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Abstract

Since its introduction the UC framework by Canetti has received a lot of attention. A

contributing factor to its popularity is that it allows to capture a large number of common

cryptographic primitives using ideal functionalities and thus can be used to give modular

proofs for many cryptographic protocols. However, an important member of the crypto-

graphic family has not yet been captured by an ideal functionality, namely the zero-knowledge

proof of membership. We give the first formulation of a UC zero-knowledge proof of mem-

bership and show that it is closely related to the notions of straight-line zero-knowledge and

simulation soundness.

1 Introduction

Since its introduction the UC framework [Can01] by Canetti have received a lot of attention (see
e.g. [Can]). To define security of a protocol π (formally captured via a network of interactive
Turing machines (ITMs)), one formalizes an abstract (and potentially much simpler) ITM F ,
a so-called ideal functionality (IF), which obviously has the properties that we want π to have.

The framework then contains a definition of when π is as secure as F . We write this as π
c
. F .

The framework then proves a composition theorem that if π = π ′ � G is a protocol using the IF

G and π
c
. F and ρ

c
. G, then (π′ � ρ)

c
. F , where π′ � ρ denotes the protocol where π uses ρ in

place of G.
The goal of having a composition theorem is two-fold. First, it guarantees that security

defined via realizing an IF is strong. In fact, it is maintained in any context, and is thus called
universally composable (UC) security in [Can01]. Second, it allows modular proofs. If one wants

to prove a protocol secure, i.e. prove π
c
. F for some IF F , then one can write π = π ′ � ρ for

some sub-protocol performing a well-defined task, capture this task by an IF G and then prove

(π′ � G)
c
. F and ρ

c
. G.

A contributing factor to the popularity of the UC framework is that it allows to capture a
large number of common cryptographic primitives like e.g. signatures and public-key encryp-
tion, proofs of knowledge and commitments by IFs. However, an important member of the
cryptographic family has not yet been captured by an IF, namely the zero-knowledge proof of
membership. (I.e. a proof that x ∈ L without proving knowledge of a witness to x ∈ L.) The
reason for this is that there only seems to be one natural IF for specifying a zero-knowledge (ZK)
proof, called Fzk in [Can01], and that any protocol realizing Fzk must necessarily be a proof
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of knowledge. With respect to the first goal, this is not a problem. If we are only interested
in strong security definitions, nothing is lost by saying that a UCZK proof of membership is
a protocol realizing the IF Fzk for proof of knowledge. Clearly knowledge soundness implies
membership soundness. With respect to the second goal of the UC framework, not having an IF
capturing just a proof of membership means that many protocols using proofs of membership
cannot be given a modular proof in the UC framework. Since ZK proofs of membership is used
in a large number of protocols, this is a real restriction of the of the current state of affairs.

This paper gives the first definition of a UCZK proof of membership and initiates a study of
the notion, by showing that the notion of UCZK proof of membership is strongly related to the
notions of straight-line ZK and simulation soundness [Sah99, GMY03].

Related work. We could also have cast our study in the related reactive simulatability
framework [PSW00] by Pfitzmann, Schunter and Waidner. But since most of the work on
UCZK has been done in the UC framework, this seems to be the natural choice. We are not
aware of any previous work on defining UCZK proof of membership in either framework.

2 The UC framework

We start by describing the UC framework. In the UC framework, security of protocols is defined
in three steps. First, the process of executing a protocol in an environment is formalized. Next,
an ideal process for carrying out the task that the protocol is intended to solve is formalized. This
is done via a so-called IF, which is programmed to have the intended input-output behavior of
the protocol, and leaking (on a so-called leakage tape) only the information that is not considered
confidential. A protocol is said to securely realize an IF if the execution of the protocol can be
simulated given only the information leaked by the IF in the ideal process.

The UC framework has several instantiations. We focus here on modeling an asynchronous
network. The communication is public and authenticated. Parties may be broken into (i.e.,
become corrupted) throughout the computation, and once corrupted their behavior is arbitrary,
i.e. we consider active, adaptive corruptions. Finally, all the involved entities are restricted to
probabilistic polynomial time (PPT) computation.

Technically we present the variant of the UC framework from [Can], where the real-life ad-
versary and the environment are one entity. We assume some knowledge of the UC framework on
behalf of the reader and present the framework in a less intuitive order than in [Can]. Specifically
we first specify the hybrid model and then derive the real-life model as a special case.

2.1 Working with ITMs

We model the entities in a protocol as interactive Turing machines (ITMs)1 It is therefore
convenient to have some definitions for working with ITMs.

Networks. We consider ITMs where the write-only output tapes and the read-only input
tapes are named by labels L ∈ {0, 1}∗. We call them in-tapes and out-tapes. By a collection of
ITMs we mean a set of ITMs where no two ITMs have identically named in-tapes or identically
named out-tapes. By a network we mean a collection of ITMs where each out-tape with name L

is connected to the in-tape with the same name, if it exists in the collection. By connected we
mean that the ITMs have access to a shared tape, which is the out-tape of the first machine and
the in-tape of the other. The in-tapes and out-tapes of a network which are not connected to
another tape are called the open tapes. We call a network with no open tapes a closed network.
An ITM is also labeled by a bit I ∈ {0, 1} telling whether it is to act as the initial ITM. We
require that a network contains at most one initial ITM and that a closed network contains
exactly one initial ITM.

1See [Can] for an appropriate formalization. We will use several times that it holds for the formalization
in [Can] that the composition of PPT ITMs gives PPT ITMs.
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Composing and closing. For two networks N1 and N2 we let N1 �N2 denote the network
with the ITMs of both networks. If N1 and N2 does not make up a collection (because of
conflicting tape names) we write N1 � N2 = ⊥. For any network N we then let N { be the set
of PPT ITMs Z for which it holds that N � Z is a closed network. This means that Z must be
an initial ITM iff N has no initial ITM.

