieve the key after injecting 40 faults.

The Hack.lu 2009 Challenge. For this challenge, we follow a similar approach.
The only difference here is that we isolate the white-box code and emulate only
the AES function in order to prevent any interaction with the Windows OS. An
alternative solution would be to use Intel PIN, or to inject faults in the data
section of the binary since no integrity checks are performed. Once the WBC
implementation is isolated, the rest of the fault injection process is identical to
the Wyseur challenge. The final step is to apply an AES DFA, as described in
4.1. With this attack, we were able to recover the AES key after injecting 90
faults.

The SSTIC 2012 Challenge. As described in Section 3.3, the SSTIC challenge
was provided as a compiled Python program. We used uncompyle2 to lift and
recover the original Python code and inject faults into it. The DFA algorithm
used was the one presented in 4.1, which allowed us to recover the DES key after
injecting 60 faults.

A White-Box Implementation of the Karroumi Approach. Since the
source code of this implementation is available, we simply injected faults in the
original C++ code. We then collected the results and ran the AES DFA attack
described in Section 4.1. This allows us to recover the complete AES key after
injecting 80 faults.

The NoSuchCon 2013 Challenge. As explained in 3.3, the NSC challenge
binary incorporates unknown external encodings. For this reason, the effects of
the injected faults cannot be easily observed in the output of the white-box.
Therefore, the DFA attack described in this paper cannot be directly applied
without first recovering the output encoding applied by the implementation. If
the output encoding is known or not present, it is possible to retrieve the key in
a similar way to the other AES implementations.



4.4 Countermeasures against DFA

Countermeasures against DFA attacks usually involve some sort of redundant
computation. For example, a device could perform the encryption process twice
and compare both outputs. Assuming that the adversary does not have any
access to the intermediate data, it is possible to detect the attack and prevent
outputting faulty results. However, in the white-box settings this direct approach
is not valid: if the attacker is able to observe the comparison of the two results, he
can simply duplicate the faulty result and bypass the check. In order to protect a
white-box cryptographic implementation against DFA, the following two avenues
might be used:

– Carrying redundant data (e.g. error-correcting codes) along with the com-
putation in such a way that a modification performed by an attacker can be
compensated, without affecting the data in the non-encoded domain.

– Implementing the internal data encodings in such a way that faults propagate
into larger parts of the cipher state. In this way, the fault models expected
by the standard DFA attacks do not apply and therefore an attacker would
have to develop customized attacks.

5 Conclusions and Future Work

As conjectured in the first papers introducing the white-box attack model, one
cannot expect long-term defense against attacks on white-box implementations.
However, as we have shown in this work, all current publicly available white-box
implementations do not even offer any short-term security since the DCA and
DFA techniques can extract the secret key within seconds.

Although we sketched some ideas on countermeasures, it remains an open
question how to guard oneself against these types of attacks. The countermea-
sures against differential power analysis attacks applied in the area of high-
assurance applications do not seem to carry over directly due to the ability of
the adversary to disable or tamper with the random source. If medium to long
term security is required then tamper resistant hardware solutions, like a secure
element, seem like a much better alternative.

Similarly, all publicly known differential fault analysis countermeasures are
based on introducing redundancy in the computation. If this is not done carefully,
an attacker might still be able to inject faults while bypassing the redundancy
checks. Additional research on improving the robustness of WBC implementa-
tions against fault attacks is thus required.

Another interesting research direction is to see if the more advanced and pow-
erful techniques used in side-channel analysis from the cryptographic hardware
community obtain even better results in this setting. Examples include correla-
tion power analysis and higher order attacks. Studying other point of attack, for
instance targeting the multiplicative inverse step in the first round of AES, give
interesting results (see Section 3.3). Investigating other positions as a target in
our DCA approach may be worth as well.



References

1. Advanced Encryption Standard (AES). National Institute of Standards and Tech-
nology (NIST), FIPS PUB 197, U.S. Department of Commerce, Nov. 2001.

2. B. Amstadt and M. K. Johnson. Wine. Linux Journal, 1994(4), August 1994.
3. C. H. Baek, J. H. Cheon, and H. Hong. Analytic toolbox for white-box implemen-

tations: Limitation and perspectives. Cryptology ePrint Archive, Report 2014/688,
2014. http://eprint.iacr.org/2014/688.

