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Abstract

We present a cipher that represents a novel strategy: replacing al-
gorithmic complexity with computational simplicity while generating
cryptographic e�cacy through large as desired quantities of random-
ness. The BitFlip cipher allows its user to defend herself with credibly
appraised mathematical intractability, well-hinged on solid combina-
torics. This is the situation when the amount of randomness is small
relative to the accumulated amount of processed plaintext. Deploying
more randomness, BitFlip will frustrate its cryptanalyst with terminal
equivocation among two or more plausible message candidates. This
equivocation defense can be increased by simply increasing the amount
of deployed randomness, coming at-will close to Vernam’s perfect se-
crecy. BitFlip is structured as a super polyalphabetic cipher where a
letter comprised of 2n bits is pointed-to by any 2n bits string with
a Hamming distance of n from it. When a passed 2n bits string is
found to have no n-valued Hamming distance from any letter in the
reader’s alphabet, it is regarded as null. This allows for co-encryption
of several messages each over its respective alphabet; thereby o↵ering
a powerful equivocation defense because the ciphertext does not in-
dicate which alphabet the intended reader is using. BitFlip becomes
increasingly timely and practical, exploiting the advent of high quality
non-algorithmic randomness, as well as the e↵ect of Moore’s law on
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the cost of handling large amounts of memory. BitFlip is a natural fit
for what fast emerges as the biggest customer of cryptography: the
Internet of Things.

1 Introduction

Vernam’s famous ”One Time Pad” cipher is one hundred years old this year:
elegant, simple, and unbreakable in as much as possession of the ciphertext
confers no entropic advantage over a cryptanalyst aware of its existence and
size, but not of its contents. Despite this perfect secrecy, Vernam’s cipher per
se never caught on because it required very large amounts of top-quality ran-
domness to insure its theoretical capability. Hundred years ago there was no
convenient way to generate the required amounts of randomness, nor to store,
and much less to communicate the same. Mostly, then, cryptography ven-
tured into a fundamentally di↵erent strategy: achieving the desired secrecy
with small manageable keys which are thoroughly mixed with the plaintext,
using ever more ingenious complexity-generating algorithms. Some tried to
approach Vernam’s security by using pseudo-randomness, which in turn was
generated from very small keys through planned algorithmic complexity.

In the intervening one hundred years technology progressed and now of-
fers (i) convenient generation of large amounts of high-quality randomness,
and (ii) increasingly a↵ordable means to store, and communicate ever larger
quantities of random bits. It is time to revisit the hundred years old debate:
is it better to aspire for secrecy through greater and greater algorithmic com-
plexity over limited size randomness (keys), or perhaps it is better to secure
data through randomness-rich ciphers, operating with simple “Vernam-like”
protocols. Regardless of how this debate will fare in the coming years, the
new randomness-generating and randomness handling technology breath new
life in the old Vernam idea.

In particular one identifies a “cryptographic desert” between the message-
long Vernam keys, and the message-size-independent short keys prevailing
today. We propose to consider the notion of Vernam-inspired ciphers (Trans-
Vernam ciphers) where randomness and plaintexts are mixed in such a way
that the computational e↵ort of generating the ciphertext will be at most
polynomial, and at best ’flat’, allowing their user to secure their data with
as much randomness as they care to ’throw in’. This will extend to users
the power to gauge the provided security to the sensitivity and operational
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criticality of the secured data. Being novel, this strategy is likely to o↵er
additional benefits, not yet envisioned. As we discuss ahead, randomness-rich
ciphers o↵er a large unicity distance, which implies fundamental equivocation
– the concept behind Vernam’s perfection.

The here presented BitFlip cipher is a Trans-Vernam super-polyalphabetic
cipher that illustrates this new strategy for e↵ective cryptographic secrecy.1

2 Notations

First, we introduce some notations. Fix s0 2 N and denote A = {1, . . . , s0},
A⇤ = {0, 1, . . . , s0}. In the following, A will stand for the alphabet we use
for writing texts to be transmitted, and A⇤ is the “extended alphabet” which
contains also a “meaningless” letter 0. We use the word “message” for any
string of elements of A, and “plaintext” for any string of elements of A⇤.
Note that from any plaintext one obtains a message in a unique way, simply
by removing all zeros.

For k 2 N let C
k

be the unit (hyper)cube, C
k

= {0, 1}k; the elements of C
k

are thus binary words of length k. We use notations 0
k

and 1
k

for the all-zero
and all-one binary words. For ⌘, ⇣ 2 C

k

, we define the operation of bitwise
addition modulo 2, i.e.,

⌘ � ⇣ = (⌘(1) + ⇣(1) mod 2, . . . , ⌘(k) + ⇣(k) mod 2), (1)

being ⌘ = (⌘(1), . . . , ⌘(k)), ⇣ = (⇣(1), . . . , ⇣(k)). Note that

⌘ � ⌘ = 0
k

for all ⌘ 2 C
k

. (2)

Define ⌘̄ = ⌘ � 1
k

to be the word with all bits flipped. Then, define

k⌘k =
k

X

j=1

⌘(j)

to be the number of 1’s in ⌘, and

H(⌘, ⇣) = k⌘ � ⇣k
to be the so-called Hamming distance between ⌘ and ⇣, i.e., the number of
positions where their corresponding bits are di↵erent.

1For other Trans-Vernam ciphers see references [7, 8, 9, 10].
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We can equip C
k

with a (non-oriented) graph structure by declaring ⌘
and ⇣ neighbours whenever H(⌘, ⇣) = 1 (i.e., they di↵er in only one bit). It
is clear that C

k

is a bipartite graph, and we denote the two classes by

C0
k

= {⌘ : k⌘k is even},
C1
k

= {⌘ : k⌘k is odd}.