Executing. A closed network N can be executed on a security parameter k ∈ N and
auxiliary input z ∈ {0, 1}∗: First the initial ITM M0 is given input (k, z) and is activated, runs
its code and writes some messages on its out-tapes. Then the receiver M on the last tape that
M0 wrote is activated next. If this is the first time M is activated, it is first given k as input.
Then M writes messages on some of its out-tapes, and the iteration continues. If some ITM does
not write on any out-tape, then M0 is activated next. If at some point M0 is activated and does
not write on any out-tape, then the execution stops. The output of the execution is the first bit
b on the work-tape of M0, or 0 if this tape is empty. We write this as b = execN (k, z). This is
a random variable and defines a distribution ensemble execN = {execN (k, z)}k∈N,z∈{0,1}. For

two closed networks N1 and N2 we write N1
c
≈ N2 if execN1

and execN2
are computationally

indistinguishable in the sense of [Can01]. We write N1 ≡ N2 if execN1
and execN2

identical
ensembles.

Joining. Sometimes we consider a network N as a single ITM 〈N〉. It has the code and
tapes of the machines in N . The connected tapes of N are now internal work-tapes. The
ITM 〈N〉 passes messages and activation around internally according to the rules of executing
a network. In particular, if Z ∈ N {, then N � Z ≡ 〈N〉 � Z.

Communication properties. After an execution execN (k, z) we can write down the
generated communication commN (k, z) = ((L1,m1), . . . , (Ll,ml)), where mi is the i’th message
sent and Li the tape it was sent on. We later need to talk about properties of communication
holding except with negligible probability. For this purpose, call P : ({0, 1}∗×{0, 1}∗)∗ → {0, 1}
a communication property and let PN (k, z) = P (commN (k, z)). This defines a distribution

ensemble PN . We say that N has the property P , written N c|=P , if PN
c
≈ 1. Finally we say

that an open network N has a communication property P iff N �Z c|=P for all Z ∈ N {. For any
C ∈ ({0, 1}∗ × {0, 1}∗)∗ and L ⊆ {0, 1}∗ we let C |L be the sequence C with all entries (Li,m)
with Li 6∈ L deleted. We say that P only depends on the tapes L if P (C1) = P (C2) for all C1, C2

where C
|L
1 = C

|L
2 . For communication properties P1, . . . , Pm and P : {0, 1}m → {0, 1} we define

a communication property P (P1, . . . , Pm)(C) = P (P1(C), . . . , Pm(C)). It is straight-forward to
verify that N c|=P (P1, . . . , Pm) for all tautologies P and that N c|=P1 ∧ P2 iff N c|=P1 and N c|=P2.
Also, if P only depends on the open tapes of N , then N c|=P iff 〈N〉 c|=P . Finally, if N1

c|=P1

and N2 is a PPT ITM such that N1 � N2 6= ⊥, then N1 � N2
c|=P1. Otherwise there would exist

Z ∈ (N1 � N2)
{ such that (N1 � N2) � Z

c
2P . But then N1 � (N2 � Z) c

2P , and as P only depends

on tapes of N1 it follows that N1 � 〈N2 � Z〉
c
2P . So, since 〈N2 � Z〉 ∈ N1

{ we have that N1
c
2P ,

a contradiction.

2.2 The hybrid model

An n-party protocol is a network of ITMs. It has a name P ∈ {0, 1}∗ and contains n PPT
ITMs P1, . . . ,Pn called the parties. Each Pi has an in-tape P-ini and an out-tape P-outi,
for receiving inputs to the protocol and delivering outputs. Besides this the network has an
IF F with some name F 6= P . This is an ITM with in-tape F-ini and out-tapes F-outi for
i = 1, . . . , n. Besides this F has an out-tape F-leak for leaking values and an in-tape F-infl

allowing to influence the behavior of F . Each party Pi has an in-tape F-outi and an out-tape
F-ini connecting it to F . A protocol π can have several distinctly named IFs F1, . . . ,Fm with
similar connections.
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As an example of an IF, consider the IF Fat for authenticated message transmission. If it
receives a message (j,m) on at-ini, then it stores (i, j,m), writes (i, j,m) on at-leak and sends
the empty string on P-outi. If it receives (deliver, i, j,m) on at-infl and at least one value
of the form (i, j,m) is stored, then it deletes a copy of (i, j,m) and sends (i,m) on at-outj . In
Fig. 1, right, top a protocol π with name zk is shown, with two parties P = 1 and V = 2, and
two IFs Fat and Fcrs (with names at and crs). In Fig. 1, right, bottom, the same protocol in
π � Z for Z ∈ π{.

Required behavior. In general an IF F with name F is required to work as follows: If
it receives a value on F-ini it possibly writes a value on F-leak and then sends a value on
F-outi. If it receives a value on F-infl, then it is allowed to send a value on any out-tape
F-outi. Note the Fat has this behavior.

A party P connected to IFs with names F1, . . . , Fm is required to work as follows: If it
receives an input on P-ini or any Fj-outi it sends a message on P-outi or one of the out-
tapes Fj-ini. It is only allowed to write on one tape. We furthermore reserve a symbol
corrupt. If P receives corrupt on P-ini, then in some fixed order it sends corrupt on each
of the tapes Fj-ini and waits until a value stateFj ,i is received on Fj-outi. Then it sends
(stateP,i, stateF1,i, . . . , stateFm,i) on P-outi, where stateP,i is all of P’s previous states. After
this P goes into a special corrupted behavior, where whenever it receives (L,m) on P-ini and
L is one of it out-tapes, it sends m on L and whenever it receives m on some tape Fj-outi, it
sends (Fj-outi,m) on P-outi. I.e. the ITM connected to P-ini and P-outi is now ’connected’
to all the tapes F-ini and F-outi.

