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Abstract. This work considers the problem of constructing efficient
MDS matrices over the field F2m . Efficiency is measured by the met-
ric XOR count which was introduced by Khoo et al. in CHES 2014.
Recently Sarkar and Syed (ToSC Vol. 1, 2016) have shown the existence
of 4 × 4 Toeplitz MDS matrices with optimal XOR counts. In this pa-
per, we present some characterizations of Toeplitz matrices in light of
MDS property. Our study leads to improving the known bounds of XOR
counts of 8× 8 MDS matrices by obtaining Toeplitz MDS matrices with
lower XOR counts over F24 and F28 .
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1 Introduction

Internet of Things (IoT) is a network of interconnected devices that can share
data with each other and process when required. IoT applications range from
health monitoring and traffic management to several other daily life activities;
this is one of the reasons that it also has drawn attention from the industry.
The devices used in IoT are mostly RFIDs and sensors, which have very low
resources. Thus for ensuring privacy and confidentiality of the data in IoT,
classical cryptosystems like AES, RSA are not suitable. To bridge this gap
the topic lightweight cryptography has emerged. Lightweight cryptography is
mostly based on symmetric key. The eSTREAM finalists Grain v1 [7], MICKEY
2.0 [1], and Trivium [18] are examples of lightweight stream ciphers. CLEFIA [16],
PRESENT [5], PRINCE [6] are some of the existing lightweight block ciphers.

In this paper we are interested in lightweight block ciphers. Confusion and
diffusion layers are the two important building blocks of a block cipher. While
confusion layer is responsible for making the relation between key and cipher-
text as complex as possible, the diffusion layer spreads the plaintext statistics
through the ciphertext. Maximum distance separable (MDS) matrices are a pop-
ular choice to build diffusion layer as these matrices achieve the maximum dif-
fusion power. However, constructing an MDS matrix with low implementation
cost (as to suit lightweight cryptosystems) is a nontrivial task.



In CHES 2014, [9] introduced the metric XOR count that measures the cost
of implementation of a diffusion matrix. A matrix filled with field elements hav-
ing low Hamming weight may not necessarily result in low hardware cost for the
implementation of the matrix, which was shown in [9]. This paper measured the
number of XORs required to compute the multiplication of a fixed field element
and showed that there are MDS diffusion matrices with higher Hamming weight
than the AES diffusion matrix, but needed lesser XORs to implement. Then sev-
eral works [17, 14, 11, 10, 15] followed to find MDS matrices with low XOR counts.
Search effort for MDS matrices with low XOR count in the previous works have
been made in some subclasses of matrices like Hadamard matrices and circu-
lant matrices. Recently [15] settled the question of the minimum XOR counts of
4× 4 MDS matrices over F24 and F28 . They showed that matrices achieving the
minimum XOR count exist in the class of Toeplitz matrices. This motivates us
to study Toeplitz MDS matrices further and analyze several properties of such
matrices.

Our Contributions Since a Toeplitz MDS matrix cannot be involutory [15],
there is no scope of getting involutory MDS matrices in the class of Toeplitz
matrices. In this work we restrict our study to MDS matrices only. In a Toeplitz
matrix, several submatrices repeat. We count the number of distinct d × d,
(1 ≤ d ≤ n) submatrices in Proposition 1; later Theorem 1 shows how many
of these distinct submatrices are indeed Toeplitz. One can take the advantage
of this redundancy while checking the MDS property of a Toeplitz matrix (see
Remark 1). We also study Toeplitz matrices in the class of Cauchy matrices,
and prove that a Cauchy-Toeplitz matrix cannot be MDS for dimension greater
than 2.

In Section 4, we improve the XOR count of 8 × 8 MDS matrices over F24

and F28 . As the class of all MDS 8× 8 matrix is huge, we search in the subclass
formed by the Toeplitz matrices. However, it is not easy to exhaust the full class
of Toeplitz matrices for these fields. We develop a pruning based search algorithm
which enables us to find Toeplitz MDS matrices with lower XOR counts. For F24

the lowest XOR count that we obtain is 170 + 8 · 7 · 4 (earlier known value was
208 + 8 · 7 · 4), whereas for F28 the improved XOR count is 232 + 8 · 7 · 8 (earlier
known value was 240 + 8 · 7 · 8). Thus we improve the bounds of XOR counts of
8× 8 MDS matrices over F24 and F28 .