4. B. Barak, S. Garg, Y. T. Kalai, O. Paneth, and A. Sahai. Protecting obfusca-
tion against algebraic attacks. In P. Q. Nguyen and E. Oswald, editors, EU-
ROCRYPT 2014, volume 8441 of LNCS, pages 221–238, Copenhagen, Denmark,
May 11–15, 2014. Springer, Heidelberg, Germany.

5. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs. In J. Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 1–18, Santa Barbara, CA, USA,
Aug. 19–23, 2001. Springer, Heidelberg, Germany.

6. J.-B. Bédrune. Hack.lu 2009 reverse challenge 1. online, 2009. http://2009.hack.
lu/index.php/ReverseChallenge.

7. F. Bellard. QEMU, a fast and portable dynamic translator. In USENIX Annual
Technical Conference, FREENIX Track, pages 41–46, 2005.

8. S. Bhatkar, D. C. DuVarney, and R. Sekar. Address obfuscation: An efficient
approach to combat a broad range of memory error exploits. In Proceedings of the
12th USENIX Security Symposium. USENIX Association, 2003.

9. E. Biham and A. Shamir. Differential cryptanalysis of Snefru, Khafre, REDOC-II,
LOKI and Lucifer. In J. Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS,
pages 156–171, Santa Barbara, CA, USA, Aug. 11–15, 1992. Springer, Heidelberg,
Germany.

10. E. Biham and A. Shamir. Differential fault analysis of secret key cryptosystems.
In B. S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 513–525,
Santa Barbara, CA, USA, Aug. 17–21, 1997. Springer, Heidelberg, Germany.

11. O. Billet and H. Gilbert. A traceable block cipher. In C.-S. Laih, editor, ASI-
ACRYPT 2003, volume 2894 of LNCS, pages 331–346. Springer, Heidelberg, Ger-
many, 2003.

12. O. Billet, H. Gilbert, and C. Ech-Chatbi. Cryptanalysis of a white box AES
implementation. In H. Handschuh and A. Hasan, editors, SAC 2004, volume 3357
of LNCS, pages 227–240, Waterloo, Ontario, Canada, Aug. 9–10, 2004. Springer,
Heidelberg, Germany.

13. A. Biryukov, C. Bouillaguet, and D. Khovratovich. Cryptographic schemes based
on the ASASA structure: Black-box, white-box, and public-key (extended ab-
stract). In P. Sarkar and T. Iwata, editors, ASIACRYPT 2014, Part I, volume
8873 of LNCS, pages 63–84, Kaoshiung, Taiwan, R.O.C., Dec. 7–11, 2014. Springer,
Heidelberg, Germany.

14. A. Biryukov, C. De Canniére, A. Braeken, and B. Preneel. A toolbox for crypt-
analysis: Linear and affine equivalence algorithms. In E. Biham, editor, EURO-
CRYPT 2003, volume 2656 of LNCS, pages 33–50, Warsaw, Poland, May 4–8,
2003. Springer, Heidelberg, Germany.

15. D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of checking cryp-
tographic protocols for faults (extended abstract). In W. Fumy, editor, EURO-
CRYPT’97, volume 1233 of LNCS, pages 37–51, Konstanz, Germany, May 11–15,
1997. Springer, Heidelberg, Germany.

http://eprint.iacr.org/2014/688
http://2009.hack.lu/index.php/ReverseChallenge
http://2009.hack.lu/index.php/ReverseChallenge


16. Z. Brakerski and G. N. Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. In Y. Lindell, editor, TCC 2014, volume 8349 of
LNCS, pages 1–25, San Diego, CA, USA, Feb. 24–26, 2014. Springer, Heidelberg,
Germany.

17. E. Brier, C. Clavier, and F. Olivier. Correlation power analysis with a leakage
model. In M. Joye and J.-J. Quisquater, editors, CHES 2004, volume 3156 of
LNCS, pages 16–29, Cambridge, Massachusetts, USA, Aug. 11–13, 2004. Springer,
Heidelberg, Germany.