For an IF to have the same communication pattern as a protocol it will also output a value
stateF,i when corrupt is input on F-ini. It will let the the entity connected to F-infl decide
this value. Specifically, when F receives corrupt on some F-ini, then it sends (corrupt, i) on
F-leak and waits to get back a value stateF,i on F-infl. Then it sends stateF,i on F-outi.

2.2.1 The real-life model

Consider now a protocol π with only the IF Fat and consider an environment Z for π. In
the execution execπ�Z the environment Z can give the protocol inputs and see outputs from
the protocol. When Z activates a party Pi on P-ini, then Pi might send some message on
Fat. After each message sent Pi gets back the activation and at some point sends a message
on P-outi. For each message m sent to some Pj, the IF Fat wrote (i, j,m) on at-leak. This
means that Z has access to the messages sent by Pi. It can then use at-infl to deliver these
messages. If it does, then the receiver Pj is activated by Fat and the execution continues. At
some point Z might also send corrupt to some party Pi in response to which it sees the internal
state of Pi and can now send messages on behalf of Pi through P-ini. Except for some minor
’syntactical’ differences,2 this is exactly the real-life execution in [Can]. I.e., in the notation
of [Can], realπ,Z = execπ�Z .

2.3 Simulating a protocol given an ideal functionality

Assume now that we want to express that a protocol π is as secure as some IF F . We do this by
requiring that no environments can distinguish whether it is interacting with π or F . Specifically,
for any IF with name F we call π a protocol for F if it has the same name (and thereby the same
protocol tapes) and it does not use an IF named F (to avoid that both networks have tapes
named F-leak and F-infl). Consider an environment Z for π, i.e. such that π � Z is closed.

We want to compare π � Z to F � Z. We therefore introduce another ITM S ∈ (F � Z){. This

2When e.g. Z corrupts Pi, it will see Fat output (corrupt, i) on at-leak and must input a value stateat,i

on at-infl. It then gets stateat,i back on at-outi together with the state of Pi. This weird loop-back does not
occur in [Can], but changes noting. The reason for IFs taking stateF,i from F-infl will be clear later, when a
simulator is connected to F-infl.
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gives us a closed network (F �S) �Z. In the following we call such an S a simulator from F to π

if it is in addition PPT; We write S ∈ [π .F ]. We then compare the closed networks (F �S) �Z
and π � Z (see Fig. 1 for an example of a simulator and a network (F � S) � Z).

Assume that π has IFs with names F1, . . . , Fm. The job of S in (F � S) � Z is to simulate to
F (over Fj-leak and Fj-infl) the view Z would have of π on the sequence of inputs Z is giving
to F . In doing this S only gets the allowed leakage (over F-leak). Furthermore, it is F which
gives back outputs to Z, over F-outi, and S can only control these outputs through F-infl.
I.e. it only has the allowed influence. Finally, if Z inputs corrupt on F-ini in (F �S) �Z, then
F outputs (corrupt, i) to S on F-leak. Then S gets to return a value stateF,i on F-infl and
F outputs stateF,i on F-outi. In π � Z, when Z inputs corrupt on F-ini the value stateF,i

returned is the internal state of Pi. So, in (F �S)�Z, the simulator S must simulate the internal
state of corrupted parties. Again, except for some ’syntactical’ differences, this is exactly the
ideal process in [Can]. I.e., in the notation of [Can] idealF ,S,Z = exec(F�S)�Z .

2.3.1 Conditions on environments

In [Can] the notion of a class of environments is used. When defining UCZK proof of membership,
we need a similar notion, where we prove security in a set of environments with a given property.
Opposed to [Can] we need to consider properties holding except with negligible probability. We
therefore take some care in formalizing this and reproving the composition theorem.

We let a conditioned IF F = (F ′, P ) consist of an IF F ′ and a communication property
P which only depends on the tapes F-leak and F-infl.3 The intuition is that F must only
be influenced over F-infl by values such that the communication over F-infl and F-leak

is in P (F). For a protocol π with IFs G1, . . . ,Gm we let P (π) = ∧m
i=1P (Gi). We then require

that an environment for π has the property P (π) and that a simulator S (for (F � S) � Z) has
the property P (F). Since (F � S) � Z will be compared to π � Z, S will be running with an
environment Z with the property P (π). It is therefore sufficient that S has the property P (F)
as long as the property P (π) holds.

Definition 1 Let π be a protocol for an IF F . We say that π realizes F , written F
c
. π, if

there exists S ∈ [π . F ] such that S c|=(P (π) → P (F)) and (F � S) � Z
c
≈ π � Z, for all Z ∈ π{

where Z c|=P (π).

The network F � S can be consider an IF with an interface S for translating leakage from
F to leakage of the form in π and translating valid influence on π into valid influence on F (see
Fig. 1, top, left). The environment Z then serves as an “interactive distinguisher” between the
two networks F � S and π, and is restricted to using influence valid according to P (π).