We state the following simple fact without proof:

Proposition 2.1. Let j 2 {0, 1}. Then,
(i) for any ⌘, ⇣ 2 Cj

k

we have that H(⌘, ⇣) is even, and

(ii) for any ⌘ 2 Cj

k

,⇣ 2 C1�j

k

we have that H(⌘, ⇣) is odd.

The above means that changing an even number of bits keeps the word
in the same class, while changing an odd number of bits changes the class.

For ⌘ 2 C2k, we define the set

FR(⌘) = {⇣ 2 C2k : H(⌘, ⇣) = k}, (3)

i.e., the set of binary words that di↵er from ⌘ in exactly half of the positions.
We call FR(⌘) the flip range of ⌘. Let us stress that we use this definition
only for the binary words of even length. We summarize the basic properties
of FR(·) in the following

Proposition 2.2. It holds that

(i) FR(⌘) = FR(⌘̄) for all ⌘ 2 C2k;
(ii) ⇣ 2 FR(⌘) if and only if ⌘ 2 FR(⇣);

(iii) if k is even, then ⌘ 2 Cj

2k implies ⇣ 2 Cj

2k for all ⇣ 2 FR(⌘); if k is odd,
then ⌘ 2 Cj

2k implies ⇣ 2 C1�j

2k for all ⇣ 2 FR(⌘);

(iv) (with card(A) denoting the cardinality of the set A)

card
�

FR(⌘)
�

=

✓

2k

k

◆

=
(2k)!

(k!)2
⇠ 22kp

⇡k
. (4)

(v) FR(⌘) \ FR(⇣) 6= ; if and only if H(⌘, ⇣) is even.
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We note, in particular, that the approximation in (4) works rather good;
for example, for k = 10 the relative error is only a bit larger than 1%. Due
to Proposition 2.1, (v) means that the flip ranges of ⌘ and ⇣ have nonempty
intersection only in the case when both ⌘ and ⇣ belong to the same class, C0

2k

or C1
2k. Notice also that (iii) implies that the whole set FR(⌘) is contained

either in C0
2k or in C1

2k.

Proof of Proposition 2.2. The proof of (i)–(iii) is quite straightforward, and
one readily obtains the last approximation in (4) using (12). Note that
one can write an even better approximation using (13) or (14). As for the
part (v), first, one obtains from (iii) that FR(⌘) \ FR(⇣) = ; in case H(⌘, ⇣)
is odd. Assume now that H(⌘, ⇣) is even, and denote by A = {j : ⌘(j) 6= ⇣(j)}
the set where the two words disagree. By assumption, card(A) = H(⌘, ⇣) is
even, and therefore A can be divided into two disjoint sets A1 and A2 with
equal cardinality; also, the set B = {1, . . . , 2k} \ A can be divided into two
disjoint sets B1 and B2 with equal cardinality. To construct a binary word
which belongs to both FR(⌘) and FR(⇣), just flip the bits of ⌘ on A1 and B1;
it is straightforward to see that the same word is also the result of flipping
the bits of ⇣ on A2 and B1 (note that card(A

j

[B1) = k for j = 1, 2).

Next, for k 2 N let us denote by Zd

k

= Zd/kZd the d-dimensional discrete
torus of size k (and of volume kd). It is a transitive graph with the neigh-
bourhood relation inherited from Zd. It holds, by the way, that C

m

= Zm

2 .
For ⌘ = (⌘(1), . . . , ⌘(k)) 2 C

k

and ⇣ = (⇣(1), . . . , ⇣(m)) 2 C
m

we introduce
the binary word ⌘ f ⇣ 2 C

k+m

by

(⌘ f ⇣)(`) =

(

⌘(`), for 0  `  k,

⇣(`�k), for k + 1  `  k +m;

that is, ⌘ f ⇣ = (⌘(1), . . . , ⌘(k), ⇣(1), . . . , ⇣(m)) is the concatenation of the two
binary words. Clearly, it holds that k⌘ f ⇣k = k⌘k+ k⇣k.

3 Description of the protocol

Now, we are ready to describe the transmission protocol. There is one sender,
Alice, andm0 recipients, Bob1, . . . ,Bobm0 . The Alice’s goal is to transmitm0

messages µ1 2 A`1 , . . . , µ
m0 2 A`

m0 as one ciphertext via a common channel in
such a way that, for j = 1, . . . ,m0, after decryption Bob

j

gets a plaintext }
j
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that reduces to the intended message µ
j

after throwing zeros away. For this,
she first constructs a plaintext }̂ 2 Ck0 , where k0 � `1 + · · ·+ `

m0 , composed
of her messages and (possibly) zeros in the following way: let f(j, i) be the

position of the ith letter from the jth message in }̂, so that }̂
f(j,i) = µ(i)

j

.
Then, we require that the function

f :
m0
[

j=1

{j}⇥ {1, . . . , `
j

} �! {1, . . . , k0},

is an injection such that f(j, i1) < f(j, i2) for all 1  i1 < i2  `
j

and
all j = 1, . . . ,m0. We also require that }̂(i) = 0 for all i = 1, . . . , k0 such
that f�1(i) = ;. In words, she “mixes” the messages in such a way that each
individual message is written in order, and then, possibly, also adds zeros
arbitrarily.