18. J. Bringer, H. Chabanne, and E. Dottax. White box cryptography: Another at-
tempt. Cryptology ePrint Archive, Report 2006/468, 2006. http://eprint.iacr.
org/2006/468.

19. S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards sound approaches to
counteract power-analysis attacks. In M. J. Wiener, editor, CRYPTO’99, vol-
ume 1666 of LNCS, pages 398–412, Santa Barbara, CA, USA, Aug. 15–19, 1999.
Springer, Heidelberg, Germany.

20. S. Chari, J. R. Rao, and P. Rohatgi. Template attacks. In B. S. Kaliski Jr., Çetin
Kaya. Koç, and C. Paar, editors, CHES 2002, volume 2523 of LNCS, pages 13–28,
Redwood Shores, CA, USA, Aug. 13–15, 2003. Springer, Heidelberg, Germany.

21. S. Chow, P. A. Eisen, H. Johnson, and P. C. van Oorschot. White-box cryptography
and an AES implementation. In K. Nyberg and H. M. Heys, editors, SAC 2002,
volume 2595 of LNCS, pages 250–270, St. John’s, Newfoundland, Canada, Aug. 15–
16, 2003. Springer, Heidelberg, Germany.

22. S. Chow, P. A. Eisen, H. Johnson, and P. C. van Oorschot. A white-box DES imple-
mentation for DRM applications. In J. Feigenbaum, editor, Security and Privacy
in Digital Rights Management, ACM CCS-9 Workshop, DRM 2002, volume 2696
of LNCS, pages 1–15. Springer, 2003.

23. J. Daemen and V. Rijmen. The design of Rijndael: AES — the Advanced Encryp-
tion Standard. Springer, 2002.

24. Y. de Mulder. White-Box Cryptography: Analysis of White-Box AES Implementa-
tions. PhD thesis, KU Leuven, 2014.

25. C. Delerablée, T. Lepoint, P. Paillier, and M. Rivain. White-box security notions
for symmetric encryption schemes. In T. Lange, K. Lauter, and P. Lisonek, editors,
SAC 2013, volume 8282 of LNCS, pages 247–264, Burnaby, BC, Canada, Aug. 14–
16, 2014. Springer, Heidelberg, Germany.

26. P. Dusart, G. Letourneux, and O. Vivolo. Differential fault analysis on A.E.S. In
J. Zhou, M. Yung, and Y. Han, editors, ACNS 2003, volume 2846 of Lecture Notes
in Computer Science, pages 293–306. Springer, 2003.

27. F. Falco and N. Riva. Dynamic binary instrumentation frameworks: I know you’re
there spying on me. REcon, 2012. http://recon.cx/2012/schedule/events/216.
en.html.

28. S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS, pages 40–
49. IEEE Computer Society, 2013.

29. L. Goubin, J.-M. Masereel, and M. Quisquater. Cryptanalysis of white box DES
implementations. In C. M. Adams, A. Miri, and M. J. Wiener, editors, SAC 2007,
volume 4876 of LNCS, pages 278–295, Ottawa, Canada, Aug. 16–17, 2007. Springer,
Heidelberg, Germany.

30. L. Goubin and J. Patarin. DES and differential power analysis (the “duplication”
method). In Çetin Kaya. Koç and C. Paar, editors, CHES’99, volume 1717 of

http://eprint.iacr.org/2006/468
http://eprint.iacr.org/2006/468
http://recon.cx/2012/schedule/events/216.en.html
http://recon.cx/2012/schedule/events/216.en.html


LNCS, pages 158–172, Worcester, Massachusetts, USA, Aug. 12–13, 1999. Springer,
Heidelberg, Germany.

31. Y. Huang, F. S. Ho, H. Tsai, and H. M. Kao. A control flow obfuscation method
to discourage malicious tampering of software codes. In F. Lin, D. Lee, B. P. Lin,
S. Shieh, and S. Jajodia, editors, Proceedings of the 2006 ACM Symposium on
Information, Computer and Communications Security, ASIACCS 2006, page 362.
ACM, 2006.

32. M. Jacob, D. Boneh, and E. W. Felten. Attacking an obfuscated cipher by injecting
faults. In J. Feigenbaum, editor, Security and Privacy in Digital Rights Manage-
ment, ACM CCS-9 Workshop, DRM 2002, Washington, DC, USA, November 18,
2002, Revised Papers, volume 2696 of LNCS, pages 16–31. Springer, 2003.