2.4 Protocol composition

Let π be a protocol with parties Pπ
1 , . . . ,Pπ

n using an IF G (maybe among others). Let ρ be a
protocol for G with parties Pρ

1 , . . . ,Pρ
n (ρ maybe itself using some IFs). Assume that all involved

IFs have distinct names. We describe a composed protocol πG7→ρ. We can write π as π′ � G.
Since ρ is a protocol for G we can define a network π ′ � ρ, where the parties Pπ

i now connect
to Pρ

i instead of G (via G-ini and G-outi). This is however not formally a protocol, as each
’party’ is now of the form Pπ

i � P
ρ
i and thus not an ITM. We can however consider Pπ

i � P
ρ
i as

a single ITM and let Pi = 〈Pπ
i � P

ρ
i 〉. By the communication pattern enforced on parties, Pi

can be verified to have the behavior required of a party. We let πG7→ρ denote π′ � ρ with each
Pπ

i � P
ρ
i replaced by Pi.

3If not mentioned explicitly, then P (F) = >, where >(C) = 1 for all C.
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2.4.1 The composition theorem

In [Can] a very general composition theorem is proved, considering a.o.t. replacing any polyno-
mial number of copies of the same IF and protocol emulation. For simplicity we consider only
a special case. We reprove the theorem to deal with conditioned IFs.

Theorem 2 Let F ,G be IFs and let π be a protocol using G. If π
c
. F and ρ

c
. G, then πG7→ρ c

. F .

Proof: Assume that there exist simulators Sπ ∈ [π . F ] and Sρ ∈ [ρ . G] such that

Sπ
c|=P (π)→ P (F), Sρ

c|=P (ρ)→ P (G), (F � Sπ) � Zπ

c
≈ π � Zπ, (G � Sρ) � Zρ

c
≈ ρ � Zρ (1)

for all Zπ ∈ π{ and Zρ ∈ ρ{ where Zπ
c|=P (π) and Zρ

c|=P (ρ). Let π = π′ �G and let P (π′) be the
conjunction over the properties of the IFs of π except G. Let S = 〈Sπ � Sρ〉. Observe that Sρ

closes the tapes G-infl and G-leak on Sπ and opens tapes for each IF used by ρ. Therefore
S ∈ [πG7→ρ.F ]. Furthermore, from (1) it follows that Sπ �Sρ

c|=(P (ρ)→ P (G))∧(P (π) → P (F)).
Since P (π) = P (π′) ∧ P (G) it thus follows that Sπ � Sρ

c|=(P (ρ) ∧ P (π′)) → P (F)), or Sπ �
Sρ

c|=P (πG7→ρ)→ P (F). Since P (πG7→ρ)→ P (F) only depends on open tapes of Sπ �Sρ it follows

that S = 〈Sπ �Sρ〉
c|=P (πG7→ρ)→ P (F). So, what remains is to prove that (F �S)�Z

c
≈ πG7→ρ�Z

for all Z ∈ (πG7→ρ)
{

where Z c|=P (ρ) ∧ P (π′), which can be proven as follows:

(F � S) � Z ≡ (F � (Sπ � Sρ)) � Z = (F � Sπ) � (Sρ � Z) ≡ (F � Sπ) � Zπ

c
≈ π � Zπ ≡ (π′ � G) � (Sρ � Z) = (G � Sρ) � (π′ � Z) ≡ (G � Sρ) � Zρ

c
≈ ρ � Zρ ≡ ρ � (π′ � Z) = (π′ � ρ) � Z ≡ πG7→ρ � Z ,

where Zπ = 〈Sρ�Z〉 ∈ π{ and Zρ = 〈π′�Z〉 ∈ ρ{. Of course we have to verify that Zπ
c|=P (π) and

Zρ
c|=P (ρ). From (1) and Z c|=P (ρ)∧ P (π′) we get that Sρ � Z

c|=(P (ρ)∧ P (π′)) ∧ (P (ρ)→ P (G))
and thus Sρ �Z

c|=P (G)∧P (π′). Since P (π) = P (G)∧P (π′) only depends on open tapes of Sρ �Z
it follows that 〈Sρ �Z〉

c|=P (π). From Z c|=P (ρ)∧P (π′), it follows that Z c|=P (ρ) and π′ �Z c|=P (ρ).
Since P (ρ) only depends on open tapes of π ′ � Z, it then follows that Zρ

c|=P (ρ). 2

3 UC zero-knowledge proof of membership

We first specify a two-party ZK proof IF Fzk from a prover P to a verifier V and investigate
what is required from a two-party CRS protocol to realize Fzk. We see that a realization of Fzk

is always a proof of knowledge and we see why. This leads us to the first definition of UC proof
of membership, and we investigate how to realize this new notion.

3.1 The zero-knowledge ideal functionality

The IF Fzk [Can01] is parameterized by a relation R ⊆ {0, 1}∗ × {0, 1}∗. We require from the
relation that there exists some polynomial p such that (x,w) ∈ R implies that |w| ≤ p(|x|)
and such that (x,w) ∈ R can be checked in time p(|x|). We let L(R) = {x ∈ {0, 1}∗|∃w ∈
{0, 1}∗((x,w) ∈ R)} denote the language of the relation, and for (x,w) ∈ R we call x the
instance and call w the witness.

The IF has the tapes shown in Fig. 1. It ignores all inputs on zk-inV (except that it returns
the activation on zk-outV as required). If it receives (x,w) on zk-inP , it ignores the input if
(x,w) 6∈ R and otherwise stores x and writes x on zk-leak. Then it returns the activation on
zk-outP . If it receives a value (deliver, x) on zk-infl and at least one value x is stored, then
it deletes a copy of x and sends x on zk-outV . From the point where P is corrupted, whenever
it receives (x,w) ∈ R on zk-infl it immediately sends x on zk-outV .
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3.2 Defining UC zero-knowledge proof of knowledge

We consider realizations of Fzk using two-party common reference string (CRS) protocols. This
is a two-party protocol with a CRS IF Fcrs and the IF Fat described in Section 2. See Fig. 1.