2 Preliminaries

We denote by F2m the finite field with 2m elements, and by Fm2 we denote the
m-dimensional vector space over F2. MDS codes are the class of linear codes over
the field F2m that achieve the Singleton bound, that is for an [N,K] MDS code
the minimum distance is N −K+ 1. An n×n matrix M over F2m is MDS if the
n× 2n matrix G = [InM ] is a generator of a [2n, n] MDS code, where In is the
n × n identity matrix. Another characterization of MDS matrices is as follows:
M is MDS if and only if every submatrix of M is nonsingular. For details on this



one may consult [12]. MDS matrices are popular choice for building diffusion
layers of block ciphers, as they attain the maximum diffusion power.

2.1 XOR Counts

The field F2m can be identified to the vector space Fm2 , by choosing some basis.
There are several kinds of bases for a finite fields, and the mostly used one is the
polynomial basis of the form {1, α, . . . , αm−1}. To measure the implementation
cost of field multiplication [9] proposed the metric XOR count defined as follows.

Definition 1. Let P (X) be an irreducible polynomial that defines F2m and let
B be a basis of F2m . The XOR count of an element a ∈ F2m with respect to B
is the number of XORs required to implement the multiplication of a with an
arbitrary element b ∈ F2m . We denote by XOR (a) the XOR count of a.

Note that XOR (0) = 0 = XOR (1). It is mentioned in [9] that low XOR count
is strongly correlated to the minimization of hardware area (GE). Thus finding
MDS matrices with low XOR count is an active research topic in the context
of lightweight cryptography. The set of XOR counts of all the elements of F2m

is termed as the XOR count distribution which depends on P (X) and B [17,
14]. Note that polynomial basis is a conventional choice for implementation and
as noted in [15], we will only be considering polynomial basis. Recently [4] has
relooked at XOR count of an element and allowed reuse of repeating terms in
the product vector. However, we do not consider such optimization and regard
XOR count in its simplified form as given by [9] and many subsequent works
[17, 14, 15].

In [9] the formula for the XOR count of a row of a matrix was derived, later
[15] extended it to the full n× n matrix M defined over F2m as

n−1∑
i=0

n−1∑
j=0

γij + (`i − 1) ·m

 = C(M) +

n−1∑
i=0

(`i − 1) ·m (1)

where γij is the XOR count of the j-th entry of the i-th row of the matrix, and
`i is the number of nonzero entries in that row. The term C(M) is the sum of
XOR counts of all the entries of M . For an n×n MDS matrix over F2m , `i = n,
so (1) becomes C(M) + n · (n − 1) ·m, and C(M) is the part that varies with
the matrices.

3 Toeplitz MDS Matrices

In this section we study Toeplitz MDS matrices in details.

Definition 2. A matrix is called Toeplitz if every descending diagonal from left
to right is constant.



The following is the general form of an n× n Toeplitz matrix.

T =


a0 a1 a2 . . . an−2 an−1
a−1 a0 a1 . . . an−3 an−2

...
...

...
...

...
...

a−(n−1) a−(n−2) a−(n−3) . . . a−1 a0

 . (2)

A Toeplitz matrix is defined by its first row and first column, henceforth we will
use

Toep(a0, a1, . . . , an−1, a−1, a−2, . . . , a−(n−1)) (3)

to describe an n × n Toeplitz matrix of the form (2). This matrix can also be
defined as follows:

T = [mi,j ], where mi,j = aj−i. (4)

3.1 Properties of a Toeplitz Matrix

To check the MDS property of an n× n matrix, one has to check if all the sub-

matrices are nonsingular. The total number of such submatrices are
∑n
i=1

(
n
i

)2
.

However, it is easy to see that in a Toeplitz matrix several sub matrices are du-
plicates and hence can be ignored while checking MDS property. In this section
we compute the number of distinct submatrices of a Toeplitz matrix. Following
is a result in this regard proof of which is given in Appendix A.

Lemma 1. Suppose T is a Toeplitz matrix as given in (2). Every d×d submatrix
of T is equal to a d× d submatrix Tsub such that

1. the first row of Tsub belongs to the first row of T . Or,
2. the first column of Tsub belongs to the first column of T .