33. M. Jakobsson and M. K. Reiter. Discouraging software piracy using software aging.
In T. Sander, editor, Security and Privacy in Digital Rights Management, ACM
CCS-8 Workshop DRM 2001, volume 2320 of LNCS, pages 1–12. Springer, 2002.

34. M. Karroumi. Protecting white-box AES with dual ciphers. In K. H. Rhee and
D. Nyang, editors, ICISC 10, volume 6829 of LNCS, pages 278–291, Seoul, Korea,
Dec. 1–3, 2011. Springer, Heidelberg, Germany.

35. C. H. Kim and J. Quisquater. New differential fault analysis on AES key schedule:
Two faults are enough. In G. Grimaud and F. Standaert, editors, CARDIS 2008,
volume 5189 of Lecture Notes in Computer Science, pages 48–60. Springer, 2008.

36. J. Kirsch. Towards transparent dynamic binary instrumentation using virtual ma-
chine introspection. REcon, 2015. https://recon.cx/2015/schedule/events/20.
html.

37. D. Klinec. White-box attack resistant cryptography. Master’s thesis, Masaryk
University, Brno, Czech Republic, 2013. https://is.muni.cz/th/325219/fi_m/.

38. P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi. Introduction to differential power
analysis. Journal of Cryptographic Engineering, 1(1):5–27, 2011.

39. P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. J. Wiener,
editor, CRYPTO’99, volume 1666 of LNCS, pages 388–397, Santa Barbara, CA,
USA, Aug. 15–19, 1999. Springer, Heidelberg, Germany.

40. T. Lepoint, M. Rivain, Y. D. Mulder, P. Roelse, and B. Preneel. Two attacks
on a white-box AES implementation. In T. Lange, K. Lauter, and P. Lisonek,
editors, SAC 2013, volume 8282 of LNCS, pages 265–285, Burnaby, BC, Canada,
Aug. 14–16, 2014. Springer, Heidelberg, Germany.

41. X. Li and K. Li. Defeating the transparency features of dynamic binary instrumen-
tation. BlackHat US, 2014. https://www.blackhat.com/docs/us-14/materials/
us-14-Li-Defeating-The-Transparency-Feature-Of-DBI.pdf.

42. H. E. Link and W. D. Neumann. Clarifying obfuscation: Improving the security of
white-box DES. In International Symposium on Information Technology: Coding
and Computing (ITCC 2005), pages 679–684. IEEE Computer Society, 2005.

43. C. Linn and S. K. Debray. Obfuscation of executable code to improve resistance to
static disassembly. In S. Jajodia, V. Atluri, and T. Jaeger, editors, Proceedings of
the 10th ACM Conference on Computer and Communications Security, CCS 2003,
pages 290–299. ACM, 2003.

44. C. Luk, R. S. Cohn, R. Muth, H. Patil, A. Klauser, P. G. Lowney, S. Wallace, V. J.
Reddi, and K. M. Hazelwood. Pin: building customized program analysis tools
with dynamic instrumentation. In V. Sarkar and M. W. Hall, editors, Proceedings
of the ACM SIGPLAN 2005 Conference on Programming Language Design and
Implementation, pages 190–200. ACM, 2005.

https://recon.cx/2015/schedule/events/20.html
https://recon.cx/2015/schedule/events/20.html
https://is.muni.cz/th/325219/fi_m/
https://www.blackhat.com/docs/us-14/materials/us-14-Li-Defeating-The-Transparency-Feature-Of-DBI.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Li-Defeating-The-Transparency-Feature-Of-DBI.pdf


45. A. Maillet. Nosuchcon 2013 challenge - write up and method-
ology. online, 2013. http://kutioo.blogspot.be/2013/05/

nosuchcon-2013-challenge-write-up-and.html.
46. S. Mangard, E. Oswald, and F. Standaert. One for all - all for one: unifying

standard differential power analysis attacks. IET Information Security, 5(2):100–
110, 2011.

47. F. Marceau, F. Perigaud, and A. Tillequin. Challenge SSTIC 2012. online, 2012.
http://communaute.sstic.org/ChallengeSSTIC2012.