The IF Fcrs is parameterized by a PPT function D : {0, 1}∗ → {0, 1}∗. The first time it is
activated on any tape (crs-inP , crs-inV or crs-infl) it computes crs = D(r) for uniformly
random r ∈ {0, 1}k , writes crs on all three out-tapes, and returns the activation on the corre-
sponding out-tape (crs-outP , crs-outV respectively crs-leak). From then on it ignores all
inputs.

The two parties have the following behavior. The first time X ∈ {P, V } is activated, if a
value crs is written on crs-outX , then X copies it to its work-tape. Otherwise, it activates on
crs-inX , waits to get back crs on crs-outX , and the writes crs on its work-tape. From now
on we describe two-party CRS protocols from the point where crs is written on the work tape
of P and V .

Definition 3 Let π be a two-party CRS protocol for Fzk. We say that π is a two-party UCZK

proof of knowledge for R if π
c
. Fzk.

3.3 Realizing UC zero-knowledge proof of knowledge

In this section we justify why we called a CRS realization of Fzk a proof of knowledge, by proving
that it is indeed always so. This is not a new observation, see e.g. [Can], but to appreciate our
upcoming definition of UCZK proof of membership it is important to get a feeling why it is the
case. At the same time we get to do some work, which we can reuse when we discuss how to
realize UCZK proofs of membership.
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Figure 1: Left, middle: the ZK IF Fzk. Right, top: a two-party protocol π with the authenticated

transfer IF Fat and the CRS IF Fcrs. Right, bottom: an environment Z ∈ π{ and π �Z . Left, bottom:

a simulator S ∈ [π . Fzk]. Left, top: the same environment, now experimenting with Fzk � S.
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3.3.1 Two-party common reference string protocols

We assume that the protocol is specified by an PPT computable function D : {0, 1}∗ → {0, 1}∗

and two ITMs Pro and Ver. For crs ← D, security parameter k ∈ N and (x,w) ∈ R, an inter-

action between Pro(k, crs, x, w; rPro) and Ver(k, crs, x; rVer) proceeds as follows: First copies of
Pro and Ver are initialized with fresh randomness rPro respectively rVer and inputs (k, crs, x, w)
respectively (k, crs, x). Then messages m1,m2, . . . are exchanges in rounds, and at some point
Ver(k, crs, x) terminates with output b ∈ {0, 1}, where b = 1 indicates acceptance.

From (D,Pro,Ver) we derive a two-party CRS protocol π as follows. It uses the IF FD
crs. The

prover P starts by initializing a counter pid = 0, and whenever it gets an input (x,w) ∈ R on
zk-inP it lets pid = pid + 1, starts a new copy Propid(k, crs, x, w) of Pro and sends (pid, x) to
V over Fat. Then V initializes a new copy Verpid(k, crs, x), and P and V lets these two copies
interact by exchanging messages of the form (pid,mi) over Fat. If some copy Verpid(k, crs, x)
terminates with output 1, then V outputs x on zk-outV . To discuss the security of this protocol,
it is convenient to use some security definitions for the triple (D,Pro,Ver).

3.3.2 Straight-line zero-knowledge

We first define the notion of corruptible straight-line ZK. As for straight-line ZK [FS89, SD98]
it is defined by comparing two games, the cheating verifier game and the simulation, but now
the simulator must also be able to simulate the internal state of the ZK proof when given the
witness.

The cheating verifier game. Let Ver∗ be any ITM, and consider the game [Pro,Ver∗](k),
which proceeds as follows: Generate crs← D(rcrs ∈R {0, 1}

k) and then let Ver∗ interact with any
number of Pro(k, crs, x, w; rPro) for (x,w) ∈ R of its choice. The cheating verifier Ver∗ gets to
schedule the interaction with the copies of Pro, and at some point Ver∗ chooses to end the game.
In response to this it is given the randomness rPro used by all the copies Pro(k, crs, x, w; rPro)
and outputs a guess b ∈ {0, 1}.

The simulation. Now let SimPr be any ITM. The game [SimPr,Ver∗](k) proceeds exactly
as [Pro,Ver∗](k), except that SimPr is given (k, crs, x, rcrs) as input. When Ver∗ chooses to end
the game, then for each SimPr(k, crs, x, rcrs), the witness w is input to SimPr(k, crs, x, rcrs) to
generate an output r′Pro, which is given to Ver∗. Then Ver∗ outputs a guess b ∈ {0, 1}.

Definition 4 We say that (D,Pro,Ver) is corruptible straight-line ZK if there exists a PPT
SimPr such that |Pr [[Pro,Ver∗](k, z) = 1]−Pr [[SimPr,Ver∗](k, z) = 1] | is negligible in k for all
PPT Ver∗ and all z ∈ {0, 1}∗.

3.3.3 Weak simulation knowledge soundness

We also define a notion of weak simulation knowledge soundness. For this purpose, let A be
any ITM, and assume that two ITMs SimPr and Ext are given. Consider the following game
[SimPr,Ver,Ext, A](k, z), running in two stages. In the verifier stage A first gets (k, z) and
then gets to interact with copies of SimPr as in [SimPr,Ver∗](k), but is not required to specify
(x,w) ∈ R to start a new copy SimPr(k, crs, x, rcrs); It can specify any x ∈ {0, 1}k . To end the
verifier stage correctly it must however for each copy SimPr(k, crs, x, rcrs) supply w such that
(x,w) ∈ R. Then w is given to SimPr(k, crs, x, rcrs) and A is given the reply r′Pro. If A ends
the verifier stage correctly, then the game enters the prover stage. Here A interacts with copies
of Ver(k, x, crs) for x of its own choosing. If it makes a copy Ver(k, x, crs) accept, then Ext is
run on k, rcrs and the interaction that Ver(k, x, crs) had with A, and Ext outputs a value w. If
it ever happens that (x,w) 6∈ R, then the game outputs 1; Otherwise it outputs 0.