Example 1. Consider the following 4× 4 Toeplitz matrix T .

T =


a0 a1 a2 a3
a−1 a0 a1 a2

a−2 a−1 a0 a1

a3 a−2 a−1 a0

 .
The 2×2 submatrix formed by the 2nd and 4th row, and 2nd and 4th column

(marked by circles) is equal to the 2 × 2 submatrix formed by the 1st and 3rd
row, and 1st and 3rd column (marked by rectangles).

Let us now count the number of distinct submatrices of a Toeplitz matrices
considering that all the ai’s are distinct.

Proposition 1. Let T = Toep(a0, . . . , a−(n−1)) be a Toeplitz matrix in which
all ai’s are distinct. Then the number of distinct d× d submatrices is(

n− 1

d− 1

)2

+ 2

(
n− 1

d− 1

)(
n− 1

d

)
=

(
n− 1

d− 1

)2(
2n− d
d

)
. (5)



Consequently, the total number of distinct submatrices are(
2n− 2

n− 1

)
+ 2

(
2n− 2

n− 2

)
. (6)

Proof. We will count the distinct submatrices as per Lemma 1, i.e., submatrices
having elements from the first row or first column. Let T [0, 0] be the (0, 0)-th
element of T . We count the number of submatrices with and without T [0, 0]
separately.
Case 1: When T [0, 0] is absent. In this case there are two kinds of submatrices:
submatrices that have elements from the first row, but not from the first column,
or submatrices that have elements from the first column, but not from the first
row. The number of distinct d× d submatrices that have elements from the first
row is

(
n−1
d−1
)(
n−1
d

)
, and the number of submatrices that have elements from the

first column is
(
n−1
d−1
)(
n−1
d

)
.

Case 2: When T [0, 0] is present. In this case the number of distinct d × d
submatrices is

(
n−1
d−1
)(
n−1
d−1
)
.

Now adding the above two counts we get the number of distinct d × d sub-
matrices as (5).

Further note that for any positive integer t,
∑t
i=0

(
t
i

)2
=
(
2t
t

)
and

∑t−1
i=0

(
t
i

)(
t
i+1

)
=(

2t
t

)
+
(

2t
t−1
)
. Using these, the total number of distinct submatrices is obtained as

n∑
d=1

(
n− 1

d− 1

)2

+ 2

n∑
d=1

(
n− 1

d− 1

)(
n− 1

d

)
=

(
2n− 2

n− 1

)
+ 2

(
2n− 2

n− 2

)
.

ut

Note that a submatrix of a Toeplitz matrix could also be Toeplitz. Denote by
Row(S) = (i0, . . . , id−1), the ordered set of row indices of S and Col(S) =
(j0, . . . , jd−1) ordered set of column indices of S. We now present a charac-
terization of a submatrix of a Toeplitz matrix to be Toeplitz also.

Proposition 2. Let T = Toep(a0, . . . , a−(n−1)) be a Toeplitz matrix in which all
ai’s are distinct and S be a d× d submatrix of T for some 2 ≤ d ≤ n− 1. Then
S is Toeplitz if and only if Row(S) = (i0, . . . , id−1), and Col(S) = (j0, . . . , jd−1)
satisfy

ik+1 − ik = jk+1 − jk = ρ, k = 0, . . . , d− 2 (7)

for some integer ρ such that

1 ≤ ρ ≤
⌊
n− 1

d− 1

⌋
. (8)

Proof. Recall that a square matrix X = [xij ] of order n is Toeplitz if and only
if for all 0 ≤ i, j ≤ n− 2

xi,j = xi+θ,j+θ

for every θ ≥ 1 is such that max {i+θ, j+θ} ≤ n−1. Now let’s prove the lemma.
Suppose that S is a d × d submatrix of T such that Row(S) and Col(S) satisfy



(7) with ρ as in (8). This implies that for any ik ∈ Row(S), jt ∈ Col(S), 0 ≤
k, t ≤ d− 2 we have

Sik,jt = Tik,jt = Tik+θ,jt+θ = Sik+θ,jt+θ

as S is a submatrix of T which is a Toeplitz matrix. This shows that S is Toeplitz
and hence the sufficiency part. Let us prove the necessary part. Suppose S is
a d × d Toeplitz submatrix of T for some 2 ≤ d ≤ n − 1, then we show that
Row(S), Col(S) satisfy (7) with ρ as in (8). Observe that since (by hypothesis)
all the elements of first row and column of T are distinct, it follows from the
definition of a Toeplitz matrix that for any 0 ≤ i, j, i′, j′ ≤ n− 1,