48. T. S. Messerges. Using second-order power analysis to attack DPA resistant soft-
ware. In Çetin Kaya. Koç and C. Paar, editors, CHES 2000, volume 1965 of LNCS,
pages 238–251, Worcester, Massachusetts, USA, Aug. 17–18, 2000. Springer, Hei-
delberg, Germany.

49. W. Michiels. Opportunities in white-box cryptography. IEEE Security & Privacy,
8(1):64–67, 2010.

50. W. Michiels and P. Gorissen. Mechanism for software tamper resistance: an appli-
cation of white-box cryptography. In M. Yung, A. Kiayias, and A. Sadeghi, editors,
Proceedings of the Seventh ACM Workshop on Digital Rights Management, pages
82–89. ACM, 2007.

51. W. Michiels, P. Gorissen, and H. D. L. Hollmann. Cryptanalysis of a generic class of
white-box implementations. In R. M. Avanzi, L. Keliher, and F. Sica, editors, SAC
2008, volume 5381 of LNCS, pages 414–428, Sackville, New Brunswick, Canada,
Aug. 14–15, 2009. Springer, Heidelberg, Germany.

52. C. Mougey and F. Gabriel. Désobfuscation de DRM par attaques auxiliaires.
In Symposium sur la sécurité des technologies de l’information et des communi-
cations, 2014. www.sstic.org/2014/presentation/dsobfuscation_de_drm_par_

attaques_auxiliaires.
53. J. A. Muir. A tutorial on white-box AES. In E. Kranakis, editor, Advances in

Network Analysis and its Applications, volume 18 of Mathematics in Industry,
pages 209–229. Springer Berlin Heidelberg, 2013.

54. Y. D. Mulder, P. Roelse, and B. Preneel. Cryptanalysis of the Xiao-Lai white-box
AES implementation. In L. R. Knudsen and H. Wu, editors, SAC 2012, volume
7707 of LNCS, pages 34–49, Windsor, Ontario, Canada, Aug. 15–16, 2013. Springer,
Heidelberg, Germany.

55. Y. D. Mulder, B. Wyseur, and B. Preneel. Cryptanalysis of a perturbated
white-box AES implementation. In G. Gong and K. C. Gupta, editors, IN-
DOCRYPT 2010, volume 6498 of LNCS, pages 292–310, Hyderabad, India,
Dec. 12–15, 2010. Springer, Heidelberg, Germany.

56. N. Nethercote and J. Seward. Valgrind: a framework for heavyweight dynamic
binary instrumentation. In J. Ferrante and K. S. McKinley, editors, Proceedings
of the ACM SIGPLAN 2007 Conference on Programming Language Design and
Implementation, pages 89–100. ACM, 2007.

57. S. Nikova, C. Rechberger, and V. Rijmen. Threshold implementations against
side-channel attacks and glitches. In P. Ning, S. Qing, and N. Li, editors, Informa-
tion and Communications Security, ICICS, volume 4307 of LNCS, pages 529–545.
Springer, 2006.

58. J. Patarin and L. Goubin. Asymmetric cryptography with S-boxes. In Y. Han,
T. Okamoto, and S. Qing, editors, ICICS 97, volume 1334 of LNCS, pages 369–380,
Beijing, China, Nov. 11–14, 1997. Springer, Heidelberg, Germany.

59. M. L. Polla, F. Martinelli, and D. Sgandurra. A survey on security for mobile
devices. IEEE Communications Surveys and Tutorials, 15(1):446–471, 2013.

http://kutioo.blogspot.be/2013/05/nosuchcon-2013-challenge-write-up-and.html
http://kutioo.blogspot.be/2013/05/nosuchcon-2013-challenge-write-up-and.html
http://communaute.sstic.org/ChallengeSSTIC2012
www.sstic.org/2014/presentation/dsobfuscation_de_drm_par_attaques_auxiliaires
www.sstic.org/2014/presentation/dsobfuscation_de_drm_par_attaques_auxiliaires


60. P. Sasdrich, A. Moradi, and T. Güneysu. White-box cryptography in the gray
box - - A hardware implementation and its side channels -. In T. Peyrin, editor,
FSE 2016, volume 9783 of LNCS, pages 185–203, Bochum, Germany, Mar. 20–23,
2016. Springer, Heidelberg, Germany.