The next step for Alice is to produce a ciphertext with the desired prop-
erties. Let n0, N, v0, w0 � 2 be integer parameters. For each j = 1, . . . ,m0,
Alice shares with Bob

j

the following information:

(i) binary words ⌘1,j . . . , ⌘s0,j 2 C2n0 ;

(ii) a function g
j

: Zd0
w0

! C
v0 , where d0 = 2v0�1. Notice that g

j

can be
extended (periodically) to the whole Zd0 in a natural way;

(iii) a site x
j

2 Zd0
w0

\ {0}.
Informally, the binary words ⌘1,j . . . , ⌘s0,j correspond to the s0 letters of the
alphabet A, and the role of the “obfuscation matrix” g

i

will become clear
later. The total size of the key that Alice needs to share with each of Bobs
is 2s0n0 + 2v0wd0

0 + d0dlog2 w0e bits (the first term accounts to the letter’s
encoding, the second term is for the obfuscation matrix g

j

, and the third one
is for the “shift vector” x

j

). Also, we suggest that in practice v0 = d0 = 2
(when g

j

is really a square matrix) may be already a good choice.
Next, let e1, . . . , ed0 be the canonical coordinate vectors of Zd0 , and fix

a bijection2 h : C
v0 ! {±e1, . . . ,±e

d0} (recall that 2d0 = 2v0 , so such a
bijection exists). Assume for simplicity that v0 divides 2n0. We describe the
ciphertext’s construction in an inductive way. It is a concatenation of Nk0

2in fact, this bijection may be also a part of the shared key; however, to keep the
things simple, we suppose for now that it is chosen in some convenient way and known to
everybody
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binary words of length 2n0, that is, N binary words correspond to one letter.
Assume that we have already constructed N(j � 1) binary words of the
ciphertext, ⇣1, . . . , ⇣N(j�1), which encode }̂(1), . . . , }̂(j�1). Consider now the
jth letter }̂(j) of Alice’s plaintext. There can be two cases: it can be 0 (when

f�1(j) = ;), or it can be, say, the ith letter of mth message, that is, µ(i)
m

2 A
(in other words, f�1(j) = (m, i)). Let us first deal with the latter case.

Recall that we assumed that v0 divides 2n0; abbreviate ↵ = 2n0/v0.

Abbreviate also a = µ(i)
m

, the letter to be encoded in such a way that only
Bob

m

can read it. Let y
j�1,k 2 Zd0

w0
be the “current random walk’s position”

for Bob
k

, k = 1, . . . ,m0. We set y0,k = 0 for all k.
Alice then wants to construct ⇣(j�1)N+1, . . . , ⇣jN , the N binary words en-

coding the letter a for Bob
m

(and meaningless for the others). For this, she
takes N words ✓1, . . . , ✓N 2 FR(⌘

a,m

), in such a way that

n

j : ⌘
j,m

2
N

\

n=1

FR(✓
n

)
o

= {a}; (5)

that is, ⌘
a,m

is the only one among ⌘1,m, . . . , ⌘s0,m whose flip range contains ✓
n

for all n = 1, . . . , N (recall Proposition 2.2 (ii)).
Next, we divide the binary word ✓1f . . .f✓

N

into ↵N pieces of length v0,
that is, we write

✓1 f . . .f ✓
N

= �1 f . . .f �
↵N

,

where �
t

2 C
v0 for all t = 1, . . . ,↵N .

Abbreviate z0
k

= y
j�1,k. For t = 0, . . . ,↵N � 1 set

�̂
t+1 = g

m

(zt
m

)� �
t+1, (6)

and

zt+1
k

= zt
k

+ h
�

�̂
t+1 � g

k

(zt
k

+ x
k

)
�

. (7)

That is, she transforms �1, . . . , �↵N to �̂1, . . . , �̂↵N using the words (of equal
length) contained in the sites of Zd0

w0
, and the sites used for that lie on a

random walk’s trajectory. Then, Alice sets

⇣(j�1)N+1 = �̂1 f . . .f �̂
↵

, . . . , ⇣
jN

= �̂
↵(N�1)+1 f . . .f �̂

↵N

,

and y
j,k

= z↵N
k

, k = 1, . . . ,m0.
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For k = 1, . . . ,m0, Bob
k

then does the following: first, since (�̂
t

, t =
1, . . . ,↵N) are known to everybody, he is able to calculate (zt

k

, t = 1, . . . ,↵N)
using (7). Then, he calculates

�t

k

= �̂
t

� g
k

(zt
k

) for k = 1, . . . ,↵N,

and sets

�1
k

= �1
k

f . . .f �↵

k

,

· · ·
�N

k

= �↵(N�1)+1
k

f . . .f �↵N

k

.

He then verifies if there is a 2 A such that (5) holds with (�1
k

, . . . ,�N

k

) on the
place of (✓1, . . . , ✓N). Now, observe that, by (2), Bob

m

receives what Alice
intended to transmit (that is, �t

m

= �
t

, so ✓1 = �1
m

, . . . , ✓
N

= �N

m

), that is,
✓1 f . . .f ✓

N

. So, he is able to identify that he received the letter a. On the
other hand, we require that, for all k 6= m, (5) does not hold, so all other
Bobs receive zeros.

Finally, in the case when }̂(j) = 0, Alice chooses (�̂
t

, t = 1, . . . , 2↵) directly
(and, as before, sets ⇣(j�1)N+1 = �̂1f . . .f �̂

↵

, . . . , ⇣
jN

= �̂
↵(N�1)+1f . . .f �̂

↵N

)
in such a way that all Bobs get zeros after doing the above procedure (note
that everybody can still apply (7)).