Ti,j = Ti′,j′ if and only if j − i = j′ − i′. (9)

Using this in case of S (which is a Toeplitz submatrix), we have for every element
of Row(S), Col(S)

ik − jk = ik−1 − jk−1 =⇒ ik − ik−1 = jk − jk−1,

which proves (7). Next suppose ρ = ik− ik−1 then the condition (8) is necessary
to make sure that none of the indices of S grows bigger than indices of T . From
(7) it follows that

id−1 = id−2 + ρ = . . . = i0 + ρ (d− 1). (10)

Using the facts 2 ≤ d ≤ (n− 1), ρ ≥ 1, and 1 ≤ id−1 ≤ n− 1 in (10) we get

1 ≤ 0 + ρ (d− 1) ≤ (n− 1) =⇒ 1 ≤ ρ ≤
⌊
n− 1

d− 1

⌋
.

ut

In the following we count the number of d× d Toeplitz submatrices of an n× n
Toeplitz matrix.

Theorem 1. Let T be an n× n Toeplitz matrix as given in (2) in which all the
elements of first row and first column are distinct. Then the number of distinct
d× d Toeplitz submatrices are

δd,n =

{
2n− 1 if d = 1

(n− d+ τd,n + 1) · bn−1d−1 c if d = 2, . . . , n
, (11)

where τd,n is given by n− 1 = bn−1d−1 c(d− 1) + τd,n.

Proof. Suppose S is a d× d a submatrix of T with Row(S) = (i0, . . . , id−1) and
Col(S) = (j0, . . . , jd−1). Let

Γ =

bn−1
d−1 c∑
θ=1

n− θ (d− 1)︸ ︷︷ ︸
(*)

+

bn−2
d−1 c∑
θ=1

(n− 1)− θ (d− 1)︸ ︷︷ ︸
(**)

. (12)



We will show that the distinct d × d Toeplitz submatrices of an n × n Toeplitz
matrix T is given by Γ as in (12) and this simplifies to (11). To count distinct
submatrices S we use Proposition 1 and consider only those submatrices S for
which

(i0 = 0) or (i0 > 0 and j0 = 0),

and for each case we count the exact number of Toeplitz submatrices using
conditions of Proposition 2 which put together gives (11).
Case 1: When i0 = 0.
This gives the term (*) in (12). In this case for every ρ satisfying (8), the only
possibility for Row(S) is Row(S) = (0, ρ, . . . , ρ (d − 1)). For every such possible
Row(S), the number of possibilities for Col(S) = (j0, . . . , jd−1) satisfying (7) is
n− ρ (d− 1). Varying ρ from 1 to bn−1d−1 c and summing all the terms we get (*)
in (12)

Case 2: When i0 > 0, and j0 = 0
Let ρ0 be a value of ρ satisfying (8). One can choose Row(S) = (i0, . . . , id−1)
satisfying (7) for ρ = ρ0 in exactly (n − 1) − ρ (d − 1) ways. For every such
chosen Row(S) there exits a unique value Col(S) = (0, j1, . . . , jd−1) (satisfying
(7) for ρ = ρ0) which together give a Toeplitz matrix S. Since i0 > 0 total
number of available rows is only n − 1 and hence the total number of Toeplitz
submatrices which do not involve 0 can be obtained by by adding the quantity
[(n− 1)− ρ (d− 1)] for ρ = 1 to bn−2d−1 c we obtain (**) in (12).

To complete the proof we need to show that Γ in (12) simplifies to (11).
This can be easily shown by considering the two cases τd,n > 0 and τd,n = 0
separately. ut

Using this result, we compare the number of distinct submatrices of Toeplitz
and general matrices in Table 2 in Appendix B.

Remark 1. Given an n × n matrix, to check the MDS property one needs to

verify whether all the
∑n
i=1

(
n
i

)2
=
(
2n
n

)
− 1 square submatrices are nonsingular.