61. A. Saxena, B. Wyseur, and B. Preneel. Towards security notions for white-box
cryptography. In P. Samarati, M. Yung, F. Martinelli, and C. A. Ardagna, editors,
ISC 2009, volume 5735 of LNCS, pages 49–58, Pisa, Italy, Sept. 7–9, 2009. Springer,
Heidelberg, Germany.

62. K. Schramm and C. Paar. Higher order masking of the AES. In D. Pointcheval,
editor, CT-RSA 2006, volume 3860 of LNCS, pages 208–225, San Jose, CA, USA,
Feb. 13–17, 2006. Springer, Heidelberg, Germany.

63. F. Scrinzi. Behavioral analysis of obfuscated code. Master’s thesis, Univer-
sity of Twente, Twente, Netherlands, 2015. http://essay.utwente.nl/67522/

1/Scrinzi_MA_SCS.pdf.
64. A. Souchet. AES whitebox unboxing: No such problem. online, 2013. http:

//0vercl0k.tuxfamily.org/bl0g/?p=253.
65. SysK. Practical cracking of white-box implementations. Phrack 68:14. http:

//www.phrack.org/issues/68/8.html.
66. P. Teuwen. CHES2015 writeup. online, 2015. http://wiki.yobi.be/wiki/

CHES2015_Writeup#Challenge_4.
67. P. Teuwen. NSC writeups. online, 2015. http://wiki.yobi.be/wiki/NSC_

Writeups.
68. L. Tolhuizen. Improved cryptanalysis of an AES implementation. In Proceedings of

the 33rd WIC Symposium on Information Theory. Werkgemeenschap voor Inform.-
en Communicatietheorie, 2012.

69. M. Tunstall, D. Mukhopadhyay, and S. Ali. Differential fault analysis of the ad-
vanced encryption standard using a single fault. In C. A. Ardagna and J. Zhou,
editors, WISTP 2011, volume 6633 of Lecture Notes in Computer Science, pages
224–233. Springer, 2011.

70. U.S. DEPARTMENT OF COMMERCE/National Institute of Standards and Tech-
nology. Data Encryption Standard (DES).

71. E. Vanderbéken. Hacklu reverse challenge write-up. online, 2009. http://baboon.
rce.free.fr/index.php?post/2009/11/20/HackLu-Reverse-Challenge.

72. B. Wyseur, W. Michiels, P. Gorissen, and B. Preneel. Cryptanalysis of white-
box DES implementations with arbitrary external encodings. In C. M. Adams,
A. Miri, and M. J. Wiener, editors, SAC 2007, volume 4876 of LNCS, pages 264–
277, Ottawa, Canada, Aug. 16–17, 2007. Springer, Heidelberg, Germany.

73. Y. Xiao and X. Lai. A secure implementation of white-box AES. In Computer
Science and its Applications, 2009. CSA ’09. 2nd International Conference on,
pages 1–6, 2009.

74. Y. Zhou and S. Chow. System and method of hiding cryptographic private keys,
Dec. 15 2009. US Patent 7,634,091.

http://essay.utwente.nl/67522/1/Scrinzi_MA_SCS.pdf
http://essay.utwente.nl/67522/1/Scrinzi_MA_SCS.pdf
http://0vercl0k.tuxfamily.org/bl0g/?p=253
http://0vercl0k.tuxfamily.org/bl0g/?p=253
http://www.phrack.org/issues/68/8.html
http://www.phrack.org/issues/68/8.html
http://wiki.yobi.be/wiki/CHES2015_Writeup#Challenge_4
http://wiki.yobi.be/wiki/CHES2015_Writeup#Challenge_4
http://wiki.yobi.be/wiki/NSC_Writeups
http://wiki.yobi.be/wiki/NSC_Writeups
http://baboon.rce.free.fr/index.php?post/2009/11/20/HackLu-Reverse-Challenge
http://baboon.rce.free.fr/index.php?post/2009/11/20/HackLu-Reverse-Challenge

	White-Box Cryptography: Don't Forget About Grey Box Attacks