3.1 Generalizations and modifications

First, let us explain why we need the obfuscation matrix. For this, let us
consider the protocol without it, i.e., we simply encode each letter by N
(random) words from the corresponding flip range. Next, assume that the
attacker is allowed to feed a text of his choice into the cipher; or he discovers
somehow the exact way a su�ciently large known text is encoded. This
may mean that the attacker could identify at least 2n0 � 1 di↵erent words
belonging to FR(⌘

j,m

) for some j and m. Although the set FR(⌘
j,m

) has huge
cardinality (recall (4)), nevertheless knowing relatively few its elements may
already be su�cient to identify ⌘

j,m

and thus compromise the cipher.
Indeed, assume that the attacker knows that z1, . . . , z2n0�1 2 C2n0 all

belong to FR(x) for some (unknown to the attacker) x 2 C2n0 . Let x̂,
ẑ1, . . . , ẑ2n0�1 be the corresponding words with all 0’s substituted by (�1)’s,

8



regarded as vectors in R2n0 . It is immediate to observe (being a · b the usual
scalar product of a, b 2 R2n0) that

ẑ
j

· x̂ = 0, for all j = 1, . . . , 2n0 � 1, (8)

that is, x̂ is orthogonal to all the vectors ẑ1, . . . , ẑ2n0�1. Note that it is com-
putationally easy to solve a system of linear equations (one can do it in O(n3

0)
steps); so, if the vectors ẑ1, . . . , ẑ2n0�1 are linearly independent, we can ob-
tain x̂ up to sign, and therefore we can find x or x̄ (recall Proposition 2.2 (i)).
Of course, in principle, ẑ1, . . . , ẑ2n0�1 are not necessarily linearly independent,
but we have assumed that the attacker can obtain many z-words, so he is
likely to be able to find a su�cient number of linearly independent ẑ-vectors
anyway. The above explains the necessity of the “obfuscation” step, that
prevents the attacker to collect many words from the same flip range.

At this point let us observe that the problem of discovering the underlying
scenery by seeing it at a random walker’s location (known as the scenery
reconstruction problem) is known to be very di�cult even in two dimensions
(see [3]; it was proved it is possible, but with millions of colors; with just a
few, this should be hardly possible). Probably, the “random walk” method
alone would already provide a decent cipher; we feel, however, that first using
the “flip range” approach greatly increases the security.

In fact, for addressing the above potential vulnerability, one could con-
sider another modification of the protocol, that may work even without the
obfuscation matrix. For M 2 N let us define the alphabets

A(M) = {1, . . . ,Ms0},
A⇤

(M) = {0, 1, . . . ,Ms0};
that is, one can interpret that in A(M) each original letter is repeatedM times,
and (as before) the alphabet A⇤

(M) also contains a meaningless letter 0. The
letter i of the original alphabet A is represented by the letters i, i+s0, . . . , i+
(M�1)s0 of the alphabet A(M). (Of course, we can also repeat di↵erent letters
di↵erent number of times.) Then, for all i 2 A, each time Alice wants to
encode the letter i, she first chooses j 2 {i, i+s0, . . . , i+(M�1)s0} at random
and then encodes it according to the above protocol. If she does the encoding
without the obfuscation matrix, then the security of the cipher depends on
the following general question. Let x̂1, . . . , x̂M

be vectors in R2n0 (unknown
to the attacker), with all coordinates being equal to ±1. Assume that we
have a large (at least (2n0�1)M) number of known vectors ẑ1, . . . , ẑh 2 R2n0 ,
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also with all coordinates being equal to ±1, and such that for all j = 1, . . . , h
we are guaranteed that there exist r

j

2 {1, . . . ,M} such that ẑ
j

·x̂
r

j

= 0. Can
we determine at least one of the unknown vectors up to sign, in an e�cient
way3? We are assuming, of course, that for some i 2 {1, . . . ,M} there is a
subset {t1, . . . , t2n0�1} of {1, . . . , h} such that

ẑ
t

j

· x̂
i

= 0, j = 1, . . . , 2n0 � 1

and z
t1 , . . . , zt2n0�1 are linearly independent, so the above system of linear

equations determines x̂
i

up to sign; we may even assume that the above
holds for all i. The general di�culty is, of course, that we cannot quickly
check all subsets of {1, . . . , h} of size 2n0 � 1. Still, the authors are unsure
if a more e�cient solution of the above problem exists. This indicates the
(relative?) necessity of the “obfuscation matrix” step. Still, probably it is
a good idea to combine them all, i.e., use the approach with A(M) and the
obfuscation matrix.

4 Some tools

Notice that if X is a random element of C
k

, then kXk ⇠ Binom(k, 12).
Also, H(X, ⌘) ⇠ Binom(k, 12) for any fixed ⌘, which implies that H(X, Y ) ⇠
Binom(k, 12) for independent X, Y 2 C

k

.
We recall the Cherno↵’s bound for the binomial distribution4: let Y ⇠

Binom(k, q). Then, for any k and a with 0 < a < q < 1, we have

P[Y  ak]  exp
�� kH(a, q)

�

, (9)

where

H(a, q) = a ln
a

q
+ (1� a) ln

1� a

1� q
> 0.

The same inequality holds for P[Y � ak] when 0 < q < a < 1. Note that, in
particular,

H(a, 12) = a ln(2a) + (1� a) ln(2(1� a)), (10)

see Figure 1.