However, as we see in Lemma 1 that there are too many redundancies in a
Toeplitz matrix, so we need to consider fewer submatrices as opposed to a general
matrix. By Proposition 1, we need to consider

(
2n−2
n−1

)
+ 2
(
2n−2
n−2

)
submatrices in

total for an n× n Toeplitz matrix.

3.2 Cauchy-Toeplitz Matrices

Cauchy matrices are interesting in the sense that it is easy to construct MDS
matrices in this class. A Cauchy matrix over F2m is of the form

M = [ai,j ]n×n, where ai,j =
1

xi + yj
, xi 6= yj , 0 ≤ i, j ≤ n− 1. (13)

Fact 1 The Cauchy matrix M is nonsingular if and only if xi 6= xj and yi 6= yj,
for all 0 ≤ i, j ≤ n− 1.



There have been constructions of MDS matrices which are both Hadamard
and Cauchy (see [17] for example). We now analyze the MDS property of matrices
which are both Toeplitz and Cauchy. We call matrices which are both Toeplitz
and Cauchy as Cauchy-Toeplitz. Example of such a matrix is given in Example
2 in Appendix A.

Theorem 2. Let T be a n × n Cauchy-Toeplitz matrix over F2m . Then the
following hold.

1. T is symmetric.

2. T is singular if n ≥ 3, and thus T is not MDS if n ≥ 3.

Proof. As T is Toeplitz, we must have Ti,i = Tj,j . Then

1

xi + yi
=

1

xj + yj
=⇒ 1

xi + yj
=

1

xj + yi
,

that is Ti,j = Tj,i. So T is symmetric.

Next we prove that T is singular whenever n ≥ 3. Consider a 3 × 3 Cauchy
matrix

T3 =

 1
x0+y0

1
x0+y1

1
x0+y2

1
x1+y0

1
x1+y1

1
x1+y2

1
x2+y0

1
x2+y1

1
x2+y2

 .
By the definition of Cauchy matrix xi 6= yj for i, j = 0, 1, 2 and from Fact 1 it
follows that T3 is nonsingular if and only if

xi 6= xj and yi 6= yj for 0 ≤ i < j ≤ 2. (14)

Suppose that T3 is Toeplitz, then by Definition 2 we have the following.

x0 + y0 = x1 + y1 = x2 + y2 = C0

x0 + y1 = x1 + y2 = C1

x1 + y0 = x2 + y1 = C2,

(15)

for some C0, C1 and C2 in F2m . As it was proved above that T3 is symmetric,
C1 = C2 must hold. Using this in (15) we get x2 + y1 = C1, and we also have
x0 + y1 = C1, which together imply x0 = x2. Then from (14) it follows that T3
is singular matrix.

Next, for n > 3, consider an n × n Cauchy-Toeplitz matrix T defined by
the elements (x0, . . . , xn−1) and (y0, . . . , yn−1) of F2m . Denote by T ′ the 3 × 3
submatrix of T consisting of first three rows and columns. Then T ′ is a Cauchy-
Toeplitz matrix defined by the elements (x0, x1, x2) and (y0, y1, y2), and we just
proved that x0 = x2. Consequently using Fact 1 it follows that T is singular.
This also shows that T is not MDS. ut



3.3 More Classes of Non-MDS Toeplitz Matrices

We now propose a characterization of Toeplitz matrices that are not MDS. Proofs
of these lemmas can be found in Appendix A.

Lemma 2. The n×n Toeplitz matrix T as given in (2) is not MDS if for some
i < j such that i+ j ≤ n− 1, ai = aj and a−i = a−j hold.

Lemma 3. The maximum number of occurrences of an element β ∈ F2m in a
8× 8 MDS matrix is 24.

4 Searching for MDS Matrices with Low XOR Count

In [15], authors have searched efficiently in the class of 4× 4 MDS matrices over
F24 and F28 to obtain the least possible XOR count. However, the space of 8× 8
MDS matrices is so vast that it is difficult to exhaust. In this section we search
in the class of Toeplitz matrices as 4× 4 MDS matrices with the optimal XOR
counts in this class [15]. However, the class of 8 × 8 Toeplitz matrices is also
large enough that searching for an improved matrix becomes a challenging task.
To tackle this we apply a pruning strategy so that we get search results faster.
First we form a search tree as follows.