Definition 5 We say that (D,Pro,Ver) is a weak4 simulation knowledge sound, corrupt-

4The weakening over the definitions in [Sah99, GMY03] is that A only sees simulated proofs for true statements.
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ible straight-line ZK protocol if it is a corruptible straight-line ZK protocol and it holds
for the simulator SimPr demonstrating this that there exists a PPT ITM Ext such that
Pr [[SimPr,Ver,Ext, A](k, z) = 1] is negligible in k for all PPT A and all z ∈ {0, 1}∗.

3.3.4 Security of the two-party common reference string protocol

Now assume that we have a weak simulation knowledge sound, corruptible straight-line ZK
protocol (D,Pro,Ver) with the corresponding SimPr and Ext. We construct a simulator S for
the derived protocol π. The reader is encouraged to inspect Fig. 1 for the structure of the
simulation (Fzk � S) � Z and the protocol π � Z during the description.

Initialization. The first time Z activates on zk-inP , zk-inV or crs-infl, the simulator S
generates crs = D(rcrs ∈R {0, 1}

k), writes crs on crs-leak, stores (crs, rcrs) and sets pid = 0;
This gives Z the exact same view as in π � Z.

Two honest parties. As long as no party is corrupted, whenever Z sends (x,w) ∈
R on zk-inP to Fzk it outputs x to S on zk-leak. Then S lets pid ← pid + 1,
initializes SimPrpid(k, crs, x, rcrs) and shows (P, V, (pid, x)) on at-leak. If Z at some
point inputs (deliver, P, V, (pid, x)) on at-infl then S initializes Verpid(k, crs, x) and runs
SimPrpid(k, crs, x, rcrs) and Verpid(k, crs, x) together, and shows the exchanged messages mi on
at-leak (letting Z schedule the execution via at-infl). If a copy Ver(k, crs, x) accepts, then S
sends (deliver, x) on zk-infl. If a copy Ver(k, crs, x) rejects, then S gives up the simulation.

Corrupted prover. If at any point P is corrupted, i.e. Z inputs corrupt on zk-inP , then
S receives (corrupt, P ) on zk-leak along with (x,w) ∈ R for every SimPrpid(k, crs, x, rcrs).
Then S inputs each w to the corresponding SimPrpid(k, crs, x, rcrs) to get r′Pro and concatenates
these to a string r′P . Then it sends r′P on zk-infl. In response to this, Fzk outputs r′P to Z
on zk-outP . Note that in π � Z, if Z inputs corrupt on zk-inP it would instead received the
randomness rP used by P in the proofs Propid(k, crs, x, w, rPro).

From this point on, if Z inputs a value m on zk-inP , then by construction of Fzk the value
(P,m) is output on zk-leak to S. Recall that Z should ’think’ that it runs in π � Z. So, if S
receives (P,m) with m = (at-inP ,m′), then it outputs (P, V,m) on at-leak, and if Z inputs
(deliver, P, V,m′) on at-infl, then P delivers m′ in the simulated protocol π. So, now it is
Z which interacts with the copies Verpid(k, crs, x), and it might create new copies by sending
(pid, x) on behalf of the corrupted prover. If a copy Verpid(k, crs, x) accepts, then S outputs
(x,w) on zk-infl, where w is the results of applying Ext to the accepting interaction. Because
P is corrupted this makes Fzk output x on zk-outV , exactly as in π � Z, unless (x,w) 6∈ R, in
which case S gives up the simulation.

Corrupted verifier. If at any point V is corrupted (before or after P is corrupted), i.e. S
receives (corrupt, V ) on zk-leak, then it lets rV be the concatenation of the rVer used by the
copies Verpid(k, crs, x) and sends rV on zk-infl. Thus rV ends up at Z, exactly as in π � Z.
From this point on it is then Z who runs V . If P is still honest it therefore gets to interact with
copies of SimPr as it desires.

Analysis. If S never gives up the simulation, then Z in (Fzk � S) � Z is essentially par-
ticipating in the game [SimPr,Z](k, z), and that Z in π � Z is in the same way essentially
participating in the game [Pro,Z](k, z). So, it would follow directly from the straight-line ZK

that (Fzk � S) � Z
c
≈ π � Z if S gives up with negligible probability. If S gives up the simulation

then the honest verifier either 1) rejected a simulated conversation with SimPr for x ∈ L(R), or
2) accepted a conversation with Z, and Ext output w such that (x,w) 6∈ R. The first case clearly
happens with non-negligible probability if the proof system is correct. The second case happens

with negligible probability by the simulation knowledge soundness. It follows that π
c
. Fzk.

Theorem 6 If (D,Pro,Ver) is a weak simulation knowledge sound, corruptible straight-line ZK
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protocol, then the derived two-party CRS protocol is a UCZK proof of knowledge.

3.3.5 The other direction.

We argued that corruptible straight-line ZK and simulation knowledge soundness are sufficient
conditions for protocols of the particular form that we considered to be UCZK proofs of knowl-

edge. It should however be clear now that if (Fzk � S) � Z
c
≈ π � Z, for any two-party CRS

protocol π and any simulator S, then S can simulate crs on crs-leak to Z and then simulate
honest proofs under this crs for (x,w) ∈ R given just x (as Fzk only leaks x to S); that it
can patch the internal state of simulated proof to be consistent with w (as it must simulate
the internal state of P on zk-outP when P is corrupted); and that it can compute a witness
w for all accepted proofs given by Z under crs even after having showed simulated proof to Z
(as it has to output (x,w) ∈ R on zk-infl to make Fzk output x on zk-outV ). And since S
do not have the opportunity to rewind Z in (Fzk � S) � Z, the simulation and extraction must
be straight-line. It follows that π has some form of corruptible straight-line ZK and simulation
knowledge soundness.