3that is, in polynomial(n0) time, for fixed M � 2
4see e.g. Proposition 5.2 of Chapter 8 of [6], or Section 6 of Chapter I of [12]; also, the

inequality in (9) is, in some sense, “almost equality”, but more advanced tools are needed
to justify that, see [2]
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Figure 1: The graph of H(a, 12).

As a corollary, note that, if X, Y are two independent random elements
of C2k, and b < 1, then

P
⇥H(X, Y ) < bk] = P[H(X, Y ) > (2� b)k

⇤  exp
�� 2kH

�

b

2 ,
1
2

��

. (11)

We also make use of the Stirling’s approximation of the factorial:

n! ⇠
p
2⇡n

⇣n

e

⌘

n

, (12)

or a refined version of the above

n! =
p
2⇡n

⇣n

e

⌘

n

⇣

1 +
1

12n
+O(n�2)

⌘

, (13)

see e.g. [5]. In fact, in [5] a stronger result was proved, namely

p
2⇡n

⇣n

e

⌘

n

e
1

12n+1 < n! <
p
2⇡n

⇣n

e

⌘

n

e
1

12n (14)

for all n 2 N.
Now, we need the following simple result about flip ranges:

Proposition 4.1. Let ⌘ 2 C2k, X is a randomly chosen binary word from C2k,
and Y is a randomly chosen binary word from FR(⌘). Let ⇣ 2 C2k be such
that H(⌘, ⇣) = 2s. Then

P[X 2 FR(⌘)] = 2�2k

✓

2k

k

◆

⇠ 1p
⇡k

, (15)
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and

P[X 2 FR(⇣) | X 2 FR(⌘)] = P[Y 2 FR(⇣)] =

�

2s
s

��

2(k�s)
k�s

�

�

2k
k

� ⇠ 1
p

⇡k↵(1� ↵)
,

(16)
where ↵ := s/k (we assume in the above equivalence that both k and s are
large).

Note that the probability in (16) equals 0 by Proposition 2.2 (v) in case
H(⌘, ⇣) is odd.

Proof. First, observe that (15) immediately follows from (4). Now, recall
the proof of item (v) of Proposition 2.2; it is straightforward to see that
the method we used to construct a binary word that belongs to both flip
ranges is the only possible one. This gives the exact formula in (16), and
the asymptotic expression is again obtained from (12) after some elementary
calculations.

5 “Choose-it-at-random” works!

In this section we address the question about how Alice chooses the ciphertext
words in the above described algorithm, and also how she chooses the keys.
Basically, we are going to show that choosing N words at random (from the
corresponding flip range) on each step works with probability close to 1. This
is, of course, a very classical approach, cf. e.g. the beautiful book [1].

First, recall (11) and let us use it e.g. with b = 1/2; it tells us that the
Hamming distance between two randomly chosen binary words of length 2k is
at least k/2 and at most 3k/2 with probability at least 1�2 exp

��2kH(14 ,
1
2)
�

,
where H(14 ,

1
2) ⇡ 0.1308. By the union bound, if Alice just chooses s0m0

words from C2n0 at random, then all pairs of them will be separated (in
Hamming distance) by at least n0/2 and at most 3n0/2, with probability at
least

1� 2s0m0 exp
⇣

� 2n0H
⇣1

4
,
1

2

⌘⌘

.

For example, with s0 = 26, m0 = 10, and n0 = 30, the last formula gives
approximately 0.7969; that is, with at least that probability Alice will be
able to choose the codewords at the first try. In any case, for reasonable
values of the parameters (i.e., n0 should be large enough; the large is s0m0,
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the large n0 must be), Alice can choose the codewords (⌘
i,j

) in such a way
that the Hamming distance between any pair of these words is at least n0/2
and at most 3n0/2 simply by choosing them independently at random (in the
unlikely event that the above did not happen, Alice just repeats the whole
procedure once more). From now on we assume that the codewords were
chosen in this way.

Now, we address the question about how Alice chooses the words ✓1, . . . , ✓N
in a way that ensures that the decoding works correctly (i.e., the “right” Bob
can read the corresponding letter, while the others not). For m = 1, . . . ,m0,
let

K
m

= {⌘
j,m

, j = 1, . . . , s0}
be the set of codewords shared between Alice and Bob

m

, and denote by

K :=
m0
[

m=1

K
m

the set of all Alice’s codewords. Now, fix any ⌘ 2 K
m

, and assume that Alice
wants to encrypt the corresponding (to ⌘) letter for the corresponding Bob
(i.e., Bob

m

). We want to argue that a good strategy for her is simply to
choose N elements from FR(⌘) independently at random: with probability
close to 1 this procedure would lead to intended result (and if not, Alice can
just repeat). Let us denote these elements by Y1, . . . , YN

. If ⇣ 6= ⌘ is another
word from K

m

such that H(⌘, ⇣) is even, observe that Proposition 4.1 gives
us that

P
⇥

Y
j

2 FR(⇣) for all j = 1, . . . , N
⇤

.
⇣ 4p

6⇡n0

⌘

N

=
�

4/
p
6⇡
�

N

n�N/2
0 (17)

(note that the parameter ↵ in Proposition 4.1 will be between 1
4 and 3

4 ,
so ↵(1 � ↵) � 3

16). Next, for k 6= m, Bob
k

will receive “transformed”
words Y k

1 , . . . , Y
k

N

, which can be assumed to be roughly uniformly distributed
on C2n0 . Let us introduce the event (recall that (Y

m

1 , . . . , Y m

N

) = (Y1, . . . , YN

))

G =
�

for any ⇣ 2 K
`

\ {⌘} there exists j such that Y `

j

/2 FR(⇣),

for all ` = 1, . . . ,m0

 

.