Forming a Search Tree
A 8 × 8 Toeplitz matrix T can be defined as T = Toep(a0, . . . , a7, a8, . . . , a14).
From (1) we have that for any 8×8 matrix M , over F2m the sum of XOR counts
of all the elements of M is C(M). We define C as the lowest known value of
C(M). If we find a Toeplitz MDS matrix T such that

C(T ) =

13∑
i=0,i6=7

(8− (i mod 7))XOR (ai) + XOR (a7) + XOR (a14) < C, (16)

we obtain a new MDS matrix with lower XOR count.
Suppose the matrix is defined over the set U ⊆ F2m . Then every ai has |U |

options to choose from. So the naive search complexity is |U |15. Given ai, for
i = 0, . . . , 13, next ai+1 will be one of |U | choices, that is, we can view this
as a tree where every node has |U | children. As a0 itself has |U | choices, there
will be |U | such trees. Traveling from the root to a leaf will give us one tu-
ple (a0, . . . , a7, a8, . . . , a14). If Toep(a0, . . . , a7, a8, . . . , a14) is MDS, and it also
satisfies (16), we get an improved MDS matrix with respect to XOR count.
However, if we see that for a choice of ai, the tuple (a0, . . . , ai) cannot be a
part of any (a0, . . . , a7, a8, . . . , a14) such that Toep(a0, . . . , a7, a8, . . . , a14) is not
MDS or does not satisfy (16), then we can prune the whole subtree rooted at
that ai, as Toep(a0, . . . , a7, a8, . . . , a14) will not improve C for such a choice of ai.
Next we discuss in detail the pruning criteria which we call as E1, E2, E3 and E4 .

E1: Occurrence of an element is more than 24 times



Suppose we are at the i-th level, that is with the subtuple (a0, . . . , ai). With
this we have a submatrix where each ar, 0 ≤ r ≤ i occurs 8 − (r mod 7)
times if r ≤ 13 and only once if r = 14. We count the number of occur-
rences of the value of ai in this submatrix, and if ai occurs more than 24 times,
then by Lemma 3, (a0, . . . , ai) cannot be a part of any Toeplitz MDS matrix
Toep(a0, . . . , ai, . . . , a14). So we prune the subtree rooted at this value of ai, and
switch to the next sibling. Figure 1 in Appendix B describes one such scenario.

E2: XOR count of the submatrix ≥ C

First we sort U in ascending order with respect to XOR counts of its elements.
Now suppose that we are at the subtuple (a0, . . . , ai) and if

i∑
r=0

(8− (r mod 7))XOR (ar) ≥ C, for i < 14, or

13∑
r=0

(8− (r mod 7))XOR (ar) + XOR (a14) ≥ C, for i = 14

(17)

holds, then for the current value of ai, (a0, . . . , ai) cannot be a part of any
Toeplitz matrix Toep(a0, . . . , ai, . . . , a14), (ai 6= 0,∀i) whose XOR count is < C.
Since ai takes values from U which is sorted in increasing order, then all the
next siblings will have equal or higher XOR counts, so they will also satisfy (17).
Hence we prune the subtree rooted at the current value of ai and all the other
possible subtrees rooted at its next siblings having higher XOR counts. So we
move back to ai−1 and update it by a new value from U . Figure 2 describes one
such scenario.

E3: Submatrices satisfying Lemma 2
Suppose we are with a subtuple (a0, . . . , a7, . . . , ai). That is we are now dealing
with a (i − 6) × 8 Toeplitz submatrix. If (a0, . . . , ai) is such that the condi-
tion stated in Lemma 2 is satisfied, then (a0, . . . , a7, . . . , ai) cannot be a part of
any Toeplitz MDS matrix defined (a0, . . . , ai, . . . , a14). So we prune the subtree
rooted at this value of ai, and switch to the next sibling.

E4: One submatrix is singular
When we are dealing with a (i − 6) × 8 Toeplitz submatrix T ′ formed by
(a0, . . . , a7, . . . , ai), if one of the submatrices of T ′ is singular, then we prune
the subtree rooted at ai’s current value, and replace it by a new value.

Finally when we land up having a tuple (a0, . . . , a14) which has survived all
the pruning criteria E1, E2, E3, E4 at every level, then we obtain a Toeplitz MDS
matrix T = Toep(a0, . . . , a14) with lower XOR count than C. Next we replace
C = C(T ), and continue the search.