3.4 Defining UC zero-knowledge proof of membership

As demonstrated above the problem with Fzk (w.r.t. not wanting to capture a proof of knowl-
edge) is that when P is corrupted, the simulator has to input (x,w) ∈ R to Fzk whenever a proof
from Z for some x is accepted. Our basic approach to modeling a ZK proof of membership will
therefore be to specify that when P is corrupted, then Fzk only expects an input x on zk-infl

and then outputs x to V . To prevent that the environment influences Fzk to output x 6∈ L(R) to
V we then simply add to Fzk the influence condition that whenever x is input on zk-infl, then
x ∈ L(R). Formally, let F ′

zkm be the IF which works exactly as Fzk, except that if P is corrupted,
then whenever F ′

zkm receives (deliver, x) on zk-infl, it outputs x on zk-outV . Let Pzkm be
the communication property which outputs 0 iff there is an entry (zk-infl, (deliver, x)) in the
communication sequence for which x 6∈ L(R). Let Fzkm = (F ′

zkm, Pzkm).

Definition 7 A two-party CRS protocol π is a UCZK proof of membership for R if π
c
. Fzkm.

Note that we cannot let Fzkm itself check whether x ∈ L(R), as this cannot necessarily be
done in PPT. Using such a functionality in a protocol π would give sever problems as Z in π �Z
would have access to zk-infl and zk-leak and therefore essentially an oracle for the language
L(R).

3.5 Using UC zero-knowledge proof of membership

We discuss how to use a UCZK proof of membership. Let ρ be a UCZK proof of membership and

let π = γ�ρ be a protocol using ρ. To prove π
c
. F , all we have to prove is γ�Fzkm

c
. F . Assuming

for simplicity that γ uses no other conditioned IF and that F is not conditioned, this comes

down to proving that there exists a simulator S such that S c|=Pzkm → > and (F �S)�Z
c
≈ π �Z

for all Z ∈ (γ � Fzkm){ for which Z c|=Pzkm. Since Pzkm → > is a tautology, what is left is proving

(F �S) �Z
c
≈ π �Z. Since Z c|=Pzkm it follows that in the simulation (F �S) �Z, Z will not send

x 6∈ L(R) over zk-infl (except with negligible probability). So, it is sufficient to prove that S
can simulate runs of γ � Fzkm where only true instances are accepted.

3.6 Realizing UC zero-knowledge proof of membership

We now discuss how to construct a UCZK proof of membership. We use the protocol π derived
from (D,Pro,Ver) in Section 3.3.1. Recall that in the proof that π was a UCZK proof of
knowledge, the only place where Ext was used was when P was corrupted and Z gave an
acceptable proof for some x (in which case Ext was used to compute the witness w to output
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on zk-infl as (x,w)). So, if we want to prove (F ′
zkm � S

′) � Z
c
≈ π � Z, we can do the

simulation without the extractor. In particular, let S ′ work as the simulator in Section 3.3.4,
except that whenever Z gives an acceptable proof for some x, the simulator S ′ simply sends
(deliver, x) on zk-infl. As P is corrupted, this always makes F ′

zkm output x on zk-outV ,
as desired. In particular, we now only need that (D,Pro,Ver) is corruptible straight-line ZK

to prove (F ′
zkm � S

′) � Z
c
≈ π � Z. This might seem puzzling, but the clue is that to prove

π
c
. Fzkm, we also have to prove that S ′ c|=P (π) → P (Fzkm), (or equivalently that S ′ c|=Pzkm, as

P (π) = > ∧>), and to prove this we need a notion of soundness.

3.6.1 Weak simulation membership soundness

To see what it takes to prove S ′ c|=Pzkm it is convenient to have a notion of weak simulation
membership soundness. This is defined via a game [SimPr,Ver, A](k, z), which proceeds like the
game [SimPr,Ver,Ext, A](k, z) for weak simulation knowledge soundness. But now no extractor
is given. Instead A wins the game if in the prover stage it makes a copy of the verifier accept
x 6∈ L(R).

Definition 8 We say that (D,Pro,Ver) is a weak simulation membership sound, corruptible
straight-line ZK protocol if it is a corruptible straight-line ZK protocol and it holds for the simu-
lator SimPr demonstrating this that Pr [[SimPr,Ver, A](k, z) = 1] is negligible in k for all PPT
A and all z ∈ {0, 1}∗.

3.6.2 Security of the two-party common reference string protocol

We return to the analysis of the derived protocol π. What remains is to prove that S ′ c|=Pzkm. So,

we consider any Z ∈ S ′{ and prove that when S ′ outputs (deliver, x) on zk-inflF in execS′�Z ,
then x ∈ L(R), except with negligible probability. In S ′ � Z, the ’refuter’ Z connects to all the
open tapes of S ′; In particular, Z has direct access to zk-infl and zk-leak on S ′ and does not
go through Fzkm as in (Fzkm � S

′) � Z (see Fig. 1). This means that Z has the following powers
when ’refuting’ S ′ c|=Pzkm: First it can send a number of x ∈ {0, 1}∗ to S ′ on zk-leak, which
makes S ′ (’thinking’ that x arrived from Fzkm) show Z a simulated proof for x over at-leak

and at-infl. At some point Z can then input (corrupt, P ) to S ′ on zk-leak along with the
witnesses w for all previously inputs x.5 Then Z can act as the corrupted prover in a number
of proofs to the copies of Ver run by S ′. If an acceptable proof is given for some x, then S ′ by
construction outputs (deliver, x) on zk-infl. If x 6∈ L(R), then Z refuted S ′ c|=Pzkm. Except
for some ’syntactical’ differences, this is exactly the weak simulation membership soundness
game [SimPr,Ver,Z](k, z), and it follows that if (D,Pro,Ver) is weak simulation membership
sound, then S ′ c|=Pzkm.