Using also (15), we then apply the union bound5 to obtain that

P[G] & 1� s0m0(Cn0)
�N/2, (18)

5observe that with the union bound we are on the safe side
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for a universal constant C > 0. Notice that the above event G guarantees
that the right Bob will receive the right letter, and all other Bobs just receive
zeros.

In the same way we can bound (obtaining essentially the same estimate)
the probability that all Bobs receive zeros if Alice just chooses N words
totally at random (in case she wants to transmit a meaningless letter).

Essentially, (18) suggests that the maximal cardinality of the codeword

set6 is O(nN/2
0 ); that is, with that many codewords Alice is able to “encrypt

with randomness”. A significantly larger number of codewords could make
the encryption process di�cult (as well as possibly compromise the security):
the set C2n0 would be, in a way, “overcrowded” with codewords.

6 Perfect functional secrecy

Loosely speaking, the prevailing ciphers lock the contents of the message be-
hind mathematical locks, which are nonetheless vulnerable to ’weaponized
math’ of greater depth. By contrast, Vernam cipher protects its secret by
hiding it among all the possible messages of the same bit length. Claude
Shannon proved that the Vernam ciphertext contains no means to distin-
guish the encrypted message from the 2n � 1 “decoy” messages (n is the bit
count of the ciphertext). To overcome this obfuscation a reader needs to
possess a copy of the same randomness that generated this ciphertext. Come
to think about it, Vernam is an “over-kill”. In practical situations there
is no need for all possible decoy messages to be viable candidates. In fact
any small number of plausible decoy messages, if they are packed together
with the actual message such that the ciphertext contains no clue for iden-
tifying the true message, will o↵er functional equivocation, and will doom
their cryptanalyst to terminal ambiguity. For example, a stock adviser may
communicate to his client one of three options for handling a financial instru-
ment: “buy!”7, “sell” or “hold”. A cipher that will pack all three messages
into a single ciphertext will be functionally equivalent to Vernam. Using the
BitFlip cipher Alice will communicate “buy!” to Bob1, communicate “sell”
to Bob2, and communicate “hold” to Bob3. Say, Bob2 and Bob3 are vir-
tual, and only Bob1 exists. Bob1 then will interpret as zeros all the letters

6observe that card(K) = s0m0
7The exclamation mark is added to “buy” to make it comprised of four ASCII symbols,

like the other options, just to validate the subsequent comparison with Vernam cipher
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communicating to Bob2 and Bob3 (ignore them), and read his message un-
equivocally. However, a cryptanalyst without the possession of Bob1’s key
will either be confounded by the intractability of the cipher, or, at best, will
dig out all three messages: “sell”, “buy!” and “hold” and will not be the
wiser.

Had that financial adviser used Vernam, say, with ASCII coding (8 ⇥
4 = 32 bits), the cryptanalyst would have faced a much large equivocation:
232 message candidates. This theoretical advantage over the BitFlip user is
of little practical value since the cryptanalyst, aware of the circumstances,
would expect the message range to be “buy!”, “sell” or “hold”.

7 Document management protocol

Large projects conducted by highly structured organizations are documented
through D1 category data designed to be exposed to all project handlers.
On top of D1 the organization will develop D2 category data that is de-
signed to be hidden from certain project handlers who are cleared for D1.
Iteratively, such a project develops data D

i

to be read and be written by
category i project handlers. D

i

is designed to be hidden from project han-
dlers of categories 1, 2, . . . , i � 1. The challenge of managing data expo-
sure may be alleviated by deploying BitFlip with i sets of binary words:
Key

j

= ⌘1,j . . . , ⌘s0,j for j = 1, 2, . . . , i and assigning to readers of category j
the keys Key1,Key2, . . . ,Keyj. This will allow the organization to keep one
updated copy of the project document (one master copy), distributed to all
project handlers. That master copy will be encrypted to insure that indi-
viduals from each project handling category are exposed only to the parts
of the master file that is designated for them. A great administrative relief
compared to the standard protocols where a myriad of documents must be
managed, and one must insure that all updates flow through all the versions.
With BitFlip a low level project handler will be able to send the encrypted
version of the single master project document to a higher level project han-
dler which will see in it what the sender does not. All project handlers will
use their keys to read and write in that single master project document.
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8 Security

Let H(M) be the Shannon entropy of the message space, M , as evaluated
by the attacker before he captured the user’s ciphertext, and H 0(M), the
entropy as it is evaluated by the attacker after exhausting his cryptanalysis
of the ciphertext c. We regard ⇢ = (H(M) �H 0(M))/H(M) 2 [0, 1] as the
e�cacy of the attack.

We discuss two boundary situations: Large H(M), and Small H(M).
The first case may be exemplified by the sender communicating a secret
password. The attacker, a-priori faces a very large plausible message space
where the probability of each element in M is 1/|M | or just about it. The
second case may be exemplified by the sender communicating a stock han-
dling recommendation, where M is compromised of three elements: M =
{“buy”, “sell”, “hold”}.

The security of the case of large entropy is diminished when the ratio
between the size of the encrypted material, and the key space, |m|/|K|, is
growing. This is because of the inherent nature of BitFlip. Given any cipher-
text word, w, its Flip Range, FR(w) determines the scope of the alphabet
letter it represents. And the larger |m|, there more words there are, and
the more linear equations may be written between a proposed key and the
given ciphertext. Every proposed key for which these equations have no so-
lution is the wrong key. Obviously for |m| ! 1 there remains only one
key that satisfies the growing number of linear equations, and only the com-
putation intractability stands between the secret message and its successful
cryptanalysis (⇢ = 1).