5 MDS Matrices over F24 with Improved XOR Count

Using the above mentioned search method we now search for 8 × 8 Toeplitz
MDS matrices over F24 . The lowest known XOR count of 8× 8 MDS matrix is
208 + 7 · 4 · 8 as reported in [17]. So we set C = 208, and we look for Toeplitz
MDS matrices over F24 with C(T ) < C. We consider F24 defined by primitive
polynomial X4 + X + 1 whose primitive element is denoted by α. We select
U = F∗24 that is sorted in ascending order according to the XOR counts of
its elements, U = {1, α, α14, α2, α3, α13, α4, α5, α6, α7, α8, α12, α9, α11, α10}. The
corresponding XOR counts are {0, 1, 1, 2, 3, 3, 5, 5, 5, 6, 6, 6, 8, 8, 9}. We apply our
search strategy and obtain improved matrices. In fact we obtain several matrices
T with C(T ) < 208, we mention a matrix with least one. The matrix

Toep(α1, 1, α4, 1, α5, α14, α7, α8, α3, α6, α14, α14, α8, α6, α3) (18)

has XOR count 170 + 7 · 4 · 8.
The naive search would require to consider 1515 = 259 elements of F24 . As

our search is applying pruning, thus it ends up considering only

22275827417 ≈ 235

possible F24 elements for the ai’s in total. This explains the effectiveness of our
search strategy. As it is observed by [17] that change of irreducible polynomial
has effect on the XOR count, so we consider other irreducible polynomials that
define F24 . Note that X4+X3+X2+X+1 is the only such irreducible polynomial
apart from X4 + X + 1 up to reciprocal. However, we do not find any better
matrix under this irreducible polynomial.

6 MDS Matrices over F28 with Lower XOR Count

Next we apply the same search strategy to obtain 8× 8 Toeplitz MDS matrices
over F28 . The best known MDS matrix is reported in [11], which is a circulant
matrix that has XOR count 240+8·7·8. We consider F28 defined by the primitive
polynomial X8 + X7 + X6 + X + 1. We take Toeplitz matrices over a subset
U ⊂ F28 of 15 elements1, and sort it according to the XOR counts of the elements
in increasing order. Precisely U = {x : XOR (x) ≤ 10}. In this case |U | = 11.
Our search begins with C = 240. When the search completes the lowest XOR
count of Toeplitz MDS matrix that we obtain is 232 + 8 · 7 · 8, example of such
a matrix is

Toep(1, 1, α, α253, 1, α253, α252, α157, α158, α253, α254, α, α254, α2, α). (19)

As |U | = 11, the naive search would require to consider 1115 = 243 elements
from F28 . Using our pruning strategy, we only need to consider

1427292833 ≈ 231

1 We do not consider full F28 as this leads to a huge search space which will be difficult
to complete.



possible F28 elements for the ai’s in total. Further with a larger U = {x :
XOR (x) ≤ 12}, in which case |U | = 18, we do not find any improved matrix.
In this case we need to consider approximately 234 elements from F28 instead of
1518 ≈ 271 elements. Like F24 , the search strategy is proving to be effective in
case of F28 also.

We also consider other primitive polynomials (up to reciprocals) that define
F28 with small a set U as above. However, we do not obtain any better matrices
than the example above.

7 Comparisons

We summarize our findings and compare with the existing results in Table 1.

F28

Irreducible polynomial Reference Matrix type XOR Counts

X8 + X7 + X6 + X + 1 Section 6 Toeplitz 232 + 8 · 7 · 8

X8 + X7 + X6 + X + 1 [11] Circulant 240 + 8 · 7 · 8

X8 + X7 + X6 + X + 1 [17] Hadamard 320 + 8 · 7 · 8

X8 + X4 + X3 + X2 + 1 [3] Circulant 392 + 8 · 7 · 8

F24

X4 + X + 1 Section 5 Toeplitz 170 + 8 · 7 · 4

X4 + X + 1 [17] Hadamard 208 + 8 · 7 · 4

X4 + X + 1 [2] Hadamard 264 + 8 · 7 · 4

Table 1. Comparison of XOR count of 8× 8 MDS matrices over F28 and F24 with the
previously known values.