Theorem 9 If (D,Pro,Ver) is a weak simulation membership sound, corruptible straight-line
ZK protocol, then the derived two-party CRS protocol is a UCZK proof of membership.

3.6.3 An efficient UC zero-knowledge proof of membership

As an example of a weak simulation membership sound, corruptible straight-line ZK protocol
we take the protocol [Dam00] by Damgaard, which is based on Σ-protocols.

A corruptible Σ-protocol is described by three PPT algorithms A, Z, B. The prover sends
the first message a = A(x,w; ra ∈R {0, 1}

k), the verifier sends a challenge e ∈ {0, 1}k , the
prover returns z = Z(x,w, e, ra), and the verifier checks that B(x, a, e, z) = 1. We require that
A,Z,B have the following properties. Correctness: B(x,A(x,w; ra), e, Z(x,w, e, ra)) = 1 for

5We can make assume that if S
′ receives (corrupt, P ) on zk-leak and does not receive witnesses for all

simulated proofs, then it terminates. This does not change its behavior in (F ′

zkm � S
′) � Z, where the witnesses

are sent by F
′

zkm, but forces the ’refuter’ Z to supply the witnesses in S
′
� Z.
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all inputs with (x,w) ∈ R. Special soundness: if there exist a, e1, e2, z1, z2 with e1 6= e2 and
B(x, a, e1, z1) = B(x, a, e2, z2) = 1, then x ∈ L(R). Special corruptible honest verifier ZK: there
exists a PPT ITM hvs which given x ∈ L(R) and e ∈ {0, 1}k outputs (a, z), and which when
later given w such that (x,w) ∈ R outputs ra such ra is uniformly random and a = A(x,w; ra)
and z = Z(x,w, e, ra).

The protocol. The protocol in [Dam00] works as follows. The CRS crs is a public key
for a perfect hiding trapdoor commitment scheme, and the value rcrs such that crs = D(rcrs) is
the trapdoor of the trapdoor commitment scheme. In the protocol, Pro(k, crs, x, w) computes
a = A(x,w; ra) and sends c = commitcrs(a; rc). Then Ver(k, crs, x) returns e ∈R {0, 1}

k , and
Pro(k, crs, x, w) computes z = Z(x,w, e, ra) and sends (c, a, rc, z). Then Ver(k, crs, x) accepts
iff c = commitcrs(a; rc) and B(x, a, e, z) = 1.

Corruptible straight-line zero-knowledge. We describe the simulator
SimPr(k, crs, x, rcrs). To simulate a proof given x, send a trapdoor commitment c to the
verifier and get back e ∈ {0, 1}k . Then compute (a, z) ← hvs(x, e), use rcrs to compute rc such
that c = commitcrs(a; rc) and send (c, a, rc, z). When given w, use hvs to compute ra and
output (ra, rc).

In [Dam00] only static security was considered and therefore the simulation of ra was not
required, or described. It is however straight-forward to verify that the proof in [Dam00] gener-
alizes to prove that the protocol is corruptible straight-line ZK.

Weak simulation membership soundness. We prove that the protocol is weak simula-
tion membership sound. Assume there exists PPT A which gives an accepting proof for x 6∈ L(R)
in the prover stage of [SimPr,Ver, A] with non-negligible probability. Using the rewinding tech-
nique from [Dam00] we can construct a PPT algorithm B which shows A one run of the verifier
stage and then uses A to compute a, a′, rc, r

′
c with a 6= a′ and commitcrs(a; rc) = commitcrs(a

′; r′c)
with non-negligible probability. In the verifier stage B uses rcrs to compute trapdoor openings
of some commitments c, but only once for each c, and rcrs is not used on the prover stage.

It follows that if commit is weak simulation sound in the sense that no PPT B can compute
a double opening even after seeing a number of trapdoor openings of trapdoor commitments c

to values a of B’s choice,6 then the protocol is weak simulation membership sound.

Theorem 10 The protocol in [Dam00] based on a weak simulation sound trapdoor commitment
scheme and a corruptible Σ-protocol is a weak simulation membership sound, straight-line cor-
ruptible ZK protocol.

Any trapdoor commitment scheme can be transformed into a weak simulation sound trapdoor
commitment scheme by committing to m as c = (c1, c2) = (commitpk1

(r), commitpk2
(m⊕r)) for

independent keys pk1 and pk2 and r ∈R {0, 1}
|m|. Furthermore, many languages considered in

the literature have very efficient corruptible Σ-protocols, so it follows from Theorems 9 and 10
that there exist very efficient UCZK proofs of membership for many languages. This includes,
graph isomorphism, equality of discrete logarithms (in e.g. RSA groups), quadratic residuosity,
linear relations between homomorphic encryptions (like [Pai99]), and many others.

4 Conclusion

We gave the first definition of UCZK proof of membership (which is not at the same time a
proof of knowledge), showed that the notion is closely related to the notions of straight-line ZK
and membership simulation soundness, and sketched an efficient realization of the new notion.

6The weakening over the notion of simulation soundness [GMY03] is that B is only shown one opening of
each c.
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