Operationally this implies that the user may wish to replace the key
before the cryptanalyst has enough information to identify unambiguously
the encryption key. The combinatorics computations of this strategy are a bit
complex, and will be given in a subsequent publication. What is important
in this case is the fact that the vulnerability of the BitFlip cipher for large
H(M) is credibly anticipated by the user, and it can be remedied by either
replacing the key, or by adjusting its size.

The case of low H(M) may be handled, surprisingly, in the opposite
way: the more message material that is processed with a given key, the more
H 0(M) approaches a well calculated low boundary, which in turn keeps the
attack e�cacy well bounded. Which in turn is the guaranteed security for
the user. See below.
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Security for low A-Priori Message Entropy. Given an arbitrary natu-
ral number h 2 N, a message writer will identify a subset M

h

of the message
space M , comprised of h messages m1,m2, . . .mh

such that each m
i

is more
plausible than the statistical average (as dictated by the prevailing circum-
stances.) Namely:

P[M = m
i

| m
i

2 M
h

] > 1/|M | for i = 1, 2, . . . , h.

Let us equate the size of the h messages to |m| = |m1| = |m2| = . . . by
adding null characters, if necessary.

Using the BitFlip cipher via the obfuscation matrix the message writer
will pick a uniformly selected key k

i

2 K to encrypt m
i

to c
i

(i = 1, 2, . . . , h).
The writer will then mix the c

i

to a combined ciphertext c.

Lemma 8.1. For |m| ! 1, there is no key k⇤ 6= k
i

that decrypts c to m
i

.

Proof. For a given message size |m
i

| let k⇤ 6= k
i

decrypt: m
i

= Dec
k

⇤(c).
As |m| grows (more message material is encrypted via k1, k2, . . . , kh), the
chances for a given letter l in m

i

for which the word expression in k⇤ (l⇤
i

)
is di↵erent from the word expression in k (l

i

), to be encrypted to a word l0

which while l
i

2 FR(l), it does not belong to the Flip Range of l⇤
i

; FR(l⇤
i

), is
getting larger. That is because, as has been shown above, the Flip Ranges
of two non identical strings, x 6= y, are not the same, FR(x) 6= FR(y) (unless
y = x̄), and hence sooner or later a random selection of a member of the Flip
Range of x will not qualify as a member of the Flip Range of y. And hence,
k⇤ will not decrypt c to l.

Loosely speaking, as more and more message material is encrypted through
k1, k2, . . . , kh, there is a diminishing chance that any other key will decrypt
c to the corresponding messages m1,m2, . . . ,mh

.

Lemma 8.2. For |m| ! 1, for any plausible message m⇤ that does not
belong to M

h

, there is no key k 2 K that decrypts c to m⇤.

Proof. This is the same situation as in all the common ciphers: since the size
of combined key {k1, k2, . . . , kh} is fixed, and since for |m| ! 1 the propor-
tion of plausible messages relative to all possible messages is fast shrinking,
then the chance for any key k⇤ to decrypt c to a plausible messages shrinks
too, and becomes negligible.
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We summarize: as more and more message material is encrypted via
the randomly selected h keys, the chance for the encrypted material to be
decrypted from c via di↵erent keys, diminishes, and the chance for non se-
lected plausible messages to be decrypted from c through any key are equally
diminishing.

So for large enough |m|, we may write:

P[M = m
i

| C = c] ⇡ 1/h for all i = 1, 2, . . . , h.

Now suppose that k1 is the key that was shared with the intended reader
of the message. She will readily decrypt m1 = Dec

k1(c). Alas, an attacker
will face a probability 1/h for the right message m1, and a probability of
(h � 1)/h for some other message to be the valid one. In the simplest case
where h = 2, the cryptanalyst will face a 50:50 chance to identify the right
message. This chance diminishes for larger h.

Conclusion: We identified a use methodology for BitFlip in situations
where the a-priori entropy is small. The methodology is comprised of co-
encrypting the secret message with plausible decoy messages using the ob-
fuscation matrix. We have shown that this procedure will deny even an
unbound cryptanalyst an unambiguous determination of the encrypted mes-
sage.

Note: the decoy plausible messages may be worked out automatically
using modern AI techniques. Writer and recipient may share all the K

h

keys,
and switch as to which key they use each time, or each day, or otherwise,
through a pre-agreed randomized schedule. This will prevent a cryptanalyst
from learning which key counts by analyzing the reaction of the recipient to
the read messages.

9 More on security

We have seen above that, even without the obfuscation matrix, the number
of di↵erent cipherstrings (of length 2n0) representing a given letter is very
large (about 22n0/

p
⇡n0, recall (4)), which rules out any possibilities of e.g.

using frequency analysis or similar methods. Also, the size of the space of
all possible keys (with only one Bob, i.e., m0 = 1, and without the obfusca-
tion matrix) is O(22s0n0), which makes the complete search in the key space
impossible even for moderately large values of n0.
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Although the precise calculations seem to be very di�cult in the case
when the obfuscation matrix is involved, nevertheless, in the following we are
going to present a (not completely rigorous) argument that shows that the
ciphertext produced by BitFlip is practically indistinguishable from a random
bit string (at least when the binary logarithm of the size of the ciphertext is
much less than 2n, which seems to be a reasonable assumption).