8 Conclusions

We have presented an extensive study on Toeplitz MDS matrices theoretically
and also in the context of hardware implementation. We have developed an
efficient search strategy that has helped find 8× 8 Toeplitz MDS matrices with
improved XOR count over F24 and F28 . As these matrices are in the Toeplitz
class, it restates along with [15] the richness of this class of matrices with respect
to containing efficient MDS matrices. On the other hand it will be interesting to
have families of efficient (in terms of XOR count) 8 × 8 MDS matrices. As we
have shown that Cauchy-Toeplitz matrices cannot be MDS in general, one has
to consider more general matrices for such a construction.
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A Proofs and Example

Proof of Lemma 1

Proof. Consider the following d× d submatrix A.

A =


mi0,j0 mi0,j1 . . . mi0,jd−1

mi1,j0 mi1,j1 . . . mi1,jd−1

...
...

...
...

mid−1,j0 mid−1,j1 . . . mid−1,jd−1

 .
Applying (4), we get the form of this matrix as

A =


aj0−i0 aj1−i0 . . . ajd−1−i0
aj0−i1 aj1−i1 . . . ajd−1−i1

...
...

...
...

aj0−id−1
aj1−id−1

. . . ajd−1−id−1

 . (20)

If j0 − i0 ≥ 0, then A is equal to the following submatrix whose first row
belongs to the first row of the main matrix T :

Tsub =


m0,j0−i0 m0,j1−i0 . . . m0,jd−1−i0

mi1−i0,j0−i0 mi1−i0,j1−i0 . . . mi1−i0,jd−1−i0
...

...
...

...
mid−1−i0,j0−i0 mid−1−i0,j1−i0 . . . mid−1−i0,jd−1−i0

 .
On the other hand, if j0 − i0 < 0, then (20) is equal to the following matrix

whose first column belongs to the first column of the main matrix T :

Tsub =


mi0−j0,0 mi0−j0,j1−j0 . . . mi0−j0,jd−1−j0
mi1−j0,0 mi1−j0,j1−j0 . . . mi1−j0,jd−1−j0

...
...

...
...

mid−1−j0,0 mid−1−j0,j1−j0 . . . mid−1−j0,jd−1−j0

 .
ut



Proof of Lemma 2

Proof. As i + j ≤ n − 1, in the (i + j)-th row (row and column number starts
from 0), a−j appears in the i-th column, i.e., both ai and a−j are in the same
column. Again in the (i + j)-th row, a−i appears in the j-th column, i.e., a−i
and aj are in the same column. Therefore, the 2× 2 submatrix of T formed by

the 0, (i+ j)-th row and i, j-th column is

[
ai aj
a−j a−i

]
. The determinant of this is

aia−i + aja−j = 0 by hypothesis. ut

Proof of Lemma 3

Proof. It is easy to check that given an MDS matrix M = [mi,j ]n×n and β ∈ F∗2m
the matrix βM = [β mi,j ]n×n is also MDS. From [8] it is known that in a 8× 8
MDS matrix, 1 can occur at most 24 times. So if there is an element β in an
8 × 8 MDS matrix V that occurs more than 24 times, then β−1V contains 1
more than 24 times, a contradiction. ut

Example 2. Suppose α is a primitive root of X4 + X + 1 = 0 that generates
GF (24). Consider

x0 = 1, y0 = α+ 1,

x1 = α, y1 = x0 + y0 + x1,

x2 = x0, y2 = y0.

Then the following is a Cauchy-Toeplitz matrixa3 + 1 1 a3 + 1
1 a3 + 1 1

a3 + 1 1 a3 + 1

 .
B Figures and Tables



Dimension
Submatrices of
General matrix

Toeplitz matrix

General submatrices Toeplitz submatrices

4 × 4 69 50 20

5 × 5 251 182 35

6 × 6 923 672 55

7 × 7 3431 2508 81

8 × 8 12869 9438 113

16 × 16 601080389 445962870 614

Table 2. Number of submatrices of general matrices, and number of general and
Toeplitz submatrices of Toeplitz matrices.

ai−2

ai

ai−1

Fig. 1. If the value of ai occurs more than 24 times then the whole subtree rooted at
ai is pruned.

ai

ai−2

ai−1

Fig. 2. If the value of ai satisfies (17), all the subtrees rooted at this ai and its subse-
quent siblings are pruned.