The key idea is to observe that large chunks of the ciphertext we create
are almost completely random. To formalize this, let us recall the notion
of total variation distance between two probability measures P and Q on a
measurable space (⌦,F):

kP �Qk
TV

= sup
A2F

|P (A)�Q(A)|. (19)

It is elementary to obtain that kP �Qk
TV

2 [0, 1] for all P and Q, and also

kP �Qk
TV

=
1

2

X

x

|p(x)� q(x)| (20)

in case P and Q are discrete with weight functions p and q, and

kP �Qk
TV

=
1

2

Z +1

�1
|f1(x)� f2(x)| dx (21)

in case P and Q are (absolutely) continuous with densities f1 and f2. In
general, it also holds that 1�kP�Qk

TV

equals the probability of the coupling
event under the maximal coupling, cf. [13].

Next, define the funcion

'(t) =

8

>

>

<

>

>

:

1

2
p
2⇡

Z +1

�1

�

�

�

e�
x

2

2 � 1p
1� t

e�
x

2

2(1�t)

�

�

�

dx, for t 2 [0, 1),

1, for t = 1,

(22)

see Figure 2. It is elementary to see that ' is a continuous increasing function
on the interval [0, 1], with '(0) = 0, '(1) = 1. Also, since for any fixed x
and t ! 0

�

�

�

1� 1p
1� t

e�
x

2

2 ( 1
1�t

�1)
�

�

�

=
�

�

�

1�
⇣

1 +
t

2
+O(t2)

⌘⇣

1� x2

2
t+O(t2)

⌘

�

�

�

=
t

2
⇥ �

�1� x2 +O(t)
�

�,
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Figure 2: The graph of '.

we have

'0(0) =
E|1� Z2|

4
=

1p
2e⇡

⇡ 0.241971, (23)

where Z is a standard Normal random variable.
Notice that (recall (21)) '(t) is the total variation distance between the

centered Normal law with variance (1 � t) and the standard Normal law.
Moreover, an easy change-of-variable argument shows that '(t) is also the
total variation distance between N (µ, �2) and N (µ, (1� t)�2), for any µ 2 R
and � > 0.

Now, we are ready to formulate our “almost-independence” result. For
⌘ 2 C2n and k  2n let L(2n)

k

(⌘) be the law of the first k bits of a randomly
chosen (with uniform distribution) configuration from FR(⌘), and denote also
by eL

k

the law of random independent bits (i.e., a sequence of k Bernoulli(12)
trials). We have

Proposition 9.1. For any sequence of binary words (⌘
n

2 C2n, n � 1) and
any t 2 [0, 1], we have

�

�L(2n)
[2tn](⌘n)� eL[2tn]

�

�

TV

! '(t) (24)
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Figure 3: The random walk’s trajectory generated by the binary word
101000110110 2 FR(012).

as n ! 1.

In words, the above result means that large pieces (of size ↵n0 for a
not-so-large ↵ > 0) of the ciphertext are “almost indistinguishable” from the
Bernoulli trials. Also, it is clear that the same result applies to the bits on any
[2tn] fixed positions. For example, since '(1/3) is only approximately 0.1, in
at least 9 cases of 10 the set of bits on 2n0/3 positions cannot be distinguished
from the set of completely random bits.

Proof of Proposition 9.1. Note that, by symmetry, it is enough to consider
the case ⌘

n

= 02n, for all n � 1. Now, the key idea to represent a binary word
⌘ 2 C2n as a random walk : we interpret every 1 as a step up, and every 0 as a
step down, see Figure 3. Then, the completely random element of C2n (i.e., 2n
Bernoulli(12) trials) corresponds to a trajectory of a simple random walk, i.e.,
the walk that steps in both directions with equal probabilities. On the other
hand, it is clear that a random element of FR(02n) can be interpreted as a
simple random walk conditioned on being at the origin at time 2n. The task
of estimating the total variational distance between L(2n)

[2tn](⌘n) and
eL[2tn] then

amounts to constructing a coupling between conditioned and unconditioned
simple random walks up to time [2tn]. Since all paths of the same length have
apriori the same weight, it is clear that it’s enough to couple the positions of
the walkers at time [2tn].

Now, instead of witing the formal proof, we present a heuristic argu-
ment that shows the validity of (24). Indeed, it is well known that, under
the scaling (m, `) 7! (m

2n ,
`p
2n
), the simple random walk converges to the

Brownian motion, and the conditioned simple random walk converges to the
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Brownian bridge8 (see e.g. [4]). Notice that, in the limit, the discrete time
[2tn] becomes the continuous time t under this scaling. Now, it holds that
W

t

⇠ N (0, t) and B
t

⇠ N (0, t(1 � t)); the total variation distance between
then is therefore '(t).

Strictly speaking, that scaling limit argument does not imply the con-
vergence of the total variation distances we want to obtain. However, for
random walks the calculations are essentially the same if one uses a suitable
version of the local Central Limit Theorem9. We omit the details.

As Proposition 9.1 shows, there is a kind of “mesoscopic independence”
in the ciphertext. There is still “global dependence”, but it is hidden by
the random walks on the g-matrices: since the “close” steps are virtually
independent, it is likely that the “raw” ciphertext will be transformed by
that random walk in a completely impredictable way (note also the huge
number of possible random walk’s trajectories). It is then reasonable to
believe that this renders any “linear equations attacks” (as described in the
end of Section 3.1) nearly impossible.

The above justifies the following conjecture: a successfull attempt to
break the BitFlip cipher amounts to a (more-or-less) complete search in the
space of possible keys, which is, of course, not computationally feasible for
reasonably large values of n0.
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